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Preface

MLOps is a systematic approach to building, deploying, and monitoring machine learning
(ML) solutions. It is an engineering discipline that can be applied to various industries
and use cases. This book presents comprehensive insights into MLOps coupled with real-
world examples to help you to write programs, train robust and scalable ML models, and
build ML pipelines to train and deploy models securely in production.

You will begin by familiarizing yourself with MLOps workflow and start writing programs
to train ML models. You'll then move on to explore options for serializing and packaging
ML models post-training to deploy them in production to facilitate machine learning
inference. Next, you will learn about monitoring ML models and system performance
using an explainable monitoring framework. Finally, you’ll apply the knowledge you've
gained to build real-world projects.

By the end of this ML book, you'll have a 360-degree view of MLOps and be ready to
implement MLOps in your organization.

Who this book is for

This MLOps book is for data scientists, software engineers, DevOps engineers,

machine learning engineers, and business and technology leaders who want to build,
deploy, and maintain ML systems in production using MLOps principles and techniques.
Basic knowledge of machine learning is necessary to get started with this book.
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What this book covers

Chapter 1, Fundamentals of MLOps Workflow, gives an overview of the changing software
development landscape by highlighting how traditional software development is changing
to facilitate machine learning. We will highlight some daily problems within organizations
with the traditional approach, showcasing why a change in thinking and implementation
is needed. Proceeding that an introduction to the importance of systematic machine
learning will be given, followed by some concepts of machine learning and DevOps and
fusing them into MLOps. The chapter ends with a proposal for a generic workflow to
approach almost any machine learning problem.

Chapter 2, Characterizing Your Machine Learning Problem, offers you a broad perspective
on possible types of ML solutions for production. You will learn how to categorize
solutions, create a roadmap for developing and deploying a solution, and procure the
necessary data, tools, or infrastructure to get started with developing an ML solution
taking a systematic approach.

Chapter 3, Code Meets Data, starts the implementation of our hands-on business use
case of developing a machine learning solution. We discuss effective methods of source
code management for machine learning, data processing for the business use case, and
formulate a data governance strategy and pipeline for machine learning training and
deployment.

Chapter 4, Machine Learning Pipelines, takes a deep dive into building machine learning
pipelines for solutions. We look into key aspects of feature engineering, algorithm
selection, hyperparameter optimization, and other aspects of a robust machine learning
pipeline.

Chapter 5, Model Evaluation and Packaging, takes a deep dive into options for serializing
and packaging machine learning models post-training to deploy them at runtime to
facilitate machine learning inference, model interoperability, and end-to-end model
traceability. You'll get a broad perspective on the options available and state-of-the-art
developments to package and serve machine learning models to production for efficient,
robust, and scalable services.

Chapter 6, Key Principles for Deploying Your ML System, introduces the concepts of
continuous integration and deployment in production for various settings. You will learn
how to choose the right options, tools, and infrastructure to facilitate the deployment of a
machine learning solution. You will get insights into machine learning inference options
and deployment targets, and get an introduction to CI/CD pipelines for machine learning.
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Chapter 7, Building Robust CI and CD Pipelines, covers different CI/CD pipeline components
such as triggers, releases, jobs, and so on. It will also equip you with knowledge on curating
your own custom CI/CD pipelines for ML solutions. We will build a CI/CD pipeline for an
ML solution for a business use case. The pipelines we build will be traceable end to end as
they will serve as middleware for model deployment and monitoring.

Chapter 8, APIs and Microservice Management, goes into the principles of API and
microservice design for ML inference. A learn by doing approach will be encouraged.

We will go through a hands-on implementation of designing and developing an API and
microservice for an ML model using tools such as FastAPI and Docker. You will learn key
principles, challenges, and tips to designing a robust and scalable microservice and API
for test and production environments.

Chapter 9, Testing and Securing Your ML Solution, introduces the core principles of
performing tests in the test environment to test the robustness and scalability of the
microservice or APl we have previously developed. We will perform hands-on load testing
for a deployed ML solution. This chapter provides a checklist of tests to be done before
taking the microservice to production release.

Chapter 10, Essentials of Production Release, explains how to deploy ML services to
production with a robust and scalable approach using the CI/CD pipelines designed
earlier. We will focus on deploying, monitoring, and managing the service in production.
Key learnings will be deployment in serverless and server environments using tools such
as Python, Docker, and Kubernetes.

Chapter 11, Key Principles for Monitoring Your ML System, looks at key principles

and aspects of monitoring ML systems in production for robust, secure, and scalable
performance. As a key takeaway, readers will get a concrete explainable monitoring
framework and checklist to set up and configure a monitoring framework for their ML
solution in production.

Chapter 12, Model Serving and Monitoring, explains serving models to users and defining
metrics for an ML solution, especially in the aspects of algorithm efficiency, accuracy, and
production performance. We will deep dive into hands-on implementation and real-life
examples on monitoring data drift, model drift, and application performance.

Chapter 13, Governing the ML System for Continual Learning, reflects on the need for
continual learning in machine learning solutions. We will look into what is needed to
successfully govern an ML system for business efficacy. Using the Explainable Monitoring
framework, we will devise a strategy to govern and we will delve into the hands-on
implementation for error handling and configuring alerts and actions. This chapter will
equip you with critical skills to automate and govern your MLOps.
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To get the most out of this book

You should have access to a Microsoft Azure subscription and basic DevOps-based
software used to build CI/CD pipelines. A personal computer or laptop with a Linux or
macOS is a plus.

Software/hardware covered in ]
OS requirements

the book
Python Linux, macOS, or
" Windows
i Linux, macOS, or
o Windows
Linux, macOS, or
Pocker Windows
Kubernetes Linux, macOS, or

Windows

Linux, macOS, or

Microsoft Azure .
Windows

Linux, macOS, or

Azure ML Service .
Windows

Linux, macOS, or

MLElow Windows

Linux, macOS, or

Azure DevOps Windows

Linux, macOS, or

Fast API Windows

Linux, macOS, or

Locust.io .
Windows

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the copying and pasting of code.
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Download the example code files

You can download the example code files for this book from GitHub at https: //github.
com/PacktPublishing/EngineeringMLOps. In case there's an update to the code, it
will be updated on the existing GitHub repository. We also have other code bundles from our
rich catalog of books and videos available at ht tps : / /github. com/PacktPublishing/.
Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800562882 ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

Code in text:Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "The preprocessed dataset is imported using the .get_by_name()
function.”

A block of code is set as follows:

uri = workspace.get mlflow tracking uri( )

mlflow.set tracking uri (uri)

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

# Importing pre-processed dataset

dataset = Dataset.get by name (workspace, name='processed
weather data portofTurku')

Any command-line input or output is written as follows:
python3 test inference.py

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Go to the Compute option and click the Create button to explore compute options
available on the cloud.”
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Tips or important notes
Appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www . packtpub . com/support /errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt . com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub. com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.



Section 1:
Framework for
Building Machine
Learning Models

This part will equip readers with the foundation of MLOps and workflows to characterize
their ML problems to provide a clear roadmap for building robust and scalable ML
pipelines. This will be done in a learn-by-doing approach via practical implementation
using proposed methods and tools (Azure Machine Learning services or MLflow).

This section comprises the following chapters:

Chapter 1, Fundamentals of MLOps WorkFlow

Chapter 2, Characterizing Your Machine Learning Problem
Chapter 3, Code Meets Data

Chapter 4, Machine Learning Pipelines

Chapter 5, Model Evaluation and Packaging
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1

Fundamentals of an
MLOps Workflow

Machine learning (ML) is maturing from research to applied business solutions.
However, the grim reality is that only 2% of companies using ML have successfully
deployed a model in production to enhance their business processes, reported by
DeepLearning.Al (https://info.deeplearning.ai/the-batch-companies-
slipping-on-ai-goals-self-training-for-better-vision-muppets-
and-models-china-vs-us-only-the-best-examples-proliferating-
patents). What makes it so hard? And what do we need to do to improve the situation?

To get a solid understanding of this problem and its solution, in this chapter, we will
delve into the evolution and intersection of software development and ML. We'll

begin by reflecting on some of the trends in traditional software development, starting
from the waterfall model to agile to DevOps practices, and how these are evolving to
industrialize ML-centric applications. You will be introduced to a systematic approach
to operationalizing Al using Machine Learning Operations (MLOps). By the end of
this chapter, you will have a solid understanding of MLOps and you will be equipped to
implement a generic MLOps workflow that can be used to build, deploy, and monitor a
wide range of ML applications.
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In this chapter, we're going to cover the following main topics:

+ The evolution of infrastructure and software development
« Traditional software development challenges

« Trends of ML adoption in software development

+ Understanding MLOps

« Concepts and workflow of MLOps

The evolution of infrastructure and software
development

With the genesis of the modern internet age (around 1995), we witnessed a rise in
software applications, ranging from operating systems such as Windows 95 to the Linux
operating system and websites such as Google and Amazon, which have been serving

the world (online) for over two decades. This has resulted in a culture of continuously
improving services by collecting, storing, and processing a massive amount of data from
user interactions. Such developments have been shaping the evolution of IT infrastructure
and software development.

