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Introduction

Scientists and mathematicians have a tendency to take words
that are used loosely in the world at large and give them very
specific meanings. So, for example, in everyday speech we
tend to use “power” and “energy” nearly synonymously. But in
physics, power is very specifically the rate of transfer of energy
from one location to another. Similarly, the words “chaos” and
‘complexity,” which will be at the heart of this book, are broad
descriptive terms in general usage, but in math they have
meanings that imply particular characteristics.

In normal usage, when we speak of chaos, we think of a mess.

A lack of order. Randomness. That word came to the English
language via Latin, taken from the name of what some
considered the primal Greek god, who represented the first,
formless matter. The original word in Greek could also mean a
chasm—Dbut in either case, it denoted a lack of structure. Chaos
spread confusion and was a force for destruction. It wasn't on
the side of the good guys, which makes it an interesting choice
as the term used to describe the mathematics of a surprising
number of everyday things around us. First applied to animal
population growth and the weather, chaos in the mathematical
sense is typified by a system—a collection of things that
interact—where very small changes in the way things start out
can have huge implications for the way things eventually unfold.

If chaos implies unpredictability—disorder arising from

apparently ordered starting points—the mathematical concept

of complexity is a kind of alter ego (even though chaotic systems

can be complex). In a complex system, the interaction of

apparently simple components results in outcomes that would
d not otherwise be possible. Complexity is the ultimate end of

Untangling of Chaos “The whole is greater than the sum of the parts.”

Sixteenth century engraver

Hendrick Goltzius’s : . o W ot .
llustration for Ovid's In ordinary usage, “complexity” simply refers to being made

first-century epic poem up of large numbers of parts or having an intricate form. But
Metamorphoses. mathematical complexity can emerge from a relatively small
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system, just as much as it can from an intricate mechanism.
So, to be mathematically complex, a system doesn't have to
be, well, complex.

One mark of a complex system is emergence. This is where

the “greater than the sum of the parts” bits comes together.
Emergence suggests that new abilities emerge spontaneously
from the complex system without any guiding force being totally
responsible for shaping those abilities. You, for example, are a
complex system. If we take a look at the individual atoms that
make up your body in its entirety, they are not alive. But you are
alive. If we step it up a level, we could describe the cells in your
body as alive—but they certainly aren't capable of thinking or
feeling or carrying out the actions that your body does. These
capabilities are emergent from the complexity that is you.

Perhaps what is most remarkable about chaos and complexity
is that they are all around us in nature. They are present in
every living thing, in the weather, in the majority of the real-
world objects that we interact with. And they are there in
many human creations and systems, from the stock exchange
to a bookstore. Yet we don't get taught about chaos and
complexity at school. They don't feature in a whole lot of the
work carried out by scientists either, who often concentrate
instead on the small details, producing results that aren’t
applicable holistically.

Much of science can be described as reductionism—breaking
a complicated thing down to its components and seeing how
those components work, then building back up from the
individual parts to try to understand the whole. For example,

a real-world chemical reaction can be chaotic. Anyone who has
ever added concentrated sulfuric acid to water will know that
the result is highly dependent on how you start out. But when
we study chemistry, we break things down to their component
atoms and only consider how they interact.

The twin theories of chaos and complexity give us the opportunity
to get a better understanding of the real world, rather than the
toy universe in which most science takes place. The real world
is far more complex, chaotic, and, frankly, interesting than
much of the science we were taught in school suggests. We are
about to dive under the surface and discover reality.

Welcome to everyday chaos.

Copvrighted material



Que sera, sera

For the past two and a half thousand years we have developed
an increasingly scientific viewpoint, often supported by
mathematics. In some cases, this approach has proved
remarkably effective. However, all too often the real world has
confounded the attempts of science to predict what will happen.

It was not until the second half of the twentieth century

that we realized what was occurring. The interaction of the
components of systems, from an apparently simple jointed
pendulum to immensely detailed weather systems, produces
unexpected results. At the same time, collections of simple
entities are capable of remarkable feats—think, for example,
of the abilities of some species of ant that as individuals are
totally incapable of any useful action but, by working together,
can use their bodies to form bridges, stitch leaves, and carry
weighty loads.

To see how chaos and complexity came to be understood,
we first have to take a journey back in time to a point where
it seemed that the future was entirely within the grasp of our
mathematical minds. Thanks to the work of Isaac Newton, his
successors were convinced that it would soon be possible to
take on the universe and win.

