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Part I
What is Quantum Computing?



Chapter 1
Introduction

“The theory of computation has traditionally been studied almost entirely in the abstract,
as a topic in pure mathematics. This is to miss the point of it. Computers are physical
objects, and computations are physical processes. What computers can or cannot compute
is determined by the laws of physics alone, and not by pure mathematics”

— David Deutsch’

Over the past 50 years there has been an astonishing miniaturization in computer
technology. Whereas a microprocessor in 1971 contained roughly 2,300 transistors,
a modern microprocessor of the same size contains in excess of one billion tran-
sistors. Throughout this evolution, even though there have been several changes in
how computer hardware is implemented, the same underlying mathematical model
of a computer has held sway. However, if current trends continue, by the year 2020
the basic components of a computer will be the size of individual atoms. At such
scales, the mathematical theory underpinning modern computer science will cease
to be valid. Instead, scientists are inventing a new theory, called “quantum com-
puting”, which is built upon the recognition that a computing device is a physical
system governed by physical laws, and at very small scales, the appropriate laws are
those of quantum mechanics—the most accurate model of reality that is currently
known.

There are two attitudes one could adopt regarding the necessity of incorporating
quantum mechanical effects into computing machinery. One response it to strive
to suppress the quantum effects and still preserve a semblance of classicality even
though the computational elements are very small. The other approach is to embrace
quantum effects and try to find clever ways to enhance and sustain them to achieve
old computational goals in new ways. Quantum computing attempts to pursue the
latter strategy by harnessing quintessentially quantum effects.

Remarkably, this new theory of quantum computer science predicts that quan-
tum computers will be able to perform certain computational tasks in phenomenally

'Source: Opening words of Chap. 5, “Virtual Reality” of “The Fabric of Reality,” by David
Deutsch, the Penguin Press (1997), ISBN 0-7139-9061-9.

C.P. Williams, Explorations in Quantum Computing, 3
Texts in Computer Science,
DOI 10.1007/978-1-84628-887-6_1, © Springer-Verlag London Limited 2011
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fewer steps than any conventional (“classical””) computer—including any supercom-
puter yet to be invented! This bold assertion is justified because the algorithms avail-
able to quantum computers can harness physical phenomena that are not available
to classical computers no matter how sophisticated they may be. As a result, quan-
tum computers can perform computations in fundamentally new ways that can, at
best, only be mimicked inefficiently by classical computers. Thus, quantum com-
puting represents a gualitative change in how computation is done, making it of
a different character than all previous advances in computer science. In particular,
quantum computers can perform truly unprecedented tasks such as teleporting in-
formation, breaking supposedly “unbreakable” codes, generating true random num-
bers, and communicating with messages that betray the presence of eavesdropping.
Similar counterintuitive capabilities are being discovered, routinely, making quan-
tum computing a very active and exciting field. While no one book can do justice
to the myriad of discoveries that have been made so far, I hope to give you a fresh
perspective on the capabilities of quantum computers, and to provide you with the
tools necessary to make your own foray into this exciting field.

1.1 Trends in Computer Miniaturization

“I like small gadgets, look at this tiny digital camera ... where is it?”
— Artur Ekert [17]

Computer technology has been driven to smaller and smaller scales because,
ultimately, the limiting factor on the speed of microprocessors is the speed with
which information can be moved around inside the device. By cramming the tran-
sistors closer together, and evolving to ever faster mechanisms for switching, one
can speed up the rate of computation. But there is a price to pay. As transistors are
packed closer together it becomes more challenging to remove the heat they dissi-
pate. So at any given stage of technological development there has always been an
optimal transistor density that trades off size for thermal management.

In 1965 Gordon Moore, a co-founder of Intel, noticed that the most economically
favorable transistor densities in integrated circuits seemed to have been doubling
roughly every 18 months. He predicted that this trend would continue well into the
future. Indeed, as evidenced by Table 1.1, it has, and Moore’s anticipated scaling
became known as the more official sounding “Moore’s Law”. However, it is not a
Law in the proper scientific sense as Nature does not enforce it. Rather, Moore’s
Law is merely an empirical observation of a scaling regularity in transistor size and
power dissipation that industry had achieved, and Gordon Moore extrapolated into
the future. However, there is uncertainty in the chip industry today regarding how
much longer Moore’s Law can be sustained.

Nevertheless, in the 40 years since Moore’s Law was invented, successive gen-
erations of Intel chips have adhered to it surprisingly. This is all the more surpris-
ing when one realizes how just how much the underlying transistor technology has
changed (see Fig. 1.1).
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Table 1.1 Growth of the clock rate, and the number of transistors per chip in Intel processors from
1971 to 2007. Note that the transistor sizes reduced over the same time period, allowing the chips
to remain about the same size. In the table 1 p = 10~° meter and 1 nm = 10~ meter

Intel microprocessor Year Speed # Transistors Manufacturing scale
4004 1971 108 kHz 2,300 10
8008 1972 500-800 kHz 3,500 10u
8080 1974 2 MHz 4,500 61
8086 1978 5 MHz 29,000 3n
8088 1979 5 MHz 29,000 3p
286 1982 6 MHz 134,000 1.5pn
386 1985 16 MHz 275,000 1.5u
486 1989 25 MHz 1,200,000 I
Pentium 1993 66 MHz 3,100,000 0.8
Pentium Pro 1995 200 MHz 5,500,000 0.6
Pentium I1 1997 300 MHz 7,500,000 025
Pentium II Xeon 1997 300 MHz 7,500,000 0.25u
Pentium IIT 1999 500 MHz 9,500,000 0.18 u
Pentium III Xeon 1999 500 MHz 9,500,000 0.18 u
Pentium 4 2000 1.5 GHz 42,000,000 0.18n
Xeon 2001 1.5 GHz 42,000,000 0.18
Pentium M 2002 1.7 GHz 55,000,000 90 nm
Itanium 2 2002 1 GHz 220,000,000 0.13 u
Pentium D 2005 3.2 GHz 291,000,000 65 nm
Core 2 Duo 2006 2.93 GHz 291,000,000 65 nm
Core 2 Extreme 2006 2,93 GHz 291,000,000 65 nm
Dual-Core Xeon 2006 2.93 GHz 291,000,000 65 nm
Dual-Core Itanium 2 2006 1.66 GHz 1,720,000,000 90 nm
Quad-Core Xeon 2006 2.66 GHz 582,000,000 65 nm
Quad-Core Core 2 Extreme 2006  2.66 GHz 582,000,000 65 nm
Core 2 Quad 2007  2.66 GHz 582,000,000 65 nm
Quad-Core Xeon 2007 >3 GHz 820,000,000 45 nm
Dual-Core Xeon 2007 =3 GHz 820,000,000 45 nm
Quad-Core Core 2 Extreme 2007 >3 GHz 820,000,000 45 nm

Today, many industry insiders see Moore’s Law surviving for just two or three
more generations of microprocessors at best. In a valiant effort to sustain Moore’s
Law chip manufacturers are migrating to multi-core microprocessor architectures,
and exotic new semiconductor materials. Beyond these advances, a switch to nan-
otechnology may be necessary.

Whatever strategy industry adopts to maintain Moore’s Law it is clear that as
time goes on fewer and fewer atoms will be used to implement more and more bits.
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Figure 1.2 shows the scaling in the number of atoms needed to implement a bit as a
function of time. Extrapolating this trend shows we will be at the one atom per bit
level by about 2020. At the one-atom-per-bit level the appropriate physical model to
describe what is going on is that of quantum physics rather than classical physics.
Quantum physics is considerably different from classical physics. Facts that we
take as being “common sense” in our everyday (classical) world do not necessarily
hold in the quantum realm. For example, in the classical world we are accustomed
to thinking of particles (like grains of sand or dust) as having a definite location in
space and time. But in the quantum world particles do have a definite location in
space and time—in fact they can be in more than one place, or in more than one
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state, at the same time! More bizarre still, supposed “particles” can interact with
one another more in a manner that is more reminiscent of waves than solid objects.
Ultimately, as bits must be encoded in the states of physical systems, whether those
systems are quantum or classical can therefore affect their properties profoundly.

1.2 Implicit Assumptions in the Theory of Computation

“Nature isn’t classical damn it!”
— Richard Feynman

Bits, or “binary digits” lie at the heart of all modern digital equipment rang-
ing from computers to iPODs to high-definition television (HDTV). Contemporary
computers use voltage levels to encode bits. Old fashioned, mechanical, computers
use the position of gear teeth. The only requirement is that the physical system must
possess two clearly distinguishable configurations, or states, that are sufficiently sta-
ble so that they do not flip, spontaneously, from the state representing the bit 0 into
the state representing the bit | or vice versa.

Once we have the ability to store Os and Is and to manipulate them in a controlled
manner we have the basis for making all digital devices. By now, we are all so
familiar with digital devices that, to the extent we even think about them at all, we
take the properties of the bits within them for granted. For example, I am sure you
will agree that the following operations on bits seem eminently reasonable: we can
read a bit to learn the value it has; we can copy, erase or negate a bit regardless of
whether it is a 0 or a I; and we can read some of the bits inside a digital device
without changing the other bits that we did not read. In fact such properties seem so
obvious that we don’t even bother to question these assumptions.

However, in his 1959 address “There’s Plenty of Room at the Bottom” physi-
cist Richard Feynman alluded to the tremendous opportunity available at the time
for further miniaturization of technology [182]. He also anticipated that very small
physical devices would be governed by quantum mechanics rather than classical
mechanics and, as such, would not necessarily behave the same their larger counter-
parts. For example, a robot on the quantum scale might pick up and not pick up an
object at the same time, and to carry it off left and right simultaneously. You would
never know which was the case until you performed an observation as to what he
robot had done. Once you did that, and made a permanent record of the result, its
behavior would become definite. That sounds crazy, but that is what quantum me-
chanics tells us can happen.

Likewise, bits are going to be recorded, ultimately, in the state of some physical
system. So as devices become miniaturized the sizes of the physical systems used
to encode those bits will become smaller. At some point their behavior will need
to be described by quantum physics rather than classical physics. At this point, our
common sense assumptions about how bits ought to behave, e.g., that we can read,
copy, erase, negate them without causing them to change in any way, cease to be
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Table 1.2 Assumptions about the properties of bit that are no longer necessarily true at the quan-
tum scale

Assumption Classically  Quantum mechanically

A bit always has a definite value True False. A bit need not have a definite value
until the moment after it is read

A bit can only be 0 or | True False. A bit can be in a superposition of 0
and | simultaneously

A bit can be copied without True False. A qubit in an unknown state cannot

affecting its value be copied without necessarily changing its
quantum state

A bit can be read without affecting True False. Reading a qubit that is initially in a

its value superposition will change the qubit

Reading one bit in the computer True False. If the bit being read is entangled

memory has no affect on any other with another qubit, reading one qubit will

(unread) bit in the memory affect the other

To compute the result of a True False

computation, you must run the

computer

valid. In fact, at the quantum scale you cannot necessarily read a bit without chang-
ing its value; you cannot necessarily copy, or negate it without perturbing it; you
may be unable to erase it; and sometimes when you read one bit your actions can
change the state of another bit with which you never interacted. Thus, bits encoded
in quantum-scale objects cease to behave like normal bits ought. Some of the differ-
ences between normal (classical) and bits encoded at the quantum scale are shown
in Table 1.2.

Thus, once computers becomes so small that we are then dealing with quantum
bits as opposed to classical bits, we open up a new repertoire of physical effects that
can be harnessed to achieve novel functionalities. As a result many new opportuni-
ties present themselves.

1.3 Quantization: From Bits to Qubits

Fortunately, quantum systems possess certain properties that lend themselves to en-
coding bits as physical states. When we measure the “spin” of an electron, for ex-
ample, we always find it to have one of two possible values. One value, called “spin
up” or |1), means that the spin was found to be parallel to the axis along which
the measurement was taken. The other possibility, “spin-down” or || ), means that
the spin was found to be anti-parallel to the axis along which the measurement was
taken. This intrinsic discreteness, a manifestation of quantization, allows the spin of
an electron to be considered as a natural binary digit or “bit”.

Such intrinsic “discreteness’ is not unique to spin-systems. Any 2-state quantum
system, such as the plane of polarization of a linearly polarized photon, the direction
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of rotation of a circularly polarized photon, or the discrete energy levels in an excited
atom, would work equally well. Whatever the exact physical embodiment chosen, if
a quantum system is used to represent a bit, we call the resulting system a quantum
bit, or just “qubit” for short.

1.3.1 Ket Vector Representation of a Qubit

As we are talking variously about (classical) bits and (their quantum counterparts)
qubits, we’d better find a way of distinguishing them. To do so, we adopt a notation
invented by British physicist extraordinaire Paul Dirac, which has since become
known as “Dirac-notation™.

In Dirac notation, when we are talking about a qubit (a quantum bit) in a physical
state that represents the bit value 0, we’ll write the qubit state using an angular-
looking bracket, |0}, which is called a “ket” vector. Likewise, a qubit in a physical
state representing the bit value 1 will be written |1). What these notations mean
physically will depend upon the nature of the system encoding them. For example,
a |0) could refer to a polarized photon, or an excited state of an atom, or the direction
of circulation of a superconducting current etc. The notation speaks only to the
computational abstraction that we ascribe to a 2-state quantum system and doesn’t
give us any direct information about the underlying physical embodiment of the
system encoding that qubit.

Mathematically, kets are a shorthand notation for column vectors, with |0} and

|1} corresponding to:
1 0
IO)E(O). I)E(l) (1.1)

You might ask “Why do we need to represent a single quantum bit as a two-element
column vector?” “Isn’t one binary digit enough to specify it completely?”” The an-
swer lies in the fact that quantum bits are not constrained to be wholly 0 or wholly 1
at a given instant. In quantum physics if a quantum system can be found to be in
one of a discrete set of states, which we’ll write as |0) or |1}, then whenever it is
not being observed it may also exist in a superposition, or blend of those states
simultaneously, |¢) = a|0) + b|1) such that |a|*> + [b|* = 1.

1.3.2 Superposition States of a Single Qubit

Thus, whereas at any instant a classical bit can be either a 0 or a 1, a qubit can be a
superposition of both a |0} and a |1) simultaneously, i.e., a state such as:

) = al0) +b|1) = (;) (1.2)
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where a, and b are complex numbers> having the property lal> + |b|> = 1.

The coefficient “a” is called the amplitude of the |0) component and the co-
efficient “b” is called the amplitude of the |1) component. The requirement that
la|? + |b|*> = 1 is to ensure the qubit is properly normalized. Proper normalization
guarantees that when we do finally read a qubit, it will be found, with probability
la|? to be in state |0) or, with probability |62 to be in state |1) and nothing else.
Thus the sums of the probabilities of the possible outcomes add up to one.

Dirac notation makes it easy to write down compact descriptions of quantum
states and operators. Some common examples are as follows:

Dirac Notation: Bras, Kets, Inner and Outer Products For every “ket” [)
(which can be thought of as a shorthand notation for a column vector) there is a
corresponding “bra” {yr| (which can be though of as shorthand for a row vector).
The ket and the bra contain equivalent information about the quantum state in ques-
tion. Mathematically, they are the dual of one another, i.e.:

|w>—a|o>+b|l>—(g)
(¥l = a* (0] + (1] = (@ b*)

(1.3)

Note that the amplitudes in the bra space are the complex conjugates of the ampli-
tudes in the ket space. That is, if z = x + iy is a complex number with real part x
and imaginary part y, then the complex conjugate of z is z* = x — iy.

What is the purpose of introducing bra vectors into the discussion if they don’t
contain any new information about the quantum state? It turns out that products
of bras and kets give us insight into the similarities between two quantum states.
Specifically, for a pair of qubits in states |} = a|0) + b|1) and |¢) = ¢|0) + d|1)
we can define their inner product, (V|¢) as:

(WIg) = (YD) (19) = (@ b*)- (C) =a*c+bid (14)
—— d

bra (c) ket

The inner product {¢r|¢) is also called the overlap between (normalized) states |y)
and |¢) because it varies from zero for orthogonal states to one for identical normal-
ized states. We can verify this with a direct calculation: (/|y} = (a* b*)-(}) =
a*a+b*b=|al>+|b*=1.

