Exercises 1n

Programming Style

-

W

L
Cristina Videira Lopes

AAAAAAAAAAAAAAAAA

Exercises 1n
Programming Style

Cristina Videira Lopes

University of California

Irvine, USA

CRC Press
Taylor & Francis Group

Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

A CHAPMAN & HALL BOOK

All of the art in this book was created by Cristina Videira Lopes.

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20140411

International Standard Book Number-13: 978-1-4822-2737-6 (Paperback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Lopes, Cristina Videira.
Exercises in programming style / author, Cristina Videira Lopes.
pages cm
Includes bibliographical references and index.
ISBN 978-1-4822-2737-6 (paperback)
1. Computer programming. 1. Title.

QA76.6.1.636 2014
005.1--dc23 2014006708

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Contents

Preface Xi
Prologue XV
The Author XXi
PArT | Historical

CHAPTER 1w Good Old Times 5
CHAPTER 2= Go Forth 15

PArT Il Basic Styles

CHAPTER 3= Monolithic 27
CHAPTER 4= Cookbook 33
CHAPTER 5= Pipeline 41
CHAPTER 6 Code Golf 51
PART Ill Function Composition

CHAPTER 7 = Infinite Mirror 61

CHAPTER 8 Kick Forward 67

vil

viii W Contents

CHAPTER 9w The One 73

PART IV Objects and Object Interaction

CHAPTER 10 = Things 83
CHAPTER 11 = Letterbox 91
CHAPTER 12 = Closed Maps 97
CHAPTER 13 = Abstract Things 103
CHAPTER 14 = Hollywood 111
CHAPTER 15 = Bulletin Board 117

PArRT V Reflection and Metaprogramming

CHAPTER 16 = Introspective 127
CHAPTER 17 = Reflective 131
CHAPTER 18 = Aspects 137
CHAPTER 19 = Plugins 143

PART VI Adversity

CHAPTER 20 = Constructivist 155
CHAPTER 21 = Tantrum 161
CHAPTER 22 = Passive Aggressive 167

CHAPTER 23 = Declared Intentions 173

Contents M ix

CHAPTER 24 = Quarantine 181
PART VII Data-Centric

CHAPTER 25 = Persistent Tables 195
CHAPTER 26 = Spreadsheet 203
CHAPTER 27 = Lazy Rivers 209
PART VIII Concurrency

CHAPTER 28 » Actors 219
CHAPTER 29 = Dataspaces 227
CHAPTER 30 = Map Reduce 231
CHAPTER 31 = Double Map Reduce 239
PART IX Interactivity

CHAPTER 32 = Trinity 249
CHAPTER 33 = Restful 257
Index 267

Copyrighted material

Preface

THE CODE

This book is a companion text for code that is publicly available at
http://github.com/crista/exercises-in-programming-style

WHO THIS BOOK IS FOR

The collection of code that is the foundation of this book is for everyone who

enjoys the art of programming. I've written this book in order to complement
and explain the raw code, as some of the idioms may not be obvious. Software
developers with many years of experience may enjoy revisiting familiar pro-
gramming styles in the broad context of this book and learning about styles
that may not be part of their normal repertoire.

This book can be used as a textbook for advanced programming courses
in Computer Science and Software Engineering programs. Additional teaching
materials, such as lecture slides, are also available. The book is not designed
for introductory programming courses; it is important for students to be able
to crawl (i.e. learn to program under the illusion that there’s only one way of
doing things) before they can run (i.e. realize that there’s a lot more variety).
I expect that many of the readers will be students in their junior/senior year
or in their early stages of graduate study. The exercise list at the end of
each chapter is a good mechanism for testing the reader’s understanding of
each style. The suggested further readings are more appropriate for graduate
students.

This book may also be of interest to writers, especially those who know
a little programming or have a strong interest in programming technology.
Despite important differences, there are many similarities between writing
programs and writing in general.

MOTIVATION FOR THESE EXERCISES

In the 1940s, the French writer Raymond Queneau wrote a jewel of a book
called Ezercises in Style, featuring 99 renditions of the exact same story, each
written in a different style. The book is a masterpiece of writing technique, as
it illustrates the many different ways a story can be told. The story being fairly
trivial and always the same, the book highlights form, rather than content; it

xii M Preface

illustrates how the decisions we make in telling a story affect the perception
of that story.

