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CHAPTER 1

Evidence

Scientists and philosophers of science often emphasize that science is a
fallible enterprise. The evidence that scientists have for their theories does
not render those theories certain. This point about evidence is often re-
presented by citing a fact about Jogic: The evidence we have at hand does
not deductively entail that our theories must be true. In a deductively valid
argument, the conclusion must be true if the premises are. Consider the
following old saw:

All human beings are mortal.

Socrates is a human being,.

Socrates 1s mortal.

If the premises are true, you cannot go wrong, in believing the conclusion.
The standard point abourt science’s fallibility is that the relationship of
evidence to theory is not like this. The correctness of this point is most
obvious when the theories in question are far more general than the
evidence we can bring to bear on them. For example, theories in physics
such as the general theory of relativity and quantum mechanics make
claims about what is true at a// places and a// times in the entire universe.
Our observations, however, are limited to a very small portion of that
immense totality. What happens here and now (and in the vicinity
thereof) does not deductively entail what happens in distant places and at
times remote from our own.

If the evidence that science assembles does not provide certainty about
which theories are true, what, then, does the evidence tell us? It seems
entirely natural to say that science uses the evidence at hand to say which
theories are probably true. This statement leaves room for science to be
fallible and for the scientific picture of the world to change when new
evidence rolls in. As sensible as this position sounds, it is deeply con-
troversial. The controversy I have in mind is not between science and
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nonscience; I do not mean that scientists view themselves as assessing how
probable theories are while postmodernists and religious zealots debunk
science and seek to undermine its authority. No, the controversy I have in
mind is alive within science. For the past seventy years, there has been a
dispute in the foundations of statistics between Bayesians and frequentists.
They disagree about many issues, but perhaps their most basic disagree-
ment concerns whether science is in a position to judge which theories are
probably true. Bayesians think that the answer is yes while frequentists
empbhatically disagree. This controversy is not confined to a question that
statisticians and philosophers of science address; scientists use the meth-
ods that statisticians make available, and so scientists in all fields must
choose which model of scientific reasoning they will adopt.

The debate between Bayesians and frequentists has come to resemble
the trench warfare of World War I. Both sides have dug in well; they
have their standard arguments, which they lob like grenades across the no-
man’s-land that divides the two armies. The arguments have become
familiar and so have the responses. Neither side views the situation as a
stalemate, since each regards its own arguments as compelling. And yet
the warfare continues. Fortunately, the debate has not brought science to
a standstill, since scientists frequently find themselves in the convenient
situation of not having to care which of the two approaches they should
use. Often, when a Bayesian and a frequentist consider a biological theory
in the light of a body of evidence, they both give the theory high marks.
This allows biologists to walk away happy; they've got their answer to
the biological question of interest and don’t need to worry whether
Bayesianism or frequentism is the better statistical philosophy. Biologists
care about making discoveries about organisms; the nature of reasoning
is not their subject, and they are usually content to leave such
“philosophical” disputes for statisticians and philosophers to ponder.
Scientists are consumers of statistical methods, and their attitude towards
methodology often resembles the attitude that most of us have towards
consumer products like cars and computers. We read Consumer Reports
and other magazines to get expert advice on what to buy, but we rarely
delve deeply into what makes cars and computers tick. Empirical scientists
often use statisticians, and the “canned” statistical packages they provide,
in the same way that consumers use Consumer Reports. This is why the
trench warfare just described is not something in which most biologists
feel themselves to be engulfed. They live, or try to live, in neutral Swit-
zerland; the Battde of the Marne (they hope) involves others, far
from home.
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This book is about the concept of evidence as it applies in evolutionary
biology; the present chapter concerns general issues about evidence that
will be relevant in subsequent chapters. I do not aim here to provide
anything like a complete treatment of the debate between Bayesianism
and frequentism, nor is my aim to end the trench warfare that has per-
sisted for so long. Rather, I hope to help the reader to understand what
the shooting has been about. I intend to start at the beginning, to not use
jargon, and to make the main points clear by way of simple examples.
There are depths that I will not attempt to plumb. Even so, my treatment
will not be neutral; in fact, it is apt to irritate both of the entrenched
armies. I will argue that Bayesianism makes excellent sense for many
scientific inferences. However, I do agree with frequentists that applying
Bayesian methods in other contexts is highly problematic. But, unlike
many frequentists, I do not want to throw out the Bayesian baby with the
bathwater. I also will argue that some standard frequentist ideas are flawed
but that others are more promising. With respect to frequentism as well, I
feel the need to pick and choose. My approach will be “eclectic”; no
single unified account of all scientific inference will be defended here,
much as I would like there to be a grand unified theory.

One further comment before we begin: I have contrasted Bayesianism
and frequentism and will return to this dichotomy in what follows.
However, there are different varieties of Bayesianism, and the same is true
of frequentism. In addition, there is a third alternative, likelihoodism
(though frequentists often see Bayesianism and likelihoodism as two sides
of the same deplorable coin). We will separate these inferential philoso-
phies more carefully in what follows. But for now we begin with a stark
contrast: Bayesians attempt to assess how probable different scientific
theories are, or, more modestly, they try to say which theories are more
probable and which are less. Frequentists hold that this is not what the
game of science is about. But what do frequentists regard as an attainable
goal? Hold that question in mind; we will return to it.

1.1 ROYALL'S THREE QUESTIONS

The statistician Richard Royall begins his excellent book on the concept
of evidence (Royall 1997: 4) by distinguishing three questions:

(1) What does the present evidence say?
(2) What should you believe?
(3) What should you do?
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dichotomous belief

Present evidence

updated degree
of belief

Prior degree action
of belief

utilities

Figure 1.1 Present evidence and its downstream consequences.

If you are rational, you form your beliefs by consulting the evidence
you have just gained, and when you decide what to do (which actions to
perform), you should take account of what you believe. But answering
question (2) requires more than an answer to (1), and answering question
(3) requires more than an answer to (2). The extra elements needed are
depicted in Figure 1.1.

Suppose you are a physician and you are talking to the patient in your
office about the result of his tuberculosis test. The report from the lab says
“positive.” This is your present evidence. Should you conclude that the
patient has tuberculosis? You want to take the lab report into account, but
you have other information besides. For example, you previously had
conducted a physical exam. Before you looked at the test report, you had
some opinion about whether your patient has tuberculosis. The lab report
may modify how certain you are about this. You update your degree of
belief by integrating the new evidence with your prior information. This
may lead you say to him “your probability of tuberculosis is 0.999.”

If your patient is a philosopher who enjoys perverse conversation, he
may reply, “but tell me, doctor, do I have tuberculosis, or not?” He
doesn’t want to know how probable it is that he has tuberculosis; he wants
to know whether he has the disease — yes or no. This raises the question of
whether a proposition’s having a probability of 0.999 suffices for one to
believe it, where belief is conceptualized as a dichotomous category: Ei-
ther you believe the proposition or you do not. It may seem that a high
degree of belief suffices for believing a proposition (even if it does not
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suffice for being certain that the proposition is true), but there are
complications. Consider Kyburg’s (1970) lottery paradox. Suppose 1,000
lottery tickets are sold and the lottery is fair. Fair means that one ricket
will win and each has the same chance of winning. If high probability
suffices for belief, you are entitled to believe that ticket no. 1 will not win,
since the probability of ticket 1’s not winning is %. The same is true of
ticket no. 2; you should believe that it won’t win. And so on, for each of
the 1,000 tickets. But if you put these 1,000 beliefs (each of the form
ticket i will not win) together with the rest of what you believe, your
beliefs have become contradictory: You believe that some ticket will win
(since you believe the lottery is fair), and you have just accepted the
proposition that no ticket will win. Kyburg’s solution to this puzzle is to
say that acceptance does not obey a rule of conjunction; you can accept A
and accept B without having to accept the conjunction A¢*B." This may
be the best one can do for the concept of dichotomous belief, but it raises
the question of whether we really need such a concept. After all, our
everyday thought is littered with dichotomies that, upon reflection, seem
to be crudely grafted to an underlying continuum. For example, we speak
of people being bald, but we know that there is no threshold number of
hairs that marks the boundary.” We are happy to abandon these crude
categories when we need to, but we return to them when they are
convenient and harmless.

If it makes sense to talk about rational acceptance and rational rejec-
tion, those concepts must bear the following relation to the concept of
evidence:

If learning that £ is true justifies you in rejecting (i.e., disbelieving) the propo-
sition P, and you were not justified in rejecting P before you gained this in-
tormation, then £ must be evidence against P.

If learning that £ is true justifies you in accepting (i.e., believing) the proposition
P, and you were not justified in accepting P before you gained this information,
then £ must be evidence for P.

A theory of rational acceptance and rejection must provide more than
this modest principle, which may seem like a mere crumb, hardly worth

' See Kaplan (1996) for a theory of rational acceptance that, unlike Kyburg’s, obeys the conjunction
principle.
I say we “know” this, but Williamson (1994) and Sorenson (2001) have argued that in each use of
a vague term, there is a cutoff, even if speakers are not aware of whart it is. Their position is
counterintuitive, but it cannot be dismissed without attending to their arguments (which we won’t

do here).
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1.2 THE ABCS OF BAYESIANISM

Bayesianism is an answer to Royall’s question (2): What should you
believe? Bayesianism refines this question, substituting the concept of
degree of belief for the dichotomous concept of believing or not believing
a proposition. In our running example, Bayesianism addresses the ques-
tion of how certain you should be that your patient has tuberculosis, given
that his tuberculosis test came back positive.

Bayes’ theorem

Bayesianism is based on Bayes’ theorem, but the two are different. Bayes’
theorem is a result in mathematics.” It is called a theorem because it is
derivable from the axioms of probability theory (in fact, from a standard
definition of conditional probability). As a piece of mathematics, the
theorem is not controversial. Bayesianism, on the other hand, is a phi-
losophical theory — it is an epistemology. It proposes that the mathematics
of probability theory can be put to work in a certain way to explicate
various concepts connected with issues about evidence, inference, and
rationality.

Here is the rough idea of how Bayesianism uses Bayes’ theorem: Before
you make an observation, you assign a probability to the hypothesis A;
this probability may be high, medium, or low (all probabilites by
definition must be between 0 and 1, inclusive). After you make the
observation, thereby learning that some observation statement O is true,
you update the probability you assigned to / to take account of what you
just learned. The probability that /7 has before the observation is called its
prior probability; it is represented by Pr(H). The word “prior” just means
before; it doesn’t mean that you know its value a priori (i.e., without any
empirical input at all). The probability that A has in the light of the
evidence O is called H’s posterior prebability; it is represented by the
conditional probability Pr(H | O); read this as “the probability of H,
given O.” Bayes’ theorem shows how the prior and the posterior prob-
ability are related.