A second product we can define on states |) = a|0) +b|1) and |¢p) = ¢|0) +d|1)
is their outer product |y) (@]

V) (gl =(¥) - (g = (;) (e d) = (;’i Z;’) (1.5)

2A complex number z = x + iy is a composite number consisting of two real numbers x and
v, and a constant [ = /—1. x = Re(z) is called the “real” part of z, and y = Im(z) is called the
“imaginary” part of z. z* = x —iy denotes the complex conjugate of z, and |z| = +/x? + y? denotes
the modulus of z.
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which is a matrix. The outer product provides a very nice way of describing the
structure of unitary operators, which as will see later, correspond to quantum logic
gates. For example, a NOT gate has a corresponding unitary matrix NOT = ((1,(]})
In terms of outer products this can also be written as NOT = |0)(1]| 4+ |1)(0|. The
outer product factorization of the NOT gate shows the transformation it performs
explicitly. Indeed, all quantum gates can be best understood as a sum of such outer
products.

1.3.3 Bloch Sphere Picture of a Qubit

An intuitive, albeit approximate, way to visualize the quantum state of a single qubit
is to picture it as a unit vector inside a bounding sphere, called the Bloch sphere (see
Fig. 1.3). The parameters defining the quantum state are related to the azimuth and

71

1

Fig. 1.3 Bloch sphere showing the computational basis states |0) and |1), and a general qubit state
[yr) = cos(8/2)|0) + ¢'? sin(0/2)[1)
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elevation angles that determine where the tip of this vector touches the surface of
the Bloch sphere. In this picture, the North pole corresponds to the pure state |0)
and the South pole corresponds to the (orthogonal) pure state |1). All other points
on the surface of the Bloch sphere correspond to the superposition states of the
form a|0) + b|1) for all possible values of the complex numbers a and » such that
lal> + B> = 1.

In particular, an arbitrary pure state of a single qubit |y) = a|0) + b|1) such that
|a\2 + |b|* = 1 can be written in terms of these azimuth and elevation angles as:

M):e"y(cosgm)+e"¢sin§|1)) (1.6)

where y, 0, and ¢ are all real numbers. A pair of elevation and azimuth angles
(0, ¢) in therange 0 <0 < w and 0 < ¢ < 27 pick out a point on the Bloch sphere.
Qubit states corresponding to different values of y are indistinguishable and are all
represented by the same point on the Bloch sphere. y is said to be an overall phase
factor that is unobservable.

Students are often confused about the Bloch sphere for three main reasons: first
how come the azimuth and elevation angles are expressed in half-angles? Second,
how come orthogonal states are not at right angles on the Bloch sphere? Instead they
are 180° apart. Third how can it be that the y parameter has no observable effect?

How might we draw a picture that captures in an intuitive way the complete
character of a qubit in a superposition state such as a|0) + &|1)? The Bloch sphere
provides a way of visualizing the quantum mechanical state of a single qubit. “Wait
a minute!” you say. “Aren’t orthogonal states supposed to be at right angles? How
can the |0) state be the North pole and the |1) be the South Pole? They’re 180°
apart!”

Students are often confused by the Bloch sphere representation of a quantum
state because orthogonal states are not found to be at right angles on the Bloch
sphere. So it is worth a little detour to explain how the Bloch sphere is constructed.

Consider the general quantum state a|0) + b|1). Since @ and b are complex num-
bers they can be written in either Cartesian or Polar coordinates as: a = x, + iy, =
rpe®e and a = xp, + iy, = rpe® with i = /—1 and the x’s, y’s, r’s, and ¢’s are
all real numbers. So, naively, it looks like we need to depict four real numbers
Xas Xby Yas Vb OF P, Th, $a, @p depending on whether we use the Cartesian or polar
representation of the complex numbers a and b. Not so!

Write the general state of a qubit a|0) + b|1) as r,e'®|0) + rpe'®|1). Since
an overall phase factor has no observable consequence (you’ll prove this as an ex-
ercise later), we can multiply by any global phase we please to obtain an equiv-
alent state. In particular, we could multiply by the phase factor e~'% to obtain
ra]0) + rpe’®=%a) |1}, This allows us to represent the state of the qubit using three
real numbers r,, rp and ¢ = (¢p — ¢,). Switching back to Cartesian coordinates for
the amplitude of the |1) component we can write this state as r,|0) + (x +7y)|1). Ap-
plying normalization we have |r,|> + [x +iy|> = | or equivalently r2 +x? + y* = 1
which is the equation of a sphere in coordinates r,, x, and y. We can rename r, = z
for aesthetic reasons and it doesn’t change anything but now we have the equation
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of a sphere in coordinates x, y, and z. Ok so let’s switch from these Cartesian coor-
dinates to spherical coordinates. We have,

X = rsin(@) cos(¢) (1.7)
v = rsin(@) sin(¢) (1.8)
z = rcos(f) (1.9)

But given the constraint x> + y> + z> = r> = 1, we see r = 1. So now the po-
sition on the surface of the sphere is specified using only fwo parameters, 0
and ¢. And the general qubit state can be written as z|0) + (x + iy)|1) or equiv-
alently, since r = 1, cos(6)|0) + (sin(6) cos(¢) + i sin(0) sin(¢))|1), or equivalently
cos(0)]0) + €' sin()|1) since cos(¢p) + isin(¢p) = ¢'?. Given that a qubit must lie
between the extremes of being wholly |0) (which occurs when 6 = 0 and wholly
|1} (which occurs when 8 = 90 it appears all the qubit states are mapped out over
just a hemispherical region of the sphere defined by x2 4+ y2 4+ 722 = 1. If we want
all the possible qubit states to correspond to the points on the surface of a whole
sphere, we can simply map this hemisphere or points onto a sphere of points by
introducing a new angle 8’ = 26. Thus the general qubit state can now be written as
Cos(%) |0) + &' sin(%)l 1}. Thus the complete set of qubit states is now mapped out
as @' runs from 0° to 180°. This final sphere is the Bloch sphere.

An immediate consequence of how the Bloch sphere is constructed is that orthog-
onal quantum states, i.e., states |¢) and | x) for which (| x) = 0, are represented by
antipodal points on the Bloch sphere (rather than being drawn at right angles which
is how we usually expect to see orthogonal vectors drawn in 3D space). This is the
reason why |0) lies at the North Pole and |1) lies at the South Pole of the Bloch
sphere. For a general pure state, represented as a point on the surface of the Bloch
sphere, the antipodal state is the one diametrically opposite it on the other side of
the Bloch sphere such that a straight line drawn between the original state and its
antipodal state would pass through the center of the Bloch sphere. The operation
that maps an unknown state to its antipodal state cannot be expressed as a rotation
on the Bloch sphere. Rather it is the sum of a rotation (in longitude through 180 de-
grees) and a reflection (in latitude with respect to the equatorial plane of the Bloch
sphere). This inability to express the operation purely as a rotation will turn out to
impact our ability to achieve it in a sequence of unitary quantum gates.

Figure 1.4 shows the Bloch sphere labeled with pure I-qubit states at the ex-
tremes of the x-, y-, and z-axes. These are, respectively, |/} = %(lO) + 1)),

— L _ - - L ] - S — i
IN) = 5000 — 11D, [R) = 10) = #(10) +il1), |L) = |0) = 5(10) —i[1)),
|0}, and |1). Notice that orthogonal states are indeed located at antipodal points on
the surface of the Bloch sphere.

1.3.3.1 Other Rotations Having Period 4x

When first encountering the Bloch sphere, students often find it hard to grasp why
a rotation of 27 radians (i.e., 360°) would not restore an object back to its original
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Fig. 1.4 Bloch sphere representation of the states [0}, [1), |,) = ﬁ(l()) + 1)), IN) =

ﬁ(lﬂ) — ). IRy =|0) = ﬁ(m) +i[1)), and |L) = |O) = ﬁ(w) — i|1)). Orthogonal pure
states are at antipodal points on the surface of the Bloch sphere

configuration. However, such a phenomenon can also be seen in the motions of
certain classical physical systems.

For example, extend your right hand straight out so your palm is face up. Keep-
ing your palm face up at all times, rotate your hand clockwise around a vertical axis
passing through the center of your palm until your hand returns to its original config-
uration. The basic contortions you need to do are as follows: starting with your right
hand extended straight out palm up, pull your arm inwards (keeping your palm flat),
twisting your wrist to the right and pushing your elbow to the left, continue twisting
your palm clockwise so your fingertips are pointing towards your right shoulder, and
swing your elbow around to the right and upwards, and push your arm out again.
Congratulations! Your palm has now been rotated through 27 radians (360°) and it
is indeed still face up, buf your hand is not in its original configuration because your
elbow is now on top! To return your hand to its original configuration you need to
apply another full rotation of 360° to your palm. To do so, continue turning your
wrist to the right (still keeping your palm face up) so that your fingertips point to-
wards your tight armpit, swing you elbow around and downwards in a clockwise
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rotating arc, whilst twisting your wrist to the right. This will take your arm back
to its starting configuration. Thus, your hand requires a total rotation of 4z radians
(720°) to return it to its starting configuration. Resting a plate on your palm as you
do this ensures you keep your palm face up for fear of dropping the plate. This is
sometimes known as “Feynman’s Plate Trick™.

A more surprising demonstration of the same symmetry property occurs in the
rotations of a flat belt that is fixed at one end and rotated at the other. This version if
called “Dirac’s Belt Trick” and it is always a hit at parties. Take off a long flat belt
strap. Have a friend hold the buckle end of the belt and hold the other end yourself.
Pull the belt taut so it is flat with the outer face of the belt (as it is normally worn)
pointing upwards. Tell your friend to keep hold their end of the belt tightly in a fixed
position. Ok now twist (i.e., rotate) your end of the belt through 27 radians (i.e.,
360°). Can you remove the kink you have imparted to the belt by passing the belt
under and over itself while keeping the orientation of the ends of the belt fixed (i.e.,
flat with the outer face of the belt pointing upwards)? After a little experimentation
you will conclude you cannot.

Let us make the problem even harder by applying an additional twist to your
end of the belt through another 27 radians (i.e., another 360°). Can you remove the
double kink by passing the belt under and over itself while keeping both ends flat
and pointed upwards? Surely if you could not remove orne kink in this manner, you
would expect it would be even harder to remove two! Yet, remarkably, you can!
After a rotation of 4 radians (720°) applied to the end of the belt, the belt can be
restored to its original configuration by passing it under and over itself while keeping
the orientations of the two ends fixed in space! This seems to be more surprising to
most people than the plate trick. Yet both are examples of physical systems in which
rotations of 2 radians do not restore an object to its original state whereas rotations
of 4 radians do! Such examples show that the 4 periodicity of the Bloch sphere
has parallels in the classical world around us.

1.3.4 Reading the Bit Value of a Qubit

In the everyday classical world when we read, or measure, or observe, something
we don’t usually perturb it in the process. For example, when we read a newspaper
we don’t change the words on the page merely by reading them. Moreover, if ten
people read ten different copies of the same edition of the same paper they would
all see the same words. However, in the quantum world this is not what happens.

The states |0) and [1) correspond to the North and South poles of the Bloch
sphere respectively, and the axis passing through these points is the z-axis (see
Fig. 1.5). Thus the act of reading the bit value of a qubit amounts to determining
the alignment of its spin with respect to this z-axis. If the particle is aligned “spin-
up” it is in the state |0}. If it is aligned “spin-down” it is in the state |1).

When a single qubit in state @|0) + b|1) is read (or “measured” or “observed”),
with respect to some axis through the center of the Bloch sphere, the probability of
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Fig. 1.5 Measuring the bit value of a qubit initially in state a|0) + b|1) yields the answer 0 with
probability |a]?> or 1 with probability |b|?, and projects the qubit into either state |0) or state |1)
respectively

finding it in state |0) or state |1) depends upon the values of @ and b, and on the
orientation of this axis. The most commonly used axis is that passing through the
North and South poles corresponding to the states |0) and |1). A measurement of a
qubit with respect to this axis is called a measurement “in the computational basis”
because the answer we get will be one of the bit values |0) or |1). The outcome we
obtain is, in general, not certain but depends on the amplitudes a and b. Specifically,
measuring the bit value of a|0) + b|1) in the computational basis will yield the
answer |0) with probability |a|? and the answer |1) with probability |5|?. These two
probabilities sum to 1, i.e., |a|> + |b|? = 1.

0 with probability |a|?

1 with probability || .10

Read(a|0) -|-b|1))={

Thus, a single qubit quantum memory register exhibits the interesting property
that even though its contents may be definite, i.e., it may be precisely in the state
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|¢¥) = a|0) + b|1), the outcome we obtain from reading it is non-deterministic.
Sometimes we will find it in state |0) and sometimes we will find it in state |1).
However, the instant affer the measurement is made, the state is known with cer-
tainty to be |0) or |1) consistent with result we obtained. Moreover, if we rapidly

and repeatedly keep measuring the same state we can suppress its evolution and
read read read

effectively freeze it in a fixed quantum state |¢) — [0) — |0) — |0)--- or
1) 50 1) 3% 1) 3 1) ... This is a variant of the so-called Quantum Zeno Ef-

fect.> Butif we allow time to elapse between measurements the state will, in general,
evolve, or “drift off”, in accordance with Schrédinger’s equation.

1.4 Multi-qubit Quantum Memory Registers

So far we have only been dealing with single qubits, but a useful quantum computa-
tional device will need to have a multi-qubit quantum memory register. In general,
this is assumed to consist of a collection of n-qubits, which are assumed to be or-
dered, indexed and addressable so that selective operations can be applied to any
single qubit or any pair of qubits at will. If two qubits selected for an operation are
not physically adjacent, there is usually an operational sequence that achieves the
interaction between them as if they were. This detail is typically omitted from the
abstract model of the quantum memory as it is more an implementation issue than
anything fundamental to the computational model.

Just as a single qubit can be found in a superposition of the possible bit values
it may assume, i.e., |0) and |1), so too can a n-qubit register be found in a super-
position of all the 2" possible bit strings [00...0),[00...1),....[11...1) it may
assume. However, the most interesting superposition states typically involve non-
uniform contributions of eigenstates.

1.4.1 The Computational Basis

When we describe the state of a multi-qubit quantum memory register as a super-
position of its possible bit-string configurations, we say the state is represented in
the computational basis. This is arguably the most natural basis for quantum com-
puting. For example, the most general form for a pure state of a 2-qubit quantum
memory register can be written as:

[¥) = c0l00) + ¢1]01) + 2] 10) 4 c3]11) (1.11)

3The Quantum Zeno Effect says that if you repeatedly measure (or observe) a quantum system,
you can suppress its quantum mechanical evolution. It is named after Zeno of Elea who devised a
paradox that aimed to prove if you continually observe an arrow in flight at any instant it would
appear motionless and hence it cannot be moving: “If everything when it occupies an equal space
is at rest, and if that which is in locomotion is always occupying such a space at any moment, the
flying arrow is therefore motionless.”—Aristotle, Physics VI:9, 239b5.
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where |c0\2 + |cy |2 + \Czl2 + |C3|2 = 1. This implies we can think of the register
as containing many different bit string configurations at once, each with their own
amplitude. Similarly, the general state of a 3-qubit register can be written as:

1Y) = c0]000) + ¢1]001) + 2]010) + ¢3]011) + c4]100) + ¢5]101)
+ ¢6|110) + ¢7]111) (1.12)

where |col® + [e1]? + le2? + [e3 ) + leal® + [es]? + leg[* + |e7]> = 1. Continuing
in this fashion, we see that the most general form for a pure state of an n-qubit
quantum memory register is:

27 —1]
1Y) =c0l00...0) +c1]00... 1)+ +eplll.. )= Y eli)

i=0
where Zial lci|*> = 1 and |i) represents the “computational basis eigenstate”
whose bit values match those of the decimal number 7 expressed in base-2 notation,
padded on the left (if necessary) with “0” bits in order to make a full complement
of n bits. For example, the 5-qubit computational basis eigenstate corresponding to
|6) is |00110). This is because 6 in base-2 is “110” and then we pad on the left with
two “0” bits to make a total of 5 bits.

As for the case of single qubits, such ket vectors can always be regarded as a
short hand notation for a column vector. The size of these column vectors grow
exponentially with the number of qubits, making it computationally intractable to
simulate arbitrary quantum computations on classical computers. For example, a
100-qubit quantum memory register requires 2'00 complex amplitudes to specify it
completely! In very few qubits, we run out of particle in the known Universe with
which to make a classical memory large enough to represent a quantum state.