Queneau’s story is trivially simple and can be told in two sentences: The
narrator is on the “S” bus and notices a man with a long neck who is wearing
a hat, and who gets into an altercation with the man sitting next to him.
Two hours later, the narrator sees this same man near the Saint Lazare train
station, with a friend, and the friend is giving this man some advice regarding
an extra button on his overcoat. That’s it! He then goes through 99 renditions
of this story using, for example, litotes, metaphors, animism, etc.

Over the years, as an instructor of many programming-intensive courses, I
noticed that often students have a hard time understanding the different ways
of writing programs and of designing systems, in general. They have been
trained in one, at most two, programming languages, so they understand only
the styles that are encouraged by those languages, and have a hard time
wrapping their heads around other styles. It’s not their fault. Looking at
the history of programming languages and the lack of pedagogical material on
style in most Computer Science programs, one hardly gets exposed to the issue
until after an enormous amount of experience is accumulated. Even then, style
is seen as an intangible property of programs that remains elusive to explain
to others — and over which many technical arguments ensue. So, in order to
give programming styles the proper due, and inspired by Queneau, I decided
to embark on the project of writing the exact same computational task in as
many styles as I have come across over the years.

So what is style? In Queneau’s circle of intellectuals, a group known as
Oulipo (for French Ouwwroir de la littérature potentielle, roughly translated as
“workshop of potential literature”), style was nothing but the consequence
of creating under constraints, often based on mathematical concepts such as
permutations or lipograms. These constraints are used as a means to create
something intellectually interesting besides the story itself. The ideas caught
on, and over the vears, several literary works have been created using Oulipo’s
constraints.

In this book, too, programming style is what results from writing programs
under a set of constraints. Constraints can come from external sources or they
can be self imposed; they can capture true challenges of the environment or
they can be artificial; they can come from past experiences and measurable
data or they can come from personal preferences. Independent of their origin,
constraints are the seeds of style. By honoring different constraints, we can
write a variety of programs that are virtually identical in terms of what they
do, but that are radically different in terms of how they do it.

In the universe of all things a good programmer must know, I see collec-
tions of programming styles as being as important as any collection of data
structures and algorithms, but with a focus on human effects rather than on
computing effects. Programs convey information not just to the computers
but, more importantly, to the people who read them. As with any form of
expression, the consequences of what is being said are shaped and influenced

Preface W xiii

by how it is being said. An advanced programmer needs not to just be able to
write correct programs that perform well; he/she needs to be able to choose
appropriate styles for expressing those programs for a variety of purposes.

Traditionally, however, it has been much easier to teach algorithms and
data structures than it is to teach the nuances of programming expression.
Books on data structures and algorithms all follow more or less the same for-
mula: pseudo-code, explanation, and complexity analysis. The literature on
programming tends to fall into two camps: books that explain programming
languages and books that present collections of design or architectural pat-
terns. However, there is a continuum in the spectrum of how to write programs
that goes from the concepts that the programming languages encourage/en-
force to the combination of program elements that end up making up the
program; languages and patterns feed on each other, and separating them as
two different things creates a false dichotomy. Having come across Queneau’s
body of work, it seemed to me that his focus on constraints as the basis for
explaining expression styles was a perfectly good model for unifying a lot of
important creative work in the programming world.

I should note that I'm not the first one to look at constraints as a good
unifying principle for explaining style in software systems. The work on ar-
chitectural styles has taken that approach for a long time. I confess that the
notion that style arises from constraints (some things are disallowed, some
things must exist, some things are limited, etc.) was a bit hard to understand
at first. After all, who wants to write programs under constraints? It wasn'’t
until I came across Queneau’s work that the idea made perfect sense.

Like Queneau’s story, the computational task in this book is trivial: given
a text file, we want to produce the list of words in the file and their frequen-
cies, and print them out in decreasing order of frequency. This computational
task is known as term frequency. This book contains 33 different styles for
writing the term frequency task, one in each chapter. Unlike Queneau’s book,
I decided to verbalize the constraints in each style and explain the example
programs. Given the target audience, I think it’s important to provide those
insights explicitly rather than leaving them to the reader’s interpretation.
Each chapter starts by presenting the constraints of the style, then it shows
an example program; a detailed explanation of the code follows; most chap-
ters have additional sections regarding the use of the style in systems design
and another section on the historical context in which the programming style
emerged. History is important; a discipline should not forget the origins of its
core ideas. I hope the readers will be curious enough to follow through some
of the suggested further readings.