Now for the derivation of the theorem. Forget for just a moment that A
means hypothesis and O means observation. Just regard them as any two

“ A special case of the theorem was derived by Thomas Bayes and was published posthumously in the
Proceedings of the Royal Society for 1764. Bayes” derivation was laborious and not fully general, very
unlike the now-standard streamlined derivation I'll describe here.
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propositions. Kolmogorov’s (1950) definition of conditional probability
is this:

Pr(H & 0)

Pr(H|O) = 5:(0)

The definition is intuitive. For example, what is the probability that a
card drawn at random from a standard deck is a heart, given that it is
red? According to the Kolmogorov definition, this conditional prob-
ability has the same value as the ratio Pr(heart & red)/Pr(red). The
denominator has a value of 1. The proposition in the numerator, heart
& red, is equivalent to heart, so the value for the numerator is 7. Hence,
the conditional probability has a value of 1. By switching Hs and Os
with each other in the Kolmogorov definition, you can see that it also is
true that

Pr(O & H)

PrO|H) = = 0

This means that the probability of the conjunction H¢&#O can be ex-
pressed in two different ways:

Pr(H & O) = Pr(H | O) Pr(0O) = Pr(O|H)Pr(H).

From the second equality in the previous line, we obtain

Pr(O|H)Pr(H)

Bayes’ theorem: Pr(H | Q) = Pr(0)
(&

Here is some more terminology. I've already mentioned the posterior
probability and the prior probability that appear in Bayes’ theorem, but
two other quantities are also mentioned. Pr(O) is the wunconditional
probability of the observations. And R. A. Fisher dubbed Pr(O| H) the
likelihood of H. Because Fisher’s terminology has become standard in
statistics, I will use it here. However, this terminology is confusing, since
in ordinary English, “likely” and “probably” are synonymous. So,
beware! You need to remember that “likelihood” is a technical term. The
likelihood of H, Pr(O| H), and the posterior probability of H, Pr(H| O),

are different quantities and they can have different values. The likelihood



10 Evidence

of H is the probability that A confers on O, not the probability that O
confers on /. Suppose you hear a noise coming from the attic of your
house. You consider the hypothesis that there are gremlins up there
bowling. The likelihood of this hypothesis is very high, since if there are
gremlins bowling in the attic, there probably will be noise. But surely you
don’t think that the noise makes it very probable that there are gremlins
up there bowling. In this example, P»(O | H) is high and Pr(H| O) is low.
The gremlin hypothesis has a high likelihood (in the technical sense) but a
low probability.

Let me add two more details that underscore the distinction berween
H’s probability and its likelihood.

Pr(H) + Pr(notH) = 1
and
Pr(H | O) + Pr(notH | O) = 1

as well. The probability of a proposition and the probability of its ne-
gation sum to one; this is true for prior and also for posterior prob-
abilities. But likelihoods need not sum to one; Pr(O| H) + Pr(O| notH)
can be less than 1, or more. Suppose you observe that Sue is a millionaire
and wonder whether she won her wealth in last week’s lottery. Your
observation is very improbable under the hypothesis that she bought a
ticket in the lottery and also under the hypothesis that she did not. To
summarize this point: If you know the probability of H, you thereby
know the probability of notH; but knowing the likelihood of # leaves the
likelihood of notH completely open.

Another difference between likelihoods and probabilities concerns the
difference between logically stronger and logically weaker hypotheses.
Consider the following two hypotheses about the next card you’ll be dealt
from a standard deck:

H; = It’s a heart.
H> = It’s the Ace of Hearts.

The hypothesis H is logically stronger than H ; this means that H, entails
H,;, but not conversely. Suppose the dealer is careless and you catch a
glimpse of the card before it is dealt; you observe O = the card is red.
Notice that H; has the higher posterior probability; Pr(H;| O) = I while
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Pr(H-| O) = 5-. But the two hypotheses have identical likelihoods, since
Pr(O| H)) = Pr(O| H,) = 1. It is a theorem of probability theory that

If proposition X entails proposition ¥, then Pr(X) < Pr(Y), and
Pr(X | data) < Pr(Y |data) no matter what the dara are.

Logically stronger hypotheses can’t have higher probabilities than logically
weaker hypotheses, but they can have higher likelihoods. This point about
likelihoods is illustrated by the relationship of H; and H, to the ob-

servation Q' = the card is an ace.

A rule for updating

The different quantities used in Bayes’ theorem are all available before
you find out whether the statement O is true. You can know the value of
Pr(H| O) without knowing whether O is true, just as you can know that a
conditional (an if/then statement) is true without knowing whether its
antecedent (the if part) is twue. All Bayes’ theorem tells you is how the
different probabilities it mentions, all assigned values at the same time,
must be related. The theorem is, so to speak, a synchronic statement. But,
as mentioned, Bayesianism provides advice about how you should change
your degree of belief as you acquire new evidence. Bayes’ theorem,
therefore, must be supplemented by a rule for updating: This rule de-
scribes how probabilities should be related diachronically.

The rule of updating by strict conditionalization says that if O is the
totality of the new information you have acquired, your #ew probabilicy
for H should be equal to your o/d value for Pr(H | O). In other words:
Proow(H) = Proen(H| O), if O is all the evidence you acquired between
then and now.

Before the result of the tuberculosis test is placed before you, you
know the value of Pr(S has tuberculosis | the test is positive) and Pr(S has
tuberculosis | the test is negative). These are your old posterior prob-
abilities. When you learn that the test turned out positive, your new
degree of belief for the proposition that S has tuberculosis is the one you
assigned to the first of these conditional probabilities.

When [ say that this rule for updating applies to “your” probability,
does this mean that the Bayesian framework concerns only subjective
degrees of belief? No — it is more general than this. You can think of this
rule as giving normative advice to agents on how they should adjust the
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amount of certainty they have. But a rule for updating also provides
advice concerning what you should think the objective probability of a
proposition is. If you think that the objective prior probability of drawing
the Ace of Hearts from a normal deck is g5, and you think that the
objective posterior probability of the card’s being the Ace of Hearts, given
that it is red, is ﬁ, and you learn (just) that the next card drawn will be
red, then your new objective probability for the card’s being the Ace of
Hearts should be 5z It is useful to keep Bayesianism’s epistemnological
advice about how probabilities should be assigned and manipulated se-
parate from the semantic question of what probability statements mean.
Not that interesting connections can’t be drawn between the two issues.
But first things first.

Strict conditionalization involves the idealization that an act of ob-
servation has the result that you find out that an observation statement is
true or that it is false. What you learn isn’t just that O is probably true; you
learn that O is true. You then use this information to modify the degree of
belief you have for some other proposition H. Bayesianism with strict
conditionalization is a kind of hybrid philosophy, in which you accept or
reject O but you do not apply the concept of dichotomous belief to A.
Richard Jeffrey (1965) proposed a rule for updating in which you acquire
only a degree of belief in O; the concept of dichotomous belief is thor-
oughly abandoned. Jeffrey’s probability kinematics describes how your
newly acquired degree of belief in O should affect your degree of belief
in H.” For the purposes of this book, we can ignore Jeffrey’s refinement
and think of Bayesianism in terms of the idea of strict conditionalization.
In what follows, I won’t go to the trouble of distinguishing old prob-
ability assignments from new ones. Since I'll be focusing on the version of
Bayesianism that uses the rule of strict conditionalization, I'll treat the
posterior probability Pr(H | O) as representing your updated degree belief
once you learn that O is true (provided that O is 4/ you learned).

Notice that the rule for updating by strict conditionalization addresses
the case in which you now have a probability for proposition #, and you
also had a (conditional) probability for that proposition earlier. It
therefore fails to apply to cases of conceptual innovation in which A
involves concepts that you just formulated. You didn’t have a conditional

® Although Jeffrey’s conditionalization is more realistic than strict conditionalization in terms of its
characterization of the input, it has a logical oddity that strict conditionalization avoids. The order
in which new evidence arrives can affect the final degree of belief in Jeffrey’s conditionalization, but
not in strict.
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probabilities; in other words, Pr(+ result) is a weighted average of the two
likelihoods. If we use (7) to rewrite (4), we obrain:

(8) Pr(tuberculosis | + result)

Pr(+ result| tuberculosis) Pr{ruberculosis)

- Pr(+ result | tuberculosis) Pr(tuberculosis) + Pr(+ result| no tuberculosis) Pr(no tuberculosis) *

If Pr(+ result | tuberculosis) = Pr(+ result | no tuberculosis), the denomin-
ator in (8) is equal to Pr(+ result | tuberculosis), in which case (8) simplifies to

Pr(tuberculosis | + result) = Pr(tuberculosis).

Without a difference in likelihoods, the posterior probability must have the
same value as the prior; the observation has not affected your degree of belief.

Confirmation

As mentioned earlier, Bayesianism is more than Bayes’ theorem. The
philosophy goes beyond the mathematics because the philosophy pro-
poses definitions of key epistemological concepts. For example,
Bayesianism defines confirmation as probability-raising and disconfirmation
as probability-lowering;

(Qual)  Oconfirms H if and only if Pr(H | O) > Pr(H).
O disconfirms H if and only if Pr(H | O) < Pr(H).
O is confirmationally irrelevant to H if and only if

Pr(H|0O) = Pr(H).

Confirmation does not mean proving true and disconfirmation does not
mean proving false; confirmation and disconfirmation mean only that an
observation should increase or reduce your confidence that H is true.
Thus, the observation that O is true can confirm H even though Pr(H| O)
is still low; the posterior probability just has to be higher than the prior.
And O can disconfirm H even though Pr(#H| O) is still high; O just has to
lower H’s probability. Bayesian confirmation and disconfirmation involve
comparisons of probabilities; they say nothing about the absolute values of
any probability. Bayes’ theorem allows an equivalent definition of Bayesian
confirmation to be extracted from the one given above:

O confirms H if and only if Pr(O | H) > Pr(O | notH ).
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To see whether O confirms H, don’t ask whether H, if true, would lead
you to expect that O is true. Rather, ask whether /7 makes O more
probable than norH does.