Copvrighted material
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Newton, Laplace, and the amazing
clockwork universe

“An intellect which at any given moment knew all
of the forces that animate nature and the mutual
positions of the beings that compose it, if this
intellect were vast enough to submit the data to
analysis, could condense into a single formula the
movement of the greatest bodies of the universe
and that of the lightest atom; for such an intellect
nothing could be uncertain and the future just
like the past would be present before its eyes.”
Pierre-Simon, Marquis de Laplace, 1749-1827

14

CHAPTER 1

The fluidity of time

In our time, when technology is such a normal and everyday
part of life, it can be easy to forget what a transformative piece
of technology the mechanical clock was. Prior to the availability
of clocks, time was a thing of approximations, with only the
broadest reference points. Available to everyone was the
apparent transit of the Sun through the sky, or the motion of
the heavens at night (unless it was cloudy). The better-off might
have had a sundial, a water clock that measured time through a
liquid dripping out of a small orifice, or the progress of a candle’s
burn. But any sense of exactness with respect to time was not

a real thing. This is apparent from certain enduring expressions,
such as “the sands of time,” referring to an hourglass, or the

practice of fixing time by the Sun when using the terms dawn,
midday, and dusk.

Our lives are now so tied to technology that precision in time
can seem a burden—a thing of deadlines and pressures—but



when mechanical clocks were first invented, they were instead
a wonderful eye-opener. It wasn't just the ability to know what
time it was—to be able to meet someone at a particular time,
rather than having to wait an hour or two—it was an essential
both for the daily observations of religions, which tended

to be tied to specific times, and for science. Having a measured
approach to the progress of time was crucial to beginning

to understand how aspects of the universe worked. It is no
coincidence that the great breakthroughs in grasping the physics
of motion came about in Europe at the same time as relatively
accurate mechanical clocks were becoming more widespread.

The earliest mechanical clocks seem to have been developed
in Europe in the fourteenth century. It's difficult to pin down

a first, but certainly one of the oldest examples was the tower
clock of St. Alban’s Abbey in England, constructed by Richard
of Wallingford in the 1320s. This example did not survive

the Reformation, but another early English clock, in Salisbury
Cathedral and dating back to around 1386, is still in action.
Like many clocks of the age it had no dial—the point of having
the clock was for it to strike a bell on the hour to ensure that
religious services, which were scheduled at specific hours of the
day, could be performed on time.

The escapement—the mechanism that measures out the

units of time—in these early clocks was inaccurate by modern
standards. Relatively precise measurements of time were not
possible until 1656 when Dutch scientist Christiaan Huygens
invented a clock with a regular beat provided by a pendulum.
A contemporary of Sir Isaac Newton, Huygens was among those
who were driving physics in a more mathematical direction.

A few decades earlier, when Galileo Galilei had needed to time
objects in motion, he had had to rely on imprecise measures
such as his own pulse. But with Newton, mathematics took on
a central role in explaining the universe—requiring the kind of

15 CLOCKWORK AND CHAOS
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Prague Astrological Clock
(Orloj), detail

Dial showing the paths

of the Sun and Moon,

the phases of the Moon,
and more.

—

Prague Astrological Clock
(Orloj)

Laplace’s mathematical

view of the universe is likely
to have been influenced

by the mechanical precision
of astronomical clocks, such
as this magnificent example
from 1410 on the Old Town
Hall in Prague.

16 CHAPTER 1

accuracy that Huygens's clock and its successors could provide.
Clockwork not only provided the beat against which motion
would be measured, it gave a mental model on which to base
understanding of the universe itself.

Mr. Newton's legacy

Since the ancient Greeks first studied the night sky the universe
had been seen as resembling a mechanical structure, but with
crystal spheres carrying the planets and stars, rather than the
gears of a machine. We know the Greeks constructed a geared
model (presumably not the only one) that reflected some

of the motions of the heavens in the remarkable Antikythera
mechanism, an astronomical calculator from ca. 100 BCE,
discovered in a shipwreck off the Greek coast in 1901.

More dramatic astronomical clocks, of which one magnificent
example is the Orloj in Prague, in the Czech Republic, dating
from 1410, presented a clockwork analog of the universe, while
small-scale devices known as orreries provided heliocentric
models of the universe itself (what we would now call the solar
system), showing the positions and orbits of the planets and
moons, usually driven by a clockwork mechanism.