‘Why 33 styles? I chose 33 as a bounded personal challenge. Queneau’s book
has 99 styles. Had I set my goal to writing a book with 99 chapters, I probably
never would have finished it! The public repository of code that is the basis
for this book, however, is likely to continue to grow. The styles are grouped
into nine categories: historical, basic, function composition, objects and object
interactions, reflection and metaprogramming, adversity, data-centric, concur-

xiv M Preface

rency, and interactivity., The categories emerged as a way to organize the book,
grouping together styles that are more related to each other than to the others.
Other categorizations would be possible.

Similar to Queneau’s book, these exercises in programming style are ex-
actly that: exercises. They are the sketches, or arpeggios, of software; they
aren’t the music. A piece of real software usually employs a variety of styles
for the different parts of the system. Furthermore, all these styles can be mixed
and matched, creating hybrids that are interesting in themselves.

Finally, one last important remark. Although Queneau’s book was the
inspiration for this project, software is not exactly the same as the language
arts; there are utility functions attached to software design decisions, i.e. some
expressions are better than others for specific objectives.! In this book I try
to stand clear of judgments of good and bad, except in certain clear cases. It
is not up to me to make those judgments, since they depend heavily on the
context of each project.

ACKNOWLEDGMENTS

I would like to thank the following people for valuable feedback on earlier
drafts of this book: Richard Gabriel, Andrew Black, Guy Steele, James No-
ble, Paul Steckler, Paul McJones, Laurie Tratt, Tijs van der Storm, and the
students of INF 212 / CS 235 (Winter 14) at UC Irvine, especially Matias
Giorgio and David Dinh.

Thanks also to members of the IFIP Working Group 2.16, where I first
presented the idea of this book, and whose reactions were critical for shaping
the material.

A special thanks to the contributors to the exercises-in-style code reposi-
tory so far: Peter Norvig, Kyle Kingsbury, Sara Triplett, Jorgen Edelbo, Dar-
ius Bacon, Eugenia Grabrielova, Kun Hu, Bruce Adams, Krishnan Raman,
Matias Giorgio, David Foster, Chad Whitacre, Jeremy MacCabe, and Mircea
Lungu.

Maybe that’s also the case for the language arts, but I’m afraid I don’t know enough!

Prologue

TERM FREQUENCY

IKE QUENEAU’S STORY, the computational task in this book is triv-
L ial: given a text file, we want to display the N (e.g. 25) most frequent words
and corresponding frequencies ordered by decreasing value of frequency. We
should make sure to normalize for capitalization and to ignore stop words like

“the”, “for”, etc. To keep things simple, we don’t care about the ordering of
words that have equal frequencies. This computational task is known as term
frequency.

Here is an example of an input file and corresponding output after com-
puting the term frequency:

Input:
White tigers live mostly in India
Wild lions live mostly in Africa

Qutput:
live - 2
mostly - 2
africa = 1
india - 1
lions - 1
tigers - 1
white - 1
wild - 1

If we were to run this flavor of term frequency on Jane Austen’s Pride and
Prejudice available from the Gutenberg Collection, we would get the following
output:

mr - 786
elizabeth - 635
very — 488
darcy - 418
such - 395

mrs -— 343

much - 329

more — 327

Xv

xvi E Prologue

bennet - 323
bingley - 306
Jane - 295
miss - 283
one - 275
know - 239
before - 229
herself - 227
though - 226
well - 224
never - 220
sister - 218
soon - 216
think = 211
now - 209
time - 203
good - 201

This book’s example programs cover this term frequency task. Addition-
ally, all chapters have a list of exercises. One of those exercises is to write
another simple computational task using the corresponding style. Some sug-
gestions are given below.

These computational tasks are simple enough for any advanced student to
tackle easily. Algorithmic difficulties out of the way, the focus should be on
following the constraints that underlie each style.

WORD INDEX

Given a text file, output all words alphabetically, along with the page numbers
on which they occur. Ignore all words that occur more than 100 times. Assume
that a page is a sequence of 45 lines. For example, given Pride and Prejudice,
the first few entries of the index would be:

abatement - 89

abhorrence - 101, 145, 152, 241, 274, 281
abhorrent - 253

abide - 158, 292

WORDS IN CONTEXT

Given a text file, display certain words alphabetically and in context, along
with the page numbers of the pages in which they occur. Assume that a
page is a sequence of 45 lines. Assume that context consists of the preceding
and succeeding two words. Ignore punctuation. For example, given Pride and
Prejudice, the words “concealment” and “hurt” would result in the following

Prologue B xvii

output:

perhaps this concealment this disguise - 150
purpose of concealment for no - 207

pride was hurt he suffered - 87

must be hurt by such - 95

and are hurt if i - 103

pride been hurt by my - 145

must be hurt by such - 157

infamy was hurt and distressed — 248

Suggestion of words for the words in context task: concealment, discon-
tented, hurt, agitation, mortifying, reproach, unexpected, indignation, mis-
take, and confusion.