Transformation in IT infrastructure has picked up pace since the start of this millennium.
Since then, businesses have increasingly adopted cloud computing as it opens up new
possibilities for businesses to outsource IT infrastructure maintenance while provisioning
necessary IT resources such as storage and computation resources and services required
to run and scale their operations.

Cloud computing offers on-demand provisioning and the availability of I'T resources such
as data storage and computing resources without the need for active management by the
user of the IT resources. For example, businesses provisioning computation and storage
resources do not have to manage these resources directly and are not responsible for
keeping them running — the maintenance is outsourced to the cloud service provider.

Businesses using cloud computing can reap benefits as there's no need to buy and
maintain IT resources; it enables them to have less in-house expertise for I'T resource
maintenance and this allows businesses to optimize costs and resources. Cloud computing
enables scaling on demand and users pay as per the usage of resources. As a result,

we have seen companies adopting cloud computing as part of their businesses and IT
infrastructures.
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Cloud computing became popular in the industry from 2006 onward when Sun
Microsystems launched Sun Grid in March 2006. It is a hardware and data resource
sharing service. This service was acquired by Oracle and was later named Sun Cloud.
Parallelly, in the same year (2006), another cloud computing service was launched by
Amazon called Elastic Compute Cloud. This enabled new possibilities for businesses
to provision computation, storage, and scaling capabilities on demand. Since then, the
transformation across industries has been organic toward adopting cloud computing.

In the last decade, many companies on a global and regional scale have catalyzed the cloud
transformation, with companies such as Google, IBM, Microsoft, UpCloud, Alibaba, and
others heavily investing in the research and development of cloud services. As a result, a
shift from localized computing (companies having their own servers and data centers) to
on-demand computing has taken place due to the availability of robust and scalable cloud
services. Now businesses and organizations are able to provision resources on-demand on
the cloud to satisfy their data processing needs.

With these developments, we have witnessed Moore's law in operation, which states

that the number of transistors on a microchip doubles every 2 years - though the cost of
computers has halved, this has been true so far. Subsequently, some trends are developing
as follows.

The rise of machine learning and deep learning

Over the last decade, we have witnessed the adoption of ML in everyday life applications.
Not only for esoteric applications such as Dota or AlphaGo, but ML has also made its way
to pretty standard applications such as machine translation, image processing, and voice
recognition.
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This adoption is powered by developments in infrastructure, especially in terms of the
utilization of computation power. It has unlocked the potential of deep learning and ML..
We can observe deep learning breakthroughs correlated with computation developments
in Figure 1.1 (sourced from OpenAl: https://openai.com/blog/ai-and-
compute):

A
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i}
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Figure 1.1 — Demand for deep learning over time supported by computation

These breakthroughs in deep learning are enabled by the exponential growth in
computing, which increases around 35 times every 18 months. Looking ahead in time,
with such demands we may hit roadblocks in terms of scaling up central computing
for CPUs, GPUs, or TPUs. This has forced us to look at alternatives such as distributed
learning where computation for data processing is distributed across multiple
computation nodes. We have seen some breakthroughs in distributed learning, such

as federated learning and edge computing approaches. Distributed learning has shown
promise to serve the growing demands of deep learning.
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The end of Moore's law

Prior to 2012, Al results closely tracked Moore's law, with compute doubling every 2 years.
Post-2012, compute has been doubling every 3.4 months (sourced from AI Index 2019

- https://hai.stanford.edu/research/ai-index-2019). We can observe
from Figure 1.1 that demand for deep learning and high-performance computing

(HPC) has been increasing exponentially with around 35x growth in computing every 18
months whereas Moore's law is seen to be outpaced (2x every 18 months). Moore's law

is still applicable to the case of CPUs (single-core performance) but not to new hardware
architectures such as GPUs and TPUs. This makes Moore's law obsolete and outpaced in
contrast to current demands and trends.

Al-centric applications

Applications are becoming Al-centric — we see that across multiple industries. Virtually
every application is starting to use Al, and these applications are running separately on
distributed workloads such as HPC, microservices, and big data, as shown in Figure 1.2:

Senving \Microservices

Training Al business
logic

Log,
processing
featurization

Big Data

Figure 1.2 - Applications running on distributed workloads
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By combining HPC and Al, we can enable the benefits of computation needed to

train deep learning and ML models. With the overlapping of big data and Al, we can
leverage extracting required data at scale for Al model training, and with the overlap

of microservices and Al we can serve the AI models for inference to enhance business
operations and impact. This way, distributed applications have become the new norm.
Developing Al-centric applications at scale requires a synergy of distributed applications
(HPC, microservices, and big data) and for this, a new way of developing software is
required.

Software development evolution

Software development has evolved hand in hand with infrastructural developments to
facilitate the efficient development of applications using the infrastructure. Traditionally,
software development started with the waterfall method of development where
development is done linearly by gathering requirements to design and develop. The
waterfall model has many limitations, which led to the evolution of software development
over the years in the form of Agile methodologies and the DevOps method, as shown in
Figure 1.3:

Waterfall Agile DevOps

Figure 1.3 - Software development evolution

The waterfall method

The waterfall method was used to develop software from the onset of the internet age
(~1995). It is a non-iterative way of developing software. It is delivered in a unidirectional
way. Every stage is pre-organized and executed one after another, starting from
requirements gathering to software design, development, and testing. The waterfall
method is feasible and suitable when requirements are well-defined, specific, and do not
change over time. Hence this is not suitable for dynamic projects where requirements
change and evolve as per user demands. In such cases, where there is continuous
modification, the waterfall method cannot be used to develop software. These are the
major disadvantages of waterfall development methods:

+ The entire set of requirements has to be given before starting the development;
modifying them during or after the project development is not possible.
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« There are fewer chances to create or implement reusable components.

« Testing can only be done after the development is finished. Testing is not intended
to be iterable; it is not possible to go back and fix anything once it is done.
Moreover, customer acceptance tests often introduced changes, resulting in a delay
in delivery and high costs. This way of development and testing can have a negative
impact on the project delivery timeline and costs.

« Most of the time, users of the system are provisioned with a system based on the
developer’s understanding, which is not user-centric and can come short of meeting
their needs.

The Agile method

The Agile method facilitates an iterative and progressive approach to software
development. Unlike the waterfall method, Agile approaches are precise and user-centric.
The method is bidirectional and often involves end users or customers in the development
and testing process so they have the opportunity to test, give feedback, and suggest
improvements throughout the project development process and phases. Agile has several
advantages over the waterfall method:

+ Requirements are defined before starting the development, but they can be modified
at any time.

« Itis possible to create or implement reusable components.

« The solution or project can be modular by segregating the project into different
modules that are delivered periodically.

« The users or customers can co-create by testing and evaluating developed solution
modules periodically to ensure the business needs are satisfied. Such a user-centric
process ensures quality outcomes focused on meeting customer and business needs.
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The following diagram shows the difference between Waterfall and Agile methodologies:

Planning and Feasibility
Study
Requirements

Analysis

Development Development ‘

Deployment

Maintenance

Figure 1.4 - Difference between waterfall and agile methods

The DevOps method

The DevOps method extends agile development practices by further streamlining

the movement of software change through the build, test, deploy, and delivery stages.
DevOps empowers cross-functional teams with the autonomy to execute their software
applications driven by continuous integration, continuous deployment, and continuous
delivery. It encourages collaboration, integration, and automation among software
developers and IT operators to improve the efficiency, speed, and quality of delivering
customer-centric software. DevOps provides a streamlined software development
framework for designing, testing, deploying, and monitoring systems in production.
DevOps has made it possible to ship software to production in minutes and to keep it
running reliably.
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Traditional software development challenges

In the previous section, we observed the shift in traditional software development from
the waterfall model to agile and DevOps practices. Agile and DevOps practices have
enabled companies to ship software reliably. DevOps has made it possible to ship software
to production in minutes and to keep it running reliably. This approach has been so
successful that many companies are already adopting it, so why can't we keep doing the
same thing for ML applications?

The leading cause is that there's a fundamental difference between ML development and
traditional software development: Machine learning is not just code; it is code plus data. A
ML model is created by applying an algorithm (via code) to fit the data to result in a ML
model, as shown in Figure 1.5:

MODEL

Figure 1.5 - Machine learning = data + code
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While code is meticulously crafted in the development environment, data comes from
multiple sources for training, testing, and inference. It is robust and changing over time
in terms of volume, velocity, veracity, and variety. To keep up with evolving data, code
evolves over time. For perspective, their relationship can be observed as if code and data
live in separate planes that share the time dimension but are independent in all other
aspects. The challenge of an ML development process is to create a bridge between these
two planes in a controlled way:

J—
-
-
-
-
-
J—

-

-
-
- -
-
-

-
-

Figure 1.6 - Data and code progression over time

Data and code, with the progression of time, end up going in two directions with one
objective of building and maintaining a robust and scalable ML system. This disconnect
causes several challenges that need to be solved by anyone trying to put a ML model in
production. It comes with challenges such as slow, brittle, fragmented, and inconsistent
deployment, and a lack of reproducibility and traceability.

