Exercises in
Programming Style

Contents

Preface to the Second Edition

Preface to the First Edition

Prologue

Author

PART 1 Historical

CHAPTER 1 = Good Old Times

CHAPTER 2 - Go Forth

CHAPTER 3 * Arrays

PART II Basic Styles

CHAPTER 4 = Monolithic
CHAPTER 5 - Cookbook
CHAPTER 6 * Pipeline

CHAPTER 7 * Code Golf

PART III Function Composition

CHAPTER

8 * Infinite Mirror

CHAPTER

9 - Kick Forward

CHAPTER

10 = The One

PART IV Objects and Object Interaction

CHAPTER

CHAPTER

11 = Things

12 = Letterbox

CHAPTER

13 = Closed Maps

CHAPTER

14 + Abstract Things

CHAPTER

15 = Hollywood

CHAPTER 16 * Bulletin Board

PART V Reflection and Metaprogramming
CHAPTER 17 - Introspective

CHAPTER 18 - Reflective

CHAPTER 19 - Aspects

CHAPTER 20 + Plugins

PART VI Adversity

CHAPTER

21 - Constructivist

CHAPTER

22 = Tantrum

CHAPTER. 23 - Passive Aggressive
CHAPTER. 24 - Declared Intentions
CHAPTER 25 = Quarantine

PART VII Data-Centric

CHAPTER. 26 = Persistent Tables
CHAPTER 27 - Spreadsheet
CHAPTER 28 - Lazy Rivers

PART VIII Concurrency

CHAPTER. 29 - Actors
CHAPTER. 30 = Dataspaces
CHAPTER. 31 = Map Reduce

CHAPTER. 32 - Double Map Reduce

PART IX Interactivity

CHAPTER 33 - Trinity

CHAPTER 34 * Restful

PART X Neural Networks

CHAPTER 35 * Dense, Shallow, under Control

CHAPTER. 36 * Dense, Shallow, out of Control

CHAPTER 37 -

CHAPTER 38

CHAPTER 39

CHAPTER 40

Index

Bow Tie

» Neuro-Monolithic
» Sliding Window

* Recurrent

Preface to the Second
Edition

In the six years since the first edition of this book was
published, two things happened that made me want to update
the book. The first one was the wide adoption of Python 3. The
original edition had all its code in Python 2, which has now
reached its official end of life. This second edition updates all
the code to Python 3.

But the second, and most important, thing that happened
since 2014 was the dizzying developments in machine learning,
more specifically, in neural networks (NNs). By 2018, I felt it
was my duty, and personal challenge, to capture the basic
programming concepts in neural networks in exactly the same
way 1 had done for all other concepts: by doing term frequency
in neural networks. This led me into a fascinating tour of that
field, focused, as I was, on exploring it using a problem for
which neural networks are not typically used — term frequency
is a well-specified problem for which we know the exact logic.
This second edition includes a whole new part, Part X,
featuring several basic programming concepts in NNs.

In the process of doing this tour of neural networks for the
term frequency problem, four things became clear. First, I had
to break the problem down into its smaller components, and
show how to solve those smaller sub-problems using NNs. This
is because the solution of the complete problem is essentially a
pipeline of functions that requires knowledge of too many NN
concepts at once. Second, although learning is the magic sauce
for which neural networks are popular, I found myself being
even more fascinated by the concept of networks as computing

machines. As much as I admire the power of statistics for
making predictions based on existing data, the computer
engineer in me absolutely wants to program these networks by
hand by setting the weights manually. T couldn’t help it! Part X
is full of neural networks that are programmed manually,
without learning. Third, the most popular framework for
programming NNs, TensorFlow, uses array programming
concepts at its core. This is not surprising, given that we are
dealing, essentially, with linear algebra operations. I realized the
first edition had missed this historically important
programming style — array programming — so I added a new
chapter about it in Part I, Historical. (Hello, APL, apologies for
having missed you the first time!) Finally, the fourth thing I
realized was that I could easily write an entire new book just
covering neural network programming concepts. I had to stop
myself at six chapters in Part X, but these chapters don’t even
begin to cover the immense and fertile field of programming
ideas in neural networks.

NNs require a fundamentally different way of thinking about
computing that is at the same time very low level and very
powerful. T am now convinced that every programmer needs to
learn this connectionist computing model, not just for the hype
that its applications currently enjoy, but in spite of it.

Pierre Baldi was instrumental in my developing an interest in
neural networks, and in my ability to navigate that field as an
outsider. I thank him for the many conversations we had about
all that is covered in Part X. In these past six years, my
daughter Julia grew up, and, at points, helped me stay focused
on finishing this second edition of the book. I thank her for
that. Thank you, also, to my Department Chair, André van der
Hoek, and to my Dean, Marios Papaefthymiou, for letting me
go on sabbatical in 2018. That allowed me to dive into the
world of machine learning. Finally, I want to thank the
hundreds of students who have taken my course, and who have
enthusiastically provided all sorts of feedback.

Cristina Videira Lopes
Irvine, February 29, 2020

Preface to the First
Edition

THE CODE

This book is a companion text for code that is publicly
available at http://github.com/crista/exercises-in-
programming-style

WHO WILL BENEFIT FROM THIS BOOK

The collection of code that is the foundation of this book is for
everyone who enjoys the art of programming. I've written this
book in order to complement and explain the raw code, as some
of the idioms may not be obvious. Software developers with
many years of experience may enjoy revisiting familiar
programming styles in the broad context of this book and
learning about styles that may not be part of their normal
repertoire.

This book can be used as a textbook for advanced
programming courses in computer science and software
engineering. Additional teaching materials, such as lecture
slides, are also available. The book is not designed for
introductory programming courses; it is important for students
to be able to crawl (i.e. learn to program under the illusion that
there’s only one way of doing things) before they can run (i.e.
realize that there’s a lot more variety). I expect that many of
the readers will be students in their junior/senior years or in
their early stages of graduate study. The exercise list at the end
of each chapter is a good mechanism for testing the reader’s

understanding of each style. The suggested further readings are
more appropriate for graduate students.

