Ccrs

P Challenges to
Develop Your
Coding Skills

Brian P. Hogan
dited by Susannah Davidson Pfalzer

/] AN, , |

Table of Contents

Acknowledgments

How to Use This Book
Who This Book Is For
What’s in This Book (And What’s Not)
What You Need
Online Resources

1. Turning Problems into Code

Understanding the Problem

Discovering Inputs, Processes, and Outputs

Driving Design with Tests

Writing the Algorithm in Pseudocode

Writing the Code

Challenges
Onward!

2. Input, Processing, and Output

1. Saying Hello

2. Counting the Number of Characters

3. Printing Quotes

4. MadLib

5. Simple Math

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Retirement Calculator

What You Learned
Calculations
Area of a Rectangular Room
Pizza Party
Paint Calculator
Self-Checkout
Currency Conversion
Computing Simple Interest

Determining Compound Interest

What You Learned
Making Decisions
Tax Calculator
Password Validation
Legal Driving Age
Blood Alcohol Calculator
Temperature Converter
BMI Calculator

Multistate Sales Tax Calculator

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Numbers to Names
Comparing Numbers

Troubleshooting Car Issues
What You Learned

Functions

Anagram Checker

Password Strength Indicator
Months to Pay Off a Credit Card

Validating Inputs

What You Learned
Repetition
Adding Numbers
Handling Bad Input
Multiplication Table
Karvonen Heart Rate

Guess the Number Game
What You Learned

Data Structures
Magic 8 Ball

Employee List Removal

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Picking a Winner
Computing Statistics
Password Generator
Filtering Values
Sorting Records

Filtering Records

What You Learned
Working with Files
Name Sorter
Parsing a Data File
Website Generator
Product Search

Word Finder

Word Frequency Finder

What You Learned

Working with External Services

Who's in Space?
Grabbing the Weather

Flickr Photo Search

50.

51.

52.

10.

53.

54.

55.

56.

57.

Movie Recommendations
Pushing Notes to Firebase

Creating Your Own Time Service
What You Learned

Full Programs
Todo List

URL Shortener
Text Sharing
Tracking Inventory

Trivia App
Where to Go Next

Copyright © 2016, The Pragmatic Bookshelf.

Early praise for Exercises for
Programmers

If you're looking to pick up a new programming language, you should also pick
up this book. You'll learn how to solve problems from first principles,
developing a stronger foundation to build on top of. I learned a lot. I expect you
will too.

— Stephen Orr

Senior software engineer, Impact Applications

A wonderful resource for learning new languages using the most effective
method: practice. Because the book is language agnostic, it has almost endless
replay value, which is a rare quality among technical books.

— Jason Pike

Software developer, theswiftlearner.com

This is a wonderful book for anyone who wants to start fresh in a new language.
Programmers new and old will greatly benefit from this repository of exercises.
This book offers comfort for beginners and challenges for advanced
programmers.

— Alex Henry

Software engineer quality assurance, JAMF Software

Acknowledgments

First, thank you. You're awesome. No, you really are, because you've picked up
this book and made a commitment to improving your skills as a software
developer. I wrote this book for people just like you, so thank you for reading.

Second, thank you, Dave Thomas, for believing in this idea and for your guidance
over the years. It's been an honor and a privilege to learn from you. Your
encouragement on this book means a lot, and I appreciate your generosity with
your time as you reviewed the exercises and offered suggestions. You and Andy
continue to make the world better for programmers, and I'm grateful to be able
to contribute to that in my small way.

A special thank you to Susannah Pfalzer. You always make my books better than
they started out. You seem to catch all the right details, and you guide me to
focus on what really matters. This is the sixth book you’ve helped me with, and
I'm a better writer because of all your guidance over the years.

Next, thank you, Andy Hunt, Mike Reilly, Michael Swaine, Fahmida Rashid, and
Bruce Tate, for your encouragement when I proposed this idea.

The programs in this book are ones I've been using to teach programming over
the last ten years. Thank you to Zachary Baxter, Jordan Berg, Luke Chase, Dee
Dee Dale, Jacob Donahoe, Alex Eckblad, Arrio Farugie, Emily Mikl, Aaron Miller,
Eric Mohr, Zachary Solofra, Darren Sopiarz, Ashley Stevens, Miah Thalacker,
Andrew Walley, and all the other students who’ve come through my classes and
training sessions over the years. The feedback you’ve provided on my approach
to teaching has helped me immensely. And thank you, Kyle Loewenhagen, Jon
Cooley, and George Andrews, for helping me grow as a teacher with your
feedback and insights.

