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PREFACE

Evolutionary Dynamics presents those mathematical principles according to
which life has evolved and continues to evolve. Since the 1950s biology, and
with it the study of evolution, has grown enormously, driven by the quest to
understand the world we live in and the stuff we are made of. Evolution 1s the
one theory that transcends all of biology. Any observation of a living system
must ultimately be interpreted in the context of its evolution. Because of the
tremendous advances over the last half century, evolution has become a dis-
cipline that is based on precise mathematical foundations. All ideas regarding
evolutionary processes or mechanisms can, and should, be studied in the con-
text of the mathematical equations of evolutionary dynamics.

The original formulation of evolutionary theory and many of the investiga-
tions of its first hundred years dealt with the genetic evolution of the origin
and adaptation of species. But more recently evolutionary thinking has ex-
panded to all areas of biology and many related disciplines of the life sciences.
Wherever information reproduces, there is evolution. Mutations are caused by
errors in information transfer, resulting in different types of messages. Selec-

tion among types emerges when some messages reproduce taster than others.
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Mutation and selection make evolution. Mutation and selection can be de-
scribed by exact mathematical equations. Therefore evolution has become a
mathematical theory.

The life sciences in general, and biology in particular, are on the brink of
an unprecedented theoretical expansion. Every university is currently aiming
to establish programs in mathematical biology and to offer its students an
interdisciplinary education that spans fields as diverse as mathematics and
molecular biology, linguistics and computer science. At the borders of such
disciplines, progress occurs. Whenever the languages of two disciplines meet,
two cultures interact, and something new happens.

In this book, the languages of biology and mathematics meet to talk about
evolution. Evolutionary Dynamics introduces the reader to the fascinating and
simple laws that govern the evolution of living systems, however complicated
they may seem. I will start with the basics, avoid unnecessary complications,
and reach cutting-edge research problems within a few steps.

The book grew out of a course [ taught at Harvard University in 2004

and 2005. The students in my first class were Blythe Adler, Natalie Arkus,
Michael Baym, Paul Berman, Illya Bomash, Nathan Burke, Chris Clearfield,
Rebecca Dell, Samuel Ganzfried, Michael Gensheimer, Julia Hanover, David
Hewitt, Mark Kaganovich, Gregory Lang, Jonathan Leong, Danielle Li, Alex
Macalalad, Shien Ong, Ankit Patel, Yannis Paulus, Jura Pintar, Esteban Real,
Daniel Rosenbloom, Sabrina Spencer, and Martin Willensdorfer, and the
teaching fellows Erez Lieberman, Franziska Michor, and Christine Taylor. I
have learned much from you. Your questions were my motivation. [ wrote this
book for you.

[ am indebted to many people. Most of all [ would like to thank May Huang
and Laura Abbott, who helped me to prepare the final manuscript and index.
They turned chaos into order. I could not have finished without them. I also
thank the excellent editors of Harvard University Press, Elizabeth Gilbert and
Michael Fisher.

[ thank Ursula, Sebastian, and Philipp for their patience and for their burn-
ing desire to understand everything that can be understood.

[ would like to express my gratitude to my teachers, Karl Sigmund and
Robert May. Both of them are shining examples of how scientists should be.
They have again and again impressed me with their superior judgment, in-
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sight, and generosity. [ also appreciate the work and friendship of the many
people with whom I have had the honor of collaborating and whose enthusi-
asm for science is woven into the ideas presented here: Roy Anderson, Rustom
Antia, Ramy Arnaout, Charles Bangham, Barbara Bittner, Baruch Blum-
berg, Maarten Boerlijst, Sebastian Bonhoeffer, Persephone Borrow, Reinhard
Biirger, Michael Doebeli, Peter Doherty, Andreas Dress, Ernst Fehr, Steve
Frank, Drew Fudenberg, Beatrice Hahn, Christoph Hauert, Tim Hughes,

Lorens Imhof, Yoh Iwasa, Vincent Jansen, Paul Klenerman, Aron Klug, Natalia

Komarova, David Krakauer, Christoph Lengauer, Richard Lenski, Bruce Levin,
Erez Lieberman, Jeffrey Lifson, Marc Lipsitch, Alun Lloyd, Joanna Masel, Er-
ick Matsen, Lord May of Oxford (Defender of Science), John Maynard Smith,
Angela McLean, Andrew McMichael, Franziska Michor, Garrett Mitchener,
Richard Moxon, Partha Niyogi, Hisashi Ohtsuki, Jorge Pacheco, Karen Page,
Robert Payne, Rodney Phillips, Joshua Plotkin, Roland Regoes, Ruy Ribeiro,
Akira Sasaki, Charles Sawvyers, Peter Schuster, Anirvan Sengupta, Neil Shah,
George Shaw, Karl Sigmund, Richard Southwood, Ed Stabler, Dov Stekel,
Christine Taylor, David Tilman, Peter Trappa, Arne Traulsen, Bert Vogelstein,
Lindi Wahl, Martin Willensdorfer, and Dominik Wodarz.

[ thank Jeffrey Epstein for many ideas and for letting me participate in his
passionate pursuit of knowledge in all its forms.
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INTRODUCTION

IN 1831, at the age of twenty-two, Charles Darwin embarked on his journey
around the world. He gazed at the breath-taking diversity of tropical flora and
fauna, collected creepy-crawlies from the vast oceans that he traversed, was
hopelessly seasick, saw slavery in Brazil, witnessed genocide in Argentina, and
was underwhelmed by the naked humanity at Tierra del Fuego. He experi-
enced the effects of a devastating earthquake in Chile that raised the South
American continent. He led an expedition into the Andes and discovered ma-
rine fossils at high altitude. He paid little attention to which finches came from
which islands in the Galdpagos and ate most of the delicious turtles he had
gathered on his way home across the Pacific. He saw Tahiti and the economic
rise of Australia. He visited John Hershel, England’s leading physicist of the
time, in South Africa; Hershel told him that “the mystery of mysteries” was the
as yet unknown mechanism that gave rise to new species. Darwin returned to
England’s shores after five years, having collected six thousand specimens that
would require decades of analysis by an army of experts.

His own observations in geology and the theory of his mentor, Sir Charles

Lyell, that mountains were not lifted up in one day, but rose slowly over




unimaginable periods of time, led Darwin to a key idea: given enough time
everything can happen.

Charles Darwin did not invent the concept of evolution. When he was a
student in Edinburgh in the late 1820s, evolution was already the talk of the
town. But evolution was rejected by the establishment. Those who adhered
to evolutionary thinking were called Lamarckists, after the French scientist
ean-Baptiste Lamarck, who was the first to propose that species are not static,

but change over time and give rise to new species. Lamarck had offered this

perspective in a book published in 1809. He did not, however, propose a
correct mechanism for how species change into each other. This mechanism
was discovered first by Charles Darwin and independently by Alfred Russel
Wallace.