PYTHONISMS

The example code used in this book is all written in Python, but expertise
in Python is not necessary in order to understand the styles. In fact, one of
the exercises in all of the chapters is to write the example program in another
language. As such, the reader needs only to be able to read Python without
needing to write in Python.

Python is relatively easy to read. There are, however, a few corners of the
language that may confuse readers coming from other languages. I explain
some of them here.

e Lists. In Python, a list is a primitive data type supported by dedicated
syntax that is normally associated with arrays in C-like languages. Here
is an example of a list: mylist = [0, 1, 2, 3, 4, 5]. Python
doesn’t have array as primitive data type?, and most situations that
would use an array in C-like languages use a list in Python.

¢ Tuples. A tuple is an immutable list. Tuples are also primitive data
types supported by dedicated syntax that is normally associated with
lists in Lisp-like languages. Here is an example of a tuple: mytuple
= (0, 1, 2, 3, 4). Tuples and lists are handled in similar ways,
except for the fact that tuples are immutable, so the operations that
change lists don’t work on tuples.

e List indexing. List and tuple elements are accessed by index like this:
mylist[some_index]. The lower bound of a list is index 0, like in C-
like languages, and the list length is given by len (mylist). Indexing
a list can be much more expressive than this simple example suggests.
Here are some more examples:

2There is an array data object, but it’s not a primitive type of the language and it
doesn’t have any special syntax. It’s not used as much as lists.

xviii B Prologue

— mylist[0] — first element of the list

— mylist[-1] — last element of the list

— mylist[-2] — next-to-last element of the list

— mylist[1l:] - a list starting at index 1 until the end of mylist

— mylist[1:3] — alist starting at index 1 and stoping before index
Jofmylist

—mylist[::2] — a list containing every other element of mylist

—mylist[start:stop:step] — a list containing every step el-
ement between start and stop indexes of mylist

¢ Bounds. Indexing an element beyond the length of a list results in an
IndexError. For example, trying to access the 4th element of a list of
3 elements (e.g. [10, 20, 30][3]) results in an IndexError, as expected.
However, many Python operations on lists (and collections in general)
are constructivist with respect to indexing. For example, obtaining a
list consisting of the range from 3 to 100 in a list with only 3 elements
(e.g. [10, 20, 30][3:100]) results in an empty list ([]) rather than an
IndexFError. Similarly, any range that partially covers a list results in
whatever part of the list is covered, with no IndexError (e.g. [10, 20,
30](2:10] results in [30]). This constructivist behavior may be puzzling
at first for people used to more intolerant languages.

e Dictionaries. In Python, a dictionary, or map, is also a primitive data
type supported by dedicated syntax. Here is an example of a dictionary:
mydict = {a’ : 1, ’b’ : 2}. This particular dictionary maps
two string keys to two integer values; in general, keys and values can be
of any type. In Java, these kinds of dictionaries can be found in the form
of the HashMap class (among others), and in C++ they can be found
in the form of the class template map (among others).

e self. In most Object-Oriented languages, the reference that an object has
to itself is implicitly available through special syntax. For example, this
in Java and C++4, $this in PHP, or @ in Ruby. Unlike these languages,
Python has no special syntax for it. Moreover, instance methods are
simply class methods that take an object as first parameter; this first
parameter is called self by convention, but not by special mandate of
the language. Here is an example of a class definition with two instance
methods:

class Example:
2 def set name (self, n):
self._name = n
def say_my_name (self):
print self._ name

Prologue W xix

Both methods have a parameter named self in the first position, which
is then accessed in their bodies. There is nothing special about the word
self, and the methods could use any other name, for example me or
my or even this, but any word other than self will be frowned upon
by Python programmers. Calling instance methods, however, may be
surprising, because the first parameter is omitted:

e = Example ()
e.set_my_name (*‘Heisenberg’’)
e.say_my_name ()

This mismatch on the number of parameters is due to the fact that the
dot-notation in Python (’.”) is simply syntactic sugar for this other, more
primitive form of calling the methods:

e = Example ()
Example.set_my_name (e, *‘Heisenberg’’)
Example.say_my_name (e)