To overcome these challenges, MLOps offers a systematic approach by bridging data

and code together over the progression of time. This is the solution to challenges posed
by traditional software development methods with regard to ML applications. Using the
MLOps method, data and code progress over time in one direction with one objective of
building and maintaining a robust and scalable ML system:

Figure 1.7 - MLOps — data and code progressing together

MLOps facilitates ML model development, deployment, and monitoring in a streamlined
and systematic approach. It empowers data science and IT teams to collaborate, validate,
and govern their operations. All the operations executed by the teams are recorded or
audited, end-to-end traceable, and repeatable. In the coming sections, we will learn how
MLOps enables data science and IT teams to build and maintain robust and scalable ML
systems.
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Trends of ML adoption in software
development

Before we delve into the workings of the MLOps method and workflow, it is beneficial

to understand the big picture and trends as to where and how MLOps is disrupting the
world. As many applications are becoming Al-centric, software development is evolving
to facilitate ML. ML will increasingly become part of software development, mainly due to
the following reasons:

Investments: In 2019, investments in global private AI clocked over $70 billion,
with start-up investments related to Al over $37 billion, M&A $34 billion, IPOs

$5 billion, and minority stake valued at around $2 billion. The forecast for Al
globally shows fast growth in market value as Al reached $9.5 billion in 2018 and is
anticipated to reach a market value of $118 billion by 2025. It has been assessed that
growth in economic activity resulting from AT until 2030 will be of high value and
significance. Currently, the US attracts ~50% of global VC funding, China ~39%,
and 11% goes to Europe.

Big data: Data is exponentially growing in volume, velocity, veracity, and variety.
For instance, observations suggest data growing in volume at 61% per annum in
Europe, and it is anticipated that four times more data will be created by 2025 than
exists today. Data is a requisite raw material for developing Al

Infrastructural developments and adoption: Moore's law has been closely tracked
and observed to have been realized prior to 2012. Post-2012, compute has been
doubling every 3.4 months.

Increasing research and development: Al research has been prospering in quality
and quantity. A prominent growth of 300% is observed in the volume of peer-
reviewed Al papers from 1998 to 2018, summing up to 9% of published conference
papers and 3% of peer-reviewed journal publications.

Industry: Based on a surveyed report, 47% of large companies have reported having
adopted Al in at least one function or business unit. In 2019, it went up to 58% and
is expected to increase.

Information

These points have been sourced from policy and investment recommendations
for trustworthy AI - European commission (https: //ec.europa.
eu/digital-single-market/en/news/policy-and-
investment-recommendations-trustworthy-artificial-
intelligence)and Al Index 2019 (https://hai.stanford.
edu/research/ai-index-2019).
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All these developments indicate a strong push toward the industrialization of Al and
this is possible by bridging industry and research. MLOps will play a key role in the
industrialization of AL If you invest in learning this method, it will give you a headstart
in your company or team and you could be a catalyst for operationalizing ML and
industrializing AL

So far, we have learned about some challenges and developments in IT, software
development, and Al Next, we will delve into understanding MLOps conceptually and
learn in detail about a generic MLOps workflow that can be used commonly for any use
case. These fundamentals will help you get a firm grasp of MLOps.

Understanding MLOps

Software development is interdisciplinary and is evolving to facilitate ML. MLOps is an
emerging method to fuse ML with software development by integrating multiple domains
as MLOps combines ML, DevOps, and data engineering, which aims to build, deploy,
and maintain ML systems in production reliably and efficiently. Thus, MLOps can be
expounded by this intersection.

Machine Learning

Data

DevOps Engineering

Figure 1.8 — MLOps intersection
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To make this intersection (MLOps) operational, I have designed a modular framework
by following the systematic design science method proposed by Wieringa (https://
doi.org/10.1007/978-3-662-43839-8) to develop a workflow to bring these
three together (Data Engineering, Machine Learning, and DevOps). Design science goes
with the application of design to problems and context. Design science is the design and
investigation of artifacts in a context. The artifact in this case is the MLOps workflow,
which is designed iteratively by interacting with problem contexts (industry use cases for
the application of AI):

Artifact Problem context

Software, Hardware, People,
. Organizations, Business Processes,
MLODS workflow Interaction Services, Methods, Techniques,
Conceptual Structures,
Values, Desires, Fears,
Goals, Norms, Budgets.

A

Figure 1.9 - Design science workflow

In a structured and iterative approach, the implementation of two cycles (the design cycle
and the empirical cycle) was done for qualitative and quantitative analysis for MLOps
workflow design through iterations. As a result of these cycles, an MLOps workflow is
developed and validated by applying it to multiple problem contexts, that is, tens of ML
use cases (for example, anomaly detection, real-time trading, predictive maintenance,
recommender systems, virtual assistants, and so on) across multiple industries (for
example, finance, manufacturing, healthcare, retail, the automotive industry, energy, and
so on). I have applied and validated this MLOps workflow successfully in various projects
across multiple industries to operationalize ML. In the next section, we will go through
the concepts of the MLOps workflow designed as a result of the design science process.



16 Fundamentals of an MLOps Workflow

Concepts and workflow of MLOps

In this section, we will learn about a generic MLOps workflow; it is the result of many
design cycle iterations as discussed in the previous section. It brings together data
engineering, ML, and DevOps in a streamlined fashion. Figure 1.10 is a generic MLOps
workflow; it is modular and flexible and can be used to build proofs of concept or to
operationalize ML solutions in any business or industry:

MLOps Workflow

)

Build 220 Machine Learning Pipeline Y} || Deploy ’|| Monitor Explainable Monitoring ¥)y -
- Data . Model Model Model Model Application| |Production Monf Anal I
Ingestion | | training | 7| testing [*|packaging [*| registering testing |*| Release onitor . Anahyze v Govem

Data Training Test Monitoring
Code L o]y, e e e e e R i gl _Test Application
code ] code code
S Trained e T OCKBERD e EOduUCtiON
maodel T mode| model
Middleware . : Model Feature Pipeline
GIT DOCKER  Registry KUBERNETES V-Net ' o _
Infrastructure Training Production Central | Feature
Compute Compute Storage Store
[Model Retrain ',

Figure 1.10 - MLOps workflow

This workflow is segmented into two modules:

« MLOps pipeline (build, deploy, and monitor) - the upper layer

« Drivers: Data, code, artifacts, middleware, and infrastructure - mid and lower
layers

The upper layer is the MLOps pipeline (build, deploy, and monitor), which is enabled

by drivers such as data, code, artifacts, middleware, and infrastructure. The MLOps
pipeline is powered by an array of services, drivers, middleware, and infrastructure, and
it crafts ML-driven solutions. By using this pipeline, a business or individual(s) can do
quick prototyping, testing, and validating and deploy the model(s) to production at scale
frugally and efficiently.

To understand the workings and implementation of the MLOps workflow, we will look at
the implementation of each layer and step using a figurative business use case.
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Discussing a use case

In this use case, we are to operationalize (prototyping and deploying for production) an
image classification service to classify cats and dogs in a pet park in Barcelona, Spain.
The service will identify cats and dogs in real time from the inference data coming from a
CCTYV camera installed in the pet park.

The pet park provide you access to the data and infrastructure needed to operationalize
the service:

« Data: The pet park has given you access to their data lake containing 100,000
labeled images of cats and dogs, which we will use for training the model.

« Infrastructure: Public cloud (IaaS).

This use case resembles a real-life use case for operationalizing ML and is used to explain
the workings and implementation of the MLOps workflow. Remember to look for an
explanation for the implementation of this use case at every segment and step of the
MLOps workflow. Now, let's look at the workings of every layer and step in detail.

The MLOps pipeline
The MLOps pipeline is the upper layer, which performs operations such as build, deploy,

and monitor, which work modularly in sync with each other. Let's look into each module's
functionality.

Build

The build module has the core ML pipeline, and this is purely for training, packaging,
and versioning the ML models. It is powered by the required compute (for example, the
CPU or GPU on the cloud or distributed computing) resources to run the ML training
and pipeline:

Build Y Machine Learning Pipeline ))) v

Data Model Model
eeston | od Mofiel Mode.l " .ode.
g training testing ’ packaging registering

Figure 1.11 - MLOps - build pipeline
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The pipeline works from left to right. Let's look at the functionality of each step in detail:

+ Data ingestion: This step is a trigger step for the ML pipeline. It deals with the
volume, velocity, veracity, and variety of data by extracting data from various data
sources (for example, databases, data warehouses, or data lakes) and ingesting
the required data for the model training step. Robust data pipelines connected to
multiple data sources enable it to perform extract, transform, and load (ETL)
operations to provide the necessary data for ML training purposes. In this step, we
can split and version data for model training in the required format (for example,
the training or test set). As a result of this step, any experiment (that is, model
training) can be audited and is back-traceable.