This book may also be of interest to writers, especially those
who know a little programming or have a strong interest in
programming technology. Despite important differences, there
are many similarities between writing programs and writing in
general.

MOTIVATION FOR THESE EXERCISES

In the 1940s, the French writer Raymond Queneau wrote a
jewel of a book called Ezercises in Style, featuring 99 renditions
of the exact same story, each written in a different style. The
book is a masterpiece of writing technique, as it illustrates the
many different ways a story can be told. The story being fairly
trivial and always the same, highlights form, rather than
content; it illustrates how the decisions we make in telling a
story affect the perception of that story.

Queneau’s story is trivially simple and can be told in two
sentences: The narrator is on the “S” bus and notices a man
with a long neck who is wearing a hat, and who gets into an
altercation with the man sitting next to him. Two hours later,
the narrator sees this same man near the Saint Lazare train
station, with a friend, and the friend is giving this man some
advice regarding an extra button on his overcoat. That’s it! He
then goes through 99 renditions of this story using, for example,
litotes, metaphors, animism, etc.

Over the years, as an instructor of many programming-
intensive courses, I noticed that often students have a hard
time understanding the different ways of writing programs and
of designing systems, in general. They have been trained in one,
at most two, programming languages, so they understand only
the styles that are encouraged by those languages, and have a
hard time wrapping their heads around other styles. It’s not
their fault. Looking at the history of programming languages
and the lack of pedagogical material on style in most computer
science programs, one hardly gets exposed to the issue until
after an enormous amount of experience is accumulated. Even
then, style is seen as an intangible property of programs that

remains elusive to explain to others — and over which many
technical arguments ensue. So, in order to give programming
styles the proper due, and inspired by Queneau, I decided to
embark on the project of writing the exact same computational
task in as many styles as [have come across over the years.

So what is style? In Queneau’s circle of intellectuals, a group
known as OQulipo (for French Ouuvroir de la littérature
potentielle, roughly translated as “workshop of potential
literature”), style was nothing but the consequence of creating
under constraints, often based on mathematical concepts such
as permutations or lipograms. These constraints are used as a
means to create something intellectually interesting besides the
story itself. The ideas caught on, and over the years, several
literary works have been created using Oulipo’s constraints.

In this book, too, programming style is what results from
writing programs under a set of constraints. Constraints can
come from external sources or they can be self-imposed; they
can capture true challenges of the environment or they can be
artificial; they can come from past experiences and measurable
data or they can come from personal preferences. Independent
of their origin, constraints are the seeds of style. By honoring
different constraints, we can write a variety of programs that
are virtually identical in terms of what they do, but that are
radically different in terms of how they do it.

In the universe of all things a good programmer must know, I
see collections of programming styles as being as important as
any collection of data structures and algorithms, but with a
focus on human effects rather than on computing effects.
Programs convey information not just to the computers but,
more importantly, to the people who read them. As with any
form of expression, the consequences of what is being said are
shaped and influenced by how they are being said. An advanced
programmer needs not be able to just write correct programs
that perform well; he/she needs to be able to choose
appropriate styles for expressing those programs for a variety of
purposes.

Traditionally, however, it has been much easier to teach
algorithms and data structures than it is to teach the nuances
of programming expression. Books on data structures and

algorithms all follow more or less the same formula: pseudo-
code, explanation, and complexity analysis. The literature on
programming tends to fall into two camps: books that explain
programming languages and books that present collections of
design or architectural patterns. However, there is a continuum
in the spectrum of how to write programs that go from the
concepts that the programming languages encourage/enforce to
the combination of program elements that end up making up
the program; languages and patterns feed on each other, and
separating them as two different things creates a false
dichotomy. Having come across Queneau’s body of work, it
seemed to me that his focus on constraints as the basis for
explaining expression styles was a perfectly good model for
unifying a lot of important creative work in the programming
world.

I should note that I'm not the first one to look at constraints
as a good unifying principle for explaining style in software
systems. The work on architectural styles has taken that
approach for a long time. I confess that the notion that style
arises from constraints (some things are disallowed, some things
must exist, some things are limited, etc.) was a bit hard to
understand at first. After all, who wants to write programs
under constraints? It wasn’t until I came across Queneau’s
work that the idea made perfect sense.

Like Queneau’s story, the computational task in this book is
trivial: given a text file, we want to produce the list of words in
the file and their frequencies, and print them out in decreasing
order of frequency. This computational task is known as term
frequency. This book contains 33 different styles for writing
the term frequency task, one in each chapter. Unlike Queneau’s
book, I decided to verbalize the constraints in each style and
explain the example programs. Given the target audience, I
think it’s important to provide those insights explicitly rather
than leaving them to the reader’s interpretation. Each chapter
starts by presenting the constraints of the style, then it shows
an example program; a detailed explanation of the code follows;
most chapters have additional sections regarding the use of the
style in systems design and another section on the historical
context in which the programming style emerged. History is

important; a discipline should not forget the origins of its core
ideas. T hope the readers will be curious enough to follow
through some of the suggested further readings.

Why 33 styles? T chose 33 as a bounded personal challenge.
Queneau’s book has 99 styles. Had I set my goal to writing a
book with 99 chapters, 1 probably never would have finished it!
The public repository of code that is the basis for this book,
however, is likely to continue to grow. The styles are grouped
into nine categories: historical, basic, function composition,
objects and object interactions, reflection and
metaprogramming, adversity, data-centric, concurrency, and
interactivity. The categories emerged as a way to organize the
book, grouping together styles that are more related to each
other than to the others. Other categorizations would be
possible.

Similar to Queneau’s book, these exercises in programming
style are exactly that: ezercises. They are the sketches, or
arpeggios, of software; they aren’t the music. A piece of real
software usually employs a variety of styles for the different
parts of the system. Furthermore, all these styles can be mixed
and matched, creating hybrids that are interesting in
themselves.

Finally, one last important remark. Although Queneau’s book
was the inspiration for this project, software is not exactly the
same as the language arts; there are utility functions attached
to software design decisions, i.e. some expressions are better

than others for specific o‘bjecti\/fes.1 In this book I try to stand
clear of judgments of good and bad, except in certain clear
cases. It is not up to me to make those judgments, since they
depend heavily on the context of each project.