In a multi-qubit quantum state it is not necessary (and for often not desirable)
for every amplitude to be non-zero. For example, if the quantum memory register
contains the output from some quantum computation, typically, many of the eigen-
states (corresponding) to non-solutions will be absent. For example, a particular
3-qubit quantum state, [y) = a|001) + »|010) 4+ ¢|100) does not contain any con-
tributions from the eigenstates [000), |011), [101), [110), |111). The amplitude of
these omitted components is zero by implication. Hence, as a column vector, the
aforementioned 3-qubit state would actually be:

(O amplitude of |000) component
a ? [001) ”
b ” [010) ?
0 ? [011) ”
[} = al001) + b]|010) 4 ¢|100) = = ” [100) ”
0 ” [101) ”
0 ” [110) 7
0 ” [111) ?

(1.13)
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1.4.2 Direct Product for Forming Multi-qubit States

Suppose we create a quantum memory register from a set of n independent qubits.
How the state of the n-qubit register is related to the states of the individual qubits?
The answer is provided by way of the direct product of the n individual quantum
states.

Definition Direct Product of Quantum States of qubit states. Let |¢) = 42,.'":61 ajlj)

be an m-qubit pure state, and |¢) = Ef":f)l bi|k) be an n-qubit pure state. The
quantum state of a memory register formed by considering |¢) and |¢) together is
computed by taking their direct product, |¢) ® |¥) (sometimes called “tensor’” or
“Kroenecker” product too):

m n aO bo
2" —1 . 2"-1 ap by
e =) alne) b= . [ef -
j=0 k=0 aym _ b?‘nf]
( ( b \ [ aobo
by aphy
ao . :
by dobar—1
) :
( bo \ aybg
aj -l aib
_ : _ \ (1.14)
b?»._, ayban_
[;0 azm_]b()
- l dam—1 by
bZ”—] ) azm_]bzii_]

For example, let |¢p) = a|0) +b|1) and |) = ¢|0) +d|1). Then the direct product

) ®1y) = (Z) ® (;) =

ac
= Zc: =ac|00) + ad|01) + bc|10) + bd|11) (1.15)

bd
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1.4.3 Interference Effects

One of the most striking differences between quantum memory registers and clas-
sical memory registers is the possibility of encountering “quantum interference”
effects in the quantum case that are absent in the classical case. In general terms,
quantum interference can occur whenever there is more than one way to obtain a
particular computational result. The different pathways can interfere constructively
to increase the net probability of that result, or they can interfere destructively to
reduce the probability of that result. For example, if a quantum mechanical particle
impinges on a double slit it will, as shown in Fig 1.6, pass through both slits and
self-interfere beyond the slit, resulting in an oscillatory pattern of probability am-
plitude for where the particle will be found. To understand this quantitatively, let’s
consider the probability of obtaining a particular computational result first by pre-
tending that our quantum register behaves like a classical probabilistic register and
then by treating it (correctly) as a true quantum memory register.

Let |j) and |k} be two eigenstates of an n-qubit quantum memory register that
hold two different bit strings corresponding to integers j and k respectively. These
states are orthogonal ({j|k) = 0) and normalized ({j|j) = (k|k) = 1). So long as it
is not being observed, it is possible for the quantum memory register to exist in a
superposition of any of its allowed eigenstates such as a superposition of | j) and |k),
i.e., |¥) =cjlj) + cklk). If we observed this state in the computational basis we
would find it in state |j) with probability |cj|2 and in state |k) with probability
leel2=1— lc; |2 (since these are the only two possibilities).

Thus, on the face of it, one might think that the quantum memory register holding
the state |yr) = c¢;|j} 4 cx|k) behaves just the same as if it were a classical proba-
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bilistic memory register that outputs state | j) with probability p; (= |c; |2) and state
|k) with probability pi (= |ck|2). But as we now show, this is not the case.

Specifically, let A be some observable that can act on an n-qubit register. Suppose
one of the eigenvalues of this observable is “a” when the corresponding state of the
memory register is |y, }. In other words we have A|vy,) = a|v,).

The question is, with what probability would be obtain the value “a” when we
measure the observable A when the quantum memory register is in state |}) =
cjlj) +exlk)?

Well in the (erroneous) “classical” view, the register really holds either state | j)
or state |k) but we are ignorant about which is the case. The probability of getting
“a” if the register is in state |j) is Pj(a) = [{(¥a])|*. Similarly, the probability of
getting “a” if the register is in state |k) is Py (a) = |{¥,]k)|>. As we are ignorant
about whether the register really holds state |j) or state |k) the probability with
which we expect to see “a’ is:

PSSR (@) = Pj(a) pj + Pie(@) pi = | P Pj(a) + |cxl® Pe(a)

= 1¢j Pl D1 + lex*1{Wa k) (1.16)

So this is our prediction for the probability with which we see result “a” if our
memory register behaves “classically”.

In the case of the “quantum” interpretation of the register, however, we’re not
ignorant of anything! The register truly exists in the superposition state [yr) =

[T 1)

¢jlj) + cklk), and the probability of getting “a” is therefore:

PRUANTUM () — [ |9 12 = [ej (Yal ) + ci(Walk)

= 1¢j P1Wal /) P + lek P 1(alk) 1 + 2 Re(e e (Val ) (¥alk))
(1.17)
Thus, in the quantum case there is an addition term contributing to the probability of
obtaining result “a”. This is the result of quantum interference between the different
computational pathways by which result “a’ can be obtained.

1.4.4 Entanglement

*“I'would not call [entanglement] one but rather the characteristic trait of quantum mechan-
ics, the one that enforces its entire departure from classical lines of thought.”
— Erwin Schrodinger

Another way in which quantum memory registers can differ from classical mem-
ory registers is in their ability to exist in enfangled states. This is a state of a compos-
ite quantum system that involves unusually strong correlations between parts of the
system. There is considerable debate at present about the nature of entanglement, es-
pecially in systems involving more than two particles, and whether entanglement is
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strictly necessary to obtain a complexity advantage over a classical computer. How-
ever, at this time it appears that entanglement is crucial to obtaining the exponential
speedups seen in some quantum algorithms.

So what is an entangled state exactly? In its simplest terms we can define an
entangled state as follows:

Definition: Entangled Pure State A multi-qubit pure state is entangled if and only
if it cannot be factored into the direct product of a definite state for each qubit
individually. Thus, a pair of qubits, A and B, are entangled if and only if their joint
state |{) 4p cannot be written as the product of a state for qubit A and a state for
qubit B, i.e., if and only if |{) ap # [¥) 4 ® |¥) p for any choice of states |) 4 and
1Y) B.

In a multi-qubit memory register if qubits are entangled then actions performed
on one subset of qubits can have an impact on another, “untouched”, subset of
qubits. For example, consider a 2-qubit memory register comprised of qubits A
and B, in state %UO)A ® 1|0y + |1} ® |1} ). If qubit A is measured in the com-
putational basis and found to be in state |1) then even though qubit B has not yet
been touched, its quantum state is now determined to be |1) too. Thus a measure-
ment of qubit A has had a side effect on the value of qubit B!

For notational compactness entangled state are more commonly written by drop-
ping the particle label (A, B, etc.) because this is implied by position, and by drop-
ping the & product as this is implied by simply abutting ket vectors. So the afore-
mentioned entangled state could also be written as %(lOO) +|11))

Entanglement is a pervasive phenomenon in multi-qubit quantum memory reg-
isters, It is also the cornerstone of many quantum algorithms. For example, we can
prepare two entangled quantum registers, A and B say, such that register A contains
a set of indices running from 0 to 2" — 1 and register B contains a set of values of a
function who behavior depends upon the value of the index in register A. So the joint
state (ignoring the normalization factor) can be something like 212;61 [)alfi))g.
By measuring the value of the function (in register B) to be value “c” say, we can
project out the set of indices (in register A) consistent with the observed function
value, giving us a superposition of the form Z{,-f:f(l-f,:(_} li"y alc). That’s a neat trick
because in one shot we get all the index values (in register A) that give the same
value for the function (in register B).

1.4.4.1 Entanglement and Quantum States in Different Number Bases

One of the most interesting aspects of entanglement is how it is tied to our choice
of representation of numbers. Traditionally, we think of quantum computing using
the base-2 number system. Showing the number base as a subscript we have |0¢) =
102), 1110) = 112), 1210) = 1102), [310) = [112), ...

If the quantum gate, represented by the unitary matrix U, is to act on n qubits,
U will have dimensions of that are a power of two, specifically, 2" x 2". Likewise,
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the unitary matrix corresponding to a quantum gate that acts on qufrits (i.e., base 3
quantum computation), will have dimensions that are a power of three, i.e., 3" x 3".
Typically, most researchers use a base 2 (qubit) model of quantum computation.
This is partly out of habit, and partly because quantum gates that manipulate qubits
(and which therefore require 2-body interactions) are assumed to be simpler to build
than those that manipulate qutrits (and which therefore require 3-body interactions).
But in principle, one could use whatever base one wants.

Does the choice of base matter? Well, not from a computability perspective. Any
computation that can be done using qubits can also be done using qutrits. However,
it does raise some interesting issues when we consider the degree to which entangle-
ment is critical to quantum computation. For example, suppose you wanted to create
a superposition of two numbers “1”” and “2” in some quantum memory register. Us-
ing qubits, such a superposition could be coded as %(\01) 4+ |10)) (which is entan-

gled). However, using qutrits, the equivalent state could be encoded as % (0 +12))

(a plain, unentangled, superposition). So the choice of base affects the degree to
which entanglement is needed.

Some researchers misinterpreted the implications of this by proposing that quan-
tum computation can be implemented without entanglement. For example, suppose
we consider using a single atom (or perhaps artificial quantum dot) that has a huge
spectrum of energy levels available to it. We could imagine associating each energy
level with a different computational state: the ground state of the atom could be
“|0)™, the first excited state “|1)”, the second excited state “|2)” etc. We could then
regard a quantum computation as a sequence of operations that maps some initial
state of this atom (represented as an unentangled superposition of states) into a final
state (represented as an unentangled superposition of states). And it would seem as
though entanglement is unnecessary.

The problem with this approach is that it neglects a hidden exponential cost.
To do universal (i.e., arbitrary) quantum computation we need to be able to access
exponentially many different energy levels. However, as the total energy of the atom
is finite, this means we will need to “fit” exponentially many energy levels into
a finite energy interval. Hence, we will require exponentially increasing precision
in order to address a specific energy level. Hence, although in principle one could
perform quantum computation in higher bases, and perhaps lower the degree to
which entanglement is needed, in practice it is very hard to imagine doing away
with entanglement entirely.

1.5 Evolving a Quantum Memory Register: Schrodinger’s
Equation

So far we have been discussing the properties of individual quantum bits (such as
superposition), and those of multi-qubit quantum memory registers (such as super-
position, entanglement and interference). Qur working assumption has been that the
instantaneous state of a quantum memory register, |V (¢)), holds the instantaneous
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state of the quantum computation. But how does this state evolve with time, and
how can we control this evolution to enact a purposeful quantum computation?

1.5.1 Schrodinger’s Equation

Remarkably in 1929, long before anyone had ever thought of quantum computers,
physicist Erwin Schridinger discovered an equation that describes how any isolated
quantum system evolves in time. Since a quantum memory register is nothing more
than an isolated quantum system, it too must be described by Schrédinger’s equa-
tion.

Schridinger’s equation is a linear first order deterministic partial differential
equation that involves the instantaneous state of the quantum memory register
[¢(t)), a time independent Hermitian matrix H, called the Hamiltonian (the observ-
able for the total energy of the system), and a constant / equal to Planck’s constant
divided by 2m. The fact that Schrédinger’s equation is “linear” means that sums of
solution to the equation are also solutions to the equation, which is the fundamental
origin of the superposition principle. The fact that the Schrdodinger equation is de-
terministic means that if you know its instantaneous state at any moment you can
predict its future and past states with certainty (provided the system is not observed).

Regardless of the precise details of the physical system, Schrodinger’s equation
always takes the form:
aly (1)

iﬁTz'HW(t)) (1.18)

As h is a constant, and |y (7)) describes the instantaneous state of the quantum
memory register, the form of this equation implies that all of the details pertaining to
the particular physical system in question must be bundled into the operator H—the
Hamiltonian. So what does this Hamiltonian mean exactly?

1.5.2 Hamiltonians

In quantum mechanics observables are described by operators, which in turn can
be represented as Hermitian matrices. The allowed values for an observable are the
eigenvalues of its associated Hermitian matrix. The Hamiltonian, 7{ is the observ-
able corresponding to the total energy of the system, and its eigenvalues are the
possible values one can obtain when one measures (or “observes”) the total energy
of the system. Depending on the physical situation such a Hamiltonian may be time
dependent or time independent.

The Hamiltonian H for a particular quantum physical system is built up from
knowledge of the elementary interactions available in the system, and it can be writ-
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ten in terms of operator products like those we encountered in Sect. 1.3.2. For ex-
ample, the Hydra superconducting quantum processor [423] has the Hamiltonian:

N N N
HO=Y hZi+ Y. JZZi+ Y A0X (1.19)

i=1 i<j=2 i=1

where Z; = sz and X; = ai are the Paul-Z and Pauli-X matrices for qubit 7, h; is
the bias applied to qubit i, A;(¢) is the tunneling matrix element for qubit 7, and J;;
is the coupling between qubits i and j.

The fact that 7 is the observable for the total energy of the n-qubit system means
that 7{ is a 2" x 2" dimensional Hermitian matrix such that there exist energy eigen-
states |; )}, and energy eigenvalues E; such that H|vy;) = E; |y ). The eigenvalues
E; are the only allowed values for the total energy of the system. Thus there is al-
ways some basis (the energy eigenbasis {|y;}}) in which H is a diagonal matrix,

H =23 Eilv) (il

Ey 0 O 0
0 E; O 0
H= (1.20)
0 0 . 0
0 0 0 E»w_

However, the Hamiltonian if often stated with respect to some other basis, e.g.,
the computational basis, {|00...0},[00...1),...,[1...1)}. Hence, it is sometimes
necessary to change the basis used to describe states and operators in quantum com-
puting. We will come back to this issue and discuss it in detail in Sect. 1.6.4.

1.5.3 Solution as a Unitary Evolution of the Initial State

Once the Hamiltonian is known the Schridinger equation can be solved. The sim-
plest case is that of a time-independent Hamiltonian. In this case the solution to the
Schrodinger equation is:

U(t) = exp(—iHt /h) (1.21)

This says that if you know the initial state of the system, [y (0)), you can de-
termine its state at a later time, f, by acting on the initial state with the opera-
tor exp(—iHt/R). Or, in other words, the system is described by some Hamil-
tonian H and you let it “run” for a length of time 7, then the result you get is
Y (1) = U@1¥ (0)) = exp(—iHt /1) |§ (0)).

The matrix U(¢) is therefore the matrix exponential of —i’Ht A. If A is any ma-
trix, its matrix exponential is:

AT A At

_1+A+?+—+I+—+ (1.22)
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As 'H is an Hermitian matrix, its matrix exponential exp(—iHt/k) is a unitary
matrix. A unitary matrix has the property that its inverse is equal to its conjugate
transpose, i.e. U~! = U'. Therefore, a unitary matrix is always invertible which
means that the evolution it describes is reversible, i.e., there is no loss of informa-
tion. Hence, the closest classical analog to quantum computing is classical reversible
computing, as it too preserves information about the computational history.

1.5.4 Computational Interpretation

A classical computer follows essentially a LOAD-RUN-READ cycle wherein one
loads data into the machine, runs a program using this data as input, and then reads
out the result. This becomes an analogous PREPARE-EVOLVE-MEASURE cy-
cle for a quantum computer. That is, one prepares a quantum state, evolves it on the
quantum computer, and measures the result.

Each aspect of the quantum computer’s operation offers new opportunities un-
available in the analogous phase of a classical computer’s operation. For example,
whereas in a classical computer you can only load one input at a time, in a quan-
tum computer you can prepare exponentially many inputs in the same amount of
time. The whereas a classical computer can only run a computation on one input,
a quantum computer can evolve a superposition of computations on all inputs in
the same time. Finally, whereas a classical computer can only read one output, we
can perform more sophisticated measurements of the output state from a quantum
computer to compute certain joinf properties of all the answers to a particular com-
putational problem in the time it takes a classical computer to find just one of the
answers. This gives quantum computers the potential to be much faster than any
classical computer, even a state-of-the supercomputer.