For a better understanding of the data ingestion step, here is the previously
described use case implementation:

Use case implementation

As you have access to the pet park's data lake, you can now procure data to get
started. Using data pipelines (part of the data ingestion step), you do the following:

1. Extract, transform, and load 100,000 images of cats and dogs.
2. Split and version this data into a train and test split (with an 80% and 20% split).
Versioning this data will enable end-to-end traceability for trained models.

Congrats — now you are ready to start training and testing the ML model using
this data.

+ Model training: After procuring the required data for ML model training in the
previous step, this step will enable model training; it has modular scripts or code
that perform all the traditional steps in ML, such as data preprocessing, feature
engineering, and feature scaling before training or retraining any model. Following
this, the ML model is trained while performing hyperparameter tuning to fit the
model to the dataset (training set). This step can be done manually, but efficient and
automatic solutions such as Grid Search or Random Search exist. As a result, all
important steps of ML model training are executed with a ML model as the output
of this step.

Use case implementation
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In this step, we implement all the important steps to train the image
classification model. The goal is to train a ML model to classify cats and dogs.
For this case, we train a convolutional neural network (CNN - https://
towardsdatascience.com/wtf-is-image-classification-
8e78a8235ach) for the image classification service. The following steps are
implemented: data preprocessing, feature engineering, and feature scaling before
training, followed by training the model with hyperparameter tuning. As a result,
we have a CNN model to classify cats and dogs with 97% accuracy.

Model testing: In this step, we evaluate the trained model performance on a
separated set of data points named test data (which was split and versioned in the
data ingestion step). The inference of the trained model is evaluated according to
selected metrics as per the use case. The output of this step is a report on the trained
model's performance.

Use case implementation

We test the trained model on test data (we split data earlier in the Data ingestion
step) to evaluate the trained model's performance. In this case, we look for precision
and the recall score to validate the model's performance in classifying cats and dogs
to assess false positives and true positives to get a realistic understanding of the
model's performance. If and when we are satisfied with the results, we can proceed
to the next step, or else reiterate the previous steps to get a decent performing model
for the pet park image classification service.

Model packaging: After the trained model has been tested in the previous step, the
model can be serialized into a file or containerized (using Docker) to be exported to
the production environment.

Use case implementation

The model we trained and tested in the previous steps is serialized to an ONNX file
and is ready to be deployed in the production environment.
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« Model registering: In this step, the model that was serialized or containerized in
the previous step is registered and stored in the model registry. A registered model
is a logical collection or package of one or more files that assemble, represent, and
execute your ML model. For example, multiple files can be registered as one model.
For instance, a classification model can be comprised of a vectorizer, model weights,
and serialized model files. All these files can be registered as one single model. After
registering, the model (all files or a single file) can be downloaded and deployed as
needed.

Use case implementation

The serialized model in the previous step is registered on the model registry and is
available for quick deployment into the pet park production environment.

By implementing the preceding steps, we successfully execute the ML pipeline
designed for our use case. As a result, we have trained models on the model registry
ready to be deployed in the production setup. Next, we will look into the workings
of the deployment pipeline.

Deploy

The deploy module enables operationalizing the ML models we developed in the previous
module (build). In this module, we test our model performance and behavior in a
production or production-like (test) environment to ensure the robustness and scalability
of the ML model for production use. Figure 1.12 depicts the deploy pipeline, which has
two components — production testing and production release — and the deployment
pipeline is enabled by streamlined CI/CD pipelines connecting the development to
production environments:

~~

Deploy ~

Application > Production
Testing Release

Figure 1.12 — MLOps — deploy pipeline
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It works from left to right. Let's look at the functionality of each step in detail:

« Application testing: Before deploying an ML model to production, it is vital to
test its robustness and performance via testing. Hence we have the "application
testing” phase where we rigorously test all the trained models for robustness
and performance in a production-like environment called a test environment.
In the application testing phase, we deploy the models in the test environment
(pre-production), which replicates the production environment.

The ML model for testing is deployed as an API or streaming service in the test
environment to deployment targets such as Kubernetes clusters, container instances,
or scalable virtual machines or edge devices as per the need and use case. After

the model is deployed for testing, we perform predictions using test data (which

is not used for training the model; test data is sample data from a production
environment) for the deployed model, during which model inference in batch

or periodically is done to test the model deployed in the test environment for
robustness and performance.

The performance results are automatically or manually reviewed by a quality
assurance expert. When the ML model's performance meets the standards, then it
is approved to be deployed in the production environment where the model will be
used to infer in batches or real time to make business decisions.

Use case implementation

We deploy the model as an API service on an on-premises computer in the pet park,
which is set up for testing purposes. This computer is connected to a CCTV camera
in the park to fetch real-time inference data to predict cats or dogs in the video
frames. The model deployment is enabled by the CI/CD pipeline. In this step, we
test the robustness of the model in a production-like environment, that is, whether
the model is performing inference consistently, and an accuracy, fairness, and error
analysis. At the end of this step, a quality assurance expert certifies the model if it
meets the standards.
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+ Production release: Previously tested and approved models are deployed in the
production environment for model inference to generate business or operational
value. This production release is deployed to the production environment enabled
by CI/CD pipelines.

Use case implementation

We deploy a previously tested and approved model (by a quality assurance expert)
as an API service on a computer connected to CCTV in the pet park (production
setup). This deployed model performs ML inference on the incoming video data
from the CCTV camera in the pet park to classify cats or dogs in real time.

Monitor

The monitor module works in sync with the deploy module. Using explainable
monitoring (discussed later in detail, in Chapter 11, Key Principles for Monitoring Your
ML System), we can monitor, analyze, and govern the deployed ML application (ML
model and application). Firstly, we can monitor the performance of the ML model (using
pre-defined metrics) and the deployed application (using telemetry data). Secondly, model
performance can be analyzed using a pre-defined explainability framework, and lastly,

the ML application can be governed using alerts and actions based on the model's quality
assurance and control. This ensures a robust monitoring mechanism for the production
system:

Monitor Explainable Monitoring »)) 10

Monitor Analyze Govern

Figure 1.13 - MLOps — monitor pipeline

Let's see each of the abilities of the monitor module in detail:

+ Monitor: The monitoring module captures critical information to monitor data
integrity, model drift, and application performance. Application performance can be
monitored using telemetry data. It depicts the device performance of a production
system over a period of time. With telemetry data such as accelerometer, gyroscope,
humidity, magnetometer, pressure, and temperature we can keep a check on the
production system's performance, health, and longevity.

Use case implementation
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In real time, we will monitor three things — data integrity, model drift, and
application performance - for the deployed API service on the park's computer.
Metrics such as accuracy, F1 score, precision, and recall are tracked to data integrity
and model drift. We monitor application performance by tracking the telemetry
data of the production system (the on-premises computer in the park) running the
deployed ML model to ensure the proper functioning of the production system.
Telemetry data is monitored to foresee any anomalies or potential failures and fix
them in advance. Telemetry data is logged and can be used to assess production
system performance over time to check its health and longevity.

Analyze: It is critical to analyze the model performance of ML models deployed in
production systems to ensure optimal performance and governance in correlation
to business decisions or impact. We use model explainability techniques to measure
the model performance in real time. Using this, we evaluate important aspects such
as model fairness, trust, bias, transparency, and error analysis with the intention of
improving the model in correlation to business.

Over time, the statistical properties of the target variable we are trying to predict
can change in unforeseen ways. This change is called "model drift,” for example, in

a case where we have deployed a recommender system model to suggest suitable
items for users. User behavior may change due to unforeseeable trends that could
not be observed in historical data that was used for training the model. It is essential
to consider such unforeseen factors to ensure deployed models provide the best

and most relevant business value. When model drift is observed, then any of these
actions should be performed:

a) The product owner or the quality assurance expert needs to be alerted.
b) The model needs to be switched or updated.

¢) Re-training the pipeline should be triggered to re-train and update the model as
per the latest data or needs.

Use case implementation

We monitor the deployed model's performance in the production system (a
computer connected to the CCTV in the pet park). We will analyze the accuracy,
precision, and recall scores for the model periodically (once a day) to ensure the
model's performance does not deteriorate below the threshold. When the model
performance deteriorates below the threshold, we initiate system governing
mechanisms (for example, a trigger to retrain the model).
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+ Govern: Monitoring and analyzing is done to govern the deployed application to
drive optimal performance for the business (or the purpose of the ML system).
After monitoring and analyzing the production data, we can generate certain
alerts and actions to govern the system. For example, the product owner or the
quality assurance expert gets alerted when model performance deteriorates (for
example, low accuracy, high bias, and so on) below a pre-defined threshold. The
product owner initiates a trigger to retrain and deploy an alternative model. Lastly,
an important aspect of governance is "compliance” with the local and global laws
and rules. For compliance, model explainability and transparency are vital. For
this, model auditing and reporting are done to provide end-to-end traceability and
explainability for production models.