The definitions stated in (Qual) characterize a qualitative concept of
confirmation. They do not provide a measure of degree of confirmation;
(Qual) doesn’t say how much O confirms H. How might a quantitative
concept be defined? Here are some candidates to consider, where DoC(H,0)
represents the degree to which O confirms H:

(Diff) DoC(H. 0)= Pr(H| O)—Pr(H).
(Ratio) DoC(H, 0)= %

. ~ Pr(O|H)
(L-Ratio) DoC(H,0)= B0 ol

All three of these definitions agree that (Qual) is true. However, they
are not ordinally equivalent; they can disagree as to whether O; confirms
H; more than O, confirms H.. For example, suppose that

PT(HJ ‘ O;) - 09 PT(H]) = 05
Pr(H>| 05)=0.09 Pr(H) = 0.02.

According to (Diff), the difference measure, O; confirms A; more than O,
confirms >, since 0.4 > 0.07. But, according to the ratio measure, the
reverse is true, since% < % The fact that these and other measures sometimes
disagree has given rise to a lively debate among Bayesians as to which measure
is best (Fitelson 1999). Bayesians who despair of resolving this question try to
restrict their discussion of confirmation to the qualitative definition (Qual).

Do we need to measure degree of confirmation? Perhaps the qualitative
notion is enough. After all, there seems to be little reason to compare how
much the fossil record confirms the Darwinian theory of evolution with how
much Eddington’s observation of light bending during an eclipse confirms
the GTR. True, but there are other scientific contexts in which quantitative
questions about confirmation matter. For example, in Chapter 4 we’ll
consider the hypothesis that two or more species share a common ancestor,
and we'll investigate whether the adaptive similarities that the species share
or the neutral similarities that they share provide stronger evidence in favor of
that hypothesis. Even if

Pr(X and Y have a common ancestor | X and ¥ share adaptive trait 7;) > Pr(X
and Y have a common ancestor) and Pr(X and ¥ have a common ancestor | X and
Y share neutral trait 75) > Pr(X and Y have a common ancestor).
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there is another question that remains to be addressed. If it makes sense to
ask which kind of similarity provides stronger evidence for common
ancestry, (Qual) is not enough.

Reliability

What does it mean to say that a tuberculosis test is “reliable”? Does it
mean that what the test says has a high probability of being true? That is,
does it mean that

(9)  Pr(tuberculosis | + result) and Pr(no tuberculosis | — result)

are both large?

Or does it mean that when the person taking the test has tuberculosis (or
not), the procedure can be relied upon to say what is true? That is, does it
mean that

(10)  Pr(+ result| tuberculosis) and Pr(— result| no tuberculosis)

are both large?

As emphasized earlier, it is important not to confuse Pr(O|H) and
Pr(H | O). Recall the example about the gremlins. But what does the word
“reliability” mean?

Here’s how I think the term is used in ordinary English: When a
witness is reliable, what he or she says is probably true. Witnesses who are
apt to pick up on what is true might be said to be sensitive; if the
proposition is true, they will probably notice that it is and tell you. In my
view, ordinary usage pairs “reliable” with (9) and “sensitive” with (10).
But whether or not this is how the terms are used in everyday discourse,
aficionados of probability have come to use the term “reliability” to in-
dicate that (10) is true, not that (9) is.” A reliable tuberculosis test pro-
cedure has a large likelihood ratio for each possible test outcome:

Pr(+ result | tuberculosis) Pr(— result | no tuberculosis)

> 1.0

> 1.0.
Pr(+ result | no tuberculosis) Pr(— result | tuberculosis)

(R)

7 Actually, the terminology is more varied. For example, a “reliable” method for ranking options
given a set of dara is sometimes defined as one that usually returns the same ranking across different
dara sets; a method that ignores the data and always imposes the same ranking would be perfectly
“reliable” in this sense.
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Given this meaning, your patient S can obtain a positive test result on
the reliable tuberculosis test you gave him and still it is highly im-
probable that he has tuberculosis. This will be true if the prior prob-
ability of §'s having tuberculosis is sufficiently low (imagine that § is
drawn at random from a population in which tuberculosis is very rare
and then is given the test). To verify that this can happen, have another
look at the relationship of the three ratios described in proposition (6).

Why is the term “reliability” often used by probabilists with the
meaning described in (R)? Is this sheer perversity on their part? In fact,
there is reason to focus on (R) even though people take tuberculosis
tests to find out if they (probably) have the disease. Imagine using the
same test procedure in two populations. In the first, people frequently
have tuberculosis; in the second, they rarely do. There is a useful sense
of “reliability” in which the test procedure is equally reliable in the two
populations. Yet, if people are sampled at random in the two popula-
tions and then take the test, Pr(tuberculosis) is higher in the first po-
pulation than in the second. If the test is equally reliable in the two
cases, Pr(tuberculosis|+ test outcome) will be higher in the first case
than in the second. Tuberculosis tests are in this respect like a great
many detectors and measurement procedures. Whether the test returns a
positive or a negative verdict is determined just by facts specific to the
person or thing taking the test; thermometers are related to ambient
temperature in the same way, and pregnancy tests are related to preg-
nancy in that way as well. Whether the person has a common or a rare
condition is irrelevant to what the test will say. To put the point
abstractly, [likelihoods are often independent of priors. But posterior
probabilities depend on both likelihoods and priors. This feature that a
test procedure has, which is stable across different applications in dif-
ferent populations, is worth noting; this is why the ratios described in
(R) are important.

In saying that the posterior probability of tuberculosis “depends™ on
priors and likelihoods, but that the likelihoods are “independent” of
priors and posteriors, I am describing the physical characteristics of test
procedures, not the mathematical relationships characterized by Bayes’
theorem. In Bayes’ theorem, each of the quantities mentioned is a
mathematical function of the other three; given any three values, you can
calculate the fourth. However, this symmetry with respect to mathema-
tical dependence is not present when we consider physical relationships.
Whether a tuberculosis test is apt to yield a positive result depends on
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whether the person taking the test has tuberculosis, not on whether tu-
. 8
berculosis is common or rare.

Expectation and expected value

It is often said that a baby born in the USA today can expect to live about
seventy-eight years. What does this mean? The reality is that a baby not
only might have a longer life than this, or a shorter one. Each possible
lifespan has its own probability; p; is the probability of living exactly one
year, p, is the probability of living exactly two, and so on. The figure of
seventy-eight years is the mathematical expectation, a technical term:”

E(S’s longetivity | S is born in the USA in 2008)
= 1(p1) +2(p2) + -+ + nlpa) = Z i(p;) = 78 years.

E(x|y) represents the expected value of x given y; notice that x is a
quantity and y is a proposition. Probabilities must fall between 0 and 1,
but expected values need not. The expected value is an average; in fact, it
is a weighted average, because the different possible longevities have dif-
ferent probabilities.

If seventy-eight years is the life expectancy, does that mean that you
should expect a US newborn to live about seventy-eight years? That
depends on how different possible longevities are distributed around this
mean value. Figure 1.2 shows three hypothetical distributions. Each is
symmetrical and is centered on seventy-eight years, so 78 is the average
value according to each. It wouldn’t make much sense to expect a baby to
live about seventy-eight years if (a) were true. According to (a), a baby will
probably live only a very short life or a very long one; it will be ex-
ceedingly rare for a baby to live about seventy-eight years. In (b), all
lifespans from 0 to 156 years are equally probable, so here again it would
not make sense to use the expected value as the value you should expect.
In (c), not only is 78 the expected value, but it is highly probable that a
US newborn will live about seventy-eight years. There is less variation
around the mean value in (¢) than there is in (a) and (b). In (c), it is
sensible to use the expected value as the approximate value you'd expect.

In §4.5, we'll examine a kind of evolutionary process, one that involves frequency dependent
selection, in which priors and likelihoods do not exhibit this type of independence.

To keep the example simple, [ assume that lifespans come in whole numbers of years. This permits
the expected value to be expressed as a summation over discrete quantities. If we take time to be a
continuous quantity, the expectation will be an integral.
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Figure 1.3 A flat prior density distribution for p and the non-flat posterior density
occasioned by observing one head in four tosses. The prior expected value of p is 0.5;
given this prior, the posterior expected value of p is 0.33.

so on. So the average coin produced from this factory has a value of p = 1.
If you draw a coin at random from this prior distribution, and if you
allow yourself to think of the expected value of p as the value you should
expect p to have (thus setting aside the previous section’s warning about
how expected values should be interpreted), you can say that Laplace’s
assumption about priors entails that you should expect the coin to be fair
before you have tossed it even once. This vindicates what the rule of
(h+1)
(n4+2)
understand what happens when you start tossing the coin. Does Laplace’s
rule give correct values for the expected value of p, conditional on the
observations you have made? Surprisingly, the answer is yes.

We already know from the gremlins example that the hypothesis with
the highest likelihood need not be the one with the highest posterior
probability. The reason is that the prior probability is an “anchor”; the
observations can lead the posterior probabilities to depart from the priors,
but the priors still influence what values those posterior probabilities will
have. If you obtain one head in four tosses, you have some evidence that
the expected value of p is lower than 1. But this does not permit you to
ignore the prior expected value. This is why the posterior expectation

succession says when # = # = 0; in this case, 5- The next step is to

moves away from the prior value of% in the direction ofi—z = 41 and ends

up somewhere in between, with a posterior expectation of % How much

of a shift the rule of succession tells you to make depends not just on the
frequency of heads in the observations, but on the absolute number of
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tosses. Observing one head in four tosses occasions a smaller shift away
from § than observing 100 heads in 400 tosses. The posterior expectation
1 101

> while that in the latter case is 403"

Laplace’s rule is correct if you start with a flac prior density and you
think that the proper target of this inductive rule is to infer the expected
value of p. Where does that leave Reichenbach? Perhaps there is another
assignment of prior probabilities that justifies the straight rule. Let’s in-
vestigate this question by initially changing the subject. Instead of
thinking about the probabilities of hypotheses, let’s think about their
likelihoods. Suppose we observe five heads in twenty tosses of the coin.
What value of p = Pr(the coin lands heads|the coin is tossed) will
maximize the probability of the observations, again assuming that tosses
are independent of each other? The maximum likelihood estimate of this
parameter is p = 55 = 0.25. The likelihood of this hypothesis is depicted
in Figure 1.4, relative to the observations we actually made (five heads in
twenty tosses) and also with respect to other observations that could have
occurred but did not. The figure also represents the likelihood of

the hypothesis that p = %relative to different possible data sets. Note that

in the former case, as just noted, is

the hypothesis p = 1 says that the actual observations were more probable
than the hypothesis p = 2 says they were. In fact, the p = | hypothesis
makes the data more probable than any assignment of a point value to
p does; it provides the estimate of maximum likelihood. The maximum
likelihood estimate of p is just the sample frequency; it doesn’t matter

p=" p=%
Pr(data | p=7)

0 5 10 15 20
Number of heads in twenty tosses
Figure 1.4 When the coin lands heads in five of twenty tosses, the maximum likelihood

estimate of p = Pr(the coin lands heads | the coin is tossed) is p = §. The likelihood of the
estimate p = 5 is lower.
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whether you observe one head in four tosses, or five in twenty, or 100 in
400 — the maximum likelihood estimate is the same.