Thank you, Deb Walsh, for your encouragement and incredible ideas on how to
get the best out of students. We share core beliefs about teaching and learning,
and I learn so much from our conversations. Thank you for sharing your
experience and expertise with me and for your support of my teaching methods.

This book of exercises flows much better and is clarified by the fantastic

feedback from a great mix of new and veteran software developers. Each
reviewer put an incredible amount of time and effort into working through
these problems in their favorite programming language, helping me identify
things that didn’t make sense or needed improvement. Thank you, Chris C., Alex
Henry, Jessica Janiuk, Chris Johnson, Aaron Kalair, Sean Lindsay, Matthew
Oldham, Stephen Orr, Jason Pike, Jessica Stodola, Andrew Vahey, and Mitchell
Volk, for donating your valuable time to test these exercises and provide
suggestions and feedback.

Thank you to my business associates Mitch Bullard, Kevin Gisi, Chris Johnson,
Jeff Holland, Erich Tesky, Myles Steinhauser, Chris Warren, and Mike Weber for
your support.

Thank you, Carissa, my wonderful wife and best friend. Your love and support
make this all possible. I am forever grateful for all you do for me and our girls.

Finally, thank you, Ana, for being awesome, and thank you, Lisa, for all the hugs
and text messages while I was writing. And for keeping me company on the
couch while I wrote this.

Copyright © 2016, The Pragmatic Bookshelf.

How to Use This Book

Practice makes permanent.

A concert pianist practices many hours a day, learning music, practicing drills,
and honing her skills. She practices the same piece of music over and over,
learning every little detail to get it just right. Because when she performs, she
wants to deliver a performance she is proud of for the people who spent their
time and money to hear it.

A pro football player spends hours in the gym lifting, running, jumping, and
doing drills over and over until he masters them. And then he practices the
sport. He'll study plays and watch old game videos. And, of course, he’ll play
scrimmage and exhibition games to make sure he’s ready to perform during the
real contest.

A practitioner of karate spends a lifetime doing kata, a series of movements that
imitate a fight or battle sequence, learning how to breathe and flex the right
muscles at the right time. She may do the same series of movements thousands
of times, getting better and better with each repetition.

The best software developers I've ever met approach their craft the same way.
They don’t go to work every day and practice on the employer’s dime. They
invest personal time in learning new languages and perfecting techniques in
others. Of course they learn new things on the job, but because they’re getting
paid, there’s an expectation that they are there to perform, not practice.

This book is all about practicing your craft as a programmer. Flip to a page in
this book, crack open your text editor, and hammer out the program. Make your
own variations on it. Do it in a language you’ve never used before. And get better
and better each time you do it.

Who This Book Is For

This book is targeted at two main groups of programmers.

First, it’s for beginning programming students to get additional practice beyond
the classroom. You can’t hone your skills just by doing your assignments. Your
future employer will want you to be able to demonstrate critical thinking and
problem-solving skills, and you need practice to develop those. This book gives
you that practice in the form of real-world problems that many developers face
but that are geared toward your abilities. Each chapter covers a fundamental
component of programming and is a little more complex than the previous one,
building on what you've learned and preparing you for the challenges that lie
ahead, both in and out of the classroom.

Many beginning programmers are used to being told exactly how to solve a
problem. They often learn a language by following a written tutorial that has
some code they can type. And this is a great way to start writing code. But these
programmers struggle when faced with open-ended problems that don’t have
the solution available. And as anyone who has experience can tell you, software
development is full of open-ended problems. The exercises in this book help you
develop those problem-solving skills so that you build the confidence to attack
even larger problems—maybe even ones that nobody else has solved yet.

But this book is also for experienced programmers looking to get better at what
they do. When I learned Go and Elixir, I used programs like the ones in this book.
When I tried my hand at i0S development, I tried to write these programs. And
every once in a while, I do these programs in a language I already know. I'm
fluent in JavaScript and Ruby, and it’s a great challenge to see if I can tackle one
of these programs in a different way, using a different algorithm or pattern.
When 1 started teaching Ruby and JavaScript full time, these programs helped
me discover and explain the unique features of the languages I knew how to use
but didn’t quite fully understand. And so if you're an experienced developer, I
encourage you to do the same. Try one of these programs in Haskell. Or try to
write one of these programs in every language you know and compare the
results. Challenge your coworkers to do one of these exercises a week and
compare your solutions. Or use these programs to mentor the new junior
developer on your team.