1.6 Extracting Answers from Quantum Computers

The process of extracting answers from quantum computers can be more tricky than
one might imagine. In order to learn the result of a quantum computation we must
read the quantum memory register that contains it. Such an act is more properly
thought of as performing a measurement on a certain quantum state (i.e., the result
of the quantum computation) in a certain basis (typically, but not necessarily, the
computational basis).

1.6.1 Observables in Quantum Mechanics

A measurement of a quantum memory register couples the quantum computer to
the measuring device, temporarily, causing information from the quantum memory
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register to be transferred to the measuring apparatus, whereupon it is converted to
classical information and amplified to a scale detectable by human senses. At this
point we say the observable has been “read” or “measured”. Therefore, the act of
reading a quantum memory register is more properly thought of as an experimental
determination of the value of some observable of the system.

In quantum mechanics, an observable for some property of an n-qubit system
is represented by a 2" x 2" dimensional Hermitian matrix, @ say. The Hermitian
property means that @ = O and so the eigenvalues of @ are guaranteed to be real.
the significance of this is that quantum mechanics says that when the property asso-
ciated with observable O is measured that the answer we obtain has to be one of the
eigenvalues of O, and the state immediately after the measurement is the eigenvec-
tor that pairs with this eigenvalue. Thus, if {|v;)} are the family of eigenvectors of
O and {A;} are the corresponding family of eigenvalues, such that:

Ori) = A1) (1.23)

then the only possible values we can ever obtain for the property associated with
observable O are one of the A;’s and, having obtained such a result, the state im-
mediately after this measurement will be |y;). Moreover, if we repeatedly prepared
and measured several preparations of the state |i) then the average value we would
obtain would be:

(O) = (¥]O]y) (1.24)

where |} and O should be described with respect to the same basis.

Many students find this measurement formalism perplexing. Why should acts
of measurement be associated with matrices? And why should the values obtained
from acts of measurements be associated with eigenvalues? What motivates this
formalism?

The answer lies in our desire to have a mathematical way of describing acts
of measurement that reflects, faithfully, the phenomena experimentalists encounter
when they perform real measurements on quantum systems. As we shall see in the
next section, by associating observables with Hermitian matrices, and the allowed
values of observables with eigenvalues of those operators, we can conjure up a rel-
atively simple and concise mathematical model of the measurement process that
naturally has all the requisite properties.

1.6.1.1 Observables as Hermitian Operators

Let us start by summarizing the phenomena scientists encounter when they try to
make observations on quantum systems, as this will make the subsequent mathe-
matical account of observation that is used in quantum mechanics far more intuitive.
The first idea is that when we measure some property of a system we obtain a
real number for the answer. So measurement results need to be real numbers.
Secondly, for quantum-scale objects, the act of observing the system can change
its state. For example, to find the position of an electron you need to bounce light
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off it. The shorter the wavelength of the light used the more precisely you can deter-
mine position. But the shorter the wavelength of the light the greater the momentum
kick the light imparts to the electron as it scatters off it. Hence, a very precise mea-
surement of position necessarily induces a large uncertainty in momentum and vice
versa. So the second idea is that acts of observation can change the state.

Third, the measured values one obtains do not usually span a continuous range
of possibilities but instead may take on only certain discrete values. For example, if
we measure the spin of an electron it is always found to be aligned or anti-aligned
with the measurement axis. Even if you try to “cheat” by setting up an experiment
with the electron spinning at some known angle to the axis of measurement, when
you make the measurement the spin jumps into alignment or anti-alignment with
the measurement axis. These are the only two values allowed. So the third idea is
that measured values are discrete rather than continuous.

Fourth, the order in which we make a sequence of observations can affect the
outcome we obtain. So an experiment that measures property A first and then prop-
erty B does not always yield the same results, even statistically, as if we measured
property B first and then property A. So the fourth idea is that the order in which
we perform measurements can affect the outcome we obtain.

Fifth, when we measure certain pairs of observables, the more accurately we
can pin down one, the less accurately we can pin down the other. That is there is
a fundamental quantifiable limit to how accurately we can measure certain pairs of
observables. In particular, defining:

A0 =04—-(04)
AOg = 0g — (OR) (1.25)

it can be shown that
AO 4 AQpg > constant (1.26)

where the inequality is strict if the order in which observations are made makes
a difference. The mathematical machinery used in quantum mechanics to describe
acts of observation has to reflect the phenomena scientists encounter when they do
actual measurements.

It turns out that all these properties fall out naturally if we associate observables
with Hermitian operators. If an observable A is associated with an Hermitian oper-
ator O 4, then:

1. Quantized values: the only allowed outcomes for the measurement are the eigen-
values of O4.

2. Real values: as @4 is Hermitian its eigenvalues must be real.

3. Observation changes the state: if the system is in a superposition state just prior
to a measurement then upon obtaining the result A; the system will be projected
into the state |y;). This is the eigenstate of @4 such that O 4|v;) = A;[¥;).

4. Non-commuting Measurements: if we are interested in two observables A and B
represented by Hermitian matrices @4 and Op then the order in which measure-
ments are made will make a difference whenever O, - O # Op - O4.
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5. Uncertainty principle: as we show in Chap. 12, for any pair of observables O 4
and Op there is a minimum uncertainty with which the .4 and B properties can
be measured simultaneously given by AO 4AOR > %l([OA, Ogl}.

Hence, although the quantum mechanical account of observables appears quite
alien to most people when they first encounter it, remember that the reason it is set up
this way is simply to capture the empirically determined properties of measurements
and observations on quantum scale objects.

1.6.2 Observing in the Computational Basis

The most common kind of measurement that is made in quantum computing is to
measure a set of qubits “in the computational basis”. By this we mean that the spin
orientation of each qubit in the quantum memory register is measured along an axis
parallel to the z-axis of the Bloch sphere, which is the axis passing through its North
and South poles. When such a measurement is made, each qubit will be found to be
aligned or anti-aligned with the z-axis corresponding to being “spin-up” (i.e., in
state |0)) or “spin-down” (i.e., in state |1)) respectively. When such a measurement
is applied to each qubit in an n-qubit quantum memory register one will obtain one
of the 2" possible bit string configurations that the register can take on. The probably
of obtaining the different outcomes depends upon the amplitude with which each bit
string configuration appears in the superposition state of the register just prior to it
being measured.

Consider, for example, an n-qubit quantum memory register in the (normalized)
state le;al ¢;|i). Here we use the shorthand notation that |i) really stands for a bit
string, |i) = |iy—1in—2...12i1ip), such that i = 2% + Zli] + .o+ Z’I_li”_l. The
outcome we obtain will depend on the amplitudes ¢; and on whether we measure
some or all of the qubits.

1.6.2.1 Complete Readout

If all the qubits are measured in the computational basis one will obtain the result |i)
with probability |c;|%. Consequently, if one of the amplitudes is zero, i.e., there exists
an index value i’ such that ¢;; = 0, there is no chance whatsoever of obtaining the
answer |/} from the measurement. Conversely, if one of the amplitudes is unity,
i.e., there exists an index value i” such that ¢;» = 1, then if the state is properly
normalized, the result of the measurement is guaranteed to be the corresponding
eigenstate, |;).
Consider a 3-qubit quantum memory register that initially is in the state

[Yr) = ¢0]000) + ¢1]001) + c2|010) + ¢3]011) 4+ c4]100) + ¢5[101)
+¢6|110) + ¢7]111) (1.27)
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Table 1.3 Probabilities of

Ob[aining the eight distinct Qubit A Qubit B Qublt C Probablll[y
triples of values when three
qubits are read in the [0} 10) [0} lcol?
computational basis 10} 10 1) le]?

10) 1) 0} lca|?

) 1) 1) les|?

[1) [0) |0) leal?

[1) [0) (1) les|?

1) ] 10) lesl?

1) 1) I le71®

where Z;/:U lci|> = 1. For convenience imagine labeling the leftmost qubit A, the
middle qubit B, and the rightmost qubit C. When we do a complete measurement of
all the qubits in this memory register, we expect to find the result |i) with probability

i |>. That is we obtain the results shown in Table 1.3.

1.6.2.2 Partial Readout

Alternatively, suppose we measure only the middle qubit, B, and find it to be in
state “|1)”. Such a measurement projects the qubits into a form that constrains the
middle qubit to be | 1), but leaves the other qubits indeterminate (since neither qubits
A nor C were measured). Moreover, the resulting state must still be properly nor-

malized. Hence, after the measurement, the state of the 3-qubit memory register is
€21010)+¢3]011)4¢6|110)+c7[111)

VleaP+lesP+Hes 2+ ler 2

1.6.3 Alternative Bases

We do not have to view the contents of a quantum memory register as being in
the computational basis however. A basis for an n-qubit quantum memory reg-
ister is any complete orthonormal set of eigenstates such any n-qubit state can
be written as a superposition of states taken from only this set. The computa-
tional basis states for a single qubit memory register are |[0) and |1), and for an
n-qubit quantum memory register the tensor product of all combinations of these,
ie. {|0), [1)}®" = {]00...0),]00...1),...,|11...1)}. However, many other bases
are possible, including those related to rotations of the single qubit computational
basis states and tensor products thereof, and entirely unusual choices such as entan-
gled multi-qubit states, e.g., the Bell basis. Table 1.4 shows some possible bases for
a rudimentary (2-qubit) quantum memory register. The first three bases are related
to rotations of the single computational basis states, but the fourth basis is a basis
consisting of purely 2-qubit states, which is nevertheless a proper basis for 2-qubit
states.
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Table 1.4 Some examples of
different bases for 2-qubit
quantum memory register. _
Note that the Bell basis is 0 Rotated 10}
defined over entangled 1)
2-qubit states. The other

Basis Eigenstates

cos@|0) + sin@|1)
cosf|0) —sinf|1)

bases shown are unitary Diagonal |/) = %(lo) + 1))
transformations of the _ |2 0 |

computational basis states |0) ™) = E(l =1
and |1) Chiral 1) = —=(10) +i[1))

o) = 250y —i[1)
Bell |Boo) = 25(100) + 1))
|Bo1) = J=(101) +[10})
1B10) = 75 (100) — [11))
|B11) = 45(101) = 10))

However, the proper way to think of this is that there is an observable, A say,
whose eigenvectors correspond to the possible n-bit computational eigenstates,
[00...0), [00...1),...,|11...1). To remind ourselves that these are eigenvectors
of observable A we’ll rename these eigenvectors |a;) and call them the “a”-basis.

However, we do not have to use the computational basis to represent a state.
Any complete orthonormal set of eigenvectors for an n-qubit state will do. In some
circumstances, it is convenient to re-represent a given state in a new basis that sim-
plifies some subsequent calculation. For example, suppose we are interested in cal-
culating the expected outcomes of an observable property of an n-qubit state other
than its bit values. Let us call the observable operator in which we are interested B3
having eigenvectors |b;). Measuring observable 5 amounts to measuring the state
[¢r) in the “b”-basis. The question is given a representation of a particular state [{)
in the “a”-basis, how would this same state be represented in the “b”-basis? Know-
ing this we can then calculate the expected outcome from measuring observable B
of |¢).

First we need to know how the eigenvectors in the two bases are related. In par-
ticular, imagine creating the operator, U, defined as follows:

U=} Ibi){al (1.28)
p

An operator, U, of this form is unitary and induces the following mapping between
the “a”-basis and the “b”-basis:

|b1) = Ulay)

|b2) = Ulaz)
(1.29)

lb2r) = Ulaze)
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Hence for each eigenvector in the “a”-basis there is a corresponding eigenvector in
the “b”-basis.

1.6.4 Change of Basis

A given quantum state is not wedded to any particular basis. The same state can be
interpreted as different superposition states of eigenstates from a completely differ-
ent basis. Once this is understood, it makes it easier to appreciate why we might
choose to observe a given state in a basis other than the computational basis.

Typically, in this book, we represent the states of a quantum memory register in
the computational basis. That is, we write an n-qubit pure state in the form:

) = cili) (1.30)

where |7} is the binary representation of integer i padded on the left with zeroes,
if necessary, to make a full complement of n bits, and ¢; is the complex amplitude
with which eigenstate |7) contributes to the superposition, such that 3, |¢; 1>=1.

In the computational basis representation it is easy to calculate the probability of
measuring the quantum memory register to be in a certain bit-string configuration,
since configuration |i) will be found with probability |c; |2.

1.6.4.1 Change of Basis for a State

Thus a given state [{) can be written in either the “a”-basis or the “b’-basis. Specif-
ically, we have:

W)=Y aila)y =Y Bjlb;) (1.31)
i J
where the amplitudes o; and §; are given by:
a; = (ai|¥) (1.32)
Bj = (bjl¥) (1.33)

Equation (1.29) tells us how to compute each “b”-basis vector |by) given its

corresponding “a”-basis vector, |ag), and U. So all we need to do now is to learn
how to compute B;. We can rewrite 8; as follows:

I3

Bj = (bjl¥r) = (b (Z |a,-><az-|) ) = (bjlai) (e ¥)

=Y {aj|U aMai ) = (U i (1.34)

i
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where we have used the facts that (Zi la;){a;|) = 1, the identity operator, and
|b;) = Ula;}, which implies (b;| = (aleT. The last line of (1.34) is the usual form
for the dot product of a matrix (i.e., U™) with a column vector (i.e., the column vec-
tor of amplitudes «;). Hence, the column vector of amplitudes 8; representing the
state |y) in the {|b;)} (i.e.,“new”) basis is related to column vector of amplitudes c;
in the {|a;)} (i.e., “old”) basis via the matrix equation:

[V )b basis = U1 |8 basis (1.35)

where U is the operator define by (1.28) and which induced the connection between
the bases given in (1.29).

Example: Linear versus Diagonal Polarization Bases Imagine a qubit encoded
in the linear polarization state of a photon. By this we mean if we think of light as
an oscillating electromagnetic wave, the plane in which the electric field component
of that wave is oscillating, i.e., the state of its linear polarization, encodes our qubit.
If the plane is “vertical” (with respect to some arbitrary axis in physical space) we
say the qubit is a logical 0 |¢). Conversely, if the plane in which the electric field is
oscillating is “horizontal” (with respect to the same axis in physical space) we say
the qubit is a logical 1 |«>). Note, just to reinforce your understanding of the geom-
etry on the Bloch sphere, on the Bloch sphere the states representing vertical and
horizontal polarization (|0) = |$) and |1) = |<>)) correspond to the North Pole and
South Pole respectively (i.e., at 180° separation). But in physical space the planes
representing vertical and horizontally polarized photons lie at 90° to one another.

Now let’s imagine switching to a polarization basis that it tilted at 45° with re-
spect to the original basis. The new basis kets are | /) = % (10) +11)) (correspond-
ing to a photon whose plane of polarization is tipped at +45° to the old plane of
polarization) and |N) = %(IO) — |1}) (corresponding to a photon whose plane of
polarization is tipped at —45° to the old plane of polarization). Thus following the
recipe given above, the unitary matrix that maps a state in the old basis to its equiv-
alent in the new basis is

U= 0] + 1 0+10+—_071
WO+ N (1] = ~/_(I) NI 73 (10) — 1)1}

|
:z(} }) (1.36)

1.6.4.2 Change of Basis for an Operator

Just as we can view quantum states in different bases, so too can we view quantum
operators in different bases. Consider some operator, O say, given initially in the
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u ’%

-basis. By inserting the identity operator twice we can write:
(b Olbe) = (il [ Y lam) @l | - X - [ Y lam) (@l | 1)
m m

=D (balan)(@n|Olan) anlbe)

= Z Z (| U |y} am|Olay) (@, U ag)
= Z Z(U')kmom,, Une (1.37)

This has the form of a “similarity transform”, which is encountered routinely in
linear algebra. That is, in matrix form, we can write:

O“b"-basjs = UT ' O"u“—basis U (138)

Thus, given an operator in the “a”’-basis equation (1.38) shows how to transform it
into the “b”’-basis.

1.6.5 Observing in an Arbitrary Basis

So far we have equated the act of observing a quantum memory register with the act
of reading its bit values, or equivalently, measuring its qubits in the computational
basis. However, a given quantum state does not have a unique interpretation: any
state—even the state of a quantum memory register—can be pictured as different
superposition states over different bases. Consequently, although most of the time
in quantum computing it seems natural to read a quantum memory register in the
computational basis, in some circumstances it might be more natural to read the
quantum memory register with respect to some other basis.