From reading the economist Thomas Malthus, Darwin was aware of the
consequences of exponentially growing populations. Once resources become
limiting only a fraction of individuals can survive. Darwin was also a keen
observer of animal breeders. He analyzed their methods and studied their
results. Slowly he understood that nature acted like a gigantic breeder. This was
the first time that natural selection materialized as an idea, a scientific concept
in @ human mind. Darwin was thirty-three years old.

The one problem that Darwin did not solve concerned the mechanism
that could maintain enough diversity in a population for natural selection
to operate. Darwin was unaware of the Austrian monk and botanist Gregor
Mendel and his experiments on plant heredity. Mendel’s work had already
been published but was hidden, gathering dust in the Annals of the Brno
Academy of Sciences.

Darwin once remarked, “I have deeply regretted that I did not proceed far
enough at least to understand something of the great leading principles of
mathematics; for men thus endowed seem to have an extra sense.” The engi-
neer Fleeming Jenkins, who reviewed Darwin’s On the Origin of Species, pub-
lished in 1859, had raised a fundamental and seemingly intractable objection
to Darwin’s theory: if offspring inherit a blend of the parents’ characteristics,
then variability diminishes in successive generations. Several decades later a
simple mathematical equation, independently found by the famous British
mathematician G. H. Hardy and the German physician Wilhelm Weinberg,
showed that Mendelian (particulate) inheritance does lead to a maintainance
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of genetic diversity under random mating. The Hardy-Weinberg law 1s one of
the fundamental principles of evolution under sexual reproduction.

Mendelian genetics and Darwinian evolution were unified in the new dis-
cipline of mathematical biology, which developed from the seminal investiga-
tions of Ronald Fisher, J. B. S. Haldane, and Sewall Wright in the 1920s and
1930s. Through their work, fundamental concepts of evolution, selection, and
mutation were embedded in a precise mathematical framework. This line of
mathematical analysis was taken up in the 1950s by Motoo Kimura, who for-
mulated the neutral theory of evolution. Kimura realized that most genetic
mutations do not affect fitness and are fixed in populations only by random
drift.

Other milestones of evolutionary dynamics include William Hamilton’s dis-
covery in 1964 that selection of “selfish genes” can favor altruistic behavior
among relatives and John Maynard Smith’s invention of evolutionary game
theoryin 1973. In the mid-1970s Robert May revolutionized the mathematical
approaches to ecology and epidemiology. Manfred Eigen and Peter Schuster
formulated quasispecies theory, which provides a link between genetic evolu-
tion, physical chemistry, and information theory. Peter Taylor, Joset Hotbauer,
and Karl Sigmund studied the replicator equation, the foundation of evolu-
tionary game dynamics.

This very brief and incomplete account of the evolution of evolutionary
dynamics brings us to the present book. It has fourteen chapters. Although
there is some progression of complexity, the chapters are largely independent.
Therefore, if you know something about the subject, you can read the book in
whatever order you like. My aim has been to keep things as simple as possible,
as linear as possible, and as deterministic as possible. I will start with the basics
and in a few steps lead you to some of the most interesting and unanswered
research questions in the field. Having read the book, you will know what you
need to embark on your own journey and make your own discoveries.

This book represents an introduction to certain aspects of mathematical
biology, but it is not comprehensive. Mathematical biology includes many top-
1cs, such as theoretical ecology, population genetics, epidemiology, theoretical
immunology, protein folding, genetic regulatory networks, neural networks,
genomic analysis, and pattern formation. The field is too diverse for any one

book to represent it without running the risk of becoming as entertaining as a
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telephone directory. I have chosen those topics that I know well and where
my explanation can be brief and effective. I have concentrated on evolution
because it 1s the one unifying principle of all of biology.

[t might seem surprising that a book on evolutionary dynamics is not pri-
marily about population genetics. Nevertheless the ideas and concepts of this
fascinating field stand behind many of my explorations: the basic mathemati-
cal formulations of selection, mutation, random drift, fitness landscapes, and
frequency-dependent selection as well as of evolution in structured popula-
tions have originated in population genetics. Several major themes of popula-
tion genetics, however, such as sexual reproduction, sexual selection, recombi-
nation, and speciation, are not discussed here. In contrast, classical population
genetics does not deal with evolutionary dynamics of infectious agents, the
somatic evolution of cancer, evolutionary game theory, or the evolution of hu-
man language, all of which are subjects that I do explore.

The main ingredients of evolutionary dynamics are reproduction, muta-
tion, selection, random drift, and spatial movement. Always keep in mind that
the population is the fundamental basis of any evolution. Individuals, genes,
or ideas can change over time, but only populations evolve.

The structure of the book is as follows. After this introduction, in Chapter
2 [ will discuss populations of reproducing individuals and the basic ideas of
natural selection and mutation. Simple models of population dynamics can
lead to an exponential explosion, to a stable equilibrium, or to oscillations
and chaos. Selection emerges whenever two or more individuals reproduce
at different rates. Mutation means that one type can change into another.
There are models of population growth that lead to the survival of whoever
reproduces fastest (“survival of the fittest”). Other models lead to the survival
of the first or the coexistence of all.

[In Chapter 3, quasispecies theory is introduced. Quasispecies are popula-
tions of reproducing genomes subject to mutation and selection. They live
in sequence space and move over fitness landscapes. An important relation-
ship between mutation rates and genome length is called the “error threshold™:
adaptation on most fitness landscapes is possible only if the mutation rate per
base is less than one over the genome length, measured in bases.

In Chapter 4, we study evolutionary game dynamics, which arise when-
ever the fitness of an individual is not constant but depends on the relative
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abundance (= frequency) of others in the population. Thus evolutionary game
theory is the most comprehensive way to look at the world. People who do
not engage in evolutionary game theory restrict themselves to the rigidity of
constant selection, where the fitness of one individual does not depend on oth-
ers. The replicator equation is a nonlinear differential equation that describes
frequency-dependent selection among a fixed number of strategies. We will
encounter the Nash equilibrium and evolutionarily stable strategies. Evolu-
tionary game theory and ecology are linked in an important way: the replicator
equation 1s equivalent to the Lotka-Volterra equation of ecological systems,
which describes the interation between predator and prey species.