A Note for Educators
If you teach introductory programming at the high school or college level, you
may find the exercises in this book useful in your class. | don’t recommend
using these as summative assessments though; people reading this book are

encouraged to share their solutions with others. But | do recommend using
these as in-class exercises where students can work together. These exercises
work well in a problem-based learning environment.

What’s in This Book (And What’s Not)

This book is written first and foremost to provide beginners with challenging
problems they might face when first learning to program. Therefore, most of the
problems are relatively simple in the beginning and gradually get more complex.
The progression of exercises in this book makes practicing the fundamentals of
programming challenging but fun and can accelerate the process of picking up a
new language. In the first section, the programs simply take some input and
manipulate the data into different output, giving you experience with how
computer programs handle input and output operations. They’re the kind of
programs you’d do in your first week as a beginning programmer.

Next, you'll be challenged by writing programs that have you do calculations.
Some of them are as simple as calculating the area of a room. But others involve
financial and medical calculations similar to ones you may find on the job.

Then you'll increase the complexity of your programs by including decision logic
and repetition logic, and you'll incorporate functions into them.

After that you’ll find some problems that need to be solved using data structures
like arrays and maps. These programs also require you to draw on some of the
other problems you've solved before.

And, of course, no collection of programs would be complete without a bit of file
input and output, so you’'ll get to practice reading data from files, processing it,
and writing it back out.

Modern programs often talk with external services, so you'll find a few programs
that have you work with data using third-party APIs.

Finally, a few larger programs at the end will require you to put together all the
things you've learned.

In addition, each exercise includes some constraints that you’ll have to follow
when building the program as well as some challenges that ask you to build on
the program. If you've never programmed before, you may want to skip the
challenges and revisit them when you improve your skills. But if you’ve got some
experience under your belt, you may want to accept these challenges right away
if you think the program is too simple. Some of the challenges will be difficult
depending on the programming language you've chosen. For example, if you're
creating these programs with JavaScript and HTML, making a GUI version of the
program will be easy. If you're doing this with Java, it will be a lot more work. So
feel free to modify the challenges as you see fit.

However, what you won't find in this book are the solutions to the programs. If
you think hard enough and use all of the resources at your disposal, you’ll be
able to figure out how to solve these problems on your own, which is the point of
this book.

One last thing: you won'’t find the infamous interview questions here. There’s no
FizzBuzz. You won’t need to invert binary trees, nor will you need to write a
quicksort algorithm (unless you want to as part of a solution). If you're looking
for things like that, you’ll have to look elsewhere. Those kinds of problems have
value but are often more difficult to do because it’s not clear why you're doing
them. That makes them unapproachable, which creates a barrier to learning.

The problems in this book are simple, real-world problems that you can easily
relate to and that will help you practice solving problems with code.

What You Need

All you need is your favorite development environment—or even one you've
never used. This book is programming-language agnostic. Pick a language, grab
that language’s reference guide, and dive in. Be warned though; the
programming language you choose will determine how easy, or difficult, these
programs are. For example, if you choose to do this book with Python or Ruby,
then developing graphical user interfaces won’t be easy. And if you choose to use
JavaScript in the browser, then working with external files and web services will
be much more complex than with other languages. Your approach to problems
will be much different if you choose a functional programming language over an
object-oriented one. But that’s the real value of these exercises; they’ll help you
learn a language and how that language is different from what you already know.

You should have an Internet connection so you can do some of the programs
that use third-party services and participate in the community for this book.

Online Resources

The book’s website] has a discussion forum where you can discuss the book
with other developers. Feel free to post solutions there in your favorite language
and discuss your solutions with other readers. One of the most fascinating things
about programming is how people approach solving problems differently and
how each developer has his or her own style.

Footnotes

[1] http://pragprog.com/titles/bhwb

Copyright © 2016, The Pragmatic Bookshelf.