ACKNOWLEDGMENTS

I would like to thank the following people for valuable feedback
on earlier drafts of this book: Richard Gabriel, Andrew Black,
Guy Steele, James Noble, Paul Steckler, Paul McJones, Laurie
Tratt, Tijs van der Storm, and the students of INF 212 / CS
235 (Winter 14) at UC Irvine, especially Matias Giorgio and

David Dinh.

Thanks also to members of the IFIP Working Group 2.16,
where 1 first presented the idea of this book, and whose
reactions were critical for shaping the material.

A special thanks to the contributors to the exercises-in-style
code repository so far: Peter Norvig, Kyle Kingsbury, Sara
Triplett, Jogrgen Edelbo, Darius Bacon, Eugenia Grabrielova,
Kun Hu, Bruce Adams, Krishnan Raman, Matias Giorgio,
David Foster, Chad Whitacre, Jeremy MacCabe, and Mircea
Lungu.

1 Maybe that’s also the case for the language arts, but I'm afraid I

don’t know enough!

Prologue

TERM FREQUENCY

IKE QUENEAU’S STORY, the computational task in this
book is trivial: given a text file, we want to display the N
(e.g. 25) most frequent words and corresponding frequencies
ordered by decreasing value of frequency. We should make sure
to normalize for capitalization and to ignore stop words like
“the,” “for,” etc. To keep things simple, we don’t care about the
ordering of words that have equal frequencies. This
computational task is known as term frequency.
Here is an example of an input file and corresponding output
after computing the term frequency:

Input:
White tigers live mostly in India
Wild lions live mostly in Africa

Output:
live - 2
mostly - 2

africa - 1
india - 1
lions - 1

tigers - 1
white - 1
wild - 1

If we were to run this flavor of term frequency on Jane
Austen’s Pride and Prejudice available from the Gutenberg
Collection, we would get the following output:

mr - 786
elizabeth - 635
very — 488
darcy - 418
such - 395

mrs - 343

much - 329

more - 327

bennet - 323
bingley - 306

Jjane - 295
miss - 283
one - 275

know - 239

before - 229
herself - 227
though - 226

well - 224
never - 220
sister - 218
socn - 216
think - 211
now — 209
time - 203
good - 201

This book’s example programs cover this term frequency
task. Additionally, all chapters have a list of exercises. One of
those exercises is to write another simple computational task
using the corresponding style. Some suggestions are given
below.

These computational tasks are simple enough for any
advanced student to tackle easily. Algorithmic difficulties out of
the way, the focus should be on following the constraints that
underlie each style.

WORD INDEX

Given a text file, output all words alphabetically, along with
the page numbers on which they occur. Ignore all words that
occur more than 100 times. Assume that a page is a sequence of
45 lines. For example, given Pride and Prejudice, the first few
entries of the index would be:

abatement - 89

abhorrence - 101, 145, 152, 241, 274, 281
abhorrent - 253

abide - 158, 292

WORDS IN CONTEXT

Given a text file, display certain words alphabetically and in
context, along with the page numbers of the pages in which
they occur. Assume that a page is a sequence of 45 lines.
Assume that context comsists of the preceding and succeeding
two words. Ignore punctuation. For example, given Pride and
Prejudice, the words “concealment” and “hurt” would result in
the following output:

perhaps this concealment this disguise - 150
purpose of concealment for no - 207

pride was hurt he suffered - 87

must be hurt by such - 95

and are hurt if i - 103

pride been hurt by my - 145

must be hurt by such - 157

infamy was hurt and distressed — 248

Suggestion of words for the words in context task:
concealment, discontented, hurt, agitation, mortifying,
reproach, unexpected, indignation, mistake, and confusion.

PYTHONISMS

The example code used in this book is all written in Python,
but expertise in Python is not necessary in order to understand
the styles. In fact, one of the exercises in all of the chapters is
to write the example program in another language. As such, the
reader needs only to be able to read Python without needing to
write in Python.

Python is relatively easy to read. There are, however, a few
corners of the language that may confuse readers coming from
other languages. I explain some of them here.

e Lists. In Python, a list is a primitive data type
supported by dedicated syntax that is normally
associated with arrays in C-like languages. Here is an
example of a list: mylist = [0, 1, 2, 3, 4, 5].

Python doesn’t have an array as a primitive data type,2
and most situations that would use an array in C-like
languages use a list in Python.

e Tuples. A tuple is an immutable list. Tuples are also
primitive data types supported by dedicated syntax that
is normally associated with lists in Lisp-like languages.
Here is an example of a tuple: mytuple = (0, 1, 2,
3, 4). Tuples and lists are handled in similar ways,
except for the fact that tuples are immutable, so the
operations that change lists don’t work on tuples.

e List indexing. List and tuple elements are accessed by
index like this: mylist[some index]. The lower
bound of a list is index 0, like in C-like languages, and
the list length is given by len(mylist). Indexing a
list can be much more expressive than this simple
example suggests. Here are some more examples:

— mylist[0] — first element of the list

— mylist[-1] - last element of the list
— mylist[-2] — next-to-last element of the list

— mylist[1l:] — a list starting at index 1 until the
end of mylist

- mylist[1:3] — a list starting at index 1 and
stopping before index 3 of mylist

— mylist[::2] — a list containing every other
element of mylist

- mylist[start:stop:step] — a list containing
every step element between start and stop
indexes of mylist

Bounds. Indexing an element beyond the length of a
list results in an IndexError. For example, trying to
access the 4th element of a list of 3 elements (e.g. |10,
20, 30][3]) results in an IndexError, as expected.
However, many Python operations on lists (and
collections in general) are constructivist with respect to
indexing. For example, obtaining a list consisting of the
range from 3 to 100 in a list with only 3 elements (e.g.
[10, 20, 30][3:100]) results in an empty list ([]1) rather
than an IndexError. Similarly, any range that partially
covers a list results in whatever part of the list is
covered, with no IndexError (e.g. [10, 20, 30][2:10]
results in [30]). This constructivist behavior may be
puzzling at first for people used to more intolerant
languages.