Chapter 5 is dedicated to the best game in town, the Prisoner’s Dilemma.
The cooperation of reproducing entities is essential for evolutionary progress.
Genes cooperate to form a genome. Cells cooperate to produce multicellular
organisms. Individuals cooperate to form groups and societies. The emergence
of human culture is a cooperative enterprise. The very problem of how to ob-
tain cooperation by natural selection is described by the Prisoner’s Dilemma.
[n the absence of any other assumption, natural selection favors defectors over
cooperators. Cooperation has a chance, however, 1f there are repeated inter-
actions between the same two individuals. We will encounter the strategy Tit-
for-tat, which 1s defeated first by Generous Tit-for-tat and then by Win-stay,
lose-shift.

[n Chapter 6 we move to a stochastic description of finite populations. Neu-
tral drift 1s a crucial aspect of evolutionary dynamics: if a finite population
consists of two types of individuals, red and blue, and if both individuals have
identical fitness, then eventually the population will be either all red or all blue.
Even in the absence of selection, coexistence is not possible. If there is a fitness
difference, then the fitter type has a greater chance of winning, but no cer-
tainty. We calculate the probability that the descendants of one individual will
take over the whole population. This so-called fixation probability 1s impor-
tant for estimating the rate of evolution.

Chapter 7 is about games in finite populations. Most of evolutionary game
theory has been formulated in terms of deterministic dynamics describing
the limit of infinitely large populations. Here we move game theory to finite
populations and make surprising observations. Neither a Nash equilibrium,

nor an evolutionarily stable strategy, nor a risk-dominant strategy is protected
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WHAT EVOLUTION IS

THIS CHAPTER introduces three basic building blocks of evolutionary dy-
namics: replication, selection, and mutation. These are the fundamental and
defining principles of biological systems. They apply to any biological organi-
zation anywhere in our or other universes and do not depend on the particular
details of which chemistry was recruited to embody life. Any living organism
has arisen and is continually modified by these three principles.

Evolution requires populations of reproducing individuals. In the right en-
vironment, biological entities, such as viruses, cells, and multicellular organ-
1Isms can make copies of themselves. The blueprint that determines their struc-
ture, the genomic material in form of DNA or RNA, 1s replicated and passed
on to the offspring. Selection results when different types of individuals com-
pete with each other. One type may reproduce faster and thereby outcompete
the others. Reproduction is not perfect, but involves occasional mistakes, or
mutations. Mutation is responsible for generating different types that can be
evaluated in the selection process, and thus results in biological novelty and
diversity. Selection will choose to maintain some innovations and dismiss oth-

ers, and can favor or oppose genetic diversity.
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At the end of this chapter we will focus on the Hardy-Weinberg law of ran-
dom mating. This discussion will be our only venture into the mathematics
of sexual reproduction. In subsequent chapters we will encounter additional
principles of evolutionary dynamics, such as random drift and spatial move-

ment.

2.1 REPRODUCTION

Imagine a single bacterial cell in a perfect environment that contains all the
nutrients required for growth and happiness. In this bacterial heaven, the for-
tunate cell and all its offspring divide every 20 minutes, which is the known
world record for bacterial cell division in an i1deal lab setting. After 20 minutes
the cell has given rise to 2 daughter cells. After 40 minutes there are 4 grand-
daughters, and after one hour there are 8 great granddaughters. How many
cells will there be after three days?

After 1 generations there are 2' cells. In three days there are 216 generations.
Hence we expect 2°1¢ = 10°° cells. The total mass of these cells would exceed
the mass of the earth by many orders of magnitude.

The growth law for this overwhelming expansion can be written as a recur-
sive equation

.rr_l_]_:z.l_r. (2-].)

Here x, 1s the number of cells at time ¢, and x,; is the number of cells at time
t + 1. The equation means that at time 7 + 1 there are twice as many cells as at
time 7. Time is measured in numbers of generations.

The number of cells at time 0 is given by x,. With this initial condition, the

solution of equation (2.1) can be written as
x, = x,2". (2.2)

Equation (2.1) is a so-called difference equation, because time is measured in
discrete steps.

We can also formulate a differential equation for exponential growth that
measures time as a continuous quantity. Let x (¢) denote the abundance of cells

at time 7. Suppose that cells divide at rate r. More precisely, we assume that the
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time for cell division follows an exponential distribution with average 1/r. We
can write the differential equation

. dx
X = = rx. (2.3)

dt

Throughout this book, I will use the standard notation x to refer to differen-
tiation (of x) with respect to time. If the abundance of cells at time 0 1s given

by x, then the solution of the differential equation (2.3) 1s
x(1) = xge'. (2.4)

Let us reconsider our bacterial supernova. If we measure time in units of
days, then r = 72 means that the time for a cell cycle requires, on average, 20
minutes (calculated by dividing the total number of minutes in a day, 1,440, by
72). Hence there are 72 cell divisions in one day. After three days, one bacterial

0% cells.

cell has generated ¢*'® cells which is approximately 6 x 1

The discrepancy between the ditferential equation and the difference equa-
tion 1s a consequence of the varying assumptions for the distribution of the
generation time. The difference equation assumes that each cell division oc-
curs after exactly 20 minutes. The differential equation assumes that each cell
division occurs after a time which is exponentially distributed around an av-
erage of 20 minutes. The exponential distribution i1s defined as follows: the
probability that cell division occurs between time 0 and 7 1s givenby 1 — e™"".
On average, cells divide after 1/r time units.

So far we have ignored cell death. Let us now suppose that cells die at rate
d, which means that they have an exponentially distributed lifespan with an

average of 1/d. The differential equation becomes
x=(r —d)x. (2.5)

The effective growth rate is the difference between the birth rate, », and
the death rate, d. If r > d, then the population will expand indefinitely. It
r < d, then the population will converge to zero and become extinct. If r = d,
then the population size remains constant, but this situation is unstable: small
deviations from absolute equality between birth and death will lead to either

exponential expansion or decline. It is important to note that setting r = d

WHAT EVOLUTION 1S
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in equation (2.5) does not constitute a mechanism for maintaining a stable
constant population size.

The simple equation (2.5) allows us to introduce an extremely important
concept in evolution, ecology and epidemiology: the basic reproductive ra-
tio, r/d. This ratio denotes the expected number of offspring that come from
any one individual. The average lifetime of a cell is 1/d. The rate of produc-
ing offspring cells 1s given by r. If each cell produces on average more than
one offspring, r/d > 1, then an exponential expansion will follow. A basic
reproductive ratio greater than one is a necessary condition for population
expansion.

We have observed that ongoing exponential growth can lead to unreason-
ably high numbers in a very short time. In a realistic environment, the ex-
panding population will hit constraints that prevent further expansion. For
example, the population might run out of nutrients or physical space.