Chapter 1

Turning Problems into Code

If you're new to programming, you may wonder how experienced developers
can look at a problem and turn it into runnable code. It turns out that writing
the actual code is only a small part of the process. You have to break down the
problem before you can solve it. If you've ever watched an experienced
programmer, it may look like they just cracked open their code editor and
banged out a solution. But over the years, they’ve broken down hundreds, if not
thousands, of problems, and they can see patterns. If you're just starting out,
you might not know how to do that. So in this chapter we’ll look at one way to
break down problems and turn them into code. And you can use this approach to
conquer the problems in the rest of this book.

Understanding the Problem

One of the best ways to figure out what you have to do is to write it down. If I
told you that 1 wanted a tip calculator application, would that be enough
information for you to just go and build one? Probably not. You’d probably have
to ask me a few questions. This is often called gathering requirements, but I like
to think of it as figuring out what features the program should have.

Think of a few questions you could ask me that would let you get a clearer
picture of what I want. What do you need to know to build this application?

Got some questions? Great. Here are some you might ask:

e What formula do you want to use? Can you explain how the tip should be
calculated?

e What's the tip percentage? Is it 15% or should the user be able to modify
it?

e What should the program display on the screen when it starts?

e What should the program display for its output? Do you want to see the tip
and the total or just the total?

Once you have the answers to your questions, try writing out a problem
statement that explains exactly what you’re building. Here’s the problem
statement for the program we’re going to build:

Create a simple tip calculator. The program should prompt for a bill
amount and a tip rate. The program must compute the tip and then
display both the tip and the total amount of the bill.

Example output:

What is the bill? $200

What is the tip percentage? 15
The tip is $30.00

The total is $230.00

i/ Joe asks:
< What do I do with complex programs?

Break down the large program into smaller features that are easier to manage. If you do that,
you’ll have a better chance of success because each feature can be fleshed out. And most
complex applications out there are composed of many smaller programs working together.
That’s how command-line tools in Linux work; one program’s output can be another
program’s input.

If you're ready to open your text editor and hammer out the code, you're
jumping way ahead of yourself. You see, if you don’t take the time to carefully
design the program, you might end up with something that works but isn’t good
quality. And unfortunately, it’s very easy for something like that to get out into
the wild. For example, you hammer out your program without testing, planning,
or documenting it, and your boss sees it, thinks it’s done, and tells you to release
it. Now you have untested, unplanned code in production, and you’ll probably be
asked to make changes to it later. Code that’s poorly designed is very hard to
maintain or extend. So let’s take this tip calculator example and go through a
simple process that will help you understand what you’re supposed to build.

Discovering Inputs, Processes, and Outputs

Every program has inputs, processes, and outputs, whether it’s a simple program
like this one or a complex application like Facebook. In fact, large applications
are simply a bunch of smaller programs that communicate. The output of one
program becomes the input of another.

You can ensure that both small and large programs work well if you take the
time to clearly state what these inputs, processes, and outputs are. An easy way
to do that, if you have a clear problem statement, is to look at the nouns and
verbs in that statement. The nouns end up becoming your inputs and outputs,
and the verbs will be your processes. Look at the problem statement for our tip
calculator:

Create a simple tip calculator. The program should prompt for a bill
amount and a tip rate. The program must compute the tip and then
display both the tip and the total amount of the bill.

First, look for the nouns. Circle them if you like, or just make a list. Here’s my
list:

e bill amount
e tiprate

e tip

e total amount

Now, what about the verbs?

e prompt
e compute
e display

So we know we have to prompt for inputs, do some calculations, and display
some outputs. By looking at the nouns and verbs, we can get an idea of what
we're being asked to do.

Of course, the problem statement won’t always be clear. For example, the
problem statement says we need to calculate the tip, but it then says we need to
display the tip and the total. It’s implied that we’ll need to also add the tip to the
original bill amount to get that output. And that’s one of the challenges of
building software. It isn’t spelled out to you 100% of the time. But as you gain
more experience, you'll be able to fill in the gaps and read between the lines.

So with a little bit of sleuthing, we determine that our inputs, processes, and
outputs for this program look like this:

e Inputs: bill amount, tip rate
e Processes: calculate the tip
e Outputs: tip amount, total amount

Are we ready to start producing some code? Not just yet.

Driving Design with Tests

One of the best ways to design and develop software is to think about the result
you want to get right from the start. Many professional software developers do
this using a formal process called test-driven development, or TDD. In TDD, you
write bits of code that test the outputs of your program or the outputs of the
individual programs that make up a larger program. This process of testing as
you go guides you toward good design and helps you think about the issues your
program might have.