Use case implemenmtion

We monitor and analyze the deployed model's performance in the production
system (a computer connected to the CCTV in the pet park). Based on the analysis
of accuracy, precision, and recall scores for the deployed model, periodically (once
a day), alerts are generated when the model's performance deteriorates below the
pre-defined threshold. The product owner of the park generates actions, and these
actions are based on the alerts. For example, an alert is generated notifying the
product owner that the production model is 30% biased to detect dogs more than
cats. The product owner then triggers the model re-training pipeline to update the
model using the latest data to reduce the bias, resulting in a fair and robust model in
production. This way, the ML system at the pet park in Barcelona is well-governed
to serve the business needs.

This brings us to the end of the MLOps pipeline. All models trained, deployed, and
monitored using the MLOps method are end-to-end traceable and their lineage is logged in
order to trace the origins of the model, which includes the source code the model used to
train, the data used to train and test the model, and parameters used to converge the model.
Full lineage is useful to audit operations or to replicate the model, or when a blocker is hit,
the logged ML model lineage is useful to backtrack the origins of the model or to observe
and debug the cause of the blocker. As ML models generate data in production during
inference, this data can be tied to the model training and deployment lineage to ensure the
end-to-end lineage, and this is important for certain compliance requirements. Next, we will
look into key drivers enabling the MLOps pipeline.

Drivers

These are the key drivers for the MLOps pipeline: data, code, artifacts, middleware, and
infrastructure. Let's look into each of the drivers to get an overview of how they enable the
MLOps pipeline:
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Data

Training Test Monitoring

data data data
Code Training Test Application

code code code
Artifacts Trained Packaged Production

model model model
Middleware Model
GIT DOCKER Registry KUBERNETES V-Net
Infrastructure Training Production Central Feature
Compute Compute Storage Store

Figure 1.14 - MLOps drivers
Each of the key drivers for the MLOps pipeline are defined as follows:

« Data: Data can be in multiple forms, such as text, audio, video, and images. In
traditional software applications, data quite often tends to be structured, whereas,
for ML applications, it can be structured or unstructured. To manage data in ML
applications, data is handled in these steps: data acquisition, data annotation,
data cataloging, data preparation, data quality checking, data sampling, and data
augmentation. Each step involves its own life cycle. This makes a whole new set of
processes and tools necessary for ML applications. For efficient functioning of the
ML pipeline, data is segmented and versioned into training data, testing data, and
monitoring data (collected in production, for example, model inputs, outputs, and
telemetry data). These data operations are part of the MLOps pipeline.

« Code: There are three essential modules of code that drive the MLOps pipeline:
training code, testing code, and application code. These scripts or code are executed
using the CI/CD and data pipelines to ensure the robust working of the MLOps
pipeline. The source code management system (for example, using Git or Mercurial)
will enable orchestration and play a vital role in managing and integrating
seamlessly with CI, CD, and data pipelines. All of the code is staged and versioned
in the source code management setup (for example, Git).

« Artifacts: The MLOps pipeline generates artifacts such as data, serialized models,
code snippets, system logs, ML model training, and testing metrics information. All
these artifacts are useful for the successful working of the MLOps pipeline, ensuring
its traceability and sustainability. These artifacts are managed using middleware
services such as the model registry, workspaces, logging services, source code
management services, databases, and so on.
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+ Middleware: Middleware is computer software that offers services to software
applications that are more than those available from the operating systems.
Middleware services ensure multiple applications to automate and orchestrate
processes for the MLOps pipeline. We can use a diverse set of middleware
software and services depending on the use cases, for example, Git for source code
management, VNets to enable the required network configurations, Docker for
containerizing our models, and Kubernetes for container orchestration to automate
application deployment, scaling, and management.

+ Infrastructure: To ensure the successful working of the MLOps pipeline, we need
essential compute and storage resources to train Test and deploy the ML models.
Compute resources enable us to train, deploy and monitor our ML models. Two
types of storages resources can facilitate ML operations, central storage and feature
stores. A central storage stores the logs, artifacts, training, testing and monitoring
data. A feature store is optional and complementary to central storage. It extracts,
transforms and stores needed features for ML model training and inference using
a feature pipeline. When it comes to the infrastructure, there are various options
such as on-premises resources or infrastructure as a service (IaaS), which is cloud
services. These days, there are many cloud players providing Iaa$, such as Amazon,
Microsoft, Google, Alibaba, and so on. Having the right infrastructure for your use
case will enable robust, efficient, and frugal operations for your team and company.

A fully automated workflow is achievable with smart optimization and synergy of
all these drivers with the MLOps pipeline. Some direct advantages of implementing
an automated MLOps workflow is a spike in IT teams’ efficiency (by reducing the
time spent by data scientists and developers on mundane and repeatable tasks) and
the optimization of resources, resulting in cost reductions, and both of these are
great for any business.

Summary

In this chapter, we have learned about the evolution of software development and
infrastructure to facilitate ML. We delved into the concepts of MLOps, followed by getting
acquainted with a generic MLOps workflow that can be implemented in a wide range of
ML solutions across multiple industries.

In the next chapter, you will learn how to characterize any ML problem into an MLOps-
driven solution and start developing it using an MLOps workflow.
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Characterizing Your
Machine Learning
Problem

In this chapter, you will get a fundamental understanding of the various types of Machine
Learning (ML) solutions that can be built for production, and will learn to categorize the
relevant operations in line with the business and technological needs of your organization.

You will learn how to curate an implementation roadmap for operationalizing ML solutions,
followed by procuring the necessary tools and infrastructure for any given problem. By the end
of this chapter, you will have a solid understanding of how to architect robust and scalable ML
solutions and procure the required data and tools for implementing these solutions.

ML Operations (MLOps) aims to bridge academia and industry using state-of-the-art
engineering principles, and we will explore different elements from both industry and
academia to get a holistic understanding and awareness of the possibilities. Before beginning
to craft your MLOps solution, it is important to understand the various possibilities, setups,
problems, solutions, and methodologies on offer for solving business-oriented problems. To
achieve this understanding, we're going to cover the following main topics in this chapter:

« The ML solution development process

« Types of ML models
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« Characterizing your MLOps
+ An implementation roadmap for your solution
« Procuring the necessary data, tools, and infrastructure
« Introduction to a real-life business problem
Without further ado, let's jump in and explore the possibilities ML can enable by taking an

in-depth look into the ML solution development process and examining different types of
ML models to solve business problems.

The ML solution development process

ML offers many possibilities to augment and automate business. To get the best from ML,
teams and people engaged in ML-driven business transformation need to understand
both ML and the business itself. Efficient business transformation begins with having

a rough understanding of the business, including aspects such as value-chain analysis,
use-case identification, data mapping, and business simulations to validate the business
transformation. Figure 2.1 presents a process to develop ML solutions to augment or

automate business operations:
-_
/E\

Data Acquistion Data Data Versioning
Data Piplelines Analysis  Adifacts Storage

c:} CI-CD

Business

Understanding Deployment

& Monitoring

Value chain analysis,

use case identification, \
data mapping i
4 L:_ : -

Feature Engineering ML Model Evaluation

-

ML Model Training Modeling Model Packaging

.
b
- CI-CD

Figure 2.1 - ML solution development process
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Business understanding is the genesis of developing an ML solution. After having a decent
business understanding, we proceed to data analysis, where the right data is acquired,
versioned, and stored. Data is consumed for ML modeling using data pipelines where
feature engineering is done to get the right features to train the model. We evaluate the
trained models and package them for deployment. Deployment and monitoring are done
using a pipeline taking advantage of Continuous Integration/Continuous Deployment
(CI/CD) features that enable real-time and continuous deployment to serve trained ML
models to the users. This process ensures robust and scalable ML solutions.

Types of ML models

As there is a selection of ML and deep learning models that address the same business
problem, it is essential to understand the landscape of ML models in order to make an
efficient algorithm selection. There are around 15 types of ML techniques, these being
categorized into 4 categories, namely learning models, hybrid models, statistical models,
and Human-In-The-Loop (HITL) models, as shown in the following matrix (where each
grid square reflects one of these categories) in Figure 2.2. It is worth noting that there

are other possible ways of categorizing ML models and none of them are fully complete,
and as such, these categorizations will serve appropriately for some scenarios and not for
others. Here is our recommended categorization with which to look at ML models:

Learning Models Stastistical Models
™
c
-
§
g « Supervised Learning * Inductive Learning
8 * Unsupervised Learning * Deductive Learning

* Transduction Learning

Semi-Supervised Learning
Self Supervised Learning
Multi-instance Learning i .
Multitask Learning . Human Relnforcemenl Learning
Reinforcement Learning * Active Learning

Ensemble Learning
Transfer Learning
Federated Learning

« s & = = 8 s

©
=
£
§
[
8
i~
=]

Hybrid Models HITL Models

Figure 2.2 - Types of ML models
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Learning models

First, we'll take a look at two types of standard learning models, supervised learning and
unsupervised learning:

o Class1
® Class2
Unknown

Supervised Learning Unsupervised Learning

Figure 2.3 - Supervised versus unsupervised learning

Supervised learning

Supervised learning models or algorithms are trained based on labeled data. In the
training data, the result of the input is marked or known. Hence a model is trained to
predict the outcome when given an input based on the labeled data it learns from, and you
tell the system which output corresponds with a given input in the system.