A model for population expansion with a maximum carrying capacity is

given by the logistic equation
x=rx(1—x/K). (2.6)

As before, the parameter r refers to the rate of reproduction in the absence
of density regulation, when the population size, x, is much smaller than the
carrying capacity K. As x increases, the rate of growth slows down. When x
reaches the carrying capacity, K, then the population expansion ceases. For

the initial condition x, the solution of equation (2.6) 1s given by

|
Kl{}{.

. (2.7)
K _J_XD(E’FE — 1)

x(t) =

In the limit of infinite time, t — 00, the population size converges to the
equilibrium x™ = K. Throughout the book we will use a superscript asterisk

to denote a quantity at equilibrium.

211 Deterministic Chaos
We can also study a logistic difference equation. Without loss of generality, let

us rescale the population abundance in such a way that the maximum carrying
capacity is given by K = 1. We have
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Hence the A and B subpopulations grow exponentially at rates a and b, re-
spectively. The doubling time for A is log 2/a. The doubling time for B is
log 2/b. It a is greater than b, then A reproduces faster than B: after some
time, there will be more A than B individuals.

Denote by p(t) = x(t)/y(t) the ratio of A over B at time 7. We have

. Xy — XY
0 = = (a —b)p. (2.11)
}}

The solution of this differential equation, for the initial condition py, = x4/ o>
Is given by

p(t) = poe' =", (2.12)

Hence if @ > b then p tends to infinity. In this case A will outcompete B, which
means selection favors A over B. If, on the other hand, ¢ < b, then p tends to
zero. In this case B will outcompete A, which means that selection favors B
over A.

Let us now consider a situation in which the total population size is held
constant. This situation can arise, for example, when an ecosystem has a con-
stant maximum carrying capacity. Let x(7) denote the relative abundance of
A at time 7. Instead of “relative abundance” we can also say “frequency.” Let
v(t) denote the frequency of B. Since there are only A and B individuals in
the population, we have x 4+ y = 1. As before, A and B individuals reproduce,
respectively, at rates ¢ and b.

We have the system of equations

x=x(a — ¢)
y=y(b—9)

(2.13)

The term ¢ ensures that x + y = 1. This i1s only possible it ¢ = ax + by.
Observe that ¢ 1s the average fitness of the population.

The system (2.13) describes only a single differential equation, because y
can be replaced by 1 — x. We obtain

x=x(1—x)(a —b). (2.14)

WHAT EVOLUTION 1S
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Selection of A and B: Figure 2.2 Selection arises if two types, A and
| | B, have different rates of reproduction, a and b.

| X | If A reproduces faster than B, which means
x=0 X = a > b, then A will become more abundant
than B. Eventually A will take over the entire
all-B all-A population; B will become extinct. Denote by
x the relative abundance (= frequency) of type
A. The quantity x is a number between 0 and
1. Therefore selection dynamics are defined on

the closed interval [0, 1].

This differential equation has two equilibria, one for x = 0 and the other for
x = 1. At these two points, we have x = 0. This observation makes sense: if
x = 1 then the system consists only of A individuals and nothing more can
happen; if x = 0, then the system consists only of B individuals and again
nothing more can happen.

We can, however, make an additional observation. It @ > b, then x > 0
for all values of x that are strictly greater than 0 and strictly smaller than 1.
This means that for any mixed system (consisting of some A and some B
individuals) the fraction of A will increase if the fitness of A is greater than
the fitness of B. In this case, the fraction of B will converge to 0, while the

fraction of A converges to 1. We have encountered the concept of “survival of
the fitter” (Figure 2.2).

2.21 Survival of the Fittest

The model can be extended to describe selection among n different types.

Let us label them i =1, ..., n. Denote by x;(¢) the frequency of type i. The

structure of the population is given by the vector x = (x|, x5, ..., x,).
Denote by f; the fitness of type i. As before, fitness is a non-negative real

number and describes the rate of reproduction. The average fitness of the
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The simplex is the set of all points whose coordinates
are not negative and add up to one

S Ss S

Figure 2.3 If the total population size is constant, then selection dynamics can be
formulated in terms of relative abundance (= frequency). Suppose there are n different
types,i =1, ..., n. Type i has frequency x;. The sum over all x; is one. The set of all
points, (xy, ..., x,) with the property » "' x; = 1, is called the simplex S,. Selection
dynamics occur on the simplex S, . The figure shows S,, S5, and S,. The simplex S, is
an n — 1 dimensional structure embedded in an n-dimensional Euclidian space. The
simplex S, has n faces that each consist of the simplex S, ;.

population is given by
b= xf; (2.15)

Selection dynamics can be written as
x; =x;(fi —¢) I=1,...,n (2.16)

The frequency of type i increases, if its fitness exceeds the average fitness of
the population. Otherwise it will decline. The total population size remains
fl fl .
constant: ) . x; =1land ) . x; =0,
The set of points with the property ) ' x; = 1is called the simplex S,
(Figure 2.3). Each point in the simplex refers to a particular structure of the

population. The interior of the simplex is the set of points x with the property
that x;, > 0 for all i = 1, ..., n. The face of the simplex 1s the set of points

x with the property that x; = 0 for at least one i. The vertices of the simplex

WHAT EVOLUTION 1S
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Components of the simplex

o e
Interior Edges (faces) Vertices

Figure 2.4 The interior of a simplex is the set of all points where all coordinates are
strictly positive; this means no type has become extinct. The faces are the sets of
points where at least one coordinate is zero; this means at least one type has become
extinct. The vertices describe pure populations, where all but one type have become
extinct.

are the corner points where exactly one type is present, x; = 1, while all other
types are extinct, x; = 0 for all j # i (Figures 2.4 and 2.5).
The simplex S, is given by the closed interval [0, 1]. The notation [0, 1]

refers to all numbers which are greater than or equal to 0 and less than or

equal to 1. In contrast, (0, 1) 1s the open interval; it contains all numbers that
are strictly greater than 0 and strictly less than 1. The open interval (0, 1) is
the interior of the closed interval [0, 1] and, therefore, is also the interior of
the simplex S,.

Equation (2.16) contains a single globally stable equilibrium. Starting from
any initial condition in the interior of the simplex, the population will con-
verge to a corner point where all but one type have become extinct. The win-
ner, k, enjoys a well-deserved victory because it has the property of having
the largest fitness, f,. Thus f, > f; for all i # k. The system shows competi-
tive exclusion: the fittest type will outcompete all others. This 1s the concept of

“survival of the fittest.”

2.2.2 Survival of the First, Survival of All

et us return to the selection of two types, A and B, but without making the

assumption that their growth rates are linear functions of their frequencies.