The fact that the hypothesis p = } has a higher /ikelihood than the
hypothesis p = 2 does not say anything about their probabilities. If those
hypotheses are to have posterior probabilities, they must have priors. So
what priors should we assign? More specifically, is there a prior density
distribution of values for p that allows Reichenbach’s rule to always
generate the right value for the posterior expected value of p? Surprisingly,
the answer is no. Notice that the straight rule pays no attention to the
prior values; it simply goes by the maximum likelihood estimate. There is
no prior distribution thar legitimizes this policy."' The rule of succession
is typical in this regard; it moves the estimate from the prior expected
value of § towards the maximum likelihood estimate of //7, but does not
go all the way there. The only case in which the rule of succession yields a
value that is identical with the maximum likelihood estimate is when 4/n =
0.5; in this case (h+ 1)/(n + 2) also equals 0.5. The general point is that
every prior distribution will have a prior expected value, and this will
always exert some influence on what the posterior exP::cted value is. The
straight rule cannot be given a Bayesian foundation. ~

Trouble in Paradise

If all scientific inferences resembled the problem you face when your
patient’s tuberculosis test has a positive result, Bayesianism would be a
thoroughly adequate philosophy of scientific inference. Before describing
the fly in the ointment (in fact, there are two), let us examine some
features of this example.

In the example of tuberculosis diagnosis, the two hypotheses are ex-
clusive and exhaustive.'” This is why Pr(§ has tuberculosis) + Pr(S does
not have tuberculosis) = 1.0. What is more, when you assign values to
these prior probabilities, you are not merely reporting your subjective
degree of certainty. You can point to frequency data concerning how

Or, more precisely, no prior distribution that obeys the axioms of probability permits this. A flac
improper prior (which goes outside the unit interval) can do so.

Not that Reichenbach thought that the straight rule requires a Bayesian justification. Rather, he
was impressed with the fact that the straight rule converges on the true value of p as the data set is
made large without limit. This property, which statisticians call statistical consistency, will be
discussed in §1.7 and §4.8.

13 . . .
* T assume here that your patient, S, exists and that this is not up for test.
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often people have tuberculosis in the population to which § belongs.
Of course, S belongs to many populations; for example, suppose that
S lives in the USA, lives in Wisconsin, and lives in Madison, and that
the frequencies of tuberculosis in these three populations differ. Philo-
sophers often recommend considering the narrowest population on which
you have frequency data, but I don’t think that that is the only con-
sideration. It matters whether you can regard S as being drawn at random
from this or that population; if you can, the frequency data for that
population provide a defensible prior. Although there are interesting is-
sues here as to what the best assignment of value to the prior probability
is, the point I want to emphasize is that frequency data are relevant and
available.

The same virtue attaches to the values assigned to the likelihoods
Pr(+ result | tuberculosis) and Pr(+ result| no tuberculosis). These are
not numbers pulled from thin air, nor are they mere introspective reports
about your attitudes. Rather, they too can be justified by pointing to
frequency data. It is a familiar fact that scientific instruments, including
the devices employed in medical diagnosis, are used to test hypotheses.
The point of relevance here is that those devices are themselves tested.
You can see how well a tuberculosis test performs by giving the test to a
large number of people whom you know have tuberculosis and also to a
large number whom you know do not. Frequencies within large samples
provide a substantial justification for one assignment of values to the
likelihoods rather than another.

In saying this, I am not denying the main lesson of the previous
section. Frequency data do not by themselves deductively entail an as-
signment of value to a posterior probability. The fact that p = //n is the
maximum likelihood estimate for a coin’s probability of landing heads
does not entail that this is the most probable value; still less does it entail
that this is the true value. It is useful to think of the probability one is
trying to estimate as a theoretical quantity; the evidence one uses to make
this estimate is an observed frequency. The observations do not deduc-
tively entail the theory. However, with large samples, almost any prior
probability will produce the same, or nearly the same, assignment of
posterior probabilities. This is what Bayesians mean when they refer to
the swamping of priors. Two agents can begin with different prior prob-
abilities, but if they both update by using a sufficiently large data set, their
posterior probabilities will be very close; the difference in priors has
washed out. In this case, you will not go far wrong by ignoring whatever
prior probabilities you start with and just using Reichenbach’s straight
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rule. The rule is invalid, as noted, but the values it delivers will usually be
sensible for large random samples.

It is important to recognize how important it is for prior probabilities
to be grounded in evidence. We often calculate probabilities to resolve our
own uncertainty or to persuade others with whom we disagree. It is no
good assigning prior probabilities simply by asking that they reflect how
certain we feel that this or that proposition is true. Rather, we need to be
able to cite reasons for our degrees of belief. Frequency data are not the
only source of such reasons, but they are one very important source. The
other source is an empirically well-grounded theory. When a geneticist
says that Pr(the offspring has genotype 42| mom and dad both have the
genotype Aa) = 1, this is not just an autobiographical comment. Rather, it
is a consequence of Mendelism, and the probability assighment has
whatever authority the Mendelian theory has. That authority comes from
empirical data.

I don’t want to overstate my praise for the objectivity of the quantities
that figure in the Bayesian answer to the question of whether your patient
has tuberculosis. Skeptical questions can always be pursued back to a
point where you do not know how to answer, or you “answer” by
stamping your foot and insisting on the legitimacy of assumptions that
cannot be further justified. This is true for any claim about knowledge or
justification; the present context is no exception. But to insist that the
Bayesian solution to the diagnostic problem is “purely subjective” is to
mistake the part for the whole. The objective component is substantial
and compelling,.

There is a world of difference between this quotidian case of medical
diagnosis and the use of Bayes’ theorem in testing a deep and general
scientific theory, such as Darwin’s theory of evolution or Einstein’s general
theory of relativity. The difference may be, at the end of the day, a matter
of degree, but stll the difference is profound. When we assign prior
probabilities to these theories, what evidence can we appeal to in
justification? We have no frequency data as we do with respect to the
question of whether § has tuberculosis. If God chose which theories to
make true by drawing balls from an urn (each ball having a different theory
written on it), the composition of the urn would provide an objective basis
for assigning prior probabilities, if only we knew how the urn was
composed. But we do not, and, in any event, no one thinks that these
theories are made true or false by a process of this kind. As I mentioned,
frequency data are not the only convincing justification that an assignment
of prior probabilities can have. An empirical theory, like Mendelism, that
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Some alternatives to the GTR have not even been formulated yet, so it is
hard to see how anyone can say what their likelihoods are. And what
objective meaning could there be in saying that various alternatives have
this or that probability of being true if the GTR is false? If the likelihood
of the catchall hypothesis 70tGTR cannot be calculated, there is no saying
whether Eddington’s observation confirms the GTR, since

Pr(GTR| observation) > Pr(GTR) if and only if
Pr(observation |GTR) > Pr(observation | notGTR).

As it happens, Eddington did not test the GTR against its negation;
rather, he tested it against Newtonian theory, which made a concrete
prediction about how much the light in the eclipse should bend. It turned
out that

Pr(observation | GTR) > Pr(observation | Newtonian theory).

Unlike “S has tuberculosis” and “S does not have tuberculosis,” the GTR
and Newtonian theory are not exhaustive. Of course, if we think of the
likelihoods as merely reflecting subjective degrees of confidence, someone
might assert, as an autobiographical remark, that the GTR has a higher
likelihood than its negation; but someone else, with equal auto-
biographical sincerity, could assert the opposite. And both would be right
if the probabilities involved were merely subjective. In science, we want
more than this."”

Let me comment, finally, on Pr(observation), the unconditional
probability of the evidence. In the case of the tuberculosis test, the un-
conditional probability of a positive test result can be estimated empiri-
cally. You can estimate how often people have tuberculosis and how often
not; and you can estimate how often people in each group who take the
test have positive test results. This allows you to estimate the value of Pr
(+ test result), since this quantity is defined as Pr(+ test result|
tuberculosis) Pr(tuberculosis) + Pr(+ test result | no tuberculosis) P#(no
tuberculosis). But what of the comparable quantity in Eddington’s test?
What is the unconditional probability that starlight bends a certain
amount during an eclipse of the type that Eddington studied? It isn’t true
that the prior probabilities on GTR and notGTR are reflected in the fact
that a given proportion of the physical systems that populate our universe

% Earman (1992: 117) uses the Eddington example to illustrate the problem of assigning likelihoods
to catchalls.
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are relativistic while the rest are not. We can’t estimate Pr(observation) by
seeing how often starlight bends during eclipses. This reveals, incidentally,
why it can be misleading to say that Pr(observation) describes how
“unsurprising” the observations are. Even if it is true that starlight z/ways
bends the same amount during eclipses of the type that Eddington ob-
served, this does not mean that Pr(observations) ~ 1. The relevant
question is what the average probability is of this observation under each
hypothesis considered, where the average is taken by using the prior prob-
abilities of the hypotheses.

Philosophical Bayesianism, Bayesian statistics, and logic

Bayesian philosophers of science assign prior probabilities to scientific
theories like the GTR and do not hesitate to assign likelihoods to catchall
hypotheses — for example, to the GTR’s negation. They concede that
there is a subjective element in these assignments, though they hasten to
note that there are numerous subjective elements in frequentism as well
(we will examine these in due course). Bayesian philosophers think that it
is a matter of intellectual honesty to acknowledge subjective elements
when they intrude. They are inevitable. What could justify pretending
that they are not there?