- These were “physical” models in the commonplace usage of that
Newton's Principia adjective. But with the work of Isaac Newton a new kind of model

Title page of a first of the universe became available to natural philosophers (the
edition of Isaac Newton's

. . . name by which early scientists were known)—a mathematical
masterpiece Philosophiae _ ) ‘
Naturalis Principia model. Newton was not the first to describe the physics of
Mathematica, published motion—Galileo, for example, had made a start by studying

in 1687 (the book should the way that balls accelerated down ramps under the influence
have been published

in 1686, but the budget of grawty.‘ Hnw‘ever, Newton turned what had‘ been primarily
wasn't available). a descriptive science into one where mathematics could be used
to determine the future.

In his masterpiece, Philosophiae Naturalis Principia
Mathematica (Mathematical Principles of Natural Philosophy),
usually known as the Principia, Newton used mathematical
tools to describe how the attractive force of gravity between
two bodies—for example, Earth and the Moon—caused them
to move in a particular orbit and caused objects like the
famous apple to fall to Earth. He also proposed his three laws
of motion, explaining the way that bodies move and how forces
cause them to accelerate and interact.

To achieve this feat, Newton developed a new type of
mathematics, which he called the “method of fluxions,” now
better known as calculus, the name used by his competitor,
the German polymath Gottfried Leibniz. Equipped with
Newton’s new mathematical tools, his successors were ready
to take on the whole universe—and none more so than his
most enthusiastic European supporter, the French natural
philosopher Pierre-Simon Laplace.

No need for that hypothesis

Newton, in his work on gravity, had focused on the movements
of bodies in the solar system. Laplace had a grander vision.

Born into an aristocratic family in 1749, he showed an early
talent for mathematics, which would blossom as he took on
many of the problems of applying mathematics to the universe
and bringing math to practical uses in physics and engineering.
From our viewpoint, though, Laplace's greatest contribution was
establishing the concept of determinism.

Here, the mathematical description of reality is taken to

the extreme. Laplace envisioned the image of a clockwork
universe, where everything that happens for all time is
determined exactly by what occurred the moment before,
proceeding mechanically under Newton's laws. To illustrate the

19 CLOCKWORK AND CHAOS
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implications of such a vision, Laplace dreamed up his “"demon.”
His description in 1814 of this creation, which he described as
“an intellect,” is quoted at the beginning of this chapter.

According to Laplace's view, if someone knew every detail
of the state of the universe at a point in time, then thanks
to the mathematical certainties of Newton's and Laplace's
mathematics, we would be able to predict perfectly what
would happen next from moment to moment. Everything,
for eternity, would be preordained.

As human beings, we have always wanted to know the future.
Ancient civilizations had their oracles and auguries—mystical
and magical means to get an apparent glimpse of what was to
come. Astrology, until late medieval times, was considered an
acceptable part of the scientific armory, on the assumption
that the movements of the planets had an influence over what
happened on Earth; it was frequently consulted by kings and
commoners alike. By building on Galileo's observations, Newton
was able to push aside the mysticism and make mathematical
predictions that were of a different order to those of the oracles
and astrologers. They worked. Repeatedly, repeatably, they
foretold what would happen.

Newton’s math described not only how things around us moved,
but it tied the familiar movements of things on Earth to the
apparently grander and totally separate movements of the
heavens. He showed how the journey of the Moon around Earth,
for example, could be predicted from the simple factors of the
masses of the two bodies and their distance apart. Others would
take this even farther. Newton's friend and supporter Edmond
Halley (it was Halley who ensured that Principia was published)
used Newton’s mathematics to make an accurate prediction

of the return of the comet now known as Halley’s comet. He
would not live to see its triumphant reappearance, but Halley's
forecast was sound. The comet came back—on time.

Laplace went farther still. It seemed to him that, given perfect
knowledge of how things in the universe were at a particular
point in time, for every future time it should be possible to run

— the mathematical model of the universe forward and see what
Astrological zodiac would happen next, moment by moment. It was a picture of a
EOMCAPINES. DaNIRY Sy clockwork universe that ran on unwavering tracks. Yet for many
illustration of the signs of ) _ : _ ‘

the zodiac, describing when it seemed implausible. How could reality be so far from this

the Sun enters each sign. mathematical ideal?

20 CHAPTER 1
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Randomness is predictable

“In that case, | would rather be a cobbler,
or even an employee in a gaming house,

than a physicist.”

Albert Einstein, 1879-1955

.

Albert Einstein

Despite being a founder

of quantum physics, Einstein
(pictured here in 1921)

was reluctant to accept the
randomness at the heart of
the theory.