[nstead consider the equation

EVOLUTIONARY DYNAMICS



5 points in S, Figure 2.5 Five points on the simplex
S5. In the center, (1/3, 1/3, 1/3), all

three types have the same frequency.
There are three faces. The center
X, =0 of one particular face is given by
(0, 1/2, 1/2); one type has become

extinct. The corner points (vertices)
indicate populations that consist of

only one type. S5 has three corners:

(1, 0, 0), (0, 1, 0),and (0, 0, 1).

Xy =1 X1=O

X =ax" — ¢x

y=>by" — ¢y

As before, a and b denote the fitness values of A and B, respectively. If ¢ = 1,

(2.17)

we are back to equation (2.13). If ¢ < 1, then growth is subexponential. In the
absence of the density limitation, ¢, the growth curve of the two types would
be slower than exponential.

In contrast, if ¢ > 1, then growth is superexponential. In the absence of the
density limitation, ¢, the growth curve of the two types would be faster than

exponential (hyperbolic). To maintain a constant population size, x + y = 1,

we set ¢ = ax® + by“. Equation (2.17) reduces to
x=x(1—x)f(x) (2.18)
where

f(x)=ax""'—=b1—x) 1, (2.19)

WHAT EVOLUTION 1S
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Mutation during reproduction: Figure 2.7 Mutation can occur during repro-
duction: type A produces an offspring that

. — . -+ . is type B. Mutation can also occur in the

absence of reproduction: type A changes
into type B. Many genetic mutations occur

. — . -+ . when the genomic material of a cell is be-

ing copied. But mutagens can also change
the genetic material of a cell when it is not

Mutation without reproduction: dividing.

0
0

Conversely, denote by u, the mutation rate from B to A. As before, let x and

y denote the frequencies of A and B, respectively. We have

x=x(1—uy)+ yu, — ¢x
(2.22)

y=xu;+ y(l—uy) — ¢y

Since A and B have the same fitness (¢ = b = 1), the average fitness of the
population 1s constant and given by ¢ = 1. Taking into account x 4 y = 1,

system (2.22) reduces to the differential equation
X =1, — x(uy+ u,). (2.23)

The frequency of A converges to the stable equilibrium

L{
= 2 (2.24)

U, + U,

Hence mutation leads to coexistence between A and B. The relative propor-
tion of A and B at equilibrium depends on the mutation rates. At equilibrium,

the ratio of A to B is given by x*/y™ = u,/u,. If the mutation rates are the

Same, i | = U, and then x™ = y*‘.
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Sometimes the mutation rate in one direction is much larger than in the
other direction. In these cases, it often makes sense to ignore mutation in the
other direction altogether. Let u, = 0. We have

X = —XUy. (2.25)
Therefore the frequency of A declines over time as

x(1) = xqe "1, (2.26)
The trequency of B increases as

y(t)=1—(1— yye ", (2.27)

[f mutation occurs only from A to B but not the other way around, then A
will die out and B will take over the whole population. We see that mutation
can affect survival. Different mutation rates can introduce selection even in

the absence of different reproductive rates.

2.3.] Mutation Matrix

We can extend mutation dynamics to n different types. Let us introduce the
mutation matrix, Q = [¢;;]. The probability that type i mutates to type j is
given by ¢;;. Since each type i has to produce itself or some other type, we
have Zj‘:] q¢;j = 1. Thus Q is a stochastic n x n matrix. A stochastic matrix
1s defined by the properties that (1) all entries are numbers from the interval
[0, 1] (so-called probabilities), (i1) there are as many rows as columns, and (i11)
the sum of each row is 1. Stochastic matrices always have 1 as an eigenvalue,
and no eigenvalue has an absolute value greater than 1.

Mutation dynamics can be written as
H
j=1

[n vector notation we can write

X=X0 — ¢x. (2.29)
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Again the average fitness is just ¢ = 1. The equilibrium 1s given by the left-hand
eigenvector assoclated with eigenvalue 1:

X0 = i*. (2.30)

The point x* denotes the unique globally stable equilibrium of the mutation
dynamics.

2.4 MATING

One of the problems that Charles Darwin could not solve was the following:
under random mating and blending inheritance, the variability in a popu-
lation should rapidly decline. Yet it was clear that variability was needed for

natural selection. If variability disappears, then natural selection has nothing

upon which to act. Suppose there 1s a distribution of body size in a popula-
tion. If children inherit the average body size of their parents, then after some
time everybody is the same size. Under these circumstances, how can natural
selection affect changes in body size?

The first part of the solution is that inheritance (on the level of genes) 1s
not blending but particulate, as had been discovered by Gregor Mendel and
published in 1866. That is, individuals have discrete genotypes that get reshuf-
fled, not blended, during mating. Mendel’s work was unknown to Darwin.
The second step was a simple mathematical analysis, which was performed by
the British mathematician G. H. Hardy, who was proud never to have done
anything useful (= applied) in his life, only to have his name forever asso-
ciated with a highly useful and very applied concept in population genetics.
Moreover, Hardy's brief calculation was generalized by the German physician
Wilhelm Weinberg.

Consider an infinitely large population of a diploid organism with two sexes
and random mating (a diploid organism has two copies of its genome; humans

and many other animals are diploid). Let us look at one particular gene locus

and assume there are two alleles, A;and A,. The alleles are variants of the same

gene and might differ in one or a few point mutations. (Point mutation means
that only one single base of the DNA sequence i1s changed.)
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There are 3 different genotypes: A;A,, A|A,, A,A,. Let us denote their
frequencies in the population by x, y, and z, respectively. Denote by p and
g the frequencies of alleles A, and A,. Wehavex + y+z=1land p + ¢g = 1.

Moreover,
N 1
p=x+_y
2
(2.31)
|
q—=2z+ =y
-! 2 -

Let us now assume random mating. In the next generation, the genotype

frequencies are given by

Xf — pz
Y =2pq (2.32)
Zf:qz

For the allele frequencies in the next generation we have again

p=x +t =y
2
(2.33)
|
! f r
q =z + Y
2
Combining (2.32) and (2.33), we observe that
pP=p 4 =q (2.34)

Therefore the allele frequencies remain unchanged from one generation to the

next. Moreover, combining (2.32) and (2.34), we observe

.}:I — pfz
v =2p'q (2.35)
z’F — .f:j'f2
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From the first generation on, the genotype frequencies can be directly derived
from the allele frequencies. Note that equation (2.35) need not hold for the
initial genotype and allele frequencies. The Hardy-Weinberg law (expressed
by equations 2.34 and 2.35) can be generalized to n alleles.

[n summary, the Hardy-Weinberg law states that particulate inheritence

preserves variation within a population under random mating.

SUMMARY

¢ Evolution requires populations of reproducing individuals.