Bayesian statisticians in their professional work rarely assign prior
probabilities to “big” theories like the GTR and they rarely assign like-
lihoods to catchalls like 7otGTR. But both these practices are standard in
connection with hypotheses that are more modest. For example, when
Bayesians consider the genealogical relationships that humans, chimps,
and gorillas might bear to cach other (§4.8), they often assign equal priors
to the three competing hypotheses (HC)G, H(CG), and (HG)C. Given
the observed similarities and differences that those three species exhibit, it
is possible to compute the likelihoods of the three hypotheses and then to
compute their posterior probabilities. The effect of assigning equal priors
is that all the real work is done by the likelihoods; if the priors are equal,
the hypothesis of greatest likelihood must also be the hypothesis that has
the greatest posterior probability. Bayesians might just as well say that
what interests them here is the likelihoods and make no judgment at all
about priors or posteriors. A similar comment applies when Bayesian
statisticians perform sensitivity analyses; by examining various assignments
of priors, they calculate how changing the priors affects the calculated
posterior probabilities. Here again, what one is learning about are the
likelihoods of the hypotheses under study; given the likelihood ratio of



Evidence 31

H; to H,, changing the ratio of priors will bring with it changes in the
ratio of posterior probabilities. Describing these changes is just a way of
describing the likelihood ratio.

Even though Bayesian statisticians often soft-pedal their assignments of
prior probabilities to hypotheses, there is a deeper commitment on the
part of Bayesians that concerns how likelihoods are sometimes computed.
If a coin is tossed twenty times and seven heads are obtained, it is perfectly
clear what the probability of that outcome is according to the hypothesis
that the coin is fair (i.e., that p = %). But consider the hypothesis that the
coin is 7ot fair: i.e., that p # J. What is the probability of seven heads in
twenty tosses according to this catchall? There are many ways the coin
might fail to be fair, which correspond to different values of p, and these
different values of p confer different probabilities on the observations. The
likelihood of the hypothesis that p # 1 is an average over the likelihoods of
all the point values that p might have if it differs from 1. This average
takes the form of the following summation:

1
Pr(7 heads | p # 2 & 20 tosses)
= Z; Pr(7 heads|p = i & 20 tosses)

1
X Pr(p = i|p#5 & 20 tosses).

The hypothesis that p # % is, in this respect, just like the negation of the
GTR. Notice that priors on different values of p do not occur in this
expression, but something rather like them does. As we will see, fre-
quentists also consider hypotheses like p # %, but they do not compute the
average likelihoods of those hypotheses. The handling of such hypotheses
(which statisticians call “composite”) is a fundamental divide that sepa-
rates Bayesians from frequentists.

For Bayesian philosophers, rationality does not require you to deny the
subjective elements that inevitably intrude in inference; rather, the point
is to regulate that subjectivity in the right way. For them, being rational
has to do with how you change what you believe as new evidence arrives;
your starting point is not something that Bayesian philosophers feel they
need to address. Bayesian philosophers often see Bayesianism as analogous
to deductive logic in this respect (Howson 2001). Deductive logic does
not tell you what you should take your premises to be; logic is solely in
the business of giving advice on what follows from them. So, the fact that
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priors and likelihoods are sometimes subjective is just a fact of life with
which we all have to deal. Subjective Bayesians see themselves as facing
these facts squarely in the face; they think their critics are ostriches
burying their heads in the sand.

If Bayesianism is simply the logic that each of us should use to regulate
our degrees of belief, the criticisms I have described of that philosophy do
not apply. But an epistemology should do more than this. We need to
identify which of our probability assignments can be justified inter-
personally. And we also need to see if there are objective considerations
that Bayesians ignore. The first of these tasks leads to likelihoodism; the
second will lead us to consider frequentist ideas.

1.3 LIKELIHOODISM

Strength in modesty

The problems with Bayesianism just described suggest a fallback position
that preserves much of what Bayesianism has to offer while abandoning the
elements of the philosophy that are too subjective. This is likelihoodism.
When prior probabilities can be defended empirically, and the values as-
signed to a hypothesis’ likelihood and to the likelihood of its negation are
also empirically defensible, you should be a Bayesian.'” When priors and
likelihoods do not have this feature, you should change the subject. In
terms of Royall’s three questions (§1.1), you should shift from question
(2), which concerns what your degree of belief should be, to question (1),
which asks what the evidence says. The likelihoodist does not answer this
question by using the Bayesian concept of confirmation; you don’t ask if
the evidence raises, lowers, or leaves unchanged the hypothesis’ probability.
Rather, you compare only those hypotheses to each other that have de-
terminate likelihoods. For example, instead of trying to compare the GTR
to its own negation, you do what Eddington did: You compare the GTR
with a specific alternative theory, Newtonian theory, and you use the law of
likelihood (so named by Hacking 1965) to interpret the data:

Law of likelihood: The observations O favor hypothesis H; over hypothesis /A if
and only if Pr(O| H;) > Pr(O| H,). And the degree to which O favors H; over
H, is given by the likelihood ratio Pr(O| H;)/Pr(O | Hz).

!> Sometimes we can say whar the value is of 7r(Q| H) without needing empirical informartion. For
example, we know a priori (if we know anything a priori) that Pr(the next ball drawn will be
green | 20 percent of the balls in the urn are green and the draw will be random) = 0.2.
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The concept of favoring used in the law of likelihood involves a three-
place relation that connects two hypotheses and a body of evidence. One
also might call it the relation of differential support, although this termi-
nology is apt to mislead; it may encourage the impression that the law of
likelihood says that O supports H; to one degree, that O supports H> to
another, and that the question is whether the first is greater than the
second. This is not what the law means. According to likelihoodism, there
is no such thing as the degree to which O supports a single hypothesis.
Support is essentially contrastive.

The law of likelihood contains two ideas: a gualitative assessment of the
bearing of the observations on the two hypotheses (expressed by an in-
equality) and a guantitative measure of how strongly or weakly the ob-
servations favor one hypothesis over the other (expressed by the likelihood
ratio). The quantitative component goes beyond what the qualitative
component says, just as the choice of a measure of degree of confirmation
goes beyond the Bayesian definition of qualitative confirmation. And a
similar question applies: even assuming that the qualitative law of like-
lihood is true, why should you use the likelihood razio as your measure?
The likelihoodist wants a measure of favoring that does not require any
assignment of values to prior or posterior probabilities, or any assignment
of values to the likelihoods of catchalls (if those values can’t be defended
by evidence), so that precludes using the possible definitions of degree of
confirmation mentioned in $1.2. But why not define favoring in terms of
the likelihood difference, Pr(O| H;) — Pr(O| H3)? One reason is sug-
gested by a pattern that arises when there are multiple pieces of evidence
that are independent of each other, conditional on each of the two hy-
potheses considered. Suppose, for example, that

Pr(O;|H;) = 0.99, for each of the 1,000 observations O;, ..., O; ggo-
Pr(0;| H>) = 0.3, for each of the 1,000 observations Oy, ..., O;gpp.

With conditional independence, we have

Pr(O; & ... &0 000 | Hy) = (0.99)"°%
and Pr(O; &...8 Oy g9 | H2) = (0.3)""

The likelihood of each of these hypotheses, relative to the 1,000 ob-
servations, is very close to zero, so their difference is tiny; however, the
ratio of the two likelihoods is (33)"°%, which is huge. Since each of these
1,000 observations favors H; over H>, the 1,000 observations should do
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The need to restrict the law of likelihood

Suppose you are Madison’s top meteorologist. You gather data on the
present weather configuration in the Midwest and (let us suppose) you
have at hand a true theory of how weather systems change. Your job is to
make a weather forecast. Based on the information you have, you infer
that the probability of snow in Madison tomorrow is 0.9. It would be
natural for you to express this by saying that your information supports the
prediction that there will be snow; and it also would be natural to say that
your information favors the hypothesis that it will snow over the hy-
pothesis that it will not. But here the support and the favoring reflect facts
about the probabilities of hypotheses not about their /ikelihoods. What
your data and theory tell you is that

Pr(snow tomorrow | present data & theory) = 0.9

> Pr(no snow tomorrow | present data & theory) = 0.1.
You are not computing whether

Pr(present data|snow tomorrow)>>Pr(present data|no snow

tomorrow).

Your data and theory favor your weather prediction by making it probable,
not by giving it a likelihood higher than that of some competing hypothesis.

An even starker example is provided by the following example. Suppose
you want to predict whether the next card dealt to you will be a heart. The
dealer looks at this card and, before he turns it over and places it in front
of you, says, “This is the Ace of Hearts.” You know that the dealer is
truthful. What, then, is your epistemic situation? You're interested in
ascertaining the truth value of the hypothesis = the next card is a heart.
From what the dealer says, you know that proposition O is true where
O = the next card is the Ace of Hearts. Should you compute the like-
lihood of H or the probability of H? The likelihood of # is:

1

The probability of H is
Pr(H|0O) = 1.0.

Surely you should focus on the probability. And it would not be an abuse
of language to say that the dealer’s comment strongly supports the
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hypothesis that the next card will be a heart; what the dealer says favors
that hypothesis over the hypothesis, say, that the next card will be a spade.

These examples and others like them would be good objections to
likelihoodism if likelihoodism were not a fallback position that applies
only when Bayesianism does not.'” The likelihoodist is happy to assign
probabilities to hypotheses when the assignment of values to priors and
likelihoods can be justified by appeal to empirical information. Like-
lihoodism emerges as a statistical philosophy distinct from Bayesianism
only when this is not possible. The present examples therefore provide no
objection to likelihoodism; we just need to recognize that the ordinary
words “support” and “favoring” sometimes need to be understood within
a Bayesian framework in which it is the probabilities of hypotheses that are
under discussion; but sometimes this is not so. Eddington was not able to
use his eclipse data to say how probable the GTR and Newtonian theory
cach are. Rather, he was able to ascertain how probable the darta are, given
cach of these hypotheses. That’s where likelihoodism finds its application.

How can a preposterous hypothesis be extremely likely?

The gremlin example invites the following objection to the law of like-
lihood: The hypothesis that there are gremlins bowling in the attic has a
likelihood that is as high as a likelihood can be; it has a value of 1. So, the
law of likelihood says that the gremlin hypothesis is very well supported.
But this is silly. The noises we hear do not make it at all likely that there
are gremlins up there bowling. This is not a well-supported hypothesis at
all. Hence, the law of likelihood is false.

The complaint that the gremlin hypothesis can’t be “likely” or “well
supported” is easily explained by the fact that the speaker assigns the
gremlin hypothesis a very low prior. Imagine that the objector has in-
spected thousands of attics and has never seen a gremlin and that re-
putable authorities have assured him that gremlins are a myth. When he
arrives at your house, his prior that there are gremlins bowling in your
attic is low; once he hears the noises, his probability that there are

"% Fitelson (2007) uses this kind of problem to argue that the law of likelihood is false and should
be modified to read as follows: O favors H; over H, if and only if Pr(O| H,) > Pr(O| H,) and
Pr(O| notH;) < Pr(O| notH.). This principle does not follow from the Law (notice that both are
biconditionals), though if the right-hand side of Fitelson’s modified principle is true, so is the
right-hand side of the law of likelihood. Notice also that using Fitelson’s principle requires one to
have likelihoods for catchall hypotheses, which likelihoodism maintains are often unavailable.