Constructors. In Python, a constructor is a regular method with the
name _init__ (two underscores on each side of the word). Methods with
this exact name are called automatically by the Python runtime right
after object creation. Here is one example of a class with a constructor,
and its use:

1 class Example:

2 # This is the constructor of this class
3 def _ init_ (self, n):

i self._name = n

5 def say_my_name (self):

6 print self._ name

8 e = Example (' ‘Heisenberg’’)
g e.say_my_name ()

Copyrighted material

The Author

Cristina (Crista) Lopes is a Professor of Informatics at the Donald Bren
School of Information and Computer Sciences, University of California, Irvine.
Her research focuses on software engineering for large-scale data and systems.
Early in her career, she was a founding member of the team at Xerox PARC
that developed Aspect-Oriented Programming and AspectJ. Along with her
research program, she is also a prolific software developer. Her open source
contributions include acoustic software modems, and the virtual world server
OpenSimulator. She is a co-founder of a company specializing in online virtual
reality for early-stage sustainable urban redevelopment projects. She devel-
oped and maintains a search engine for OpenSimulator-based virtual worlds.

Dr. Lopes has a PhD from Northeastern University, and MS and BS de-
grees from Instituto Superior Técnico in Portugal. She is the recipient of
several National Science Foundation grants, including a prestigious CAREER
Award. She claims to be the only person in the world who is both an ACM
Distinguished Scientist and Ohloh Kudos Rank 9.

xx1

Copyrighted material

|

Historical

Copyrighted material

Computing systems are like an onion, with layers upon layers of abstraction
developed over the years in order to facilitate the expression of intent. It is
important to know what the inner layers really entail. The first two program-
ming styles illustrate what programming was like several decades ago, and to
some extent, what it still is in the inner layers of modern systems.

Copyrighted material

CHAPTER].

Good Old Times

oHOr= o TET_

e
-3 —#
“d- %o

~H L Ne= o¥

L4 =40 -0i L

0- 2
= "
e+ # i !
= o? * #-
o0 e0e*! Oe W
=e —; - Tk
+e e

Py e e Rl

JOGFEFRESEORSETIFIIRIRIRIRD.

Be! E;
__ 4+ ++ Tk =0+
_s§ + ‘L Mme
-%0 i ++ & e?
w2 0" & =0
s 0 ++ e H
= Al & ~0+
0 e =
(§, sttt e—————ddidddiiet”
.0000000000000000000000000.
0 00
LT 00
oo oo
L1 20
00 20
0000000 00
0000000 = “008000

1.1 CONSTRAINTS

> Very small amount of primary memory, typically orders of magnitude
smaller than the data that needs to be processed/generated.

> No identifiers — i.e. no variable names or tagged memory addresses. All
we have is memory that is addressable with numbers.

6 W Exercises in Programming Style

1.2 A PROGRAM IN THIS STYLE

#!/usr/bin/env python
import sys, os, string

Utility for handling the intermediate ‘secondary memory’

i def touchopen(filename, xargs, *xkwargs):

> data.append(’’)

try:
os.remove (filename)
except OSError:
pass
open(filename, "a").close() # "touch" file
return open(filename, xargs, +*xkwargs)

The constrained memory should have no more than 1024 cells
data = []

We’re lucky:

The stop words are only 556 characters and the lines are all
less than 80 characters, so we can use that knowledge to
simplify the problem: we can have the stop words loaded in
memory while processing one line of the input at a time.

If these two assumptions didn’t hold, the algorithm would
need to be changed considerably.

S R R R W K

Overall strategy: (PART 1) read the input file, count the
words, Increment/store counts in secondary memory (a file)
(PART 2) find the 25 most frequent words in secondary memory

= %

PART 1:

- read the input file one line at a time

- filter the characters, normalize to lower case

- identify words, increment corresponding counts in file

= ¥k W W

Load the list of stop words

f = open(’../stop_words.txt’)

data = [f.read(1024).split(’,")] # data[0] holds the stop words
f.close ()

data.append([]) # data[l] is line (max 80 characters)
data.append (None) # data[2] 1is index of the start_char of word
data.append (0) # data[3] i1s index on characters, i = 0
data.append(False) # data[4] is flag indicating if word was found
data[5) 1is the word
datal[é6] is word, NNNN

#

data[7] 1is frequency

data.append(’’)
data.append (0)

Open the secondary memory
word_fregs = touchopen(’word_freqgs’, ’'rb+’)
Open the input file
f = open(sys.argv[1l])
Loop over input file’s lines
while True:
data[l] = [f.readline()]
if data(l] == ["’]: # end of input file
break