¢ Asexual reproduction leads to exponential population growth (which will

eventually be checked by resource limitation).

¢ Simple models of population growth in discrete time can give rise to very

complicated dynamics.

¢ Selection arises when different types of individuals reproduce at ditferent

rates.

¢ Normally, the faster-reproducing (fitter) individual outcompetes the

slower reproducing (less fit) individual.

¢ If there are many different types, then selection dynamics can lead to

“survival of the fittest.” All others become extinct.

¢ Sublinear growth rates lead to coexistence, “survival of all.”

¢ Superlinear growth rates prevent invasion of a new type and thereby lead

to “survival of the first.”
¢ Mutation arises when reproduction is not perfectly accurate.
¢ Mutation promotes coexistence of different types.

¢ Asymmetric mutation can lead to selection even if all individuals have the

same reproduction rate.

¢ The Hardy-Weinberg law states that random mating preserves genetic

variation within a population.
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Seqguence space for binary genomes of length L=3

o 111

10C

)11

000 001

Figure 31 Genomes live in sequence space. The number of dimensions is given by the
length of the genome. Small viruses live in 10,000 dimensions. Humans live in about 3

billion dimensions.

in an L-dimensional space. In each dimension there are 4 discrete possibilities.
Hence there are 4” possible sequences.

For writing computer programs, it is often convenient to use binary se-
quences, the fundamental strings of silicon thoughts. Moreover, everything
from Shakespeare to E. coli can be encoded in binary sequences. For length L
there are 2% possibilities. In Figure 3.1, the binary sequence space for L = 3 is
shown. The distance between 000 and 010 is one. The distance between 000
and 011 is 2 (and not +/2). Hence sequence space is characterized not by a Eu-
clidean metric but by a so-called Hamming metric or Manhattan metric. In
Manhattan, if you are on 5th Avenue and 51st Street it takes 2 blocks to go to
6th Avenue and 52nd Street, not +/2 blocks. This metric was introduced by
Richard Hamming in information theory.

Let us compare the binary sequence space of length L. = 300 with a three-

dimensional cubic lattice containing the same number of points. There are
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Fitness landscape = each sequence
has a reproduction rate (=fitness)

50

Figure 3.2 The fitness landscape
is a high-dimensional mountain
range. Each genome (= each point
in sequence space) gets assigned a
fitness value.

Seqguence space

2°% 22 10”” points. Imagine nearest neighbors are placed at a distance of 1 me-
ter. The diagonal of the three dimensional cubic lattice has a length of about
10°Y meters, which corresponds to about 10'* light years. In contrast, the
longest distance in the L-dimensional hypercube is only 300 meters. Thus se-
quence space 1s characterized by short distances, but many dimensions. It is
not far to move from one sequence to another, but there are many possible
steps that lead in wrong directions. Evolution is a trajectory through sequence
space. This trajectory needs an efficient guide.

3.2 FITNESS LANDSCAPES

The American population geneticist Sewall Wright invented the concept of a
“fitness landscape” in the 1930s, but Manfred Eigen and Peter Schuster, collab-
orating in the 1970s, combined fitness landscape with sequence space. Con-
sider a function that assigns to each genomic sequence a fitness value. Hence
we build a mountain range on the foundation of an L-dimensional sequence
space (Figure 3.2). This mountain range has L + 1 dimensions. The evolu-
tionary process of mutation and selection explores this hyper-alpine mountain
range.

The genomic sequence represents the genotype of an organism. The pheno-
type of an organism is given by its shape, behavior, performance and any kind
of ecological interaction. The phenotype determines the fitness (reproduc-

tive rate) of the organism. There is a mapping from genotype to phenotype.
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A quasispecies is a population of
reproducing RNA or DNA molecules

4-nucleotide alphabet Binary alphabet

Figure 3.3 The ensemble of genomes of a natural population form a quasispecies: the
genomes of different individuals are similar but not identical. Biology has chosen a four-
letter alphabet consisting of the nucleotides A, T, C, and G for its genes. Most in silico
evolution uses a binary alphabet for convenience. Sequence differences (mutations)
are shown in red.

There 1s another mapping from phenotype to fitness. The fitness landscape 1s
a convolution of these two mappings. It is a direct mapping from genotype to
fitness.

The fitness landscape of certain problems can be determined experimen-
tally. For example, HIV can generate point mutations that confer drug resis-
tance. The relative growth rate of such mutants can be determined by in-vitro
assays. In general, however, to understand the relationship between genotype,
phenotype, and fitness is an extremely complicated problem. Much of biol-

ogy, including developmental biology, molecular biology, post-genomics, and

proteomics, is devoted to this very task.

3.3 THE QUASISPECIES EQUATION

A quasispecies i1s an ensemble of similar genomic sequences generated by
a mutation-selection process (Figure 3.3). The term was introduced by the
chemists Manfred Eigen and Peter Schuster. In chemistry the word “species”
refers to an ensemble of identical molecules, for example, the species of all
water molecules. But the species of all RNA molecules does not contain iden-

tical sequences, and therefore the term “quasispecies” was coined. Biologists
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are sometimes confused by this expression, because they relate it to the concept
of a biological species.

We stay with binary sequences for convenience. We note that any genomic
or other information can be encoded by binary sequences. Consider all binary
sequences of length L. Enumerate all those sequences by i =0, 1,2, ..., n
where n = 2% — 1. A natural enumeration is obtained if the sequence repre-
sents the binary description of the corresponding integer. For example, let
[. = 4. The sequence 0000 corresponds to i = 0, the sequence 0001 to i = 1,
the sequence 0010toi =2, ..., thesequence 1111to i = 15.

Imagine an infinitely large population of organisms, each carrying a
genome of length L. Denote by x; the relative abundance (= frequency) of
those organisms that contain genome i. We have ) " x; = 1. The genomic
structure of the population is given by the vector x = (xy, x;, ..., X,,).

Denote by f; the fitness of genome i. It is a non-negative real number. Thus
genomes of type i are being reproduced at rate f;. The fitness landscape is
given by the vector f = (fo» f1> --.> fn)- The average fitness of the popula-
tion, ¢ = Z?:” x; fi» 1s the inner product of the vectors x and f We have
d=xf.

During replication of a genome, mistakes can happen. The probability that
replication of genome i results in genome j is given by g;;. Here we again
meet the mutation matrix Q = [g,;] of section 2.3. We remember that Q isa
stochastic matrix: it has as many rows as columns; each entry is a probability,
which means a number between 0 and 1; each row sums to one, Z?’:n q;i; = 1.