38 Evidence

gremlins up there bowling remains low, though the Bayesian must con-
cede that the observation increases the hypothesis’ probability.'” This is
why the objector judges that the gremlin hypothesis is not “likely,” by
which he means that it is not very probable. Fair enough, but that is not
an objection to the law of likelihood. As noted, we need to recognize that
Fisher’s terminology was not well chosen. The terms “likely” and
“probably” are used interchangeably in ordinary English, but that is not
an objection to the law of likelihood.

Although Bayesians sometimes make this objection to the law of like-
lihood, the fact of the matter is that Bayesianism is committed to the view
thar likelihoods are the one and only vehicle by which observations can
change the probabilities we assign to hypotheses. This was the point I dis-
cussed in connection with proposition (6). Bayesians as well as likelihoodists
need a word to use in describing the epistemological significance of the fact
that Pr(E| H) > Pr(E| notH). The law of likelihood uses the word “favor-
ing,” and “differential support” might be used here as well. Of course, the
law of likelihood also applies this term in a wider context, namely when one
is comparing A with an alternative hypothesis other than its own negation.
But the point of this term is not to assess the overall plausibility of A but to
describe what a particular observation says about the competition between
H and some alternative hypothesis. The law of likelihood does not say that
the gremlin hypothesis is rendered plausible by the noise you hear.

Edwards (1972) discusses the same sort of objection in connection with
another example. You draw a card from a deck and it turns out to be the
seven of spades. Now consider the hypothesis that each of the cards in the
deck is a seven of spades; this hypothesis has a likelihood of 1.0. In
contrast, the likelihood of the hypothesis that the deck is “normal™ is only
Siz. This leads the law of likelihood to conclude that the card you've
observed favors the stacked hypothesis over the normal hypothesis. But
surely, the objection concludes, the stacked hypothesis is not more
plausible or better supported. I leave it to the reader to construct and
evaluate the likelihoodist’s reply.

Likelihoodism and the definition of conditional probability
Likelihoodists think they have a philosophy that comes into its own when

no evidence is available to back up assignments of prior probabilities. But

19 To see this, consider the following consequence of Bayes’ theorem: If H entails £ and 0 <
PrE) < 1and 0 < Pr(H) < 1, then Pr(H|E) > Pr(H).
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how can this be true, given the Kolmogorov definition of conditional
probability (§1.2)? Recall that the definition says that

Pr(O & H)

(K) Pr(O|H) = =0

There, in the denominator on the right-hand side, a prior probability has
popped up, just what likelihoodists say they can do without when they
talk about likelihoods!

The answer to this challenge is that likelihoodists should think of the
Kolmogorov definition as correct only when various unconditional prob-
abilities are “well defined.” When they are not, the concept of conditional
probability can and should be taken to stand on its own; it does not need
to be defined in terms of unconditional probabilities. There are good
reasons for this approach that do not depend on any qualms one might
have about Bayesianism. For example, consider the fact that Kolmogorov’s
(K) says that the conditional probability is undefined if Pr(H) = 0. But
surely there are contexts in which a conditional probability has a value even
though the conditioning proposition has a probability of zero. Suppose I
make you the following promise: If the coin [ am about to toss lands heads,
I will buy you a ticket in a fair lottery in which 1,000 tickets are sold. If the
coin fails to land heads, you will have no ticket, and so you can’t win the
lottery. You know that I am trustworthy, so you conclude that Pr(you win
the lottery | the coin lands heads) = ———. However, I then take measures to

1,000°
ensure that the coin cannotland heads. Maybe I bend the coin, or place it in
a tossing device that ensures tails every time, or maybe I just lock it in a
vault and thereby ensure that the coin can never be tossed. If you buy the
Kolmogorov definition of conditional probability, the information that the
coin can’t land heads should lead you to say that the conditional probability
just stated is not correct. The value is not ”;W; rather, it is not defined.

On the other hand, if conditional probability is a primitive concept, the
conditional probability can have the value given even though the con-
ditioning proposition has a probability of zero (Hajek 2003). This position
has the additional virtue of allowing Pr(the coin lands heads | the coin lands
heads) to have a value of unity instead of being not defined.

There is an epistemic point that is also worth considering. We often
know the value of Pr(O| H) even though we have no clue as to the value of
Pr(H). As mentioned in §1.2, we can estimate the value of Pr(+ test
result | tuberculosis) by giving the test to thousands of people whom we
know have tuberculosis. This procedure does not require that we know how
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common or rare tuberculosis is, and so we may be entirely in the dark as to
the value of Pr(tuberculosis). The defender of Kolmogorov’s definition is
right to reply that proposition (K) is not a claim about knowledge; it does
not say that to know the value of a conditional probability you first must
find out the values of the two unconditional probabilities cited. (K) asserts a
symmetric mathematical (or logical) dependence, not an asymmetric
epistemic dependence. The right question to ask about Kolmogorov's (K) is
whether there must exist unconditional probabilities for H¢&»O and for H if
there is such a thing as the conditional probability Pr(#| O).

The answer depends on what we mean by probability and on the ex-
ample we consider. Bayesians usually adopt the idealization that rational
agents have degrees of belief for all the sentences of their language. The
Bayesian framework is one in which a complete probability function is de-
ployed over all the sentences in some language. If O;, O,, ... O,, and H,,
H,, ... H,, are all sentences in the language, then the probability function
assigns a prior probability to each of those atomic sentences and to all
Boolean combinations definable from them (e.g., to the negations of each
and to all disjunctions and conjunctions constructed from this set). Pos-
terior probabilities are definable from the relevant priors via proposition
(K). This is not the best way to understand what likelihoodists are up to.
According to likelihoodism, the language we speak is far more wide-ranging
than the probability models we use. On a given occasion, we may specify a
value for Pr(O| H;) and for Pr(O| H>), but none for Pr(O| notH;), and
none for Pr(H,;) or Pr(H,). We use this partial probability function to do
the needed work. Not only don’t we know the value of Pr(O| notH,), or of
Pr(H;), or of Pr(H>); in addition, there may be no such values to know.
The model we use does not include these even as unknown quantities.

What likelihoodists mean by probability is not simply that an agent has
some degree of belief. For one thing, the concept of probability needs to
be interpreted more normatively. Pr(O| H) is the degree of belief you
ought to have in O given that A is true. But likelihoodists also like to
think of these conditional probabilities as reflecting objective matters
of fact. If Pr(the card is the Ace of Hearts | the card is dealt from this
deck) = &5, this is because of the physical composition of the deck and the
physical properties of the process of dealing. When likelihoodists insist
that probabilities must be “objective,” they mean that probabilities must
be grounded in such physical details.”” When the physical processes at

% The word “objective” used by likelihoodists does not mean what so-called objective Bayesians have
meant by the term: that probabilities must be derivable from logical features of the language we speak.
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Witness 2 says

P notP
P w x
Witness 1 says
notP ¥y z

Figure 1.5 When two independent and reliable witnesses each report on whether
proposition £ is true, yeses provide stronger evidence for P than one, and one yes provides
stronger evidence than zero. Each cell represents the likelihood ratio
Pr(testimony | )/ Pr(testimony | notP) that goes with each of the four possible
testimonies; w > x, § > 2.

witnesses who agree that 7 is true provide stronger evidence in favor of
than ecither witness does alone.”

This example makes it look as if the principle of total evidence is
justified by our hunger for strong evidence. But this can’t be right. For
suppose the two witnesses disagree. If you take both pieces of testimony
into account, you may have no basis at all for discriminating between P
and notP, whereas if you selectively focus on just one witness’s testimony,
you will. The principle of total evidence in this case tells you to resist the
desire for telling evidence; if the total evidence says that you have little or
no basis for discriminating between the two propositions, so be it.

When reliable witnesses reach their judgments independently of each
other (conditional on P’s being true and conditional on ’s being false),
this induces a kind of evidential monatonicity; if there are two witnesses,
two votes for P provide stronger evidence that P is true than one vote
would provide, and one vote provides stronger evidence for P than if
neither witness had asserted that P is true. These comparisons are re-
presented by the likelihood ratios depicted in Figure 1.5. As simple and
familiar as this fact about multiple independent testimonies is, it is im-
portant to bear in mind that there is no rule written in Heaven that
separate pieces of evidence must be independent. Suppose you are a cook
in a restaurant. The waiter brings an order into the kitchen — someone in
the dining room has ordered toast and eggs for breakfast. You wonder if
this evidence discriminates between two hypotheses — that your friend
Smith placed the order or that your friend Jones did so. You know the

** This point about multiple witnesses bears on Hume’s analysis of the epistemology of reports about
the alleged occurrence of miracles, on which see Earman’s (2000) book and my review of it (Sober
2004d).
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eating habits of each; the probabilities of different breakfast orders,
conditional on Smith’s placing the order, and conditional on Jones’s
placing the order, are shown in Figure 1.6. These probabilities give rise to
the following curious fact: The order’s being for toast and eggs favors
Smith over Jones (since 0.4 > 0.1); but the fact that the customer asked
for toast provides no evidence on this question (since 0.5 = 0.5); and the
fact that the customer asked for eggs doesn’t either (since, again, 0.5 =
0.5). Here the whole of the evidence is more than the sum of its parts.
Figure 1.7 depicts the opposite pattern in which a new set of in-
clinations is attributed to your two friends. If Smith and Jones are dis-
posed to behave as described, an order of roast and eggs fails to
discriminate between the two hypotheses (since 0.4 = 0.4). Bur the fact
that the order included toast favors Smith over Jones (since 0.7 > 0.6),
and the same is true of the fact that the order included eggs (since 0.6 >
0.4). Here the whole of the evidence is less than the sum of its parts.
Although the principle of total evidence says that you must use all the
relevant evidence you have, it does not require the spilling of needless ink.

Pr(— | Smith) Pr(— | Jones)
Eggs Eggs
— + _
+10.4 0.1 +1 0.1 0.4
Toast Toast
~10.1 0.4 ~10.4 0.1

Figure 1.6 Smith and Jones differ in their inclinations to place different orders for
breakfast. The breakfast order of toast and eggs provides evidence about which of them
placed the order, although the fact that the order included toast does not, and neither does

the fact that the order included eggs.