Dictionaries. In Python, a dictionary, or map, is also a
primitive data type supported by dedicated syntax. Here
is an example of a dictionary: mydict = {’a’ : 1,
"b’ : 2}. This particular dictionary maps two string
keys to two integer values; in general, keys and values
can be of any type. In Java, these kinds of dictionaries
can be found in the form of the HashMap class (among
others), and in C++ they can be found in the form of
the class template map (among others).

o self. In most object-oriented languages, the reference
that an object has to itself is implicitly available
through special syntax. For example, this in Java and
C++, $this in PHP, or @ in Ruby. Unlike these
languages, Python has no special syntax for it.
Moreover, instance methods are simply class methods
that take an object as the first parameter; this first
parameter is called self by convention, but not by
special mandate of the language. Here is an example of a
class definition with two instance methods:

class Example:
daf set_name (self,
def say_my
print self._name

name (self):

Both methods have a parameter named self in the
first position, which is then accessed in their bodies.
There is nothing special about the word self, and the
methods could use any other name, for example me or
my or even this, but any word other than self will be
frowned upon by Python programmers. Calling instance
methods, however, may be surprising, because the first
parameter is omitted:

e = Example ()
e.set my name("Heisenberg'')
e.say my name ()

This mismatch on the number of parameters is due to
the fact that the dot-notation in Python (’.") is simply
syntactic sugar for this other, more primitive form of
calling the methods:

e = Example ()
Example.set my name (e,

" "Heisenberg'')

Example.say my name (e)

e Constructors. In Python, a constructor is a regular
method with the name init (two underscores on
each side of the word). Methods with this exact name
are called automatically by the Python runtime right
after object creation. Here is one example of a class with
a constructor, and its use:

1 class Example:
This is the constructor of this class
def __init__(self, n):
| self._name = n
def say_my_name (self):
print self._name

e = Example(‘‘Heisenberg’’)
e.say_my_name ()

2 There is an array data object, but it’s not a primitive type of the
language and it doesn’t have any special syntax. It’s not used as much

as lists.

Author

Cristina (Crista) Videira Lopes is a Professor of Software
Engineering at the Donald Bren School of Information and
Computer Sciences, University of California, Irvine. Her
research focuses on software engineering for large-scale data and
systems. Early in her career, she was a founding member of the
team at Xerox PARC that developed Aspect-Oriented
Programming and AspectJ. Along with her research program,
she is also a prolific software developer. Her open source
contributions include acoustic software modems, and the virtual
world server OpenSimulator. She is a co-founder of a company
specializing in online virtual reality for early-stage sustainable
urban redevelopment projects. She developed and maintains a
search engine for OpenSimulator-based virtual worlds.

Dr. Lopes has a PhD from Northeastern University, and MS
and BS degrees from Instituto Superior Técnico in Portugal.
She is the recipient of several National Science Foundation
grants, including a prestigious CAREER Award. She is an
ACM Distinguished Scientist and an IEEE Fellow.

L

Historical

Computing systems are like an onion, with layers upon layers of
abstraction developed over the years in order to facilitate the
expression of intent. It is important to know what the inner
layers really entail. The first three programming styles illustrate
what programming was like several decades ago, and to some
extent, what it still is — because ideas keep getting reinvented.

CHAPTER 1

Good Old Times

‘el i rmegTET

e
3
il
s | e s
o* =i =@
b=
o=
e " i
- s? 5
an ale®! e
=a ~ g =
e
S

S4335EEIERISIII AR RTINSO

The!
15 ! .
_15 &l
=A0 ' i
-0 '
als 3
: B, eedrrramsmesi i
0OCOoo0RE0I00E0R00!
11
o
ee
L1

[l e el gel=lele pele R el e b d el R LR i R e el g el
cocog0eeDe000000000000000000000000O0DA0D

1.1 CONSTRAINTS

Te
- "
i “n
»
P
e
-
B
&
&
]
2
L
L i
R T
"4 7"
. =l
' L]
N =0+
i -
EEEEE T oy
00009003
L]
[-1-]
1]
1]
L1}

Q0R0Q003000090000000000000DRCEEDER0R0RR0A0R00000
00000000000 000000000000000ACCODEOO2000020000000

>
of magnitude smaller than
processed /generated.

> No identifiers — i.e. no varia

addresses. All we have is
with numbers.

Very small amount of primary memory, typically orders

the data that needs to be

ble names or tagged memory
memory that is addressable

1.2 A PROGRAM IN THIS STYLE

#!/usr/bin/env python
import sys, os, string

Utility for handling the intermediate ’secondary memory’

» def touchopen(filename, wargs, =+kwargs):

try:
os.remove (filename)
except OSError:
pass
open(filename, "a").close() & "touch"™ file
return open(filename, ~args, =skwargs)

The constrained memory should have no more than 1024 cells
data = []

We’re lucky:

The stop words are only 556 characters and the lines are all
less than 80 characters, 5o we can use that knowledge to
simplify the problem: we can have the stop words loaded in
memory while processing one line of the input at a time.

If these two assumptions didn’t hold, the algorithm would
need to be changed considerably.