Consider what this means in the case of a single qubit. Although a qubit might
be defined initially with respect to the computational basis, i.e., as a state of the
form a|0) + b|1), where |0} is the North pole, and |1) the South pole, of the Bloch
sphere, this same state can be re-represented in infinitely many other ways simply
by changing which vectors we regard as the “basis” vectors.

Picture the state of a single qubit as a point on the surface of the Block sphere.
Define a vector whose origin lies at the center of the Bloch sphere and whose tip
touches this same point on the surface. Imagine keeping this vector in a fixed ori-
entation but rotating the Bloch sphere surrounding it. Although the vector has not
changed, the coordinates of its tip with respect to the x-, y-, and z-axes of the Bloch
sphere have changed, and so the state at the tip of the vector appears to have changed.
But however we rotate the axes around we can always pick an observation-axis
that is on a line from the qubit state, |} say (on the surface of the Bloch sphere),
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1

Fig. 1.7 Measuring the state of a qubit initially in state a|0) + b|1) along an axis passing through
states [y) and \wi) corresponds to measuring the qubit in the {|v), hpl)] basis

through the center of the Bloch sphere piercing the opposite side. The (antipodal)
point where this line pierces the Bloch sphere corresponds to the quantum state
[ 1), which is orthogonal to |¥). Thus the basis made from states {|y), |[¥+)} is
equally as good as the computational basis, {|0}, 1)}, for describing single qubit
states. Thus, it is possible to measure our qubit in this alternate {|v), [¥1)} basis
too. Such a measurement is illustrated in Fig. 1.7.

1.7 Quantum Parallelism and the Deutsch-Jozsa Algorithm

Having introduced the main ideas of quantum computing we end this chapter by
describing our first quantum computation—deciding whether a given function has
a certain property using the Deutsch-Jozsa quantum algorithm. This computation
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cannot be solved as efficiently using any classical computer. It is not an especially
useful computation, mind you. In fact, it is rather contrived. Nevertheless it illus-
trates many of the key steps in a typical quantum computation.

1.7.1 The Problem: Is f(x) Constant or Balanced?

The problem, originally formulated by Cleve, Ekert, Macchiavello, and Mosca [112]
as a variant of one by Deutsch and Jozsa [138] is this: Let x be any n-bit binary
number and let f(x) be a function that returns a single binary output (i.e., 0 or 1)
for each value of x. Furthermore, we are promised that f(x) behaves in only one of
two possible ways: either f(x) returns the same value for all binary inputs (in which
case f(x) is said to be constant), else f(x) returns one bit value for half its inputs
and the other bit value for the other half of its inputs (in which case f(x) is said
to be balanced). Finally, we are not allowed to inspect the mathematical definition
of f(x). Instead, we imagine f(x) is given to us as a “black-box” function that
acts in such a way that, when given the input x, the black box responds with the
correct value for f(x). Our task is to decide, using the fewest calls to the black-
box, whether f(x) is constant or balanced. Note that the decision does require us to
exhibit the values of f(x). Rather it only concerns a property those values possess,
namely, whether they are all the same, or whether half have one bit value and half
the other.

Using our conventional (classical) thinking, the number of times we would seem
to need to call the black box is clear. There are a total of 2" possible bit string inputs
that can be made from n bits. Thus, we will need to check at least one more than half
of them, i.e., (% x2M+ 1= =1y 1, to be able to decide with certainty whether
f(x) is constant or balanced. Note that we don’t have to check all the 2" input bit
strings because we were promised that f(x) is either constant or balanced. Thus,
discovering f(x) is non-constant is enough to conclude it must be the other possi-
bility, namely, balanced. Even though we can avoid checking all inputs, classically,
as larger and larger decision problems are considered the number of elementary
calls to the black box would still seem to have to grow exponentially in the length
of the input bit string n. In contrast, as we shall show, using a quantum computer,
and a quantum implementation of the black-box that encodes f (x), we can decide
the question of whether f(x) is constant or balanced in just one call to the black-
box! This represents an exponential speedup in obtaining the decision—which is
amazing!

Let’s begin by looking at the simplest instance of such a decision problem when
the input bit string is just a single bit (i.e., when n = 1). In this case, the decision
problem can be stated as:

constant iff f(0) = f(1)

balanced iff £(0) # f(1) (1.39)

decision(f) = =

Using a classical computer we could decide the matter by first computing f(0) and
then computing f (1) and then comparing the results to determine whether f(0) =
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f(1) or f(0) # f(1). This approach would require fwo calls to the black box to
make the decision regarding whether f (x) is constant or balanced.

A quantum computer can solve this problem differently using a technique called
quantum parallelism. To understand how quantum parallelism works we must first
figure out how to define the action of the black-box that encodes knowledge of the
function f'(x) in a manner that is consistent with quantum mechanics.

1.7.2 Embedding f(x)in a Quantum Black-Box Function

On the face of it you might think that the black-box could be defined as performing
the mapping |x) — | f(x)) since, in the special (i.e., n = 1) case we are consider-
ing both x and f(x) are single bits. However, this won’t do because as we saw in
Sect. 1.5 quantum mechanical evolutions are described by unitary, and hence logi-
cally reversible, operations. For an operation to be logically reversible, each distinct
input ought to be mapped to a distinct output and vice versa. Unfortunately, de-
scribing the black-box as performing the mapping |x) — |f(x)) is not necessarily
logically reversible. If f(x) happens to be constant then both possible values for |x)
would be mapped into the same value for f(x). So if the operation performed by our
black-box is to be described quantum mechanically, the specification |x) — | f(x))
won’t do. Strike one!

Ok well how about introducing an extra register—one to hold the input and the
other to hold the output? The starting configuration could be |x}|0), with the second
register initialized to |0), which we can think of as analogous to a blank piece of
paper on which the correct answer for f(x) is to be written. In this case, our black-
box would perform the operation |x)|0) — [x}|f(x)). Since the input, |x), is now
recorded explicitly in the output we can always invert this mapping unambiguously,
whatever the value of f(x). Unfortunately, we’re still not done because for a map-
ping between bit strings to be unitary (as quantum mechanics requires) we need to
a complete mapping, i.e., a specification how each possible binary input is mapped
to a distinct output. Since, the specification of the black-box as performing the op-
eration |x)|0) — |x)|f(x)} only accounts for inputs that end in |0) it is missing half
the possible inputs that could be given to it. Hence, the specification is incomplete,
and therefore, won’t do either. Strike two!

Thus to ensure our description of the black-box is unitary we need to specify how
input states ending in |0) and states ending in |1) are to be mapped to outputs. Thus
the right way to define the black-box operation is as

) y) — x|y & f(x)). (1.40)

The y @ f(x) operation is the exclusive-OR operation, and is computed as shown in
Table 1.5. When y =0, y® f(x) = f(x), so the definition |x)|y) — |x)|y @ f(x))
includes the case |x)|0) — |x)}|f(x)). But by defining the operation with the sec-
ond qubit allowed to be either |0) or |1) we ensure that our description of the ac-
tion of the black-box is a unitary (reversible) operation, which specifies a com-
plete mapping between all possible 2-qubit binary inputs and all possible 2-qubit
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Table 1.5 Truth table of the
exclusive-OR (&) operation. ¥ flx) e flx)
This is different from the

usual OR operation (V) in 0 0 0
that 1 v 1 = 1 whereas 0 1 1
ld1=0 1 0 )

1 1 0

binary outputs, and hence is implementable quantum mechanically. The operation

N
[x)] ) f—c> [x)|y & f(x)) is sometimes called an “ f-controlled-NOT” operation

(f-c-N) since one way to think of it is that the value of f(x) controls whether or
not the value of y is negated.

1.7.3 Moving Function Values Between Kets and Phase Factors

Armed with our quantum black-box, which encapsulates the knowledge of f(x),
we are now ready to tackle the decision problem regarding whether f(x) is constant
or balanced.

If we restricted ourselves to inputting only quantum states corresponding to the
“classical” binary inputs |0}[0), [0}[1), [1}|0), and [1}]1), to our quantum black box
then our quantum method would confer no advantage over what we can do clas-
sically. The magic happens when we use quantum states corresponding to non-
classical inputs. Specifically, consider what happens under the action of the f-
controlled-NOT operation when the input is |x) ® %(IO) — |1)). The transformation

effected is shown in (1.41)

) —=(10) — [1) 25 )

X)— - — |x)—
V2 V2
As we are only considering the simplest (n = 1) instance of the decision problem at
this time, the argument of f(x), i.e., x, can be only 0 or 1, and the value of f(x) is
also only 0 or 1. So we can write out a table showing how the values of x, f(x), and
the right hand side of (1.41) are related: Notice that the table also contains a fourth
column corresponding to the value of the expression (—1)/®)[x) ﬁ(IO) —|1)). Re-

(10 f(x)) =18 f(x)) (1.41)

markably, for all pairs of 2-bit binary inputs, the value returned by the expression
|x)ﬁ(|0 @ f(x))— |16 f(x))) is, as shown in Table 1.6, identical to the value re-

turned by the expression (—1)7™)|x) %UO) — |1}). Hence—drum roll please—the

two expressions are equally good mathematical descriptions of the output quantum
state after the f-controlled-NOT operation has been applied. Thus, we could equally
well describe the transformation the f-controlled-NOT operation has achieved as:

I
V2

Ix) —= ([0} — 1)) == (—1)f‘“x>%(|0> ) (1.42)
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Table 1.6 By considering the possible values of x, f(x) and the right hand side of (1.41) recognize
an equivalent way to write the equation

x fx) 1) 5108 f(x) =1 f(x)) (=17 1) Z=(10) = [1))

0 0 10310} = I1)) 10)(10) = 1)) = [0)(10) = [1))
0 1 10}(11) = 10) =10)(10) = 1)) =10} (|1} — |0))
! 0 11}10) = 1) 130 = 11) = 11)(10) = 1))
1 ! 11 = 10)) =11(0) = 1) =1)(|1) = 10))

Thus, with no physical action whatsoever taking place, we can simply re-interpret
what mathematical transformation we have achieved. This re-interpretation of the
output state allows us to regard the value of the function f(x) as being moved from
inside the ket (in (1.41)) to being in the phase factor (in (1.42)). This is very impor-
tant because we saw in Sect. 1.4.3 that quantum mechanical interference effects can
change the relative probabilities of various outcomes. What we will do next is en-
gineer these interference effects to enhance or suppress various possible outcomes
depending on whether f(x) is constant or balanced!

1.7.4 Interference Reveals the Decision

To achieve our desired interference effect we take the interpretation of the f =
controlled NOT transformation defined in (1.42) and we specialize the input |x) to
be |x) = f (10) +|1)). We can create this state by applying a Walsh-Hadamard gate

to just the first qubit prepared initially in the state |0), i.e., H|0) = +|1)).

300)

With this specialization, the transformation we perform is therefore:

1
—=(0) + 1))

1 f-c-N 1 1
—(j0) = 1)) — — (=)@ DDy —0y — |1
7 (10) — (1)) (( )TE0) + (=1)7 )) ﬁ(IO) 1)

V2 V2
(1.43)

Next we apply a Walsh-Hadamard gate to just the first qubit again. This results in
the transformation:

1 1 fen 1
—(|0)+ 1) —=(|0) — |1 — (=) D)0 /M 0)—|1
10+ (100~ 1) = ( Y ©10) + (-1 V1)) @ ﬁu >(1|4:;

Summarizing all the steps in the Deutsch-Jozsa algorithm:

H@H
01y — —=(0) + 11 =(|0) — |1
0011) %25 Z=(10) + 1) —500) = 1)
L 25 (V010 + 1 OIm) @ —=01 - 11y
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1
=9 -1
V2
Fig. 1.8 Quantum circuit implementing the Deutsch-Jozsa algorithm. The black-box func-
tion f(x) accepts a single bit x and returns 0 or 1. If the returned values are the same

f(x) is “constant”. Otherwise f(x) is “balanced”. The function f(x) is implemented by way
of the Deutsch-Jozsa oracle f-controlled-NOT (f-c-N). This implements the transformation

-¢-N !
lx}¥) f—b> )y b fx)) =(— l)f""lx)ly) when |y) = ﬁ(lO) — |1)). Using the Deutsch-Jozsa
algorithm we can decide whether f(x) is constant or balanced using a single call to the oracle

- H

el [ (1. rop Lo f(l})
— [(2( 1) +2( 1) [0)

1 1 1
O 21y —
+(2( 1 2( D )Il)]@)‘/z(lf}) 1) (1.45)

Inspection of the amplitudes of the |0) and |1) components of the first qubit suggest
that if this qubit is read (in the computational basis) then if f(x) is constant, i.e., if
f(0) = f(1), then we will find the first qubit in state |0). Else if f(x) is balanced,
i.e., f(0)# f(1), then we will find the first qubit in state |1). This means we can
determine whether f(x) is constant or balanced in just one call to the black-box
(when using quantum inputs) versus two calls to the black-box (if using classical
bit value inputs). The quantum circuit implementing the Deutsch-Jozsa algorithm
is shown in Fig. 1.8. This is interesting but not that dramatic. To determine what
scaling we’re actually seeing we need to consider the relative costs of the quantum
and classical methods as we scale up to larger problem instances.

1.7.5 Generalized Deutsch-Jozsa Problem

The aforementioned decision problem only pertains to a function f(x) that has a
single bit input and a single bit output. In this case we obtain a factor of two speedup
over the naive classical algorithm for the solving the same problem. How does this
speedup change if we allow f to accept an n-bit input instead of just a single bit
input?

To formalize the question, let x = x|x7 - - - x,, be an n-bit binary string with binary
values x|, x2, ..., x,. Thus, x represents the bit string corresponding to any integer
in the range 0 to 2" — 1 inclusive. Let f(x) be a function that accepts and n-bit
input x and returns a single bit output, i.e., 0 or 1. We are promised that f (x) is one
of only two kinds of function, namely, “constant” or "balanced”. An n-bit function
f(x) is “constant” if it returns the same bit value on all 2" possible inputs, and
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“balanced” if it returns 0 on exactly half its possible inputs, and 1 on the other half
of inputs. Note that the promise is our guarantee that the only types of functions
under consideration are constant functions and balanced functions and no others.
With this promise in mind, our challenge is to decide whether f(x) is constant or
balanced using the fewest calls the oracle.

Classically, in the worst case, we will have to call the oracle a total of %2” +1=
27=1 4 1 times. This is because we cannot know for sure that f(x) is constant until
we have evaluated f(x) on one more than half its possible inputs. At that point if
all the returned values are the same, the promise allows us to conclude that f(x)
is constant. However, if in the course of performing these 2"~! 4+ | evaluations we
find any two inputs that yield different values for the function, then the promise
allows us to conclude the given f (x) is balanced. So, given the promise, on average
deciding that f(x) is balanced is easier than deciding it is constant. But in the worst
case (when we are unlucky enough that even though f(x) is balanced the first an-1
inputs we tried happened to be those for which f(x) returned the same value), we
need to test one more than half the values to be sure. Since the classical algorithm
needs 2"~! 4 1 calls to the oracle, the classical complexity is exponential in the
number of bits, n.

Can do better using a quantum algorithm? As you will see shortly, it turns out
that there is a quantum algorithm, the “Generalized Deutsch-Jozsa Algorithm”, for
solving this same decision problem that only needs to make a single call to the
oracle, regardless of n. This amounts to an exponential speedup over what is possi-
ble classically! This is an astonishing difference in complexity between a quantum
computer and a classical computer on the same problem. So even though the actual
problem solved is rather arcane and esoteric, nevertheless, it illustrates the enor-
mous potential of quantum computers to outperform classical computers on certain
computational problems.

The best way to see how the Generalized Deutsch-Jozsa algorithm works is to
start with the quantum circuit that implements it and to walk through the state trans-
formations it enacts. This will allow us to compute the mathematical form of the
final state that is synthesized by the circuit and hence determine how a measure-
ment made upon this final state can reveal the decision regarding whether f(x) is
constant or balanced.

The quantum circuit for the generalized Deutsch-Jozsa algorithm is shown in
Fig. 1.9 and the associated algorithm is as follows:

Generalized Deutsch-Jozsa Algorithm Given an oracle, or black-box quantum
function, f(x) that accepts an n-bit binary string input, x = xjx2---x,, and the
promise that f(x) is either constant or balanced, decide which is the case using the
fewest calls to the oracle.