TDD does require some knowledge about the language you're using and a little
more experience than the beginning developer has out of the gate.

However, the essence of TDD is to think about what the expected result of the
program is ahead of time and then work toward getting there. And if you do that
before you write code, it’ll make you think beyond what the initial requirements
say. So if you're not quite comfortable doing formal TDD, you can still get many
of the benefits by creating simple test plans. A test plan lists the program’s
inputs and its expected result.

Here’s what a test plan looks like:

Inputs:
Expected result:
Actual result:

You list the program inputs and then write out what the program’s output
should be. And then you run your program and compare the expected result
with the actual result your program gives out.

Let’s put this into practice by thinking about our tip calculator. How will we
know what the program’s output should be? How will we know if we calculate it
correctly?

Well, let’s define how we want things to work by using some test plans. We'll do a
very simple test plan first.

Inputs:
bill amount: 10
tip rate: 15
Expected result:
Tip: $1.50
Total: $11.50

That test plan tells us a couple things. First, it tells us that we’ll take in two
inputs: a bill amount of 10 and a tip rate of 15. So we’ll need to handle

converting the tip rate from a whole number to a decimal when we do the math.
It also tells us we’ll print out the tip and total formatted as currency. So we know
that we’d better do some conversions in our program.

Now, one test isn’t enough. What if we used 11.25 as an input? Using a test plan,
what should the output be? Try it out. Fill in the following plan:

Input:
bill amount: 11.25
tip rate: 15
Expected result:
Tip: 777
Total: ?27?
I assume you just went and used a calculator to figure out the tip. If you ran the
calculation, your calculator probably said the tip should be 1.6875.

But is that realistic? Probably not. We would probably round up to the nearest
cent. So our test plan would look like this:

Input:
bill amount: 11.25
tip rate: 15
Expected result:
Tip: $1.69
Total: $12.94
We just used a test to design the functionality of our program; we determined

that our program will need to round up the answer.

When you're going through the exercises in this book, take the time to develop
at least four test plans for every program, and try to think of as many scenarios
as you can for how people might break the program. And as you get into the
more complicated problems, you may need a lot more test plans.

If you're an experienced software developer who wants to get started with TDD,
you should use the exercises in this book to get acquainted with the libraries and
tools your favorite language has to offer. You can find a list of testing

frameworks for many programming languages at Wikipedia.[! You can read Kent
Beck’s Test-Driven Development: By Example to gain more insight into how to
design code with tests, or you can investigate any number of more language-
specific resources on TDD.

So now that we have a clearer picture of the features the program will have, we
can start putting together the algorithm for the program.

Writing the Algorithm in Pseudocode

An algorithm is a step-by-step set of operations that need to be performed. If
you take an algorithm and write code to perform those operations, you end up
with a computer program.

If you're new to programming and not entirely comfortable with a programming
language’s syntax yet, you should consider writing out the algorithm using
pseudocode, an English-like syntax that lets you think about the logic without
having to worry about paper. Pseudocode isn’t just for beginners; experienced
programmers will occasionally write some pseudocode on a whiteboard when
working with teammates to solve problems, or even by themselves.

There’s no “right way” to write pseudocode, although there are some widely
used terms. You might use Initialize to state that you're setting an initial value,
Prompt to say that you're prompting for input, and Display to indicate what
you're displaying on the screen.

Here’s how our tip calculator might look in pseudocode:

TipCalculator
Initialize billAmount to 0
Initialize tip to 0
Initialize tipRate to ©
Initialize total to 0

Prompt for billAmount with "What is the bill amount?"
Prompt for tipRate with "What is the tip rate?"

convert billAmount to a number
convert tipRate to a number

tip = billAmount * (tipRate / 100)
round tip up to nearest cent
total = billAmount + tip

Display "Tip: $" + tip
Display "Total: $" + total
End

That’s a rough stab at how our program’s algorithm will look. We’ll have to set
up some variables, make some decisions based on the input, do some
conversions, and put some output on the screen. I recommend including details
like variable names and text you’ll display on the screen in pseudocode, because
it helps you think more clearly about the end result of the program.

Is this the best way we could write the program? Probably not. But that’s not the

point. By writing pseudocode, we've created something we can show to another
developer to get feedback, and it didn’t take long to throw it together.