M W R R R m W

-

Overall strategy: (PART 1) read the input file, count the
words, increment/store counts in secondary memory (a file)
(PART 2) find the 25 most frequent words in secondary memory

e

PART 1:

- read the input file cne line at a time

- filter the characters, normalize to lower case

- identify words, increment corresponding counts in file

L N

Load the list of stop words

f = open(’../stop_words.txt’)

data = [f.read(1024).split(’,’)] # data(0] holds the stop words
f.close({)
data.append([]) # data[l] is line (max 80 characters)
data.append(None) # data[2] is index of the start_char of word
data.append(0) # datal{3] is index on characters, i = (
data.append(False) # data(4] is flag indicating if word was found
data.append('’) # data (5] is the word

data.append("’) # data[é6] is word, NNNN

data.append(0) # data(7) is frequency

. # Open the secondary memory
a5 word_freqs = touchopen(’'word_freqs’, ’rb+’)

Open the input file
f = open(sys.argv(1l], 'r’)
Loop over input file’s lines
while True:
data([l]) = [f.readline()]
if data(l] == ['’]: # end of input file
break

Copyrighted mate

G4

{1

if datalll (0] (len{datall]l(Q1}-1] = *\n": # If it does net end

with \n
datafl] (0] = dara[1][0] + '\n* # Add \n
data|2] = None
datal3l = 0
Loop over characters in the line
for c in data(l][0): & eliminaction of symbel ¢ is exarcise
if data(2] == None:
if c.isalnum():
§ We found the start of a word
data[2] = data[3]
alsea:
if not c.isalnum():
§ We found the end of a word. Process it
data[4] = False
data[5] = data(l]l(0](datal2]:data(3]].lower()
Ignore words with len < 2, and stop words

if len(datal[5]) >»>= 2 and datalf] not in datal[0]:

Let’s see 1f it already exists
while True:

data[6] = str{word_freqs,.readlina{).strip

(), Tutf-8")
if dava[6] == **:
break;

data[7] = intidata{B].split ¢, ") 1]}
word, no white space

data[6] = datal6].split{’,”)[0).stripl)

if dara(5) == data[&]:
datal7] += 1
datald] = True
break
if not data(4]:

word_fregs.seek (0, 1) & Needed in Findows

word_£freqs,.write (bytes ("$20s, 304d\n" % (

data[3], 1), "utf-g8"))
else:
word_fregs.seek (-26, 1]

word_freqs.write (bytes ("%20s5,%04d\n"™ % {

datal5]), datal7Tl), "utf=871))
word_freqs.seek (0,0)
4 Let’s resest
data[2] = None
dataf3] #= 1

as § We’ro done with the Iinput file

4

£.closel)

o word_freqgs. flushi()

B

Uy

PART 2

or # Now we need to find the 25 most frequently oceurring words.
vn & We don’t need anything from the previous values in memory
o0 del datal:|

2LH

wz # Let’s use the first 25 entries for the top 25 words
s data = data + [[]1i*{25 - len{data))

i data.append(*f) # daca(25] is word,freqg from file

wis data.append{0) # datal26] is freg

]

Copyrighted material

7 # Loop over secondary memory file

« while True:

datal25] = str(word_fregs.readline().strip(), "utf-8")
if datal2d] == '': # EOF
1 break

data{28] = int(data[253].splic(',*)[
= data{25].8plit(*,") [0].8&
Check If this word has
for i in range(Z5): # e ination of symbol I is exercise
if datali] == [] or data[i][l) < datal[26]:

data.insert (i, [data[25]), data[26]})

del datal[26] # delete the last element

break

11) # Read it as integer
trip{) # word

more counts than the ones in memory

1 for t£f in data[0:25]: # elimination of symbol tf is exercise
if leniti) 2:
print{t£[0],

1 # We're done

ety e[

word_fregs.close()

Note: If not familiar with Python, please refer to the Prologue
(Pythonisms) for an explanation of lists, indexes, and bounds.

1.3 COMMENTARY

N THIS STYLE, the program reflects the constrained
Icomputing environment where it executes. The memory
limitations force the programmer to come up with ways of
rotating data through the available memory, adding complexity
to the computational task at hand. Additionally, the absence of
identifiers results in programs where the natural terminology of
the problem is absent from the program text, and, instead, is
added through comments and documentation. This is what
programming was all about in the early 1950s. This style of
programming, however, is not extinct; it is still in use today
when dealing directly with hardware and when optimizing the
use of memory.

The example program may look quite foreign to programmers
not used to these kinds of constraints. While this is certainly a
program that one doesn’t associate with Python or with any of
the modern programming languages, it embodies the theme of
this book quite well: programming styles emerge from
constraints. Very often, the constraints are imposed externally
— maybe the hardware has limited memory, maybe the

assembly language doesn’t support identifiers, maybe
performance is critical and one must deal directly with the
machine, etc.; other times the constraints are self-imposed: the
programmer, or the entire development team, decides to adhere
to certain ways of thinking about the problems and of writing
the code, for many different reasons — maintainability,
readability, extensibility, adequacy for the problem domain,
past experiences on the part of the developers; or simply, as is
the case here, to teach what low-level programming looks like
without having to learn new syntax. Indeed, it is possible to
write low-level, Good Old Times style programs in just about
any programming language!

Having explained the reason for this unusual implementation
of term frequency, let’s dive into this program. The memory
limitations are such that we can’t ignore the size of the data to
be processed. In the example, we have self-imposed a size of
1024 memory cells (line #15). The term “memory cell” is used
here in a somewhat fuzzy manner to denote, roughly, a piece of
simple data, such as a character or a number. Given that books
like Pride and Prejudice contain much more than 1024
characters, we need to come up with ways to read and process
the data in small chunks, making heavy use of “secondary
memory” (a file) to store the data that doesn’t fit in primary
memory. Before we start coding, we need to do some back-of-
the-envelope calculations about the different options regarding
what to hold in primary memory and what to dump to
secondary memory, and when (see comments in lines #16
through #26). Then as now, access to primary memory is
orders of magnitude faster than access to secondary memory, so
these calculations are about optimizing for performance.

Many options could have been pursued, and the reader is
encouraged to explore the solution space within this style. The
example program is divided into two distinct parts: the first
part (lines #28 through #98) processes the input file, counting
word occurrences and writing that data into a word-frequency
file; the second part (lines #100 through #128) processes the
intermediate word-frequency file in order to discover the 25
most frequently occurring words, printing them at the end.