The quasispecies equation (Figure 3.4) is given by
1
X!:ZXfffgj! _Cﬁi,}:f l :U, ey 11 (3.1)
j=0

Sequence i is obtained by replicating any sequence j at rate f; times the
probability that replication of sequence j generates sequence ;. Each sequence
is removed at rate ¢ to ensure that the total population size remains constant,
> ., = 1. Thus quasispecies dynamics are defined on the simplex, S,.

[n the limiting case of completely error-free replication, Q9 becomes the

identity matrix: all diagonal entries are one, all off-diagonal entries are zero.
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The quasispecies equation Figure 3.4 The quasispecies equa-
tion, formulated by Manfred Eigen

and Peter Schuster, is one of the
most important equations in the-
oretical biology. It describes the
mutation and selection of an
infinitely large population on a
constant fitness landscape.

Consider an initial condition in the interior of the simplex, defined by x; > 0
for all 7. The quasispecies will converge to a homogeneous population that
consists only of the fittest sequence. It f, > f; for all i # 0, then the stable
equilibrium 1s given by x, =1 and x; = 0 for i # 0. If there are no errors,
then the quasispecies equation (3.1) reduces to the selection equation (2.16)
of section 2.2.1.

Let us now assume that errors occur. This means that (at least some) off-
diagonal entries of (0 are not zero. In many realistic contexts, the matrix Q 1s
irreducible, which means it 1s possible to find a sequence of mutations from
any one genome i to any other genome j. Furthermore, let f; > 0 for at least
some i. In this case, the quasispecies equation admits a single, globally stable
equilibrium, x*, in the simplex S, .

The equilibrium quasispecies, x*, does not necessarily maximize the aver-
age fitness ¢. Consider again a fitness landscape with the property f, > f; tor
all i # 0. Then the population consisting only of sequence 0 will have a higher
fitness than the equilibrium population x*. Thus, mutations reduce the aver-
age fitness at equilibrium.

Observe that (3.1) 1s a nonlinear differential equation. The term —¢x; 1s of
second order. Linear differential equations can always be solved, but nonlin-
ear differential equations normally cannot be solved. This means for nonlin-

ear differential equations the trajectories cannot always be written as explicit
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Hence a mutation has to occur in as many positions as differ between the
sequences i and j, which 1s precisely the Hamming distance, /;;. No mutation
must occur in the remaining L — /;; positions.

Equation (3.11) is an elegant description of a mutation matrix that allows
point mutations among binary sequences of constant length. It is assumed
that the point mutation rate, u, is the same for all positions. It is further
assumed that a mutation in one position i1s independent of a mutation in
another position. Hence one error does not increase the probability of another
error. There are no insertions and no deletions. All of these restrictions can be
relaxed in principle, but doing so will lead to considerable complexity.

Let us use mutation matrix (3.11) to describe the human immunodeficiency
virus as an example. The point mutation rate of HIV is approximately u =
3 x 107°. The genome length of HIV is L = 10*. Therefore the probability
that the whole HIV genome is replicated without mutation is given by (1 —
)’ ~ 0.74. The probability that replication of the HIV genome results in a
sequence that differs in one arbitrary position is given by Lu(1 — u)t=! =
0.22. The probability that a particular one-error mutant, for example one
that confers drug resistance or immune escape, is being produced is given
by u(1 —u)*""=2.2 x 107>, If 10” newly infected cells are being produced
each day, then any particular one-error mutant will arise 22,000 times each
day. This number signifies the enormous potential of HIV (or other viruses or

microbes) to escape from selection pressures that are meant to control them.
We will revisit this topic in Chapter 10.

3.5 ADAPTATION IS LOCALIZATION IN SEQUENCE SPACE

The quasispecies equation (3.1) describes the movement of a population
through sequence space. The quasispecies “feels” gradients in the mountain
range of the fitness landscape. It attempts to climb uphill and reach local or
global peaks (Figure 3.5). What are the conditions that this evolutionary walk
will be successful? One such condition is the error threshold.

[f the mutation rate u is too high, then the ability of the quasispecies to
climb uphill and to remain on top of a mountain peak 1s impaired. In fact,
we can show that for many natural fitness landscapes there 1s a maximum
mutation rate, u ., that is still compatible with adaptation. If the mutation rate

exceeds this value, u > u ., then adaptation is not possible.
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Figure 3.5 Quasispecies love to

climb mountains in high-dimensional
spaces. The higher they get, the fitter
they are. Adaptation means to go up.

Evolution is adaptation of the quasispecies
on the fithess landscape

Sequence space

Adaptation means that the quasispecies is able to find peaks in the fitness
landscape and stay there. Suppose the fitness landscape contains only one
peak. If the mutation rate is sufficiently low, then the equilibrium solution
of equation (3.1) describes a quasispecies that is centered on this peak. Most
sequences resemble the type with maximum fitness or nearby mutants. Se-
quences that are far away from the peak will have a very low frequency. (In
population genetics, frequency means relative abundance.) We say the qua-
sispecies 1s adapted to this peak. Similarly, we can say that the quasispecies

distribution 1s localized at this peak. Adaptation means localization in se-
quence space. When the mutation rate of a quasispecies is zero, it contains
only sequences with maximum fitness. When the mutation rate is very small,
the quasispecies distribution is very narrow. As the mutation rate increases,
the quasispecies distribution widens. There is a critical mutation rate, u ., be-
yond which the equilibrium quasispecies no longer “feels” the peak. The qua-
sispecies 1s no longer localized around the peak. Adaptation is lost. Strictly
speaking, a well-defined “phase transition” from a localized to a delocalized
state only occurs for infinite sequence length, but the phenomenon is striking
already for binary sequences of length L. = 10.

The maximum mutation rate, u ., that is compatible with adaptation is
called the “error threshold.” Not all fitness landscapes have error thresholds.
Narrow peaks of finite height have error thresholds. If a peak 1s so broad that
most sequences in the sequence space are within the slopes of the peak, then

an error threshold need not occur.
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Quasispecies have a tendency to climb uphill. Starting from some random
initial condition, x(0), the quasispecies equation (3.1) will tend to increase the
average fitness, ¢. But it is also easy to construct a counterexample. Suppose a
certain sequence has maximum fitness, while all other sequences have lower
fitness. If we start with a population that contains only the sequence with
maximum fitness, then equation (3.1) will reduce the average fitness ¢ until an
equilibrium between mutation and selection, a so-called mutation-selection
balance has been reached.

Calculating the error threshold, u ., for complex fitness landscapes is ditfi-
cult, but the tollowing simple fitness landscape provides the crucial insight.
Consider all binary sequences of length L. The all-zero sequence, 00 ... 0,
has the highest fitness given by f, > 1. All other sequences have fitness 1. The
all-zero sequence 1s sometimes called the “master sequence” or the wild type,

while all other sequences are called “mutants.”