22 CHAPTER 1

Randomness in reality

For Laplace's vision to work, everything needed to follow on
from what came before, with clear cause and effect, from
moment to moment. It was a universe we would now describe
as deterministic, meaning that everything that happens now

is determined, clearly and unequivocally, by everything that
happened the moment before. However, there was a clear
problem blocking Laplace’s view of the universe—randomness.

The idea that things can happen at random with no prior
reason is not one that comes naturally to human beings. We
understand the world around us through patterns, finding it
difficult to accept that things can happen without a guiding
principle—with no reason why. This dependence on patterns is
excellent for survival when it comes to recognizing a predator
or a dangerous situation. But it also means that we see
bogeymen when there is nothing there, or assume, for example,
that a disaster has to be blamed on the direct action of deity,
or fate, or the malevolent intervention of a magical power.

In reality, from the days of antiquity it was realized that some
events were, to all intents and purposes, random—the toss

of a coin or roll of dice, for example—which is why such events
feature in games of chance. But our disinclination to accept
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The power of probability

“Chance favors only the prepared mind.”
Louis Pasteur, 1822-1895

—}

The Backgammon Players
Painting from 1634 by
Flemish artist Theodoor
Rombouts showing a lively
game of backgammon.

26 CHAPTER 1

What are the chances?

Games that rely on probability for their outcome date back
to ancient times. It's not recorded who first spotted that

a two-sided coin could be spun in the air and produce a
reasonable approximation to a random selection between
heads and tails, but coin tosses have certainly been used for
random selection, fortune-telling, and games of chance for
thousands of years.

Similarly, dice—or their early equivalents—go back a long way.
Archaeologists have found astragali, shaped knucklebones
that act as crude dice, dating back at least 5,000 years, while
backgammon-like "tables” are among the oldest-known board
games. For much of the time such methods of chance have
existed, good players may have had an instinctive feel for how
probability worked, but the rules of probability only began

to be quantified when a sixteenth-century Italian physician,
Girolamo Cardano, himself an enthusiastic gambler, wrote

a book on the subject.

Although Cardano was in his twenties when he wrote Liber

de Ludo Aleae (Book on Games of Chance) and continued to
refine it through his life, it was not published until 1663, nearly
a century after it was first penned, because its topic was not
deemed suitable for polite society.
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Probability is a concept we seem naturally to struggle with,
and Cardano’s great contribution to help us understand it

was to turn probabilities into more manageable fractions.
Let's imagine that you had a fair coin and tossed it 100 times.
Heads or tails? You would expect to get heads around 50 times
and tails around 50 times. Cardano realized that you could
represent the chance of getting a head as % and the chance
of getting a tail as 2. The bigger the value, the more likely the
outcome, with a value of 1 meaning absolute certainty and O
something that would never happen. As a coin toss (ignoring
landing on the edge) has to result in either a head or a tail, the
chance of getting either a head or tail is 2 + 2 = 1.

Similarly, with a familiar six-sided die, the chance of getting
any particular number is %. Once our gambling scholar took

a mathematical approach to probability, he could start to look
at how to combine different outcomes to find the chance of

a given combination. So, for example, if you want to know the
chance of getting either a five or a six, it's simply a matter of
adding the probabilities, giving us %% + ¥ = 4.

Cardano also dealt with the distinctly trickier problem of
combining multiple probabilities. To take a common example,
we know the chance of getting a six with a single die is %.
What's the chance of getting a double six with two dice? Cardano
showed that this was a simple multiplication problem: % x % = Ve,
But what about the chance of getting at least one six with

a pair of dice? Clearly it's a better chance than getting a six
with just one die. But we can't double the ¥% chance—otherwise,
rolling six dice would guarantee getting a six, which we know

isn't the case, Cardano engaged in some lateral thinking. The
chance of not getting a six with the first die is %. The chance of
not getting a six with the second die is also %. So the chance of
not getting a six with both dice is % x % = #%s. As the total of all
possible outcomes has to be 1, this means the chance of getting
a six is Ve,

28 CHAPTER 1
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Normal distribution
Also known as a
Gaussian distribution,
the normal distribution
is symmetrical on either
side of the most likely
outcome, with long
shallow “tails" to either
side showing outcomes
that are less likely.

The power of distributions

Turning our minds to randomness and probability, the outcome
is often less straightforward than it is in games of chance where
the probabilities of the different outcomes are known in advance
(assuming that the coin isn't double-sided or the dice loaded).