The first part of the program works as follows:

¢ Hold the stop words, roughly 500 characters, in primary
memory (lines #33 through #36)

e Read the input file one line at a time; each line is only
80 characters maximum (lines #50 through #95)

e For each line (lines #60 through #95), filter the
characters, identify the words, and normalize them to
lowercase

e Retrieve/Write the words and their frequencies from/to
secondary memory (lines #73 through #90)

After processing the entire input file like this, we then turn
our attention to the word frequencies that have been
accumulated in the intermediate file. We need a sorted list of
the most frequently occurring words, so the program does the
following;:

e Keep an ordered list in memory holding the current 25
most frequently occurring words, and their frequencies

(line #104)

e Read one line at a time from the file. Each line contains

a word and its corresponding frequency (lines #108
through #120)

e [If the new word has higher frequency than any of the
words in memory, insert it at the appropriate place in
the list and remove the word at the end of the list (lines
#116 through #120)

e Finally, print the 25 top words and their frequencies
(lines #122 through #124) and close the intermediate
file (line #126)

As seen, the memory constraint has a strong effect on the
algorithm employed, as we must be mindful of how much data
there is in memory at any given point in time.

The second self-imposed constraint of this style is the absence
of identifiers. This second constraint also has a strong effect on

the program, but this effect is of a different nature: readability.
There are no variables, as such; there is only a data memory
that is accessed by indexing it with numbers. The problem’s
natural concepts (words, frequencies, counts, sorting, etc.) are
completely absent from the program text, and are, instead,
indirectly represented as indexes over memory. The only way
we can bring those concepts back in is by adding comments
that explain what kinds of data the memory cells hold (e.g. see
comments in lines #38 through #44 and #103 through #106,
among others). When reading through the program, we often
need to go back to those comments to remind ourselves what
high-level concept a certain memory index corresponds to.

1.4 THIS STYLE IN SYSTEMS DESIGN

In the age of computers with multi-gigabyte RAM, constrained
memory such as that shown here is mostly a vague memory
from the past. Nevertheless, with modern programming
languages that encourage obliviousness with respect to memory
management, and with the ever-growing amounts of data that
modern programs handle, it is very easy to let memory
consumption of programs run out of control, with negative
consequences on run-time performance. A certain amount of
awareness regarding the consequences that the different
programming styles carry for memory usage is always a good
thing.

Many applications these days — namely those falling in what’s
known as Big Data — have brought the complexities of dealing
with small memory back to the center of attention. In this case,
although memory is not scarce in absolute terms, it is much
smaller than the size of the data to be processed. For example,
if instead of just Pride and Prejudice we would apply term
frequency to the entire Gutenberg Collection, we would likely
not be able to hold all the books in memory at the same time;
we might not even be able to hold the list of word frequencies
all in memory either. Once the data can’t fit in memory all at
once, developers must devise smart schemes for (1) representing
data so that more of it can fit in memory at any given time;

and (2) rotating the data through primary and secondary
memory. Programming with these constraints tends to make
programs feel like the Good Old Times style.

Regarding the absence of names, one of the main drivers
behind programming language evolution throughout the 1950s
and 1960s was precisely the elimination of cognitive indirections
such as those shown in the example: we want the program texts
to reflect the high-level concepts of the domain as much as
possible, instead of reflecting the low-level machine concepts
and relying on external documentation to do the mapping
between the two. But even though programming languages
have provided for user-defined named abstractions for a long
time, it is not unusual for programmers to fail to name their
program elements, Application Programming Interfaces (APIs)
and entire components appropriately, resulting in programs,
libraries and systems as obscure as the one shown here.

Let this Good Old Times style be a reminder of how thankful
we should be for being able to hold so much data in memory
and for being able to give appropriate names to each and every
one of our program elements!

1.5 HISTORICAL NOTES

This style of programming came directly from the first viable
model of computation, the Turing Machine. A Turing Machine
consists of an unbounded modifiable state “tape” (the data
memory) and a state machine that reads and modifies that
state. The Turing Machine had a tremendous influence in the
development of computers and how they were programmed.
Turing’s ideas influenced von Neumann’s design of the first
computer with stored programs. Turing himself also wrote the
specifications of a computing machine known as the Automatic
Computing Engine (ACE), which was, in many ways, more
advanced than wvon Neumann’s. Because that report was
classified by the British government, and also because of the
politics following the Second World War, Turing’s design was
not acted upon until several years later, and still in secrecy.
Both von Neumann’s architecture and Turing’s machines led to

the first programming languages in the 1950s, which enforced
the concept of programming by reusing and changing state in
memory over time.

1.6 FURTHER READING

Bashe, C., Johnson, L., Palmer, J. and Pugh, E. (1986). IBM’s Early Computers:
A Technical History (History of Computing), MIT Press, Cambridge,
MA.
Synopsis: IBM was the major commercial player in the early days of
computing machines. This book tells the story of IBM’s transition
from manufacturer of electromechanical machines to a powerhouse
of computing machines.

Carpenter, B.E. and Doran, R.W. (1977). The other Turing Machine.
Computer Journal 20(3): 269-279.
Synopsis: An account of one of Turing’s technical reports describing a
complete architecture for a computing machine based on von
Neumann'’s, but including subroutines, stacks and much more. The
original report can be found at
http://www.npl.co.uk/about/history/notable-
individuals/turing/ace-proposal

Turing, A. (1936). On computable numbers, with an application to the

Entscheidungs problem. Proceedings of the London Mathematical Society
2(42): 230-265.
Synopsis: The original “Turing Machine.” In the context of this book,
this paper is suggested not for its mathematics but for the
programming model of a Turing Machine: a tape with symbols, a
tape reader/writer that moves left and right, and the overwriting of
symbols on the tape.

von Neumann, J. (1945). First draft of a report on the EDVAC. Reprinted in
IEEE Annals of the History of Computing 15(4): 27-43, 1993.
Synopsis: The original “von Neumann architecture.” As with Turing’s
paper, suggested for the programming model.

1.7 GLOSSARY

Main memory: Often referred to simply as memory, this data storage is

directly accessible by the CPU. Most data in this storage is volatile in
the sense that it does not persist beyond the execution of the
programs that use it and also does not persist upon machine power
downs. These days, the main memory is random access memory
(RAM), meaning that the CPU can address any cell in it quickly, as
opposed to having to scan sequentially.