Good Old Times W 7

55 if data[l][0][len(data[l][0])-1] != '\n": # If it does not end
with \n

56 data[l] [0] = data[l][0] + "\n" # Add \n

57 data[2] = None

58 data[3] = 0

59 # Loop over characters in the line

60 for c in data([l][0]: # elimination of symbol ¢ is exercise

61 if data[2] == None:

62 if c.isalnum() :

63 # We found the start of a word

64 data[2] = data[3]

65 else:

66 if not c.isalnum() :

67 # We found the end of a word. Process it

68 data[4] = False

69 data[5] = data[l] [0] [data[2]:data[3]].lower ()
70 # Ignore words with len < 2, and stop words
71 if len(data[5]) >= 2 and data[5] not in data[0]:
72 # Let’s see if it already exists

73 while True:

74 data[6] = word_fregs.readline().strip()

75 if data[e] == "':

76 break;

77 data[7] = int(datal[6].split(’',")[1])

78 # word, no white space

79 data[6] = datal[6].split(’,") [0].strip()

80 if data([5] == data(6]:

81 data[7] += 1

82 data[4] = True

83 break

84 if not datal4]:

85 word_freqgs.seek (0, 1) # Needed in Windows

86 word fregs.writelines ("%$20s,%04d\n" % (
data[5], 1))

87 else:

88 word_fregs.seek (-26, 1)

89 word_fregs.writelines ("%20s,%04d\n" % (

data[5], datal7]))
90 word_fregs.seek (0, 0)
91 # Let’s reset
02 data[2] = None
93 data[3] += 1
s # We’re done with the input file
95 f.close()
os word_fregs.flush()

o8 # PART 2

oo # Now we need to find the 25 most frequently occuring words.
100 # We don’t need anything from the previous values in memory
101 del datal:]

102

103 # Let’s use the first 25 entries for the top 25 words

104 data = data + [[]]*(25 - len(data))

105 data.append(’’) # data[25] is word, freq from file

106 data.append (0) # data[26] 1is freg

107

108 # Loop over secondary memory file

8 W Exercises in Programming Style

100 while True:

110 data[25] = word_fregs.readline() .strip()

111 if data[25] == '': # EOF

112 break

113 data[26] = int(data[25].split(’,’)[1]) # Read it as integer
114 data[25] = data[25].split(*,’) [0].strip() # word

115 # Check if this word has more counts than the ones in memory
116 for i in range(25): # elimination of symbol i is exercise
117 if data[i] == [] oxr data[i][l] < data[26]:

118 data.insert (i, [data[25], data[26]])

119 del data[26] # delete the last element

120 break

121

122 for tf in data([0:25]: # elimination of symbol tf is exercise

123 if len(tf) ==

124 print tf[0], " - 7, tf[l]

125 # We’re done
126 word_fregs.close ()

Note: If not familiar with Python, please refer to the Prologue (Pythonisms)
for an explanation of lists, indexes and bounds.

Good Old Times W 9

1.3 COMMENTARY

N THIS STYLE, the program reflects the constrained computing envi-
I ronment where it executes. The memory limitations force the programmer
to come up with ways of rotating data through the available memory, adding
complexity to the computational task at hand. Additionally, the absence of
identifiers results in programs where the natural terminology of the problem is
absent from the program text, and, instead, is added through comments and
documentation. This is what programming was all about in the early 1950s.
This style of programming, however, is not extinct; it is still in use today when
dealing directly with hardware and when optimizing the use of memory.

The example program may look quite foreign to programmers not used to
these kinds of constraints. While this is certainly a program that one doesn’t
associate with Python or with any of the modern programming languages, it
embodies the theme of this book quite well: programming styvles emerge from
constraints. Very often, the constraints are imposed externally — maybe the
hardware has limited memory, maybe the assembly language doesn’t support
identifiers, maybe performance is critical and one must deal directly with the
machine, etc.; other times the constraints are self-imposed: the programmer,
or the entire development team, decides to adhere to certain ways of think-
ing about the problems and of writing the code, for many different reasons —
maintainability, readability, extensibility, adequacy for the problem domain,
past experiences on the part of the developers; or simply, as is the case here, to
teach what low-level programming looks like without having to learn new syn-
tax. Indeed, it is possible to write low-level, Good Old Times style programs
in just about any programming language!