Supervised learning models are very effective on narrow Al cases and well-defined tasks
but can only be harnessed where there is sufficient and comprehensive labeled data. We
can see in Figure 2.3, in the case of supervised learning, that the model has learned to
predict and classify an input.

Consider the example of an image classification model used to classify images of cats and
dogs. A supervised learning model is trained on labeled data consisting of thousands of
correctly labeled images of cats and dogs. The trained model then learns to classify a given
input image as containing a dog or a cat.

Unsupervised learning

Unsupervised learning has nothing to do with a machine running around and doing things
without human supervision. Unsupervised learning models or algorithms learn from
unlabeled data. Unsupervised learning can be used to mine insights and identify patterns
from unlabeled data. Unsupervised algorithms are widely used for clustering or anomaly
detection without relying on any labels. These algorithms can be pattern-finding algorithms;
when data is fed to such an algorithm, it will identify patterns and turn those into a recipe
for taking a new data input without a label and applying the correct label to it.
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Unsupervised learning is used mainly for analytics, though you could also use it for
automation and ML. It is recommended not to use these algorithms in production due
to their dynamic nature that changes outputs on every training cycle. However, they can
be useful to automate certain processes such as segmenting incoming data or identifying
anomalies in real time.

Let's discuss an example of clustering news articles into relevant groups. Let's assume
you have thousands of news articles without any labels and you would like to identify the
types or categories of articles. To perform unsupervised learning on these articles, we can
input a bunch of articles into the algorithm and converge it to put similar things together
(that is, clustering) in four groups. Then, we look at the clusters and discover that similar
articles have been grouped together in categories such as politics, sports, science, and
health. This is a way of mining patterns in the data.

Hybrid models

There have been rapid developments in ML by combining conventional methods to
develop hybrid models to solve diverse business and research problems. Let's look into
some hybrid models and how they work. Figure 2.4 shows various hybrid models:
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Figure 2.4 — Types of hybrid models

Semi-supervised learning

Semi-supervised learning is a hybrid of supervised learning, used in cases where only a
few samples are labeled and a large number of samples are not labeled. Semi-supervised
learning enables efficient use of the data available (though not all of it is labeled),
including the unlabeled data. For example, a text document classifier is a typical example
of a semi-supervised learning program. It will be very difficult to locate a large number

of labeled text documents in this case, so semi-supervised learning is ideal. This is due to
the fact that making someone read through entire text documents just to assign a basic
classification is inefficient. As a result, semi-supervised learning enables the algorithm to
learn from a limited number of labeled text documents while classifying the large number
of unlabeled text documents present in the training data.
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Self-supervised learning

Self-supervised learning problems are unsupervised learning problems where data is not
labeled; these problems are translated into supervised learning problems in order to apply
algorithms for supervised learning to solve them sustainably. Usually, self-supervised
algorithms are used to solve an alternate task in which they supervise themselves to solve
the problem or generate an output. One example of self-supervised learning is Generative
Adversarial Networks (GANs); these are commonly used to generate synthetic data

by training on labeled and/or unlabeled data. With proper training, GAN models can
generate a relevant output in a self-supervised manner. For example, a GAN could
generate a human face based on a text description input, such as gender: male, age: 30,
color: brown, and so on.

Multi-instance learning

Multi-instance learning is a supervised learning problem in which data is not labeled by
individual data samples, but cumulatively in categories or classes. Compared to typical
supervised learning, where labeling is done for each data sample, such as news articles labeled
in categories such as politics, science, and sports, with multi-instance learning, labeling is done
categorically. In such scenarios, individual samples are collectively labeled in multiple classes,
and by using supervised learning algorithms, we can make predictions.

Multitask learning

Multitask learning is an incarnation of supervised learning that involves training a model
on one dataset and using that model to solve multiple tasks or problems. For example,

for natural language processing, we use word embeddings or Bidirectional Encoder
Representations from Transformers (BERT) embeddings models, which are trained on
one large corpus of data. (BERT is a pre-trained model, trained on a large text corpus.

The model has a deep understanding of how a given human language works.) And these
models can be used to solve many supervised learning tasks such as text classification,
keyword extraction, sentiment analysis, and more.

Reinforcement learning

Reinforcement learning is a type of learning in which an agent, such as a robot system,
learns to operate in a defined environment to perform sequential decision-making tasks or
achieve a pre-defined goal. Simultaneously, the agent learns based on continuously evaluated
feedback and rewards from the environment. Both feedback and rewards are used to shape
the learning of the agent, as shown in Figure 2.5. An example is Google's AlphaGo, which
recently outperformed the world's leading Go player. After 40 days of self-training using
feedback and rewards, AlphaGo was able to beat the world's best human Go player:
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Figure 2.5 - Reinforcement learning

Ensemble learning

Ensemble learning is a hybrid model that involves two or more models trained on the
same data. Predictions are made using each model individually and a collective prediction
is made as a result of combining all outputs and averaging them to determine the final
outcome or prediction. An example of this is the random forest algorithm, which is an
ensemble learning method for classification or regression tasks. It operates by composing
several decision trees while training, and creates a prediction as output by averaging the
predictions of all the decision trees.

Transfer learning

We humans have an innate ability to transfer knowledge to and from one another. This
same principle is translated to ML, where a model is trained to perform a task and it is
transferred to another model as a starting point for training or fine-tuning for performing
another task. This type of learning is popular in deep learning, where pre-trained models
are used to solve computer vision or natural language processing problems by fine-
tuning or training using a pre-trained model. Learning from pre-trained models gives a
huge jumpstart as models don't need to be trained from scratch, saving large amounts of
training data. For example, we can train a sentiment classifier model using training data
containing only a few labeled data samples. This is possible with transfer learning using a
pre-trained BERT model (which is trained on a large corpus of labeled data). This enables
the transfer of learning from one model to another.
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Federated learning

Federated learning is a way of performing ML in a collaborative fashion (synergy
between cloud and edge). The training process is distributed across multiple devices,
storing only a local sample of the data. Data is neither exchanged nor transferred between
devices or the cloud to maintain data privacy and security. Instead of sharing data, locally
trained models are shared to learn from each other to train global models. Let's discuss
an example of federated learning in hospitals (as shown in Figure 2.6) where patient data
is confidential and cannot be shared with third parties. In this case, ML training is done
locally in the hospitals (at the edge) and global models are trained centrally (on the cloud)
without sharing the data. Models trained locally are fine-tuned to produce global models.
Instead of ingesting data in the central ML pipeline, locally trained models are ingested.
Global models learn by tuning their parameters from local models to converge on optimal
performance, concatenating the learning of local models:
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Figure 2.6 - Federated learning architecture

Statistical models

In some cases, statistical models are efficient at making decisions. It is vital to know where
statistical models can be used to get the best value or decisions. There are three types

of statistical models: inductive learning, deductive learning, and transductive learning.
Figure 2.7 shows the relationship between these types of statistical models:
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Figure 2.7 — Relationship between the three types of statistical models

Inductive learning is a statistical method that generalizes from specific examples in

the training data, using this evidence to determine the most likely outcome. It involves

a process of learning by example, where a system tries to generalize a general function

or rule from a set of observed instances. For example, when we fit an ML model, it is

a process of induction. The ML model is a generalization of the specific examples in

the training dataset. For instance, using linear regression when fitting the model to the
training data generalizes specific examples in the training data by the function Y = a + bX.
Such generalizations are made in inductive learning,

Deductive learning refers to using general rules to determine specific outcomes. The
outcomes of deductive learning are deterministic and specific, whereas for inductive
reasoning, the conclusions are probabilistic or generalized. In a way, deduction is the
reverse of induction. If induction goes from the specific to the general, deduction goes
from the general to the specific.

Transductive learning is a method for reasoning about outcomes based on specific
training data samples (in the training dataset). This method is different from inductive
learning, where predictions are generalized over the training data. In transductive
learning, specific or similar data samples from the training data are compared to reason
about or predict an outcome. For example, in the case of the k-nearest neighbors
algorithm, it uses specific data samples on which to base its outcome rather than
generalizing the outcome or modeling with the training data.
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HITL models

There are two types of HITL models: human-centered reinforcement learning models
and active learning models. In these models, human-machine collaboration enables
the algorithm to mimic human-like behaviors and outcomes. A key driver for these ML
solutions is the human in the loop (hence HITL). Humans validate, label, and retrain the
models to maintain the accuracy of the model:
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Figure 2.8 - Workflow of human-centered reinforcement learning

Human-centered reinforcement learning is a hybrid of reinforcement learning, as

it involves humans in the loop to monitor the agent's learning and provide evaluative
feedback to shape the learning of the agent. Human-centered reinforcement learning is
also known as interactive reinforcement learning. Each time the agent takes action, the
observing human expert can provide evaluative feedback that describes the quality of the
selected action taken by the agent based on the human expert's knowledge, as shown in
Figure 2.8.
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Based on the feedback received from the task environment and human expert, the agent
augments its behavior and actions. Human reinforcement learning is highly efficient in
environments where the agent has to learn or mimic human behavior. To learn more, read
the paper Human-Centered Reinforcement Learning: A Survey (https://ieeexplore.
ieee.org/abstract/document /8708686).