Secondary memory: In contrast to primary memory, secondary memory

1.8

refers to any storage facility that is not directly accessible by the
CPU and that, instead, is indirectly accessed via input/output
channels. Data in secondary memory persists in the device through
power downs and until it is explicitly deleted. In modern computers,
hard disk drives and “pen” drives are the most common secondary
storage forms. Access to secondary memory is several orders of
magnitude slower than access to primary memory.

EXERCISES

1.1

1.2

1.3

1.4

Another language. Implement the example program in
another language, but preserve the style.

No identifiers. The example program still has a few
identifiers left, namely in lines #60 (¢), #116 (i) and
#122 (tf). Change the program so that these identifiers
are also eliminated.

More lines. The example program reads one line at a
time into memory. In doing so it is underutilizing the
main memory. Modify the program so that it loads as
many lines as possible into memory without going over
the established limit of 1024 memory cells. Justify the
number of lines you chose. Check if your version runs
faster than the original example program, and explain
the result.

A different task. Write one of the tasks proposed in the
Prologue using the Good Old Times style.

CHAPTER 2

Go Forth

2.1 CONSTRAINTS

> Existence of a data stack. All operations (conditionals,
arithmetic, etc.) are done over data on the stack.

> Existence of a heap for storing data that’s needed for
later operations. The heap data can be associated with
names (i.e. variables). As said above, all operations are
done over data on the stack, so any heap data that
needs to be operated upon needs to be moved first to
the stack and eventually back to the heap.

> Abstraction in the form of user-defined “procedures” (i.e.

names bound to a set of instructions), which may be
called something else entirely.

2.2 A PROGRAM IN THIS STYLE

1 #!/usr/bin/env pythen
2 import sys, re, operator, string
3

i #

» # The all-important data stack

o #

7 stack = []

o

u #

1w # The heap. Maps names to data (i.e. variables)

i #

12 heap = {}

13

4 #

1z # The new "words" (procedures) of our program

1w #

17 def read_file():

18 wen

i Takes a path to a file on the stack and places the entire
20 contents of the file back on the stack.

a1 wew

2 f = open{stack.pop())

23 # Push the result onto the stack

24 stack.append([f.read()])

25 f.close()

26

2v def filter_chars():

Pl o

20 Takes data on the stack and places back a copy with all
an nonalphanumeric chars replaced by white space.

31 LA

a2 #§ This is not in style. RE is too high-level, but using it
33 4 for doing this fast and short. Push the pattern onto stack
a4 stack.append(re.compile(’ [\W_]+"))

35 # Push the result onto the stack

36 stack.append([stack.pop().sub(’ *, stack.pop()[0]).lower()])
37

3z def scan():

a0 o

a0 Takes a string on the stack and scans for words, placing
41 the list of words back on the stack

ey "en

43 § Again, split() is too high-level for this style, but using
a4 # it for doing this fast and short. Left as exercise.

45 stack.extend(stack.pop() [0].split())

17 def remove_stop_words():
LR

an Takes a list of words on the stack and removes stop words.
a0 "

5 f = open{’../stop_words.txt’)

52 stack.append(f.read().splic(’,"))

EE] f.close()

5l # add single-letter words

Copyrighted material

stack[-1] .extend (list(string.ascii_lowercase))
heap|[’'stop_words’] = stack.pop/(}
Again, thisz igs too high-level for thisz stvile, but using it
for doing this fast and short. Left as exercise,
heap ["words"] = []
while lenistack) » 0:
AF stack([=1] in heap|['stop_words”]:
stack.popl) # pop it and drop it
else:
heap[*words’].append({stack.pop(}) # pop it, store it
stack.extend (heap["words']} # Lead the words eonto the stack
del heap('stop_words’]; del heap[fwords'] § Not needed

def freguencies():
wirw
Takes a list of words and returns a dictionary associating
words with fregquencies of occcurrence.
LR
heap|["word_fregs'] = {})
A little flavour of the real Forth style here...
while lenistack) > 0:
... but the fellewing line is not in style, because the
naive implementstion would be too slow
if svack(-1) in heap['word_freqs’]:
Increment the frequency, postfix stvle:r £ 1 +
stack.append (heap(’word fregs’]{stack(=1]1) & push r
stack.append (1) # push I
atack.append (stack.pop() + stack.pop{)) §# add
else:
stack.append(l) # Push 1 in stackl2}
Load the updated freq back onte the heap
heagp["word_freqgs’] [stack.pop(}] = stack.pop(]

Push the result onto the stack
stack.append(heap[’word_freqs’])
del heap|['word_fregs’] # We don't need this wvariakle anymore

def sorti):
Not im style, left as exercise
stack.extend (gorted(stack.pop().items (), key=operator.
ltemgetter{l}})

i # The main funcrion

#

stack.append{sys.argv|[1l])

read_file{); filter_chars(); scanl(); remove_stop_words()
frequencies(); sorc()

stack.append ()
Check stack length against 1, because after we process
the last word there will be one item left

n» while stack|[-1] < 25 and len(stack| > L:

heap["i*] = stack.pcp()

(w, £) = stack.pop(); print{w, '-", f)
stack.appendi{heap[’i* 1) scack.append(l)
stack.append (stack.pop () + stack.popl())

Copyrighted material

Note: If not familiar with Python, please refer to the Prologue
(Pythonisms) for an explanation of lists, indexes, and bounds.

2.3 COMMENTARY

HIS STYLE takes inspiration in Forth, a small

programming language first developed as a personal
programming system in the late 1950s by Charles Moore, a
programmer working at the time for the Smithsonian
Astrophysical Laboratory. This programming system - an
interpreter for a simple language — supported the need to
handle different equations without having to recompile the
program — a time-consuming activity at the time.

This curious little language has at its heart the concept of a
stack. Equations are entered in postfix notation, e.g. “3 4 +7.
Operands are pushed onto the stack one at a time; operators
take the operands on the stack and replace them with the
result. When data is not immediately needed, it can be placed
on a part of the memory called the heap. Besides the stack
machine, Forth supports the definition of procedures (called
“words” in Forth); these procedures, like the built-in ones,
operate over data on the stack.