Best of all, we can use this as a blueprint to code this up in any programming
language. Notice that our pseudocode makes no assumptions about the language
we might end up using, but it does guide us as to what the variable names will be
and what the output to the end user will look like.

Once you write your initial version of the program and get it working, you can
start tweaking your code to improve it. For example, you may split the program
into functions, or you may do the numerical conversions inline instead of as
separate steps. Just think of pseudocode as a planning tool.

Writing the Code

Now it’s your turn. Using what you've learned, can you write the code for this
program? Give it a try. Just keep these constraints in mind as you do so:

Constraints

e Enter the tip as a percentage. For example, a 15% tip would be entered as
15, not 0.15. Your program should handle the division.
e Round fractions of a cent up to the next cent.

If you can’t figure out how to enforce these constraints, write the program
without them and come back to it later. The point of these exercises is to
practice and improve.

And if this program is too challenging for you right now, jump ahead and do
some of the easier programs in this book first, and then come back to this one.

Challenges

When you've finished writing the basic version of the program, try tackling
some additional challenges:

Ensure that the user can enter only numbers for the bill amount and the
tip rate. If the user enters non-numeric values, display an appropriate
message and exit the program. Here’s a test plan as an example:

Input:
bill amount: abcd
tip rate: 15
Expected result: Please enter a valid number for
the bill amount.

Instead of displaying an error message and exiting the program, keep
asking the user for correct input until it is provided.

Don’t allow the user to enter a negative number.
Break the program into functions that do the computations.

Implement this program as a GUI program that automatically updates the
values when any value changes.

Instead of the user entering the value of the tip as a percentage, have the
user drag a slider that rates satisfaction with the server, using a range
between 5% and 20%.

Onward!

Try to tackle each problem in the book using this strategy to get the most out of
the experience. Discover your inputs, processes, and outputs. Develop some test
plans, come up with some pseudocode, and write the program. Then accept the
various challenges after each program. Or go in your own direction. Or write the
program in as many languages as you can.

But most of all, have fun and enjoy learning,.

Footnotes

[2] https://en.wikipedia.org/wiki/List_of unit_testing_frameworks

Copyright © 2016, The Pragmatic Bookshelf.

Chapter 2

Input, Processing, and Output

Getting input from the user and converting it to something meaningful is one of
the fundamental pieces of programming. Software developers are always
turning data into information that can be used to make decisions. That data may
come from the keyboard, a mouse, a touch, a swipe, or even a game controller.
The computer has to react to it, process it, and do something useful.

The exercises in this chapter will help you get acquainted with how to get input
from the user and process it to produce output. You’ll build up strings, do a little
math, and get your feet wet with the programming language you're using.
They’re simple problems, but they’ll help you build up your confidence as a
programmer; the problems in the later chapters of the book are more complex.

Each exercise has additional challenges you can do if you feel up to the task. If
you're new to programming, some of the challenges will ask you to use
techniques you might not be familiar with yet. Feel free to skip them; you can
always come back and do those challenges later.

Ready? Set? Go!

1 Saying Hello

The “Hello, World” program is the first program you learn to write in many
languages, but it doesn’t involve any input.

So create a program that prompts for your name and prints a greeting using
your name.

Example Output

What is your name? Brian
Hello, Brian, nice to meet you!

Constraint
e Keep the input, string concatenation, and output separate.
Challenges

e Write a new version of the program without using any variables.

e Write a version of the program that displays different greetings for
different people. This would be a good challenge to try after you've
completed the exercises in Chapter 4, Making Decisions and Chapter 7, Data
Structures.

2 Counting the Number of Characters

Create a program that prompts for an input string and displays output that
shows the input string and the number of characters the string contains.

Example Output

What is the input string? Homer
Homer has 5 characters.

Constraints

e Be sure the output contains the original string.

e Use a single output statement to construct the output.

e Use a built-in function of the programming language to determine the
length of the string.

Challenges

e If the user enters nothing, state that the user must enter something into
the program.

e Implement this program using a graphical user interface and update the
character counter every time a key is pressed. If your language doesn’t
have a particularly friendly GUI library, try doing this exercise with HTML
and JavaScript instead.

3 Printing Quotes

Quotation marks are often used to denote the start and end of a string. But
sometimes we need to print out the quotation marks themselves by using escape
characters.

Create a program that prompts for a quote and an author. Display the quotation
and author as shown in the example output.