Active learning is a method where the trained model can query a HITL (the human

user) during the inference process to resolve incertitude during the learning process. For
example, this could be a question-answering chatbot asking the human user for validation
by asking yes or no questions.

These are the types of ML solutions possible to build for production to solve problems
in the real world. Now that you are aware of the possibilities for crafting ML solutions,
as the next step, it is critical to categorize your MLOps in line with your business and
technological needs. It's important for you to be able to identify the right requirements,
tools, methodology, and infrastructure needed to support your business and MLOps,
hence we will look into structuring MLOps in the next section.

Structuring your MLOps

The primary goal of MLOps is to make an organization or set of individuals collaborate
efficiently to build data and ML-driven assets to solve their business problems. As a result,
overall performance and transparency are increased. Working in silos or developing
functionalities repeatedly can be extremely costly and time-consuming,.

In this section, we will explore how MLOps can be structured within organizations.
Getting the MLOps process right is of prime importance. By selecting the right process
and tools for your MLOps, you and your team are all set to implement a robust, scalable,
frugal, and sustainable MLOps process. For example, I recently helped one of my clients
in the healthcare industry to build and optimize their MLOps, which resulted in 76% cost
optimization (for storage and compute resources) compared to their previous traditional
operations.

The client's team of data scientists witnessed having 30% of their time freed up from
mundane and repetitive daily tasks (for example, data wrangling, ML pipeline, and
hyperparameter tuning) - such can be the impact of having an efficient MLOps
process. By implementing efficient MLOps, your team can be assured of efficiency,
high performance, and great collaboration that is repeatable and traceable within your
organization.
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MLOps can be categorized into small data ops, big data ops, large-scale MLOps,
and hybrid MLOps (this categorization is based on the author's experience and is a
recommended way to approach MLOps for teams and organizations):
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Figure 2.9 - Categories of MLOps

As shown in Figure 2.9, MLOps within organizations can be broadly categorized into four
different categories depending on team size, and the ML applications, business models, data
scale, tools, and infrastructure used to execute operations. In terms of data, many scenarios
do not need big data (anything above 1 TB) operations, as simple operations can be effective
for small- or medium-scale data. The differences between data scales are as follows:

« Big data: A quantity of data that cannot fit in the memory of a single typical
computer; for instance, > 1 TB

« Medium-scale data: A quantity of data that can fit in the memory of a single server;
for instance, from 10 GBto 1 TB

+ Small-scale data: A quantity of data that easily fits in the memory of a laptop or a
PC; for instance, < 10 GB

With these factors in mind, let's look into the MLOps categories to identify the suitable
process and scale for implementing MLOps for your business problems or organization.

Copyrighted material
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Small data ops

A small start-up with a team of data scientists seeking to build ML models for narrow and
well-defined problems can be agile and highly collaborative. Usually, in such cases, ML
models are trained locally on the respective data scientists' computers and then forgotten
about, or scaled out and deployed on the cloud for inference. In these scenarios, there

can be some general pitfalls, such as the team lacking a streamlined CI/CD approach

for deploying models. However, they might manage to have central or distributed data
sources that are managed carefully by the team, and the training code can be versioned
and maintained in a central repository. When operations start to scale, such teams are
prone to the following:

Running into situations where much of the work is repeated by multiple people
including tasks such as crafting data, ML pipelines doing the same job, or training
similar types of ML models.

Working in silos and having minimal understanding of the parallel work of their
teammates. This leads to less transparency.

Incurring huge costs, or higher costs than expected, due to the mundane and
repeated work.

Code and data starting to grow independently.

Artifacts not being audited and hence are non-repeatable.

Any of these can be costly and unsustainable for the team. If you are working in a team or
have a setup like the following, you can categorize your operations as small data ops:

The team consists of only data scientists.

You only work with Python environments and manage everything in the Python
framework. Choosing Python can be a result of having many ML libraries and tools
ready to plug and play for quick prototyping and building solutions. The number of
ML libraries for a language such as Java, for example, is quite a lot smaller compared
to those available for Python.

Little to no big data processing is required as the data scientists use small data (<10 GB).

Quick ML model development starts with a local computer, then scales out to the
cloud for massive computation resources.

High support requirements for open source technologies such as PyTorch,
TensorFlow, and scikit-learn for any type of ML, from classical learning to deep,
supervised, and unsupervised learning.
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Big data ops
This can be a team of experienced data scientists and engineers working in a start-up or an
SME where they have the requirement for large-scale big data processing to perform ML
training or inference. They use big data tools such as Kafka, Spark, or Hadoop to build
and orchestrate their data pipelines. High-powered processors such as GPUs or TPUs are
used in such scenarios to speed up data processing and ML training. The development
of ML models is led by data scientists and deploying the models is orchestrated by data/
software engineers. A strong focus is given to developing models and less importance is
placed on monitoring the models. As they continue with their operations, this type of
team is prone to the following:

+ A lack of traceability for model training and monitoring

+ A lack of reproducible artifacts

+ Incurring huge costs, or more than expected, due to mundane and repeated work

+ Code and data starting to grow independently

Any of these can be costly and unsustainable for a team.

If you are working in a team or have a setup as described in the following points, you can
categorize your operations as big data ops:

+ The team consists of data scientists/engineers.
+ There are high requirements for big data processing capacity.
+ Databricks is a key framework to share and collaborate inside teams and between organizations.

+ ML model development happens in the cloud by utilizing one of many ML
workflow management tools such as Spark MLIib.

+ There are low support requirements for open source technologies such as PyTorch
and TensorFlow for deep learning.
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Hybrid MLOps

Hybrid teams operate with experienced data scientists, data engineers, and DevOps
engineers, and these teams make use of ML capabilities to support their business
operations. They are further ahead in implementing MLOps compared to other teams.
They work with big data and open source software tools such as PyTorch, TensorFlow,

and scikit-learn, and hence have a requirement for efficient collaboration. They often
work on well-defined problems by implementing robust and scalable software engineering
practices. However, this team is still prone to challenges such as the following:

« Incurring huge costs, or more than expected, due to mundane and repeated work to
be done by data scientists, such as repeating data cleaning or feature engineering.

« Inefficient model monitoring and retraining mechanisms.

Any of these can be costly and unsustainable for the team.

If you are working in a team or have a setup as described in the following points, you can
categorize your operations as Hybrid Ops:

« The team consists of data scientists, data engineers, and DevOps engineers.
« High requirement for efficient and effective collaboration.
« High requirement for big data processing capacity.

« High support requirements for open source technologies such as PyTorch,
TensorFlow, and scikit-learn for any kind of ML, from classical to deep learning,
and from supervised to unsupervised learning.

Large-scale MLOps

Large-scale operations are common in big companies with large or medium-sized
engineering teams consisting of data scientists, data engineers, and DevOps engineers. They
have data operations on the scale of big data, or with various types of data on various scales,
veracity, and velocity. Usually, their teams have multiple legacy systems to manage to support
their business operations. Such teams or organizations are prone to the following:

« Incurring huge costs, or more than expected, due to mundane and repeated work.

« Code and data starting to grow independently.
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« Having bureaucratic and highly regulated processes and quality checks.

+ Highly entangled systems and processes - when one thing breaks, everything
breaks.

Any of these can be costly and unsustainable for the team.

If you are working in a team or have a setup as described in the following points, you can
categorize your operations as large-scale ops:

« The team consists of data scientists, data engineers, and DevOps engineers.

+ Large-scale inference and operations.

+ Big data operations.

+ ML model management on multiple resources.

« Big or multiple teams.

+ Multiple use cases and models.
Once you have characterized your MLOps as per your business and technological needs,
a solid implementation roadmap ensures smooth development and implementation of a
robust and scalable MLOps solution for your organization. For example, a fintech start-up
processing 0-1,000 transactions a day would need small-scale data ops compared to a

larger financial institution that needs large-scale MLOps. Such categorization enables a
team or organization to be more efficient and robust.

An implementation roadmap for your solution

Having a well-defined method and milestones ensures the successful delivery of the
desired ML solution (using MLOps methods). In this section, we will discuss a generic
implementation roadmap that can facilitate MLOps for any ML problem in detail. The
goal of this roadmap is to solve the problem with the right solution:
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Figure 2.10 - Implementation roadmap for an MLOps-based solution

Using the preceding roadmap, we can transition from ML development to MLOps with
clear milestones, as shown in these three phases for MLOps implementation. Now, let's
look into these three phases of the roadmap in more detail. It's worth noting that after the
following section on theory, we will get into the practical implementation of the roadmap
and work on a real-world business use case.

Phase 1 - ML development

This is the genesis of implementing the MLOps framework for your problem; before
beginning to implement the requirements, the problem and solution must be clear

and vivid. In this phase, we take into account the system requirements to design and
implement a robust and scalable MLOps framework. We begin by selecting the right tools
and infrastructure needed (storage, compute, and so on) to implement the MLOps.