The probability that the master sequence produces an exact copy of itself
is given by ¢ = (1 — u)*. The probability that the master sequence generates
any mutant is given by 1 — ¢. The trick is to neglect the back mutation from
the mutants to the master sequence. With this assumption the quasispecies

equation (3.1) becomes

xg = xo(foq — ¢)
x;=xofo(l —q) +x; — ¢x,

(3.12)

Here x, 1s the frequency of the master sequence, while x, 1s the sum of the
frequencies of all the mutants. Clearly, x, + x, = 1. The average fitness is given
by ¢ = foxy + x;. System (3.8) collapses to a single equation

Xo=Xxglfod — 1 — xo(fo — DI (3.13)

[t fog < 1, then x, will converge to zero; the fittest sequence cannot be main-

tained in the population. It f,q > 1, then x, will converge to

x¥ = foa =1 (3.14)
fo—1
Hence, the error threshold is given by
foq > 1. (3.15)
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Error threshold: adaptation is only possible if the
mutation rate per base, u, Is less than the inverse
of the genome lenath, L

u<1i/L

Nedliance enareg

u>1/L

oequernce spdace

Figure 3.6 Error threshold: a quasispecies can only maintain a peak in a fitness landscape
if the mutation rate is less than the inverse of the genome length. This is a very general
and beautiful result that must hold for any living organism. The beauty is not spoilt by
two qualifying remarks that are necessary: (i) the genome length, L, has to be defined
properly to include only those positions that affect fitness and (ii) there are some
pathological landscapes where a peak can be maintained beyond the error threshold,
for example if the peak is “infinitely” high or so wide that its presence can be felt by
the majority of all possible sequences.

This inequality can be rewritten as log f, > —L log(1 — u). For small muta-

tion rates, u << 1, we have log(1 — u) &~ —u. Therefore we obtain the condition
lo
u < 080 (3.16)
L

[t the fitness advantage of the master sequence 1s not too large and not too
small, then log f, 1s approximately 1. Now the error-threshold condition re-

duces to
u < 1/L. (3.17)

Hence the maximum mutation rate that is still compatible with adaptation

has to be less than the inverse of the genome length (Figure 3.6). In other
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Table 31 Genome length (in bases), mutation rate per base, and mutation rate per
genome for organisms ranging from DNA viruses to humans

Genome length Mutation rate Mutation rate

Organism in bases per base per genome
RNA viruses

L)*ii:: VIriuses

QpB 4.2 x 10° 1.5 x 1077 6.5

Polio 7.4 x 10° 1.1 x 1074 0.84

VSV 1.1 % 104 3.2 % 1074 3.5

Flu A 1.4 % 10* 7.3 x 107° 0.99

Retroviruses

SNV 7.8 x 10° 2.0x 107 0.16

MulV 8.3 x 10° 3.5%x 10°° 0.029

RSV 9.3 x 10° 4.6 x 107 0.43
Bacteriophages

M13 6.4 x 10° 7.2 x 1077 0.0046

A 4.9 x 10* 7.7 x 10°° 0.0038

T2 and T4 1.7 x 10° 2.4 % 1078 0.0040
E. coli 4.6 x 10° 54 x 1010 0.0025
Yeast (S. cerevisiae) 1.2 x 107 2.2 x 1071 0.0027
Drosophila 1.7 x 10° 3.4 x 10710 0.058
Mouse 2.7 x 107 1.8 x 1019 0.49
Human (H. sapiens) 3.5 x 107 5.0 x 101 0.16

Sources: Drake (1991, 1993) and Drake et al. (1998).

Note: Most organisms have a mutation rate per genome which 1s less than one, as predicted by the
error threshold theory. Why Qf and VSV have such a high mutation rate is at present unexplained.

words, the genomic mutation rate, u L, has to be less than one. In fact, this
condition holds for most living organisms for which mutation rates have been
measured (Table 3.1). For eukaryotes, the genome length L in this context
should actually be defined as the total number of bases in the coding and
regulatory regions of the DNA.

3.6 SELECTION OF THE QUASISPECIES

The following remarkable observation was first made by Peter Schuster and

Jorg Swetina. Consider a fitness landscape that contains a high but narrow
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Adaptation is localization in sequence space. This is only possible if the
mutation rate is below the error threshold.

The error threshold states that the maximum possible mutation rate (per
base) must be less than the inverse of the genome length (in bases).
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EVOLUTIONARY GAMES

EVOLUTIONARY GAME THEORY means that the fitness of individuals
is not constant, but depends on the relative proportions (frequencies) of the
different phenotypes in the population: fitness 1s frequency dependent. Evo-
lutionary game theory is the generic approach to evolutionary dynamics and
contains as a special case constant selection.

Game theory was invented by John von Neumann and Oskar Morgen-
stern. They wanted to design a mathematical theory to study human behavior
in strategic and economic decisions. Von Neumann was a Hungarian-born
mathematician working at the Institute for Advanced Study, where he invented
and revolutionized several fields of mathematics. We have already encountered
him in Chapter 3 in connection with the terms “translation” and “transcrip-
tion,” which he invented when thinking about how to conceive of a machine
that could reproduce itself. He built the first computer that held the program
for the calculation in its memory rather than in its hardware. Incidentally, one
of the first projects that this computer did in its spare time was a mathematical

simulation of an evolutionary system.
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Constant selection:

fitness of A = 1.1 fitness of B = 1

Frequency-dependent selection:

Figure 41 Constant selection means titness neither depends on the composition of the
population nor changes over time. For example, A has constant fitness 1.1, while B has
constant fitness 1. In contrast, frequency-dependent selection means that fitness does
depend on the relative abundance (= frequency) of individual types. A has the ability to
move. If few other cells are moving, then A has a larger fitness than B. But if many other
cells “are on the road,” this fitness advantage is reversed (in this hypothetical example).

of the frequency of A. A has a higher fitness than B when A i1s rare, but has
a lower fitness than B when A 1s common. What 1s the outcome of such a
selection process?

Let us formalize the general case of frequency-dependent selection between
two strategies A and B. Denote by x4 the frequency of A and by xz the fre-
quency of B. The vector x = (x4, xp) defines the composition of the popu-
lation. Denote by f,(x) the fitness of A and by fz(x) the fitness of B. The

selection dynamics can be written as
Xp=x,0fa(x) — @]

xp=xp[fp(x) — @]

(4.1)

The average fitness is given by ¢ = x 4 f4(x) + x5 [5(x).
Because x4 + xp = 1 at all times, we can introduce the variable x with

x,=xand xp =1 — x. We can write the fitness functions as f,(x) and fz(x).
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