Example Output

What is the quote? These aren't the droids you're looking for.
Who said it? Obi-Wan Kenobi

Obi-Wan Kenobi says, "These aren't the droids

you're looking for."

Constraints

e Use a single output statement to produce this output, using appropriate
string-escaping techniques for quotes.

e If your language supports string interpolation or string substitution, don’t
use it for this exercise. Use string concatenation instead.

Challenge

e In Chapter 7, Data Structures, you'll practice working with lists of data.
Modify this program so that instead of prompting for quotes from the
user, you create a structure that holds quotes and their associated
attributions and then display all of the quotes using the format in the
example. An array of maps would be a good choice.

4 MadlLib

Mad libs are a simple game where you create a story template with blanks for
words. You, or another player, then construct a list of words and place them into
the story, creating an often silly or funny story as a result.

Create a simple mad-lib program that prompts for a noun, a verb, an adverb, and
an adjective and injects those into a story that you create.

Example Output

Enter a noun: dog

Enter a verb: walk

Enter an adjective: blue

Enter an adverb: quickly

Do you walk your blue dog quickly? That's hilarious!

Constraints

e Use a single output statement for this program.
e If your language supports string interpolation or string substitution, use it
to build up the output.

Challenges

e Add more inputs to the program to expand the story.

e Implement a branching story, where the answers to questions determine
how the story is constructed. You'll explore this concept more in the
problems in Chapter 4, Making Decisions.

5 Simple Math

You'll often write programs that deal with numbers. And depending on the
programming language you use, you’ll have to convert the inputs you get to
numerical data types.

Write a program that prompts for two numbers. Print the sum, difference,
product, and quotient of those numbers as shown in the example output:

Example Output

What is the first number? 10
What is the second number? 5
10 + 5 15
10 - 5 5
10 * 5 50
10 / 5 =2

Constraints

e Values coming from users will be strings. Ensure that you convert these
values to numbers before doing the math.

e Keep the inputs and outputs separate from the numerical conversions and
other processing.

e Generate a single output statement with line breaks in the appropriate
spots.

Challenges

e Revise the program to ensure that inputs are entered as numeric values.
Don’t allow the user to proceed if the value entered is not numeric.

e Don't allow the user to enter a negative number.

e Break the program into functions that do the computations. You'll explore
functions in Chapter 5, Functions.

e Implement this program as a GUI program that automatically updates the
values when any value changes.

6 Retirement Calculator

Your computer knows what the current year is, which means you can
incorporate that into your programs. You just have to figure out how your
programming language can provide you with that information.

Create a program that determines how many years you have left until
retirement and the year you can retire. It should prompt for your current age
and the age you want to retire and display the output as shown in the example
that follows.

Example Output

What is your current age? 25

At what age would you like to retire? 65
You have 40 years left until you can retire.
It's 2015, so you can retire in 2055.

Constraints

e Again, be sure to convert the input to numerical data before doing any
math.

e Don’t hard-code the current year into your program. Get it from the
system time via your programming language.

Challenge

e Handle situations where the program returns a negative number by
stating that the user can already retire.

What You Learned

These problems were pretty simple, but hopefully they got you thinking about
keeping input, processing, and output separate. When programs are simple, it’s
tempting to just do some math or string concatenation inside the program’s
output statements, but as your programs get more complex, you'll find you need
to break things into reusable components. You'll be glad you were disciplined
from the start.

Head on over to the next chapter. It’s time to do some more serious math.

Copyright © 2016, The Pragmatic Bookshelf.

Chapter 3

Calculations

You've done some basic math already, but now it’s time to dive into more
complex math. The exercises in this chapter are a little more challenging. You’ll
work with formulas for numerical conversion and you’ll create some real-world
financial programs, too.

These programs will test your knowledge of the order of operations. “Please
Excuse My Dear Aunt Sally,” or PEMDAS, is a common way to remember the
order of operations:

e Parentheses
® Exponents

e Multiplication
e Division

e Addition

e Subtraction

The computer will always follow these rules, even if you don’t want it to. So the
exercises in this chapter will have you thinking about adding parentheses to
your programs to ensure the output comes out correctly.