1. Create an (n + 1)-qubit quantum register having n control qubits, each in state
|0), and one ancilla qubit in state |1).
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Fig. 1.9 Quantum circuit implementing the Generalized Deutsch-Jozsa algorithm. The black-box
function f(x) accepts an n-bit input x and returns the single bit O or 1. We are promised that
f(x) is either “constant” (i.e., returns the same value on all its possible 2" inputs) or “balanced”
(i.e., returns 0 on half of its possible inputs and 1 on the other half of its possible inputs). The
function f(x) is implemented by way of the Generalized Deutsch-Jozsa oracle f-controlled-NOT

(f-c-N). This implements the transformation |x)|y) ’rﬁ;N |x)|y @ f(x)). In turn, this is equiv-
alent to (fl}f(”\x)h') when |y) is specialized to be the state |y) = ﬁ(u}) — [1}). Using the
Generalized Deutsch-Jozsa algorithm we can decide whether f(x) is constant or balanced using
a single call to the oracle. A classical computer would need to use %2” + 1 calls to the oracle
to arrive at the same decision. Hence, in this case, a quantum comf)uter running the General-
ized Deutsch-Jozsa algorithm is exponentially more efficient than a classical computer. Hence, the
Generalized Deutsch-Jozsa algorithm, although not particularly useful as a practical algorithm, il-
lustrates the potential for enormous complexity advantages of quantum computers over classical
computers on certain problems

2. Apply a Walsh-Hadamard gate to each qubit. That is, perform the operation:

2"—1
H®n+D
[00...0)]1) — — [x) _(\0)—|l)) (1.46)
\/ 2, 1 V2

x=0
3. Then apply the Generalized Deutsch-Jozsa oracle.

2"—1

1
fZ( D) —=(10) = 1) (1.47)

f(.N

4. Apply a Walsh-Hadamard gate to the top n qubits.

21

H&gl Z l)ffr)(H®H®...®H)\xT 10) = [1)) (1.48)

n
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M M

Z( 1)f‘xf2<—1>“\z> 7(|0> 1) (149)

m_12n—|

|
| 22 2 =P EnTER) \/_(\0 — 1) (1.50)

x=0 z=0

5. Measure the top n qubits in the computational basis. If the first n qubits are found
to be in state |0) = |00...0), f(x) is “constant”. If any other pattern of values is
obtained for the first n qubits, then f(x) is “balanced”.

The algorithm works as follows: in the first step we initialize n control qubits to
be in state |00...0) and we initialize a single ancilla qubit to be in state |1). Next
we apply our oracle, i.e., the f-controlled-NOT gate. This acts on n control bits

which hold the value of the input “x™") and one target qubit (which starts off in state
(hhhldh 1 f the inp ) and get qubit (which ft i
\/§(|O) — |1})). The transformation the oracle performs is:

Ix) ®QL’if|x>®|yeaf(x)>z(—l)f"”|x>|y> (1.51)

S

n qubits 1 qubit

Next we apply a Walsh-Hadamard gate to the top n qubits only. This is perhaps
the hardest part of the dlgorithm to understand because it is not immediately ob-

vious why H®"|x) = »/ﬁ 22 7' —1)*Z%|z). To see why this is true let’s start by

considering a simple 3-qubit instance of the problem.
(HR H® H)|x)=(H® H® H)|xx2x3)
= H|x1) ® H|x2) ® H|x3)

1
= —=(10) + (=D 1) ® (10) + (=D*[1))
\/2—3(I) ( 1) @ (10) 0

® (10) + (=" 1))

1 .
= \/? (1000) + (=1)*3[001) + (—1)*2]010)

+ (=D*2B1011) + (=1)*1]100)
+ (= DTFB01) + (= DTFRI110) 4 (= DR 11))

11
Z Z ¥ 1Tt 7, 20 23)

||M-

e\w

21
<1

ra
)
—_

= (=D**z)
=0

1
NpD
(1.52)
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(a) |0>+e’”|1>

( ) Dlo)_“ )

(c) 1]00) + [01) +100)

(d) (10) +7]1) ® (|0) — i|1))

1.3 Compute the probability with which each of the following qubits is found in
the state |0) when measured in the computational basis. Be careful as the given state
may or may not be properly normalized as given.

1410y + 211)
2. —510) - 21
3. 2200+ 4y
4. 510y = F1)

1.4 Let |0) = f(|0> + (1)) and |1) = %um — |1)). Prove that the states |0) and
1) are orthogonal. Write the state a|0) 4 b|1) in the {|0), |1)} basis.

1.5 The memory register of a 3-qubit quantum computer evolves into the state
ooy + %3|010) + —1100). What is the probability of:

1. Finding the first qubit to be |1)?
2. Finding the second qubit to be |0)?
3. Finding the last two qubits to be |00)?

1.6 Which of the following states are entangled, and which are unentangled?
1

(a) TE(\UOO) +2|111)) l .

(b) $35100) + 3101) + 325110) + 3111)

(c) gmm—ﬁ\mw%lm—\/%u)
(d) %(\001)+|010)+|100))
() 75(100) —i[10))

1.7 Prove that the quantum state |¢) defined by:
l¥r) = 0 |000) 4 [001) 4 5 IO 0y —4,/ 3 011}
A/ 181 /181 V1 181

2 6 4 3
—1100) — / —|101) + —|110} — 4,/ —|111 1.55
+ 4/ 181| Y, 181| )+ «/18_1| ) =4 181| ) (1.55)

is properly normalized. Given the state |y), what is the probability, when you read
[} in the computational basis, of obtaining:

(a) the result [010)?
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(b) the result |[001)?

(c) finding the first qubit to be in state |1)?

(d) finding the first and third qubits to both be in state |0} ?
(e) finding the first and second qubits to be the same?

1.8 Consider a single qubit in state [¢) = cos(5)|¥) + ¢'? sin(§)[1) such that 0 <
0 < and 0 < ¢ < 27. Prove that the state |¢) at the antipodal point of the Bloch
sphere is orthogonal to |yr). The antipodal point is found by projecting a straight
line from the point on the surface of the Bloch sphere representing |yr) through the
origin to intersect the surface of the Bloch sphere on the opposite side.

1.9 Prove that the expectation value of any observable A, (¥ |.A|y¥), for a quantum
system in state |) is no different from that obtained if the state where e'?|y/) in-
stead. That is, prove the claim made in this chapter that overall phase factors have
no observable consequence.

1.10 Let £2 be an observable operator for a single qubit described as:
ab
2-(24)

(a) Which elements of £2 must be real numbers?
(b) Which elements of §2 can be complex numbers?
(¢) Which two elements of £2 are related?

(d) What are the eigenvalues of §27?

(e) What is the expectation value (|$2|¥) when |[¥) = &|0) + /1 — |a|?|1)?

Answer the following questions:

1.11 A qubit in an arbitrary pure quantum state is described mathematically by the
state vector |¢) = e'” (cos(§)[0) + €' sin(§)|1)). Equivalently, as you will see in
Sect. 11.2.2 the same state can be described by the density operator p = |) (¥|. On
how many free parameters does the state |) depend? Compute the density operator
p corresponding to the state |¢). On how many free parameters does the density
operator p depend? Explain what role the parameter ¥ plays in the density operator
representation of the state.

1.12 Look up the definition of the quantum Fourier transform (QFT) matrix defined
in Sect. 3.4.6. Prove that the 1-qubit Walsh-Hadamard gate, H = \%( : Jl ), can be

thought of as a 1-qubit quantum Fourier transform.

1.13 Find the unitary matrix that changes a state represented in the {|4), |[—)} basis
to one represented in the {|R), |L}} basis. You may assume |[+) = %UO) + 1)),

=)= 25010} = [1)), [R) = —5(10) + | 1)), and | L) = —55(10) — i[1)).
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1.14 Find the unitary matrix that changes an arbitrary 2-qubit gate,

iy W2 U3 U4
U |2 U2 Uz un
u3l W3y U3z U4
U4l W42 U43 U44

in the {|00),|01), |10}, |11}} basis to one represented in the {|RR),|RL),|LR),
|LL)} basis. You may assume |R) = %(l()) +i[1)),and |L) = %UO) —i[1)), and
|IRL) =|R) ® |L) etc.

1.15 Consider a 2-qubit Hamiltonian having a block diagonal structure when ex-
pressed in the computational basis:

a
e

*

H= (1.56)

oo TN
o oo
QU © O

*

0
0

oo

What are the eigenvalues and normalized eigenvectors of H?

1.16 Suppose we are promised that we are given either a known state |{) or a
known state |@) and we have to decide, by making some measurement, which is the
case. If |¢) and |¢) are non-orthogonal quantum states there is no single measure-
ment that can distinguish between them 100% of the time. However, given knowl-
edge of the forms for |v) and |¢) we can choose a measurement basis in which
to measure our mystery state that optimizes our chances of guessing correctly. For
example, consider the pair of quantum states defined by:

[¥) = 10)
(1.57)
lp) = a(0)|0) + B(O)[1)
where
) csc o
o =
V]escO2 + | cotd)?
cot® (1.58)
BO) =

V1csc @2 + | cotd)|?

The amplitudes of the |@) state are certainly peculiar, having the form over the
interval 0 < @ < 27 shown in Fig. 1.10.

(a) Nevertheless, prove that |¢) is a properly normalized state.

(b) With what probability can we guess correctly if we measure the mystery state
in the computational, i.e., {|0), |1)}, basis?

(c) In what basis ought we to make the measurement to maximize our chances of
guessing correctly whether we were given [¢) and |@)?
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Fig. 1.10 Amplitudes of the 1.0 . 1.0 ey
state @) = «|0) — B|1) where 05F E 05° ]

o= ——S50___ and
\/|csc9\2+\cul9\3 s 00 @ 00 ]
5 T o5 e N\
~ae ]2 o 2 B
Vesed+ cotd] 10 N 1.0 st

0

(d) What is the state |¢) at § = 7 ? Is there any ambiguity?

(e) What is the density operator corresponding to |}, i.e., p = |@) (¢|?

(f) What is the density operator p at @ = w7 Is there any ambiguity? How do you
reconcile your answers to parts (d) and (f)?



Chapter 2
Quantum Gates

“When we get to the very, very small world—say circuits of seven atoms—we have a lot of
new things that would happen that represent completely new opportunities for design. Atoms
on a small scale behave like nothing on a large scale, for they satisfy the laws of quantum
mechanics. So, as we go down and fiddle around with the atoms down there, we are working
with different laws, and we can expect to do different things. We can manufacture in different
ways. We can use, not just circuits, but some system involving the quantized energy levels,
or the interactions of quantized spins.”

— Richard P. Feynman'

Currently, the circuit model of a computer is the most useful abstraction of the
computing process and is widely used in the computer industry in the design and
construction of practical computing hardware. In the circuit model, computer scien-
tists regard any computation as being equivalent to the action of a circuit built out
of a handful of different types of Boolean logic gates acting on some binary (i.e., bit
string) input. Each logic gate transforms its input bits into one or more output bits
in some deterministic fashion according to the definition of the gate. By compos-
ing the gates in a graph such that the outputs from earlier gates feed into the inputs
of later gates, computer scientists can prove that any feasible computation can be
performed.

In this chapter we will look at the types of logic gates used within circuits and
how the notions of logic gates need to be modified in the quantum context.

!Source: Opening words of the “Atoms in a SmallWorld™ section of Richard Feynman’s classic
talk “There’s Plenty of Room at the Bottom,” given on 29th December 1959 at the annual meeting
of the American Physical Society at the California Institute of Technology. The full transcript of
the talk is available at http://www.zyvex.com/nanotech/feynman.html.

C.P. Williams, Explorations in Quantum Computing, 51
Texts in Computer Science,
DOI 10.1007/978-1-84628-887-6_2, © Springer-Verlag London Limited 2011
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Table 2.1 Logically equivalent propositions. Note by using De Morgan’s laws any proposition
can be expressed using NOT and AND alone or using NOT and OR alone

Logically equivalent forms

an0=0 Zero of A

anl=a Identity of A
avl=a Zero of v

avli=l1 Identity of v
aNa=a Indempotence
ava=a Indempotence
ah—a=0 Law of Contradiction
aVv-a=1 Tautology

——a=a Double Negation
anb=bAa Commutativity of A
avb=bva Commutativity of v
av(bvce)=(avb)Vce Associativity
an(brc)=(anb)Ac Associativity
an(bve)=(anb)Vianc) Distributivity
avbarc)=(avb)AlaVc) Distributivity
an(avb)=a Absorption
av(anb)=a Absorption
av(—anb)=avb Absorption
an(—avb)y=anb Absorption

=(a Ab)=(—a)V (—b) De Morgan’s Law
=(a Vv b)=(—a) A (—b) De Morgan’s Law

(anbyvian-b)y=a
a = b=—avVvb
a = b=—(aA—b)

The best way to describe the action of a logic gate is in terms of its “truth table”.
In a truth table we write down all the possible logical values of the inputs together
with their corresponding outputs. For example, the truth table for the AND gate
is given in Table 2.2. The corresponding icon for the AND gate as seen in circuit
diagrams is shown in Fig. 2.2. The AND gate is logically irreversible, which means
that you cannot determine unique inputs for all outputs. Specifically, if the output
is 0 (i.e. FALSE), you cannot tell whether the input values where 00, 01, or 10. It
“erases” some information when it acts whenever the output from the AND gate
is 0.

Similarly, the truth table for the OR gate is shown in Table 2.3. The corresponding
circuit icon for the OR gate is shown in Fig. 2.3. The OR gate is also logically
irreversible because when its output is 1 (i.e., TRUE) it is impossible to say whether
the inputs were 01, 10, or 11. Hence, again the OR gate erases some information
when it acts whenever the outputisa I.

There is a variant of the OR gate, called exclusive-OR (often written “XOR” or
“@7) that turns out to be very useful. The XOR gate is like the OR gate except that
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Table 2.2 Truth table of

AND a b anb
0 0 0
AND: 0 1 0
1 0 0

Fig. 2.2 Icon for the AND
gate—a logically irreversible a
gate ahb

Table 2.3 Truth table of OR

a b avb
0 0 0
OR: 0 1
1 0 1
1 1
Fig. 2.3 Icon for the OR
gate—a logically irreversible a
gate aVk
b
Table 2.4 Truth table of
XOR (exclusive-OR) a b a®b
0 0
XOR: |
1 0 1
1 1 0

it returns O (i.e., FALSE) when both its inputs are 1 (i.e., TRUE). The truth table for
XOR is shown in Table 2.4. The corresponding circuit icon for XOR is shown in
Fig. 2.4.

2.1.3 Universal Gates: NAND and NOR

There is a special class of logic gates, called universal gates, any one of which is
alone sufficient to express any desired computation. The possibility of such uni-
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Fig. 2.4 Icon for the XOR
gate—a logically irreversible a
gate a4 b

Table 2.5 Truth table of

NAND a b alb
0 1
NAND: | |
| 0 1
1 1 0

Fig. 2.5 Icon for the NAND

gate—a universal gate for a
classical irreversible alk
computing p—]

versal gates accounts, in part, for the remarkable miniaturization of modern com-
puters since computer designers need only focus on miniaturizing a single type of
gate. Nowadays, the logic gates that manipulate these values are implemented us-
ing transistors, but in future computers even smaller, and faster, devices are being
considered in an effort to maintain the pace of Moore’s Law.

You can see why such universal gates are possible from Table 2.1. The rules in the
table show that any Boolean function can be reduced to an expression involving only
— and A or only — and V. Hence, any Boolean function can be computed by means
of a circuit comprising NOT and AND gates, or NOT and OR gates. Nevertheless,
the construction of large scale logic circuits would be greatly streamlined if manu-
facturers only had to use a single type of gate. Such a gate is said to be “universal”
since from it circuits for any Boolean function can be derived. Restricting circuits to
using a single type of universal gate does not necessarily lead to the smallest circuit
for computing a desired Boolean function but it does allow chip manufacturers to
perfect the design and manufacturing process for the universal gate, which, in prac-
tice, tends to make it easier to improve yield, reliability, and boost speed. Today, the
microprocessor industry pursues this strategy by basing their circuits on the NAND
(“NOT AND”) gates. Mathematically, itNANDb = —(a A b), often written as a|b,
and is universal for classical irreversible computing. The truth table for the NAND
gate is shown in Table 2.5: The corresponding circuit icon for the NAND gate is
shown in Fig. 2.5.