When the infrastructure is set up, we should be provisioned with the necessary workspace
and the development and test environments to execute ML experiments (training and
testing). We train the ML models using the development environment and test the

models for performance and functionality using test data in the development or test
environments, depending on the workflow or requirement. When infrastructure is set up
and the first ML model is trained, tested, serialized, and packaged, phase 1 of your MLOps
framework is set up and validated for robustness. Serializing and containerizing is an
important process to standardize and get the models ready for deployments.

Next, we move to implement phase 2.



44  Characterizing Your Machine Learning Problem

Phase 2 - Transition to operations

Phase 2 is about transitioning to operations, and it involves serializing and containerizing
the models trained in phase 1 and getting them ready for deployment. This enables
standardized, efficient deployments. The models are served in the form of APIs or
independent artifacts for batch inference. When a model is packaged and ready to be served,
it is deployed in the production environment using streamlined CI/CD pipelines upon
passing quality assurance checks. By the end of phase 2, you will have packaged models
served and deployed in the production environment performing inference in real time.

Phase 3 - Operations

Phase 3 is the core operations phase for deployed models in phase 2. In this phase, we
monitor the deployed model performance in terms of model drift, bias, or other metrics
(we will delve into these terms and metrics in the coming chapters). Based on the model's
performance, we can enable continual learning via periodic model retraining and enable
alerts and actions. Simultaneously, we monitor logs in telemetry data for the production
environment to detect any possible errors and resolve them on the go to ensure the
uninterrupted working of the production system. We also manage data pipelines, the ML
platform, and security on the go. With the successful implementation of this phase, we can
monitor the deployed models and retrain them in a robust, scalable, and secure manner.

In most cases, all three phases need to be implemented for your ML solution, but in some
cases just phases 1 and 2 are enough; for instance, when the ML models make batch
inferences and need not do inference in real time. By achieving these milestones and
implementing all three phases, we have set up a robust and scalable ML life cycle for our
applications systematically and sustainably.

Procuring data, requirements, and tools

Implementing successful MLOps depends on certain factors such as procuring
appropriate training data, and having high standards, and appropriate requirements, tools,
and infrastructure.

In this section, we will delve into these factors that make robust and scalable MLOps.
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Data

I used to believe that learning about data meant mastering tools such as Python, SQL,
and regression. The tool is only as good as the person and their understanding of the
context around it. The context and domain matter, from data cleaning to modeling to
interpretation. The best tools in the world won't fix a bad problem definition (or lack of
one). Knowing what problem to solve is a very context-driven and business-dependent
decision. Once you are aware of the problem and context, it enables you to discern the
right training data needed to solve the problem.

Training data is a vital part of ML systems. It plays a vital role in developing ML systems
compared to traditional software systems. As we have seen in the previous chapter, both
code and training data work in parallel to develop and maintain an ML system. It is not
only about the algorithm but also about the data. There are two aspects to ensure you have
the right data for algorithm training, which are to provide both the right quantity and
quality of data:

« Data quantity: Data scientists echo a common argument about their models, arguing
that model performance is not good because the quantity of data they were given
was not sufficient to produce good model performance. If they had more data, the
performance would have been better — are you familiar with such arguments? In
most cases, more data might not really help, as quality also is an important factor.
For instance, your models can learn more insights and characteristics from your
data if you have more samples for each class. For example, if you analyze anomalous
financial transactions with many samples in your data, you will discover more types of
anomalous transactions. If there is only one anomalous case, then ML is not useful.

The data requirements for ML projects should not solely focus on data quantity
itself, but also on the quality, which means the focus should not be on the number
of data samples but rather on the diversity of data samples. However, in some cases,
there are constraints on the quantity of data available to tackle some problems. For
example, let's suppose we work on models to predict the churn rate for an insurance
company. In that case, we can be restricted to considering data from a limited
period or using a limited number of samples due to the availability of data for a
certain time period; for example, 5 years (whereas the insurance company might
have operated for the last 50 years). The goal is to acquire data of the maximum
possible quantity and quality to train the best-performing ML models.
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« Data quality: Data quality is an important factor for training ML models; it impacts
model performance. The more comprehensive or higher the quality of the data,
the better the ML model or application will work. Hence the process before the
training is important: cleaning, augmenting, and scaling the data. There are some
important dimensions of data quality to consider, such as consistency, correctness,
and completeness.

Data consistency refers to the correspondence and coherence of the data samples
throughout the dataset. Data correctness is the degree of accuracy and the degree to
which you can rely on the data to truly reflect events. Data correctness is dependent
on how the data was collected. The sparsity of data for each characteristic (for
example, whether the data covers a comprehensive range of possible values to reflect
an event) reflects data completeness.

With an appropriate quantity of good-quality data, you can be sure that your

ML models and applications will perform above the required standards. Hence,
having the right standards is vital for the application to perform and solve business
problems in the most efficient ways.

Requirements

The product or business/tech problem owner plays a key role in facilitating the building
of a robust ML system efficiently by identifying requirements and tailoring them

with regard to the scope of data, collection of data, and required data formats. These
requirements are vital inputs for developers of ML systems, such as data scientists or

ML engineers, to start architecting the solution to address the problem by analyzing

and correlating the given dataset based on the requirements. ML solution requirements
should consist of comprehensive data requirements. Data requirement specifications
consist of information about the quality and quantity of the data. The requirements can be
more extensive; for example, they can contain estimations about anticipated or expected
predictive performance expressed in terms of the performance metrics determined during
requirements analysis and elicitation.
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There is a surge in services provided by popular cloud service providers such as Microsoft,
AWS, and Google, which are complemented by data processing tools such as Airflow,
Databricks, and Data Lake. These are crafted to enable ML and deep learning, for

which there are great frameworks available such as scikit-learn, Spark MLIib, PyTorch,
TensorFlow, MXNet, and CNTK, among others. Tools and frameworks are many, but
procuring the right tools is a matter of choice and the context of your ML solution and
operations setup. Having the right tools will ensure high efficiency and automation for
your MLOps workflow. The options are many, the sky's the limit, but we have to start
from somewhere to reach the sky. For this reason, we will look to give you some hands-on
experience from here onward. It is always better to learn from real-life problems, and we
will do so by using the real-life business problem described in the next section.

Discussing a real-life business problem

We will be implementing the following business problem to get hands-on experience.
I recommend you read this section multiple times to get a good understanding of the
business problem; it makes it easier to implement it.

Important note

Problem context:

You work as a data scientist in a small team with three other data scientists

for a cargo shipping company based in the port of Turku in Finland. 90%

of the goods imported into Finland come via cargo ships at the ports across
the country. For cargo shipping, weather conditions and logistics can be
challenging at times at the ports. Rainy conditions can distort operations and
logistics at the ports, which can affect the supply chain operations. Forecasting
rainy conditions in advance gives the possibility to optimize resources such as
human resources, logistics, and transport resources for efficient supply chain
operations at ports. Business-wise, forecasting rainy conditions in advance
enables ports to reduce operational costs by up to ~20% by enabling efficient
planning and scheduling of human resources, logistics, and transport resources
for supply chain operations.

Task:

You as a data scientist are tasked with developing an ML-driven solution to
forecast weather conditions 4 hours in advance at the port of Turku in Finland.
That will enable the port to optimize its resources, thereby enabling cost-
savings of up to 20%. To get started, you are provided with a historic weather
dataset covering a timeline of 10 years from the port of Turku (the dataset can
be accessed in the next chapter). Your task is to build a continuous-learning-
driven ML solution to optimize operations at the port of Turku.
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To solve this problem, we will use Microsoft Azure, one of the most widely used cloud
services, and MLflow, an open source ML development tool, to get hands-on with using
resources. This way, we will get experience working on the cloud and with open source
software. Before starting the hands-on implementation in the next chapter, please make
sure to do the following:

1. Create a free Azure subscription from https://azure.microsoft.com/
(takes 5 minutes).

2. Create an Azure Machine Learning service application with the name MLOps_WS.
This can be done from your Azure portal by clicking Create a resource. Then
type Machine Learning into the search field and select the Machine Learning
option. Then, follow the detailed instructions in the next chapter (Chapter 3, Code
Meets Data) to create the Azure Machine Learning service resource with the name
MLOps_WS.

Now, with this, you are all set to get hands-on with implementing an MLOps framework
for the preceding business problem.

Summary

In this chapter, we have learned about the ML solution development process, how

to identify a suitable ML solution to a problem, and how to categorize operations to
implement suitable MLOps. We got a glimpse into a generic implementation roadmap and
saw some tips for procuring essentials such as tools, data, and infrastructure to implement
your ML application. Lastly, we went through the business problem to be solved in the
next chapter by implementing an MLOps workflow (discussed in Chapter 1, Fundamentals
of MLOps Workflow) in which we'll get some hands-on experience in MLOps.

In the next chapter, we will go from theory to practical implementation. The chapter gets
hands-on when we start with setting up MLOps tools on Azure and start coding to clean
the data to address the business problem and get plenty of hands-on experience.
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