Having explained the reason for this unusual implementation of term fre-
quency, let’s dive into this program. The memory limitations are such that
we can’t ignore the size of the data to be processed. In the example, we have
self-imposed a size of 1024 memory cells (line #15). The term “memory cell”
is used here in a somewhat fuzzy manner to denote, roughly, a piece of simple
data, such as a character or a number. Given that books like Pride and Preju-
dice contain much more than 1024 characters, we need to come up with ways

to read and process the data in small chunks, making heavy use of “secondary
memory” (a file) to store the data that doesn’t fit in primary memory. Before
we start coding, we need to do some back-of-the-envelope calculations about
the different options regarding what to hold in primary memory and what to
dump to secondary memory, and when (see comments in lines #16 through
#26). Then as now, access to primary memory is orders of magnitude faster
than access to secondary memory, so these calculations are about optimizing
for performance.

Many options could have been pursued, and the reader is encouraged to ex-
plore the solution space within this style. The example program is divided into
two distinct parts: the first part (lines #28 through #98) processes the input
file, counting word occurrences and writing that data into a word-frequency

10 W Exercises in Programming Style

file; the second part (lines #100 through #128) processes the intermediate
word-frequency file in order to discover the 25 most frequently occurring
words, printing them at the end.

The first part of the program works as follows:

e Hold the stop words, roughly 500 characters, in primary memory (lines
#33 through #36)

e Read the input file one line at a time; each line is only 80 characters
maximum (lines #50 through #95)

e For each line (lines #60 through #95), filter the characters, identify the
words, and normalize them to lower case

e Retrieve/Write the words and their frequencies from/to secondary mem-
ory (lines #73 through #90)

After processing the entire input file like this, we then turn our attention
to the word frequencies that have been accumulated in the intermediate file.
We need a sorted list of the most frequently occurring words, so the program
does the following:

e Keep an ordered list in memory holding the current 25 most frequently
occurring words, and their frequencies (line #104)

¢ Read one line at a time from the file. Each line contains a word and its
corresponding frequency (lines #108 through #120)

e If the new word has higher frequency than any of the words in memory,
insert it at the appropriate place in the list and remove the word at the
end of the list (lines #116 through #120)

e Finally, print the 25 top words and their frequencies (lines #122 through
#124) and close the intermediate file (line #126)

As seen, the memory constraint has a strong effect on the algorithm em-
ployed, as we must be mindful of how much data there is in memory at any
given point in time.

The second self-imposed constraint of this style is the absence of iden-
tifiers. This second constraint also has a strong effect on the program, but
this effect is of a different nature: readability. There are no variables, as such;
there is only a data memory that is accessed by indexing it with numbers.
The problem’s natural concepts (words, frequencies, counts, sorting, etc.) are
completely absent from the program text, and are, instead, indirectly repre-
sented as indexes over memory. The only way we can bring those concepts
back in is by adding comments that explain what kinds of data the memory
cells hold (e.g. see comments in lines #38 through #44 and #103 through
#106, among others). When reading through the program, we often need to
go back to those comments to remind ourselves what high-level concept a
certain memory index corresponds to.

Good Old Times ® 11

1.4 THIS STYLE IN SYSTEMS DESIGN

In the age of computers with multi-gigabyte RAM, constrained memory such
as that shown here is mostly a vague memory from the past. Nevertheless, with
modern programming languages that encourage obliviousness with respect to
memory management, and with the ever-growing amounts of data that modern
programs handle, it is very easy to let memory consumption of programs
run out of control, with negative consequences on run-time performance. A
certain amount of awareness regarding the consequences that the different
programming styles carry for memory usage is always a good thing.

Many applications these days — namely those falling in what’s known as
Big Data — have brought the complexities of dealing with small memory back
to the center of attention. In this case, although memory is not scarce in
absolute terms, it is much smaller than the size of the data to be processed.
For example, if instead of just Pride and Prejudice we would apply term
frequency to the entire Gutenberg Collection, we would likely not be able
to hold all the books in memory at the same time; we might not even be
able to hold the list of word frequencies all in memory either. Once the data
can’t fit in memory all at once, developers must devise smart schemes for (1)

representing data so that more of it can fit in memory at any given time; and
(2) rotating the data through primary and secondary memory. Programming
with these constraints tends to make programs feel like the Good Old Times
style.

Regarding the absence of names, one of the main drivers behind program-
ming language evolution throughout the 1950s and 1960s was precisely the
elimination of cognitive indirections such as those shown in the example: we
want the program texts to reflect the high-level concepts of the domain as
much as possible, instead of reflecting the low-level machine concepts and re-
lying on external documentation to do the mapping between the two. But
even though programming languages have provided for user-defined named
abstractions for a long time, it is not unusual for programmers to fail to name
their program elements, Application Programming Interfaces (APIs) and en-
tire components appropriately, resulting in programs, libraries and systems as
obscure as the one shown here.