To convince you that the NAND gate is truly universal, given that we already
know we can compute any Boolean function in a circuit comprising only NOT and
AND gates, it is sufficient to show we can obtain NOT from NAND gates and AND
from NAND gates. Table 2.6 shows how to obtain —a from a|a: Likewise, Table 2.7
shows we can obtain a A b from two a|b gates. Since we proved that any logical
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Table 2.6 A NOT gate can
be obtained using a NAND a a ala —a

gate since ala has precisely NOT in terms of NAND:
the same truth values as —a

[=]
[=]
[
—

Table 2.7 An AND gate can
be obtained using only
NAND gates since a A b has

a b alb A(alb)|(alb) anrb

precisely the same truth ) _ 0 0 1 0 0
values as (alb)l(alb) AND in terms of NAND: 0 1 1 0 0
10 1 0 0
1 0 1 1

proposition can be written in terms of only — and A, and that — and A can, in turn,
each be written in terms of | (NAND) we have proved that any logical proposition
can be written only in terms of | (NAND) gates. This is good news for chip man-
ufacturers because it means they need only perfect the implementation of just one
type of gate, the NAND gate, to be sure that they can build a circuit that can perform
any feasible computation.

There are other universal gates for classical irreversible computing including the
NOR gate (“NOT OR”) and the NMAJORITY gate (“NOT MAJORITY”). The
NMAIJORITY gate is a relatively new universal gate. It is especially interesting
because it is implementable in a new transistor design and leads to highly compact
circuits.

Unfortunately, logical irreversibility comes at a price. Fundamental physics dic-
tates that energy must be dissipated when information is erased, in the amount
kT In2 per bit erased, where k is Boltzman’s constant (k = 1.3805 x 10723 JK— 1
and T is the absolute temperature (in degrees Kelvin). Thus, even if all other en-
ergy loss mechanisms were eliminated from any NAND based circuit, the circuit
would still dissipate energy when it operated due to the unavoidable energy losses
that occur when information is erased.

Today energy losses in NAND-based logic circuits due to logical irreversibility
are dwarfed by other loss mechanisms. However, as these other loss mechanisms
are tamed, someday the energy losses due solely to information erasure (in turn a
consequence of using irreversible logic gates) will become the significant contribu-
tion. At this point if nothing is done, further miniaturization of computer technology
will be impeded by the difficulty of removing this unwanted waste heat from deep
within the irreversible circuitry.

2.1.4 Reversible Gates: NOT, SWAP, and CNOT

One way chip manufacturers can suppress the unwanted heat produced as a side
effect of running irreversible logic gates is to modify their chip designs to use only
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reversible logic gates. In a reversible logic gate there is always a unique input as-
sociated with a unique output and vice versa. So reversible gates never erase any
information when they act, and consequently, a computation based on reversible
logic can be run forward to obtain an answer, the answer copied, and then the whole
computation undone to recover all the energy expended apart from the small amount
used to copy the answer at the mid-way point.

The simplest example of a reversible logic gate is the NOT gate. NOT is a 1-
input/1-output gate that simply inverts the bit value it is handed. The truth table for
the NOT gate is shown in Table 2.8. The circuit icon for the NOT gate is shown
in Fig. 2.6. If one knows the output bit value, one can infer the input bit value
unambiguously and vice versa.

A slightly more complicated example, is the 2-input/2-output SWAP gate. SWAP
simply exchanges the bit values it is handed. Its truth table is shown in Table 2.9: The
circuit icon for the SWAP gate is shown in Fig. 2.7. In quantum computing a circuit
may not have any physical wires connecting the gates together. Instead a circuit
can be merely a visual specification of a sequence of gate operations with time
increasing from left to right in the circuit diagram as successive gates are applied.
Consequently, in quantum computing we sometimes use a different icon for a SWAP
gate (showing in Fig. 2.8, that is more suggestive that some operation (other than
crossing wires) needs to occur to achieve the effect of a SWAP operation.

A reversible gate of considerable importance in quantum computing is the 2-bit
controlled-NOT gate (CNOT). The truth table for CNOT is shown in Table 2.10. The
circuit icon for the CNOT gate is shown in Fig. 2.9. The effect of the “controlled”-
NOT gate is to flip the bit value of the second bit if and only if the first bit is set to 1.

Table 2.8 Truth table of
NOT a —a

NOT:

Fig. 2.6 Icon for the XOR
gate—a 1-bit logically
reversible gate

Table 2.9 Truth table of

SWAP a b a’ b’
0 0 0
SWAP: 0 | 0
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Fig. 2.11 Icon for the a ' a

TOFFOLI gate also called the
controlled-controlled-NOT
gate. TOFFOLI is reversible
and universal

Fig. 2.12 Icon for the a @ a
FREDKIN gate also called
the controlled-SWAP gate.
FREDKIN is reversible and
universal

h— —

2.1.5.1 TOFFOLI (a.k.a. *“Controlled-Controlled-NOT**)

The TOFFOLI gate is also called the controlled-controlled-NOT gate since it can be
understood as flipping the third input bit if, and only if, the first two input bits are
both 1. In other words, the values of the first two input bits control whether the third
input bit is flipped. The icon for the TOFFOLI gate is shown in Fig. 2.11.

2.1.5.2 FREDKIN (a.k.a. *Controlled-SWAP”’)

Another famous reversible gate is the FREDKIN (controlled-SWAP) gate. The truth
table for the FREDKIN gate is: The icon for the FREDKIN gate is shown in
Fig. 2.12. The FREDKIN gate can also be seen as a controlled-SWAP gate in that it
swaps the values of the second and third bits, if, and only if, the first bit is set to 1.

2.1.6 Reversible Gates Expressed as Permutation Matrices

Any n-bit reversible gate must specify how to map each distinct bit string input into
a distinct bit string output of the same length. Thus no two inputs are allowed to be
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mapped to the same output and vice versa. This ensures the mapping is reversible.
Consequently, one can think of a reversible gate as encoding a specification for
how to permute the 2" possible bit strings inputs expressible in n bits. In the case
of the 2-bit SWAP gate, for example, the four possible input bit strings are 00,
01, 10, 11 and these are mapped, respectively, into 00 — 00, 01 — 10, 10 — 01,
1 — 11. In the case of CNOT gate, the inputs 00, 01, 10, and 11 are mapped into
00, 01, 11, and 10 respectively. Thus a natural way to represent an n-bit reversible
gate is as an array whose rows and columns are indexed by the 2" possible bit
strings expressible in n bits. The (i, j)-th element of this array is defined to be 1
if, and only if, the input bit string corresponding to the i-th row is mapped to the
output bit string corresponding to the j-th column. The resulting array will contain
a single 1 in each row and column and zeroes everywhere else, and will therefore
be a permutation matrix. As arrays, the NOT, SWAP and CNOT gates would be
described as follows:

1 00 0
0 1 00 1 0
NOT_(1 0), SWAP = 01 0 ol
0 0 0 1
1 0 0 0 2.1)
01 0 0
NOT=14 0 0 1
00 10
Likewise, the TOFFOLI gate could be represented as:
000 001 010 OI1 100 101 110 111
000 1 o o0 o 0o 0 0 0
001 0 1 o o0 o o0 0 0
010 0 0 1 o 0 0 0 0
TOFFOLL 011 0o 0 0 1 o 0 0 0 (2.2)
100 o 0 0 0 1 o 0 0
101 O o 0 0 0 1 0 0
110 o o o0 0 0 0 0 1
111 0o o o0 0 0 0 1 0
Similarly, the action of the FREDKIN gate could be represented as:
000 001 010 01l 100 101 110 111
000 1 o o o 0 0o 0 0
001 0 1 o 0 0 0 0 0
010 0 0 1 o 0 0 0 0
FREDKIN: 011 0 0 0 1 0 0 0 0 (2.3)
100 o o0 o o 0 0 0 1
101 o o0 o 0 0 1 0 0
110 o o0 o o0 0 0 1 0
mr\y o o o o0 1 0 0 0
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In fact, the matrices corresponding to classical reversible gates are always permu-
tation matrices, i.e., 0/1 matrices having a single 1 in each row and column, and
permutation matrices are also always unitary matrices.

To calculate the effect of a reversible gate, e.g., the FREDKIN or TOFFOLI gate,
on an input bit string, we simply prepare the column vector corresponding to that
bit string, and then perform the usual matrix vector product operation. For example,
since the FREDKIN and TOFFOLI gates act on three bits, we can imagine a column
vector consisting of 2 = 8 slots, one of which (the i-th say) contains a single 1, and
all the other elements are (.

1 0 0 0
0\ (1 0\ o\
0 0 I 0
0 0 0 0
000= g 0=, UUES e ti=| g
0 0 0 0
0 0 0 0
0/ 0 \ 0 1
(2.4)

etc. We can calculate the effect of, e.g., the TOFFOLI gate on such an input by
vector-matrix multiplication.

—

TOFFOLI|110) = =|111) (2.5)

OO O = OO0 O
oo = O OO oo
—_— O OO DD C O
O —_0 O O OO
O = OO OO C
—_0 O O O O o o

SO OO O —
OO OO0 OO~ O
(=N eNeleNel e Nl
OO OO —= O OO

/
—_

2.1.7 Will Future Classical Computers Be Reversible?

The computer industry has done a truly remarkable job at squeezing more and more
computation out of fewer and fewer physical resources. For example, the energy per
logical operation has decreased pretty much exponentially since the inception of the
microchip, in lock step with a similar reduction in the size of transistors. As a result
a given volume of microprocessor has, over successive generations, been made to
perform exponentially more computation.

However, chip designers are now finding it harder to increase performance with-
out incurring the need to dissipate more energy per unit area of chip. You can sense
this quite directly if you spend any time working with a notebook computer on your
lap. After a while you will notice it becoming quite warm. This is because the mi-
croprocessor is dissipating heat as it runs. Indeed, modern chips can consume 100
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Watts or more. Since it is impractical to allow them to dissipate more power than
this, this problem could ultimately stall Moore’s Law.

Today, power losses arise from the non-zero electrical resistance of the conduc-
tors used inside microprocessors and some leakage of current through materials that
are supposed to be insulators. This chip designers are working feverishly to lessen
such losses by using fewer and fewer electrons and avoiding large voltage swings,
which cuts down leakage. Once these stratagems have been played out to the max-
imum extent possible chip designers will have to consider various methods, such
as charge recovery, to recapture energy, much like a flywheel recaptures energy in
mechanical devices. Beyond this, what options remain to further reduce energy dis-
sipation during computation?

The answer could lie in the use of classical reversible gates, such as FREDKIN
and TOFFOLI gates that we discussed earlier. This is because, as Rolf Landauer
showed, energy need only be dissipated when information is erased, and the min-
imum amount that Nature demands is kg7 In2 per bit erased, where kp is Blotz-
mann’s constant and 7 is the temperature in degrees Kelvin. At room temperature
(300 Kelvin) this is about 3 x 1072! Joules per bit erased. Therefore, if we were
to use reversible computing, the only energy that must be dissipated is related to
that required to initialize the computer, or to make a permanent record on an an-
swer, because these operations must take a memory register in one state, and reset
it, regardless of what that state was, in a fixed configuration. Hence this operation
is necessarily irreversible. But apart from that, in principle, it takes no energy to
compute!

2.1.8 Cost of Simulating Irreversible Computations Reversibly

Today, most computing hardware employs, at its lowest level, gates that are logically
irreversible. Logical irreversibility means that certain outputs from a logic gate are
consistent with more than one set of inputs, preventing one from inferring a unique
input for each output. For example, the logic gate AND(x, y) = z that maps two
input bits, x and y, into a single bit, z, is logically irreversible because an output
z =0 (false) could be accounted for by any of the three input pairs (x =0,y =0),
(x=0,y=1) and (x = 1, y =0). Hence, for this particular output, the input is
ambiguous and the operation is therefore logically irreversible.

It has long been known that such logical irreversibility has a thermodynamic
consequence, namely, that energy must be dissipated, in the amount kg T log 2 per
bit erased, whenever a logically irreversible operation is performed [299]. However,
the converse of this is also true. If we were to employ only logically reversible gates
inside our chips, then no net energy need be dissipated in performing those gate
operations. The only thermodynamic cost to computing would then be the cost of
creating the initial input, reading the output, and re-setting the computer.

For a computation to be logically reversibility each “step” of the computation
must be logically reversible. However, the exact meaning of a “step” changes de-
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pending on the model of computation being used. For example, in the Turing ma-
chine model one step of computation is a transition of the finite control of the ma-
chine [44], which maps one “configuration” of the machine to another configuration.
Likewise, in the circuit model, a step of computation is the execution of one gate
of the circuit (see, e.g., [187, 494]). Thus, a reversible Turing machine is a ma-
chine mapping distinct input configurations to distinct output configurations, and
a reversible circuit is a circuit comprised of gates each mapping distinct input bit
patterns to distinct output bit patterns.

There are two important questions concerning reversible computing. The first is
the practical question of how to find the optimal reversible circuit implementing a
desired Boolean function [343, 451, 494]. This approach boils down to understand-
ing how to implement permutations by reversible circuits, and is mainly concerned
with generic functions.

The second question concerning reversible computing is to determine with what
efficiency a reversible computer can simulate an irreversible computation [44, 45,
88, 119, 302, 311, 312]. Most previous studies of this question have addressed it in
the context of the Turing machine model of computation. In this paper we present
a similar analysis in the context of the circuit model. In order to aid comparison we
first recap the insights gleaned from these Turning machine studies.

Initially it was believed that the only way to simulate an irreversible computation
on a reversible Turing machine was to keep all the intermediate calculations. Con-
sequently, the size of the memory (i.e., “space”) needed to perform the computation
reversibly was proportional to the time (i.e., number of steps) of the correspond-
ing irreversible computation. Bennett, however, [44] discovered that the history of
a reversible computation could be cleared in a reversible fashion, leaving only the
input and the output in memory, and recording the configuration of certain check-
points of the irreversible computation. This reduced the space needed to simulate
an irreversible computation reversibly but at the expense of increasing the time of
the reversible computation. Specifically, in [45] Bennett proposed a method which
uses time S 71°23 and space Slog T', when the irreversible computation uses 7" time
and § space. In this case the space complexity of the simulation is 52 in the worst
case. Later it was shown that it is possible to have a reversible simulation in space
O (S) but at the cost of requiring the simulation to run in exponential time [302]. The
best tradeoff for reversible simulation of an irreversible computation was provided
by Li [312]. It uses time @(T1+5/S€) and space & (c(e)S[1 + log(T/S)]), for any
e > 0, where c(g) ~ g21/¢, Similarly, in [119] it is shown that any nondeterministic
Turing machine running in space S can be simulated by a reversible machine using
space O(SZ).

The foregoing studies of the efficiency with which a reversible computer can
simulate an irreversible computation were all based on the deterministic or non-
deterministic Turing machine models. As best we can tell there has been no similar
direct study in the literature based on the circuit model of computation. This is the
main contribution of our paper.

Toffoli and Fredkin [187, 494] performed some of the first systematic studies of
reversible circuits. Toffoli showed, for example, that the reversible basis consisting
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Fig. 2.16 Synthesis via reversible substitution

2.2.1 Can All Boolean Circuits Be Simulated Reversibly?

The constructions of Fig. 2.15 suggest a simple (naive) method for simulating any
Boolean (irreversible) circuit: simply replace each irreversible gate in the circuit
with its reversible counterpart. Figure 2.16 shows an example of this method.

However, this naive method is hardly efficient and we now present a better
scheme. Before we begin, we define some useful terminology. A synchronous cir-
cuit is one in which all paths from the inputs to any gate have the same length.
Synchronous circuits may have delay (identity) gates, and gates at level m get in-
puts from gates at level m — 1. Thus, without loss of generality, we can assume
that our desired irreversible circuit is synchronous. For a Boolean circuit, the size
is the total number of gates, the depth is the number of levels, and the width is the
maximum number of gates in any level.
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The following procedure shows how to create a reversible circuit that simulates
and irreversible circuit while making substantial savings in the number of ancillae
used.

First simulate the gates in the first-half levels.

Keep the results of the gates in the level d/2 separately.
Clean up the ancillae bits.

Use them to simulate the gates in the second-half levels.
After computing the output, clean up the ancillae bits.
Clean up the result of the level d/2.

Note This method needs roughly half the number of ancillae used by the previous
(naive) method. Figure 2.16 shows the circuit of this procedure.