Equipped with the ability to master probability using Cardano’s
mathematical approach, there's an essential requirement for
getting a handle on randomness and probability in the real
world: an understanding of distributions, that is, a picture of
how possible outcomes are distributed—whether, for example,
some outcomes are more likely than others.

If we look at the distribution of possibilities for a coin toss,
what we have, effectively, is a bar chart with two possible
outcomes. We can approximate to the bar chart by tossing a coin
repeatedly and noting down how many heads and tails we toss.
Initially there may be significantly more of one than the other,
but over time, as tosses are collected, the numbers will get
ever closer to the expected distribution.

Similarly, we can produce an equally dull distribution for the
possible results of throwing a six-sided die—and again, we could
build this distribution without knowing the actual values by
repeatedly throwing a die. Things get a little more interesting

if we look at the distribution of values we can produce by rolling
two dice simultaneously and adding the results together. The
outcomes range from 2 to 12—but not all possibilities have an
equal chance of turning up. Here the distribution is not only
more interesting, it can tell us something—for example, that the
most likely outcome of rolling a pair of dice is 7.

In the world around us, where something is varying randomly,
we often find that the distribution comes in the form of a
“normal distribution,” sometimes called a bell curve because
of its shape when plotted. So, for example, if you plot the
height of a whole lot of people, you will find that heights

of men and women are each distributed in an approximate
normal distribution.

Any particular individual will, of course, only have one specific
height—but what the distribution enables us to do is to predict
the most likely height and how likely it is that a man or woman'’s
height will be within a certain range either side of the most
likely height. The normal distribution has a measure known

29 CLOCKWORK AND CHAOS
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As more and more coin tosses are made, the distribution will get closer to 50:50 heads and tails.

Distribution of coin tosses in an experiment after 100 tosses
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Not all outcomes of throwing two dice are equally likely: the distribution shows relative probabilities.

Distribution of the number of ways an outcome can be achieved with two dice.
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Note that induction is different from deduction—something that
is rarely effective in the real world (or in science). Deduction
enables us to use logic to form a conclusion. So, for instance,

Logic if | know that "All dogs have four legs” and | have an animal in
T;‘:"' ?“E’"aﬁch““dy front of me with three legs, | can deduce that this animal is not
:u:::ﬂf::::,i :E::,:: a dog. The problem with deduction in the real world is that,
from the combination while | can make a definitive observation of the number of legs

of a series of facts or

the animal has, the deductive process depends on the ability to
statements.

make the earlier statement “All dogs have four legs.”

To be definitive about this, | need to have examined all the dogs
that exist beforehand—which simply won’t happen in the real
world. So, | have to support my deduction with some induction.
Perhaps every dog I've ever seen has four legs, so | assume

that they all do. But, of course, there are actually three-legged
dogs out there. Deduction is only as good as the underlying
assumption, and as long as this depends on induction, we can do
no more than say that this is our best current theory. That is how
science usually works.

There are exceptions, of course. If | do have the opportunity to
verify my initial statement, deduction is reliable. If | have a box
of buttons, | can check every one of them and be able to say, for
example, "All the buttons in this box are blue.” If | am then given
a red button | can deduce with certainty that this button did not
come out of my box. But real life is rarely like my button box.

Patterns can catch us out

Bertrand Russell, the British philosopher who famously commented
on the sun rising each morning, also made an observation

of the experiences of poultry on a farm, which is sometimes
reshaped in terms of a turkey's diary. Imagine that a turkey
kept a diary which showed how good a day it was having. If

we plotted these ratings for each day, it might well provide us
with a nice distribution and, being mathematically minded, we
might try to use that distribution to make predictions about

33 CLOCKWORK AND CHAOS
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CHAPTER 1

the future. And then, a few days before Thanksgiving, from
the turkey's point of view, its day would go off the scale (in the
bad direction) as it was prepared for the table.

Without knowledge of the circumstances, it might seem

that the turkey's "bad day” was a totally random event—and
certainly without background information it was totally
unpredictable. Yet we humans struggle to accept that there
can be deviations from our understanding of the world. In
the turkey’s worldview, based on its previous experience,
being trussed and roasted was not a possible outcome. But it
happened. Similarly, when the unexpected strikes, we often
try to provide an explanation within our current understanding,
where it may well be that the cause of a sudden, unpredicted
occurrence is outside of our available information and not
explainable without changing our view of the world.