Let this Good Old Times style be a reminder of how thankful we should
be for being able to hold so much data in memory and for being able to give
appropriate names to each and every one of our program elements!

1.5 HISTORICAL NOTES

This style of programming came directly from the first viable model of com-
putation, the Turing Machine. A Turing Machine consists of an unbounded
modifiable state “tape” (the data memory) and a state machine that reads
and modifies that state. The Turing Machine had a tremendous influence in
the development of computers and how they were programmed. Turing’s ideas

12 W Exercises in Programming Style

influenced von Neumann’s design of the first computer with stored programs.
Turing himself also wrote the specifications of a computing machine known as
the Automatic Computing Engine (ACE), which was, in many ways, more ad-
vanced than van Neumann’s. Because that report was classified by the British
government, and also because of the politics following the Second World War,
Turing’s design was not acted upon until several years later, and still in se-
crecy. Both von Neumann’s architecture and Turing’s machines led to the first
programming languages in the 1950s, which enforced the concept of program-
ming by reusing and changing state in memory over time.

1.6 FURTHER READING

Bashe, C., Johnson, L., Palmer, J. and Pugh, E. (1986). IBM’s Early Comput-
ers: A Technical History (History of Computing), MIT Press, Cambridge,
MA.
Synopsts: IBM was the major commercial player in the early davs of
computing machines. This book tells the story of IBM’s transition from
manufacturer of electromechanical machines to a powerhouse of comput-
ing machines.

Carpenter, B.E. and Doran, R.W. (1977). The other Turing Machine. Com-
puter Journal 20(3): 269-279.
Synopsis: An account of one of Turing’s technical reports describing a
complete architecture for a computing machine based on von Neumann’s,
but including subroutines, stacks and much more. The original report can
be found at

http://www.npl.co.uk/about/history/notable-individuals/turing/ace-proposal

Turing, A. (1936). On computable numbers, with an application to the
Entscheidungs problem. Proceedings of the London Mathematical Soci-
ety 2(42): 230-265.
Synopsis: The original “Turing Machine.” In the context of this book,
this paper is suggested not for its mathematics but for the programming
model of a Turing Machine: a tape with symbols, a tape reader/writer
that moves left and right, and the overwriting of symbols on the tape.

von Neumann, J. (1945). First draft of a report on the EDVAC. Reprinted in
IEEE Annals of the History of Computing 15(4): 27-43, 1993.
Synopsis: The original “von Neumann’s architecture.” As with Turing’s
paper, suggested for the programming model.

1.7 GLOSSARY

Main memory: Often referred to simply as memory, this data storage is
directly accessible by the CPU. Most data in this storage is volatile in
the sense that it does not persist beyond the execution of the programs

16 W Exercises in Programming Style

2.2 A PROGRAM IN THIS STYLE

1 #!/usr/bin/env python

2 import sys, re, operator, string
3

L #

5 # The all-important data stack

#

7 stack = []

8

o #
10 # The heap. Maps names to data (i.e. variables)
11 #
12 heap = {}

14 #
15 # The new "words" (procedures) of our program
16 #
17 def read_file():
morm
19 Takes a path to a file on the stack and places the entire
20 contents of the file back on the stack.
mormnm
22 f = open(stack.pop())
23 # Push the result onto the stack
24 stack.append([f.read()])
25 f.close()

27 def filter_chars():
o
0 Takes data on the stack and places back a copy with all
30 nonalphanumeric chars replaced by white space.
o
32 # This is not in style. RE is too high-level, but using it
33 # for doing this fast and short. Push the pattern onto stack
34 stack.append(re.compile (* [\W_]+"))
35 # Push the result onto the stack

’

36 stack.append ([stack.pop() .sub(’ ', stack.pop()[0]).lower()])

is def scan():
10 Takes a string on the stack and scans for words, placing
11 the list of words back on the stack
mirm
13 # Again, split() is too high-level for this style, but using
14 # it for doing this fast and short. Left as exercise.
15 stack.extend(stack.pop () [0] .split ())

17 def remove_stop_words():

wown

19 Takes a list of words on the stack and removes stop words.

mworn

51 f = open(’../stop_words.txt’)
52 stack.append(f.read() .split (’,’))
53 f.close ()

54 # add single-letter words