The syntax of Forth may be hard to understand due to its
postfix nature and several special symbols that aren’t used in
any other language. But the language model is surprisingly
simple once we understand the constraints — the stack, the
heap, procedures and names. Rather than using a Forth
interpreter written in Python, this chapter shows how the
constraints underlying Forth can be codified in Python
programs, resulting, roughly, in a Forth style of programming.
Let’s analyze the example program.

To start with, to support the style, we first define the stack

(line #7) and the heap (line #12).! Next we define a set of
procedures (“words” in Forth terminology). These procedures
help us divide the problem in smaller sub-steps, such as reading
a file (lines #17 through #25), filtering the characters (lines
#27 through +#36), scanning for words (lines #38 through

#45), removing stop words (lines #47 through +#466),
computing the frequencies (lines #68 through #90), and sorting
the result (lines #92 through #94). We'll look into some of
these in more detail next. But one thing to notice is that all
these procedures use (pop) data from the stack (e.g. lines #22,
#36, #45) and end by pushing data onto the stack (e.g. lines
#24, 436, #45).

Forth’s heap supports the allocation of data blocks that can
be — and usually are — bound to names. In other words,
variables. The mechanism is relatively low level, as the
programmer needs to define the size of the data. In our
emulation of Forth’s style, we simply use a dictionary (line
#12). So for example, in line #56, we are popping the stop
words on the stack directly into a variable on the heap named
stop words.

Many parts of the example program are not written in Forth
style, but some parts are true to it, so let’s focus on those. The
procedure remove stop words (starting in line #47), as the
name suggests, removes the stop words. When that procedure is
called, the stack contains all the words of the input file,
properly normalized. The first few words of Pride and Prejudice
are:

[‘the’, ‘project’, ‘gutenberg’, ‘ebook’, ‘of’, ‘pride’, ‘and’,
‘prejudice’, ...|

That is how the stack looks like at that point, for that book.
Next, we open the stop words file and push the list of stop
words onto the stack (lines #51 through #55). To make things
simple, we keep them in a list of their own instead of merging
them with the rest of the data on the stack. The stack now
looks like this:

[‘the’, ‘project’, ‘gutenberg’, ‘ebook’, ‘of’, ‘pride’, ‘and’,
‘prejudice’, ..., |‘a’, ‘able’, ‘about’, ‘across’, ...||

After reading all the stop words from the file and placing
them onto the stack, we then pop them out to the heap (line
#56), in preparation to process the words of the book that are
still on the stack. Lines #60 through #64 iterate through the
words on the stack in the following way. Until the stack is
empty (test in line #60), we check if the word at the top of the
stack (stack[-1] in Python) is in the list of stop words (line

#61). In real Forth, this test would be much more low level
than what is shown here, as we would need to explicitly iterate
through the list of stop words too. In any case, if the word is in
the stop words list, we simply pop it out of the stack and ignore
it. If the word is not in the list of stop words (line #63), we
pop it out of the stack onto another variable in the heap called
words — the list accumulates the non-stop words (line #64).
When the iteration is over, we take the variable words and
place its entire contents back on the stack (line #65). We end
up with the stack containing all non-stop words, like this:
[‘project’, ‘gutenberg’, ‘ebook’; ‘pride’, ‘prejudice’, ...]

At that point, we don’t need the variables on the heap
anymore, so we discard them (line #66). Forth supports
deletion of variables from the heap in the spirit of what is being
done here.

The freguencies procedure (starting in line #68) shows
one more stylistic detail related to arithmetic operations. That
procedure starts with the non-stop words on the stack (as
shown above) and ends with placing a dictionary of word
frequencies onto the stack (line #89). It works as follows. First,
it allocates a variable on the heap called word fregs that
stores the word-frequency pairs (line #73) — it starts with the
empty dictionary. It then iterates through the words on the
stack. For each word at the top of the stack, it checks whether
that word has been seen before (line #78). Again, this test is
expressed at a much higher level than it would be in Forth, for
performance reasons. If the word has been seen before, we need
to increment its frequency count. That is done by pushing the
current frequency count onto the stack (line #80), then pushing
the value 1 onto the stack (line #81), and then adding those 2
top-most operands on the stack and placing the result on the
stack (line #82). If the word had not been seen before (line
#83), we simply push the value 1 onto the stack. Finally, we
pop both the frequency count (right side of assignment in line
#86) and the word itself (left side of assignment in line #86)
out of the stack and into the variable on the heap, and move to
the next word on top of the stack, until the stack is empty
(back to line #75). At the end, as stated before, we push the
entire content of the heap variable onto the stack, and delete

that variable.

The main function starting in line #98 is the beginning of the
program. We start by pushing the name of the input file onto
the stack (line #98), and then invoke the procedures
sequentially. Note that these procedures are not completely
independent of each other: each of them relies on strong
assumptions about the data that is left on the stack by the
previous one.

Once the counting and sorting is done, we then print out the
result (lines #105 through #109). This block of code shows a
final stylistic detail related to what Forth calls “indefinite
loops,” or loops that run until a condition is true. In our case,
we want to iterate through the dictionary of word frequencies
until we count 25 iterations. So we do the following. We start
by pushing the number 0 onto the stack (line #102), on top of
the data that is already there (word frequencies), and proceed
to an indefinite loop until the top of the stack reaches the
number 25. In each iteration, we pop the count out of the stack
into a variable (line #106), then pop the next word and
frequency out of the stack and print them (line #107); then, we
push the count in the variable back to the stack, followed by
the value 1, and add them, effectively incrementing the count.
The loop, and the program, terminate when the top of the stack
has the wvalue 25. The second clause for termination
(len(stack) > 1) is there in the case of small test files that
might not even have 25 words.

Many options could have been pursued, and the reader is
encouraged to explore the solution space within this style.

2.4 HISTORICAL NOTES

Early computing machines did not have stacks. The earliest
reference for the idea of using a stack in computers can be
found in Alan Turing’s Automatic Computing Engine (ACE)
report in 1945. Unfortunately, that report was classified for
many years, so not many knew about it.

Stacks were invented again in the late 1950s by several
people independently. It was several more years before