Pr(— ‘ Smith) Pr(- | Jones)
Eggs Eggs
+ _
+| 0.4 0.3
Toast
0.2 0.1

Figure 1.7 A new set of breakfast inclinations for Smith and Jones. Now the breakfast
order of toast and eggs provides no evidence about which of them placed the order,
though each part of the order favors Smith over Jones.
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It does not require you to record irrelevant information. Consider the two
hypotheses about coin tossing depicted in Figure 1.4. One of them says
that p = § while the other says that p = 2, where p is the coin’s probability
of landing heads. I earlier described the data by saying that there were five
heads in the twenty tosses of the coin. But why am I not obliged to
describe the exact sequence of heads and tails that formed the data? There
are many ways to get five heads in twenty tosses. A proposition that states
just the sample frequency is logically weaker than a description of the exact
sequence (in that the latter implies the former, but not conversely). Isn’t it
a violation of the principle of total evidence to use the sample frequency
as a description of the darta?

If we represent strength of evidence by the likelihood ratio, the answer
is no. Consider each of the specific sequences in which there are five heads
in twenty tosses. The two hypotheses we are considering (p = 7 and p = 2)
agree that each of these exact sequences has a probability of p°(1 — p)"
though they disagree about what the true value of p is. The likelihood
ratio of p = }7 wp= %, relative to a description of the exact sequence of
heads and tails we observe, has the value:

)

Pr(exact sequence | p = %
Pr(exact sequence | p = 3)

_ 410
=3

If there are N exact sequences that can produce five heads in twenty tosses”
the probability of obtaining some sequence or other in which there are five
heads in twenty tosses has a value of Nps(l — p)'s. Using this logically
weaker description of the data, we obtain the following likelihood ratio:

Pr(5 heads|p = 3) B N(%)S(%)b _ ()5(2)]5 10

%
Pr(Sheads|p=3  NE'HD”  H°

Notice that the Ns have cancelled. There is no need to use the logically
stronger description of the data that states the exact sequence of heads and
tails, since it makes no difference to the likelihood ratio (Fisher 1922b;
Hacking 1965: 80—1). In this sense, the sample frequency is a sufficient
statistic. Notice the role played by the likelihood ratio in this argument; if
you represented weight of evidence in some other way (e.g., via the

24 N, the number of specific sequences in which there are m successes in # trials, is calculated by the

n . .
formula for (m , meaning from n objects choose m; N = n![m!(n — m)!.
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likelihood difference), maybe N would not disappear. Notice also how
powerfully the data favor one hypothesis over the other, even though both
say that the total data set was very improbable.

Whether the sample frequency is a sufficient statistic depends on the
hypotheses being evaluated. In the example just described, the two hy-
potheses agree that tosses are independent of each other. But suppose this
is something you want to test. And suppose further that the exact se-
quence of heads and tails is observed to be

HTHTHTHTHTHTHTHTHTHT

This sequence contains 50 percent heads, but it would be a mistake to
think that this logically weakened description captures all the information
in the data that is evidentially relevant. The order of heads and rails is
evidentially relevant as well.

The logically weaker description of the data, the sample frequency, is a
disjunction. One of the disjuncts describes the exact sequence that did
occur; the other disjuncts describe exact sequences that did not. When p = ;
and p = 7 are the two hypotheses under test, there is nothing wrong with
describing the data in this disjunctive form, saying that this sequence o7 that
sequence or that other sequence was the one that occurred withour saying
which. The principle of total evidence is not a rule against disjunctions.
Rather, the rule says that logically weakening your description of the data is
not permitted when this changes your assessment of what the evidence
indicates. Applying the principle requires a rule for interpreting what the
evidence says about the hypotheses under test. At this point, likelihoodists
appeal to the law of likelihood and use the likelihood ratio. Bayesians can
agree with the above argument, since for them the likelihood ratio is #he
vehicle by which ratios of priors are transformed into ratios of posterior
probabilities, as proposition (6) attests. Likelihoodists and Bayesians are on
the same page when it comes to the principle of total evidence.””

The limits of likelihoodism

Likelihoodism addresses the first of Royall’s three questions (§1.1) while
remaining silent on the other two; it confines itself to the task of inter-
preting what the evidence says while giving no advice on what you should

5 T will not try to address the deeper question of what the ultimate justification is of the principle of
total evidence. L. J. Good (1967) provides a decision-theoretic justification.
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believe or do. Even so, the question remains of whether likelihoodism
accomplishes the relatively modest goal it sets for itself. The problem is
that there are many scientific hypotheses of interest that are composite,
rather than simple. These are technical terms. The two hypotheses about
the coin (that p = % and that p = %) depicted in Figure 1.4 are both simple
in the sense that each says exactly how probable each possible outcome of
the experiment is. Composite hypotheses are more ambiguous; they cir-
cumscribe a family of probabilities that an observation might have
without singling out just one. An example would be the hypothesis that
p > % this hypothesis does not say what the probability is of observing
exactly five heads in twenty tosses. There are many values that p might
have if it exceeds %, and each specific value has its own likelihood relative
to a given observation; composite hypotheses are disjunctions (sometimes
infinite disjunctions) of simple hypotheses.

Hypotheses that look as if they are composite can in reality turn out to be
statistically simple, if background information of a certain sort is available.
Imagine that there are three kinds of coins that a factory manufactures — a
third have p = 1, a third have p = 1, and a third have p = 1.0. If you chose a
coin made at this factory at random, then if the coin before you has p > 1,
there are just two possibilities — that p = § and p = 1.0 — and these are
equiprobable. The average of these is p = % Likelihoodists have no problem
with assessing the hypothesis that p > % in this kind of context. True to their
antisubjectivist inclinations, they are happy to consider this hypothesis
because there is an objective answer to the question of what observations we
should expect to make if the hypothesis that p > | is true. Absent this kind
of information, they decline to assess the hypothesis at all. Rather, they
relegate p > 1 to the same epistemic limbo to which they consign notGTR,
the catchall hypothesis that the GTR is false.

It is arguable that science often does not need to assess how the evi-
dence bears on such catchall hypotheses. Eddington was able to compare
the GTR with Newtonian theory, and maybe that is enough. However,
other composite hypotheses scem to play a central role in the activity of
science, so the likelihoodist denial that they can be handled should raise
more eyebrows. For example, population geneticists often want to say
whether the gene-sequence data gathered from a number of species favor
the hypothesis of random genetic drift or the hypothesis of selection. The
drift hypothesis is often statistically simple: For example, with respect to
the two alleles A and # that might exist at a given genetic locus, the drift
hypothesis says that they are identical in fitness. It says that wy = w,,
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rejected. Equivalently, the suggestion is that if /A says that some ob-
servational outcome (170¢0) has a very low probability, and that outcome
nonetheless occurs, then we should regard / as false. I draw a double line
between premises and conclusion in (Prob-MT) to indicate that the ar-
gument form is not supposed to be deductively valid. But maybe it is a
sensible form of inference nonetheless.

Before addressing whether probabilistic modus tollens is correct and
how it is related to deductive modus tollens, 1 want to discuss a parallel
question. Consider modus ponens:

(MP) If O, then H
0

H

Modus ponens is deductively valid, and this may suggest that the following
probabilistic extension of the principle is also correct:

(Prob-MP) Pr(H| O) is very high
@)

H

(Prob-MP) says that if O renders H very probable, and O is true, then we
should accept H. My brief comments in §1.2 on the lottery paradox
suggest that we should be wary of this rule of acceptance. But (Prob-MP)
has a close cousin, which we have already examined:

(Update) Prien(H | O) is very high
O

O is all the evidence we have gathered between then and now.

Proow(H) is very high

This is nothing other than the rule of updating by strict conditionaliza-
tion. (Update) is a sensible rule, and it also has the property of being a
generalization of deductive modus ponens. By parity of reasoning, should
we conclude that probabilistic modus rollens is a good rule because it
generalizes deductive modus rollens?

Friends of (Prob-MT) need to say where the probability cutoff for
rejection is located. How low must Pr(O| H) be for O to justify rejecting
A? Richard Dawkins (1986: 144-6) addresses this question in the context
of discussing how theories of the origin of life should be evaluated. He
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says that an acceptable theory can say that the origin of life on Earth was
somewhat improbable, but it cannot go too far. If there are # planets in
the universe that are “suitable” locales for life to originate, then an
acceptable theory of the origin of life on Earth must say that that event
had a probability of at least 1. Theories that say that terrestrial life was less
probable than this should be rejected. Creationists also have set cutoffs.
For example, Henry Morris (1980) says that theories that assign to an
event a probability less than 5w should be rejected, and William
Dembski (2004) says that a theory that assigns to a “specified event”
(a technical term in Dembski’s framework) a probability less than ﬁ
should be rejected.”® Morris and Dembski obrtain these numbers by at-
tempting to calculate how many times elementary particles could have
changed state since the universe began.

Dawkins, Dembski, and Morris have all made the same mistake. It isn’c
that they have glommed on to the wrong cutoff. The problem is deeper:
There is no such cutoff. Probabilistic modus tollens is an incorrect form of
inference (Hacking 1965; Edwards 1972; Royall 1997). Lots of perfectly
reasonable hypotheses say that the observations are very improbable. As
noted earlier, if / confers a very high probability on each of the observa-
tions Oy, O, ..., O gpp (but a probability that is short of unity), it will
confer a very low probability on their conjunction, if the observations are
independent of each other, conditional on A. A probability that is very
large but less than one, when multiplied by itself a large number of times,
will yield a very small probability. Adopting probabilistic modus tollens
would have the effect of eliminating all probabilistic theories from science
once they are repeatedly tested.

It may seem that the kernel of truth in (Prob-MT) can be rescued by
modifying the argument’s conclusion. If it is too much to conclude that H
is false, perhaps we should conclude just that the observations constitute
evidence against H:

(Evidential Prob-MT) Pr(O| H) is very high.
norQ

notO is evidence against /.

This principle is also unsatisfactory, as an example from Royall (1997: 67)
nicely illustrates. Suppose I send my valet to bring me one of my urns.

26 For discussion of Dembski’s (1998) framework for inferring the existence of intelligent designers,
see Fitelson et al. (1999).
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I want to test the hypothesis (H) that the urn he returns with contains 0.2
percent white balls. I draw a ball from the urn and find that it is white. Is
this evidence against /72 It may not be. Suppose I have only two urns; one
of them contains 0.2 percent white balls, while the other contains 0.01
percent white balls. In this lnstance, drawing a white ball is evidence in
favor of H, not evidence agazmt it.”