- In effect, what happens to the turkey—and happens to

The turkey's diary us all the time—is that the wrong pattern is being used to

Turkeys might logically infer understand the world. One way this manifests itself is through

that each day will be pretty s i

. . superstition. If we see an apparent pattern linking one

much like the previous one. )

Until Thanksgiving. occurrence and another, we assume there to be a causal link.
The superstition we associate with mirrors, ladders, or black
cats is a near-inevitable outcome of making use of induction,
because it can be difficult to separate real causes and events

that just happen to coincide in space or time.

Often, like the turkey, we have a limited understanding of what
is going on. It is then easy to apply patterns that have been
successful in the past for other requirements to situations
where they just don't fit. It could be that something is genuinely
random, but we expect a different kind of pattern to apply. If

| toss a coin and get nine heads in a row, it's hard not to expect
it to be more likely that the next toss will be a tail because in
my mind there's a pattern that tells me half the tosses should
be heads and half tails. But in reality the coin has no memory,

it doesn't know what has happened before, so there is still

a 50:50 chance of getting a head or a tail.

The same thing is seen with sports records. When a team has
a run of luck or a player is described as having a "hot hand,"” we
are applying a pattern that implies some underlying causation
to what can be a totally random set of circumstances that
certainly will have no effect on what will happen in the future.

Predicting what will happen next depends on having a good
enough understanding of what is going on. We need to

get a feel for what a system is (more on this comes next) and
how the nature of that system enables—or prevents—the
ability to predict what is likely to happen. And a good starting
point for this is to take a look at the humble pendulum.

35 CLOCKWORK AND CHAOS
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Playing with pendulums

“If one wishes to make the vibration-time

of one pendulum twice that of another,

he must make its suspension four times as long.”
Galileo Galilei, 1564-1642

(trans. Henry Crew and Alfonso de Salvio)

36

CHAPTER 1

Getting systematic

Whenever we are trying to understand the world around us
and the impact of chaos on it, the fundamental unit is the
system. In everyday life, a system tends to be a way of referring
to a social grouping, often in a negative way ("She spends her
time fighting the system”), an approach to doing something
("He has a system for winning”), or a piece of technology (“This
sound system is amazing”). But for our purposes, a system has
a much wider meaning.

A system simply means a collection of interacting components.
It can be as basic as a ball and a slope it can roll down, or as
complex as the universe. A pen is a system, as is a smartphone,
your body, a country’s administration, or the weather. A useful
classification is to split systems into two broad kinds. An open
system can interact with other elements and systems that

are outside the system in question, while a closed system
cannot. Most systems in everyday life are open, but to simplify
matters, we often treat a system that has limited interaction
with its surroundings as closed.

One of the simplest systems is the pendulum, which the great
Italian natural philosopher Galileo Galilei spent a considerable



Energy
The aspect of nature

that makes things
happen. As the
American physicist
Richard Feynman said,
“Itis important to
realize that in physics
today, we have no
knowledge of what
energy is.”

amount of time studying in the sixteenth and seventeenth
centuries. A basic pendulum consists of an anchor point—say,
a hook in the ceiling—a suspension mechanism—it could be a
piece of string—and a bob, which is a weight attached to the
end of the suspension mechanism.

A pendulum demonstrates the conversion of energy from one
form to another. If we start the pendulum swinging from side to
side, at the top of the swing, the bob has some potential energy,
the energy caused by being lifted up under the force of gravity,
but no kinetic energy—the energy of motion. As the bob starts
to swing down, some of the potential energy is lost as the bob
gets lower and the kinetic energy increases as the bob moves
faster. As it moves from side to side, the pendulum is constantly
switching energy between potential and kinetic and back again.

This is not a closed system. A small amount of the energy initially
given to the system by lifting the bob will go into distortion of
the suspension mechanism, generating heat, while a little more
will be lost to air resistance, unless the pendulum is enclosed

in a vacuum chamber. Crucially, the system can't be considered
closed as without the gravitational pull of Earth, there would
be no potential energy to be transferred into kinetic.

Soon after Galileo's work, pendulums started to be used

for timekeeping—Christiaan Huygens's first pendulum clock
constructed in 1656 made use of Galileo's observation that the
time it took for the pendulum to complete its swing depended
only on the length of the suspension mechanism. It didn't
matter how heavy the weight was, and bigger and small swings
were accomplished in the same time.

In reality, this last observation was only true for relatively small
movements, but the pendulum was a well-behaved system
with an easily predicted motion. It was the absolute opposite
of chaos. Yet one small change is all it takes to alter that.
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Double pendulum path
One example of the motion over time of a pendulum with a single joint. Starting it again would trace
a totally different path.
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