You'll want to make good use of test plans for these exercises, too, because
you're going to be dealing with precision issues. If you work with decimal
numbers in many programming languages, you may encounter some interesting,
and unexpected, results. For example, if you add 0.1 and 0.2 in Ruby, you’ll get
this:

> 0.1 + 0.2
=> 0.30000000000000004
This happens in JavaScript too. And multiplication can make things even more

interesting. Look at this code:

> 1.25 * 0.055
=> 0.06875

Should that answer be rounded down to 0.06 or up to 0.07? It depends entirely
on your business rules. If your answer must be a whole number, you may have to
round it up.

Things get even messier with currency. One of the most common issues new
programmers face occurs when they try to use floating-point numbers for
currency. This will result in precision errors.

One common approach is to represent money using whole numbers. So instead
of working with 1.25, work with 125. Do the math, and then shift the decimal
back when finished. Here’s an example, again in Ruby:

> cents = 1.25 * 100.0
=> 125.0

> tax = cents * 0.055

=> 6.875

> tax = tax.round / 100.0
=> 0.07

You may need to be a lot more precise than this. These floating-point precision
issues exist in many programming languages, and so there are libraries that
make working with currency much better. For example, Java has the BigDecimal
data type that even lets you specify what type of “banker’s rounding” you need
to do. When you’re working on these problems, think carefully about how you
need to handle precision. When you do problems for real, especially if it’s some
kind of financial work, learn how the business you're working with rounds
numbers.

One last thing before you dive in: the exercises in this chapter might seem to get
a little repetitive toward the end if you're experienced. But for beginners,
repetition builds up confidence quickly. It’s the same reason you do practice
drills in sports or practice your scales over and over in music. By doing several
similar problems, you build up your problem-solving skills and improve your
speed at breaking down problems. And that translates into success on the job.

7 Area of a Rectangular Room

When working in a global environment, you’ll have to present information in
both metric and Imperial units. And you’ll need to know when to do the
conversion to ensure the most accurate results.

Create a program that calculates the area of a room. Prompt the user for the
length and width of the room in feet. Then display the area in both square feet
and square meters.

Example Output

What is the length of the room in feet? 15
What is the width of the room in feet? 20
You entered dimensions of 15 feet by 20 feet.
The area is

300 square feet

27.871 square meters

The formula for this conversion is
2 2
m- = f° x 0.09290304

Constraints

e Keep the calculations separate from the output.
e Use a constant to hold the conversion factor.

Challenges

e Revise the program to ensure that inputs are entered as numeric values.
Don’t allow the user to proceed if the value entered is not numeric.

e Create a new version of the program that allows you to choose feet or
meters for your inputs.

e Implement this program as a GUI program that automatically updates the
values when any value changes.

8 Pizza Party

Division isn’t always exact, and sometimes you’ll write programs that will need
to deal with the leftovers as a whole number instead of a decimal.

Write a program to evenly divide pizzas. Prompt for the number of people, the
number of pizzas, and the number of slices per pizza. Ensure that the number of
pieces comes out even. Display the number of pieces of pizza each person should
get. If there are leftovers, show the number of leftover pieces.

Example Output

How many people? 8
How many pizzas do you have? 2

8 people with 2 pizzas
Each person gets 2 pieces of pizza.
There are 0 leftover pieces.

Challenges

e Revise the program to ensure that inputs are entered as numeric values.
Don't allow the user to proceed if the value entered is not numeric.
e Alter the output so it handles pluralization properly, for example:

Each person gets 2 pieces of pizza.
or
Each person gets 1 piece of pizza.
Handle the output for leftover pieces appropriately as well.

e Create a variant of the program that prompts for the number of people
and the number of pieces each person wants, and calculate how many full
pizzas you need to purchase.

O Paint Calculator

Sometimes you have to round up to the next number rather than follow
standard rounding rules.

Calculate gallons of paint needed to paint the ceiling of a room. Prompt for the
length and width, and assume one gallon covers 350 square feet. Display the
number of gallons needed to paint the ceiling as a whole number.

Example Output

You will need to purchase 2 gallons of
paint to cover 360 square feet.

Remember, you can’t buy a partial gallon of paint. You must round up to the
next whole gallon.

Constraints

e Use a constant to hold the conversion rate.
e Ensure that you round up to the next whole number.

Challenges

e Revise the program to ensure that inputs are entered as numeric values.
Don't allow the user to proceed if the value entered is not numeric.

e Implement support for a round room.

e Implement support for an L-shaped room.

e Implement a mobile version of this app so it can be used at the hardware
store.