The use of genetic data in forensic identity tests provides a further
illustration of Royall’s point. Suppose that two individuals match at
twenty independent loci; they are heterozygotes at each. At each locus,
each individual has one copy of a rare allele (frequency = 0.001) and
one copy of the alternative, common, allele (frequency = 0.999). The
probability of this twenty-fold matching, if the two individuals are
full sibs, is about [(0.001)(0.5)]*°. This is a very small number, but
that hardly shows that the sib hypothesis should be rejected. In fact,
the data favor the sib hypothesis over the hypothesis that the two in-
dividuals are unrelated. If they are unrelated, the probability of the
observations is about [(0.001)(0.001)]?°. The two likelihoods are both
very small, bur the first is 500°° times larger than the second (Crow et al.
2000: 65-7).°

These examples reflect a central idea in the likelihoodist theory of
evidence: judgments about evidential meaning are essentially contrastive.
To decide whether an observation is evidence against A, you need to
know what the alternative hypotheses are; to test a hypothesis requires testing
it against alternatives.”” In the story about the valet, observing a white ball
is very improbable according to /, but in fact that outcome is evidence in
favor of H, not evidence against it. This is because O is even more im-
probable according to the alternative hypothesis. Probabilistic modus
tollens, in both its vanilla and evidential versions, needs to be replaced by
the law of likelihood. The relevance of this point is not confined to urn
problems and forensic DNA. It will play an important role in Chapter 4

%7 A third formulation of probabilistic moedus tollens is no better than the other two. Can one
conclude that H is ;m/mvb{y false, given that /1 says that () is highly probable, and O fails to be
true? The answer is no; inspection of Bayes’ theorem shows that Pr(#0tO | H) can be low without
Pr(H| notO) being low.

Notice how the likelihood ratio, not the likelihood difference, figures in this argument.

There are two exceptions to the thesis that testing is always contrastive. If a true observation
statement entails /, there is no need to consider alternatives to H; you can conclude without
further ado that H is true; this is just modus ponens. And if H entails O and O turns out to be false,
you can conclude that H is false, again without needing to contemplate alternatives; this is just
modus tollens. It is a separate question how often these forms of argument apply to testing in
science. They rarely do. Observations almost never entail theories, and theories almost never entail
observations. More on this later.

28
29
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when we consider the question of why the similarities observed in two or
more species is evidence for those species’ having a common ancestor.
Within the framework developed there, an observed similarity O provides
stronger evidence in favor of the common ancestry (CA) hypothesis the
lower the value is of Pr(O| CA). The reason the evidence for CA is
strengthened by lowering the value of this conditional probability is that
lowering the value of Pr(O| CA) leads the value of Pr(O| SA) to plunge
even more; here SA is the hypothesis of separate ancestry.

There is a reformulation of probabilistic modus tollens that makes sense,
but it is Bayesian:

(Bayesian Prob-MT) Priwen(O| H) is very high.
Prinen(O| notH) is very low.
Priwen(H) = Pr(notH)
not-0

Prooy (H) is very low.

Although the conclusion of this argument follows deductively from the
premises (given the rule of updating by strict conditionalization and that
notQ is all you learned between then and now), this is a form of argument
that frequentists will not touch with a stick. The reason is not that it is
invalid (it is not) but that it requires premises that frequentists regard as
too subjective.”’

Fisher’s (1959) test of significance is a version of probabilistic modus
tollens and that is bad enough. But it has the additional defect that it
violates the principle of total evidence. In a significance test, the hy-
pothesis you are testing is called the “null” hypothesis, and your question
is whether the observations you have are sufficiently improbable according
to the null hypothesis. However, you don’t consider the observations in
all their detail but rather the fact that they fall in a certain region. You use
a logically weaker rather than a logically stronger description of the data.
Here’s an example (from Howson and Urbach 1993: 176) that illustrates
the point. You want to test the hypothesis that a coin is fair (i.e., the
hypothesis that the probability of heads is 0.5) by tossing the coin twenty
times. Assume that the tosses are independent of each other. Suppose you
obtain four heads. You then compute the probability of a disjunction in

50 Wagner (2004) shows that a bound on the value of Pr(natH) can be derived from the values of
Pr(O| H) and Pr(notO); he calls his result a probabilistic version of modus tollens. This is not
the probabilistic modus tollens whose nonexistence I argue for above.
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which “four heads” is one of the disjuncts. You need to look at all the
outcomes that the null hypothesis says are az least as improbable as the one
you actually obtained:

Pr(0 or 1 or2 or3or4or16orl17 or 18 or 19 or 20 heads |

the coin is fair and the coin is tossed 20 times) = p.

The probability of this disjunction, conditional on the null hypothesis, is
called the p-value for the test outcome.

This p-value has two interpretations, corresponding to two different
conceptions of what a significance test is supposed to accomplish.
Sometimes significance testers draw a conclusion as to whether the null
hypothesis should be rejected. To do this, they specify a value for @, the
“level of significance™; the null hypothesis is rejected if the p-value is less
than this cutoff. If @ = 0.05 is your level of significance, then four heads
in twenty tosses will suffice to reject the null hypothesis, since the p-value
of this outcome is 0.012; had you obtained six heads in twenty tosses, this
outcome would not suffice to reject the null, since the p-value in this
instance is 0.115. It is generally conceded that choosing a value for o is an
arbitrary matter of convention. The other interpretation of significance
tests is that they measure the strength of the evidence against the null
hypothesis; the lower the p-value of the outcome, the stronger the evi-
dence against. This comparative idea, by itself, does not say whether six
heads in twenty tosses is (in an absolute sense) evidence against the hy-
pothesis that the coin is fair, but it does say that four heads in twenty
tosses would be stronger evidence against it. If we stipulate that a p-value
of 0.05 is the cutoff between “strong evidence against the null hypothesis”
and not, then we know how to interpret six heads in twenty tosses, and
also how to interpret four in twenty and two in twenty. The first of these
is not strong evidence against the null while the second and third are.
There is arbitrariness here as well.

Both interpretations of significance tests are vulnerable to the fact
that there are many descriptions of the data that might be used, and
changing these can lead to different conclusions about the null hy-
pothesis. I mentioned that obtaining six heads in twenty tosses does not
allow you to reject the null hypothesis (if you set o = 0.03), since the
probability of obtaining between zero and six or between fourteen and
twenty heads is greater than 0.05. In this example, we thought of each
possible number of heads that might occur in twenty tosses (0, 1, 2,
... 18, 19, 20) as an element in the outcome space and then gathered
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was less surprising. This is how I understand the following remark that
Gossett made in the 1930s:

[a significance test] doesn’t in itself necessarily prove that the sample is not drawn
randomly from the population even if the [p-value] is very small, say .00001; what
it does is to show that if there is any alternative hypothesis which will explain the
occurrence of the sample with a more reasonable probability, say 0.05 [...] you
will be very much more inclined to consider that the original hypothesis is not
true.  (quoted in Hacking 1965: 83)

This gentle suggestion has good likelihoodist credentials.

If probabilistic modus tollens and significance tests have the flaws just
described, can we abandon the probabilistic and simply rely on the de-
ductive form? If H; entails O and O turns out to be false, it follows that
H, is false. If H is the only alternative to H;, it further follows that /. is
true. This is the pattern of reasoning that Sherlock Holmes endorses in
The Sign of Four where Sir Arthur Conan Doyle has his hero say that
“when you have eliminated the impossible, whatever remains, however
improbable, must be the truth.” The correctness of this pronouncement is
not in dispute; rather, it is the applicability of Holmes’s dictum that I
contest. In science, it is rarely the case that the hypotheses under test
deductively entail observational claims. This is obvious in the case of
hypotheses that use the concept of probability (as in my running example
of the hypothesis that a coin is fair). But the point often holds when
hypotheses make no mention of probability. For example, when Ed-
dington tested Newtonian theory against relativity theory, the competing
hypotheses did not provide point predictions about what he should ob-
serve when he measured the bend in starlight during a solar eclipse.
Because his measurements were imprecise, he could say only that the
observations would probably fall in one value range if Newtonian theory
were true and that they would probably tall in a second interval if relativity
theory were true. The pervasive pattern in science is that hypotheses
confer (nonextreme) probabilities on observations.””

It may seem not to matter much whether a hypothesis says that O
cannot occur or says only that O very probably will not occur. In fact, the
difference is profound. If you observe that O is true, the former allows
you to reject H without your needing to consider an alternative hy-
pothesis. In contrast, the latter does not license rejection, and there is no

32 The fact that scientific theories typically confer probabilities on observations only when auxiliary
information is added will be explored in the next chapter in connection with Duhem’s thesis.
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saying whether the observation is evidence against A unless an alternative
hypothesis is specified.

1.5 FREQUENTISM II: NEYMAN—PEARSON HYPOTHESIS TESTING

The theory of hypothesis testing set forth by Neyman and Pearson
(1933), and subsequently developed in detail by Neyman, gives advice
about rejection, not, in the first instance, advice about the interpretation
of evidence. As noted in §1.1, Neyman and Pearson state that they are not
interested in interpreting evidence but only in stating general rules for
guiding “behavior.” This claim notwithstanding, the interpretation of
evidence and the rational acceptance and rejection of hypotheses are re-
lated if the modest principle enunciated earlier is correct; if learning that
O is true justifies rejecting /4, where the rejection of / was not justified
before that knowledge was gained, then O must be evidence against H.
The Neyman—Pearson theory, as we will see, violates this principle.

If you are going to decide whether to accept or reject a hypothesis in
the light of a set of observations, there are two kinds of error to which you
are vulnerable. Consider the tuberculosis test discussed earlier, but this
time let’s frame the problem in terms of the task of acceptance and
rejection, not as a question concerning the interpretation of evidence.
You, the physician, receive the report of your patient’s tuberculosis test
result. The report is either positive or negative, and the patient either has
tuberculosis or does not. You have two options: You can accept the
hypothesis that your patient has tuberculosis or you can reject it. There
are two kinds of error you might commit: You might reject the hypothesis
that he has tuberculosis when it is true, or you might accept the hy-
pothesis when it is false. These options are depicted in Figure 1.8, as are

Possible states of the world

H = S has tuberculosis S does not

reject A e 1—e,

Possible decisions

accept [ I-e, e,

Figure 1.8 S either has tuberculosis or does not, and you, the physician, must decide whether
to accept or reject the hypothesis A that § has tuberculosis. The four cells represent four
possibilities; cell entries represent probabilities of the form Pr(decision | state of the world).