By applying the above procedure recursively, on a circuit of size r, depth d,
and width w we obtain the following recursive relations for S, the size, and A, the
number of the ancillae needed:

S(r) =68(t/2)+ O(1),
Ald) < A(d/2) +w + 1.

Solving these recursion relations leads to the following result.

Efficiency of Reversible Simulation Any irreversible computation (in the syn-
chronous form) having t gates, depth d, and width w, can be simulated by a re-
versible circuit having O(t*°%) gates, and at most (w + 1)logd + O(1) ancillae.

Thus, most of the irreversible computations going on inside your notebook com-
puter could, in principle, be implemented using reversible logic gates, which in turn
need no net energy to run apart from any operations that require erasure of infor-
mation, such as overwriting a memory register to make a copy of an answer! This
is surprise to many people because their perception is that computers are making
something new. But in reality, they don’t. They just take the known information
given as input and re-arrange it. The vast majority of the operations employed along
the way can be done reversibly, and hence, don’t generate any more information in
their output than they had in their input. There is no truly creative act as such. As
Pablo Picasso once said, “Computers are useless—they only give answers!”

2.3 Quantum Logic Gates

Now that we have looked at classical irreversible and classical reversible gates, we
have a better context in which to appreciate the benefits of quantum gates.

Just as any classical computation can be broken down into a sequence of classical
logic gates that act on only a few classical bits at a time, so too can any quantum
computation can be broken down into a sequence of quantum logic gates that act on
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only a few qubits at a time. The main difference is that whereas classical logic gates
manipulate the classical bit values, 0 or 1, quantum gates can manipulate arbitrary
multi-partite quantum states including arbitrary superpositions of the computational
basis states, which are frequently also entangled. Thus the logic gates of quantum
computation are considerably more varied than the logic gates of classical compu-
tation.

2.3.1 From Quantum Dynamics to Quantum Gates

The physical phenomena used to achieve the desired manipulation of a quantum
state can be very varied. For example, if qubits are encoded in particles having
quantum mechanical spin, the logic is effected by spin-manipulation brought about
by varying an applied magnetic field at various orientations. Or if the qubit is en-
coded in an internal excitation state of an ion, the gate operation can be achieved
by varying the time a laser beam is allowed to irradiate the ion or by varying the
wavelength of that laser light.

As any quantum gate must be implemented physically as the quantum mechani-
cal evolution of an isolated quantum system, the transformation it achieves is gov-
erned by Schrédinger’s equation, ihd|yr) /dr = H|¢), where ‘H is the Hamiltonian,
specifying the physical fields and forces at work. Thus, the unitary matrices describ-
ing quantum gates are related to the physical processes by which they are achieved
via the equation U = exp(—i'Ht/h). Here H is the Hamiltonian which specifies the
interactions that are present in the physical system.

As we saw in Chap. 1, the quantum mechanical evolution induced by this
equation is unitary provided no measurements are made, and no unwanted stray
interactions occur with the environment. In this case, starting from some initial
state, | (0)), the quantum system will evolve, in time ¢, into the state |y (t)) =
exp(—iHt/R)|¥(0)) = U|y(0)) where U is some unitary matrix. Thus the evolu-
tion, in time #, of an isolated quantum system is described by a unitary transfor-
mation of an initial state |y (0)) to a final state |y (t)) = U|y(0)). This means that
a quantum logic gate acting on an isolated quantum computer, will transform that
state unitarily up until the point at which an observation is made. Hence, quantum
logic gates are described, mathematically, by unitary matrices, and their action is
always logically reversible.

The parallels between classical reversible gates and quantum gate were not lost
the early quantum computer pioneers Richard Feynman and David Deutsch. They
recognized that since the matrices corresponding to reversible (classical) gates were
permutation matrices, they were also unitary matrices and hence could be inter-
preted as operators that evolved some initial quantum state representing the input
to a gate into some final quantum state representing its output in accordance with
Schridinger’s equation. Thus, the closest classical analogs to quantum logic gates
are the classical reversible gates such as the NOT, SWAP, CNOT, TOFFOLI and
FREDKIN. However, whereas the repertoire of gates available in classical reversible
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computing is limited to the unitary gates whose matrix representations correspond
to permutation matrices, in deterministic quantum computing any gate is allowed
whose matrix is unitary whether or not it is also a permutation matrix.

2.3.2 Properties of Quantum Gates Arising from Unitarity

The essential properties of quantum logic gates flow immediately from that fact that
they are described by unitary matrices. A matrix, U, is unitary if and only if its
inverse? equals its conjugate transpose, i.e., if and only if U~'=U'. If U is unitary
the following facts hold:

U is unitary.

U~ is unitary.

U~' = UT (which is the criterion for determining unitarity).
Ui =1

|det(U)| = 1.

The columns (rows) of U form an orthonormal set of vectors.
For a fixed column, leil \U;;|* = 1.

e For a fixed row, Z?Ll |U;; 2=1.

e U =exp(iH) where H is an hermitian matrix, i.e., H = HE

The fact that, for any quantum gate U, U TU = 1 ensures that we can always undo
a quantum gate, i.e., that a quantum gate is logically reversible. Moreover, that fact
that for a fixed column Zf;l |U,-J,v|2 =1 and for a fixed row ZT:I |U,-J,-|2 =1 guar-
antee that if you start with a properly normalized quantum state and act upon it with
a quantum gate, then you will end up with a properly normalized quantum state.
Thus, there are no probability “leaks”. The fact that it is the magnitude |det(U)]
that is constrained to be unity means that the constraint on the determinant can be
satisfied with det(U) = 1 or +i. Thus the elements of a general unitary matrix are
generically allowed to be complex numbers.

2.4 1-Qubit Gates
2.4.1 Special 1-Qubit Gates

2.4.1.1 Pauli Spin Matrices

For single qubits, the “Pauli matrices” (1, X, ¥, Z), which happen to be both hermi-
tian and unitary, are of special interest since any 1-qubit Hamiltonian can always be

*If A and B are two matrices B is the inverse of A when A.B = 1 where 1 is the identity matrix,
i.e., a matrix having only ones down the main diagonal.
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written as a weighted sum of the Pauli matrices:
1 0 0 1 0 —i 1 0
=00 =) =G D) s S e
Some common forms for Hamiltonians that arise in practice are H = Z(V Z?) (the
Ising interaction) and H = xVex?4yhgy? (the XY interaction) and H =

2XV® X 4 ¥y @ ¥ where the parenthetical superscripts labels which of two
qubits the operator acts upon.

2.4.1.2 NOT Gate

The Pauli X matrix is synonymous with the classical (reversible) NOT gate, i.e.,

_ (0 1
X=NOT_(1 0) (2.7)

Thus, it is not surprising that X negates the computational basis states |0} and |1},
correctly as these correspond to the classical bits, () and 1, respectively. Specifically,

we have:
w-( ) ()-(n e
@ ) ()-()m e

2.4.1.3 +/NOT Gate

One of the simplest 1-qubit non-classical gates one can imagine is a fractional power
the of NOT gate, such as \/NOT:

1_i
: %) (2.10)
1tz

The +/NOT gate has the property that a repeated application of the gate, i.e., v NOT-
+/NOT, is equivalent to the NOT operation, but a single application results in a
quantum state that neither corresponds to the classical bit 0, or the classical bit 1.
So +/NOT it is the first truly non-classical gate we have encountered.

m>ﬂf(%+%)m+(%——)n9§rn @.11)

1 j |
u>ﬂT(——i)m+(5+i)>-ﬂ§0> (2.12)
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Fig. 2.18 The icon for the
1-qubit Walsh-Hadamard 1

gate, H and its affect on [¢) — H — — {0+ 1))
computational basis states e
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Fig. 2.19 By applying n H gates independently to n qubits, all prepared initially in state |0},
we can create an n-qubit superposition whose component eigenstates are the binary representation
of all the integers in the range 0 to 2" — 1. Thus, a superposition containing exponentially many
terms can be prepared using only a polynomial number of operations. This trick is used in a great
many quantum algorithms to load a quantum memory register efficiently with an equally weighted
superposition of all the numbers it can contain

When the Hadamard gate H acts on a computational basis state |x) it transforms the
input according to H|x) = %(lO) + (—D*[1)).

The Hadamard is one of the unsung heroes of quantum computing. It is a de-
ceptively simple looking gate but it harbors a remarkable property that, if you think
about it, turns out to be of vital importance to quantum computing. If you prepare n
qubits each in the state |0) and you apply to each qubit, in parallel, its own Hadamard
gate, then, as shown in Fig. 2.19, the state produced is an equal superposition of all
the integers in the range 0 to 2" — 1.

2"—1
1
HI0) @ HI0) @@ HIO) = —= Do (2.20)
=0

where |j) is the computational basis state indexed by the binary number that would
correspond to the number j in base-10 notation. For example, in a 7-qubit register
the state “|19)” corresponds to the computational basis state |[0010011). The first
two bits (00) are padding to make the binary number 7 bits in length, and 10011,
(i.e., 10011 in base 2) corresponds to 19q (i.e. 19 in base-10).

The utility of the Hadamard gate derives from that fact that by applying, in par-
allel, a separate Hadamard gate to each of n qubits, each initially in the state |0),
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we can create an n-qubit superposition containing 2" component eigenstates. These
eigenstates represent all the possible bit strings one can write using n bits. The im-
portance of this capability is often overlooked. But, in reality, it is one of the most
important tricks of quantum computing as it gives is the ability to load exponentially
many indices into a quantum computer using only polynomially many operations.
Had Nature been unkind, and had we had to enter the different bit-strings individu-
ally, as we do in classical computing, then quantum computing would have had far
less potential for breakthroughs in computational complexity.

2.4.2 Rotations About the x-, y-, and z-Axes

Having seen a couple of examples of special quantum logic gates (i.e., +/NOT
and H) we next turn to the question of what is the most general kind of quan-
tum gate for a single qubit. To address this, we must first introduce the family of
quantum gates that perform rotations about the three mutually perpendicular axes of
the Bloch sphere.

A single qubit pure state is represented by a point on the surface of the Bloch
sphere. The effect of a single qubit gate that acts in this state is to map it to some
other point on the Bloch sphere. The gates that rotate states around the x-, y-, and
z-axes are of special significance since we will be able to decompose an arbitrary
1-qubit quantum gate into sequences of such rotation gates.

First, let’s fix our reference frame with respect to which arbitrary single qubit
pure states is defined. We choose three mutually perpendicular axes, x-, y-, and z-,
or equivalently, three polar coordinates, a radius r (which is unity for all points on
the surface of the Bloch sphere) and two angles @ (the latitude, measured monoton-
ically from the North pole to the South pole over the interval 0 < # < ) and ¢ the
longitude (measured monotonically as we rotate around the z-axis in a clockwise
fashion. So any point on the surface of the Bloch sphere can be specified using its
(x,y,z) coordinates or, equivalently, its (r, 8, ¢) coordinates. Right? Well actually
not quite right since a general qubit state also must specify an overall phase fac-
tor. But let’s ignore this for now. These two coordinate systems are related via the
equations:

x = rsin(@) cos(¢) (2.21)
¥ = rsin(0) sin(¢) (2.22)
= rcos(0) (2.23)

So what are the quantum gates that rotate this state about the x-, y-, or z-axes? We
claim that these gates, illustrated in Figs. 2.20, 2.21, and 2.22, can be built from the
Pauli X, Y, Z, matrices, and the fourth Pauli matrix, 1, can be used to achieve a
global overall phase shift. Specifically, let’s define the following unitary matrices,
R:(0), Ry(6), R;(€), and Ph from Hamiltonians chosen to be, respectively, the four
Pauli matrices, X, ¥, Z, and I (the identity matrix). That is, we have:
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Fig. 2.20 An R,(#) gate maps a state |y) on the surface of the Bloch sphere to a new state,
R, (0)|1/), represented by the point obtained by rotating a radius vector from the center of the
Bloch sphere to |¢) through an angle % around the x-axis. Note that a rotation of 47 is needed to

return to the original state

R, () = exp(—iaX/2) = (_(;0;512) _:;;?O_E?) ) (2.24)
2 2
Ry (@) = exp(—iaY/2) = (Z?;((O_?)) _Czl;;(g))) (2.25)
2 2
e—ia/Z 0
R (o) = exp(—iaZ/2) = 0 giaf2 (2.26)

w10
Ph(é) =¢ (0 ]) (2.27)

Consider the gate R, (). Let’s see how this gate transforms an arbitrary single qubit

state [y/) = cos($)[0) + €' sin($)[1).
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Fig. 2.21 An R,(#) gate maps a state |vr) on the surface of the Bloch sphere to a new state,
R, (0)|vr), represented by the point obtained by rotating a radius vector from the center of the

Bloch sphere to ) through an angle % around the y-axis. Note that a rotation of 47 is needed to
return to the original state

R (a)[4r)

ez 0\ [ cos(§
0 ele/? e’¢’sin(

e~ia/2 opg (%)
el?/261¢ gin (%)

. 6 )2 i o
— ¢ le/2 COS(E) 0) + ¢'%/261¢ sin(i) [1) (2.28)

(ST

)

We are free to multiply this state by any overall phase factor we please since for any
quantum state |y ), the states |x) and el |x) are indistinguishable. So let’s multiply
by an overall phase factor of exp(ie/2), which gives us the state:

R.()|y) = cos(g) 0) 4 ¢! (@t sin(g) (2.29)
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" x

Fig. 2.22 An R.(0) gate maps a state |Y) on the surface of the Bloch sphere to a new state,
R.(0)|), represented by the point obtained by rotating a radius vector from the center of the
Bloch sphere to |v) through an angle % around the z-axis. Note that a rotation of 47 is needed to
return to the original state

where = is to be read as “equal up to an unimportant arbitrary overall phase factor”.
Hence the action of the R_(«) gate on |¢) has been to advance the angle ¢ by o and
hence rotate the state about the z-axis through angle . This is why we call R, («) a
z-rotation gate. We leave it to the exercises for you to prove that R, () and R, (o)
rotate the state about the x- and y-axes respectively.

Rotations on the Bloch sphere do not conform to commonsense intuitions about
rotations that we have learned from our experience of the everyday world. In par-
ticular, usually, a rotation of 2 radians (i.e., 360 degrees) of a solid object about
any axis, restores that object to its initial orientation. However, this is not true of
rotations on the Bloch sphere! When we rotate a quantum state through 2 on the
Bloch sphere we don’t return it to its initial state. Instead we pick up a phase factor.
To see this, let’s compute the effect of rotating our arbitrary single qubit pure state,
|r) about the z-axis through 27 radians. We have:
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V = R, {a) — R, (t) — R, ()

Fig. 2.24 Any l-qubit special unitary gate can be decomposed into a rotation about the z-axis, the
y-axis, and the z-axis

U = R, (@) —{ Ry (b) —| R, (<) — Ph (d) -

Fig. 2.25 Any |-qubit unitary gate can be decomposed into a rotation about the z-axis, the y-axis.
the z-axis, followed by a phase shift

where o and B are arbitrary complex numbers that satisfy the determinant equation
det(V) = a@ — B(—p) = |a|® + |B|? = 1. This equation can be satisfied by picking
a = e cos(8/2), and B = ¢ sin(#/2). This means we can also write the matrix
for V as:

V= (; _ﬁ) with o — e'* cos(6/2) and B — €' sin(0/2)
o

B (ei# cos(8/2) —eit sin(9/2))

e'fsin(0/2) e cos(0/2) (2.38)

But this matrix can also be obtained as the product of the three gates R;(a) - R, (b) -
R (c) witha — —(u—£&),b— 0,and c — — (. + §).

c

o
[ShY

277 b gy b
R.(a) R, (b) R, (c)—( . i .Cosb(z) _f . Sm(z))
ez 2 sm(i) e1t3 ( )

witha - —(u—&),b— 0, andc - —(u +§)

_ [e*cos(0/2) —eTFsin(0/2))
T \efsin(0/2) e trcos(0/2) )
(2.39)

Thus, any 1-qubit special unitary gate V can be decomposed into the form R (a) -
Ry (b) - R (c) as shown in Fig. 2.24. Hence, any 1-qubit unitary gate, U can be
decomposed into the form:

U=R;(a) - Ry(b)- R;(c) - Ph(d) (2.40)

as shown in Fig. 2.25.
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2.4.4 Decomposition of R, Gate

Lest it seem peculiar that we can achieve an arbitrary 1-qubit gate without perform-
ing a rotation about the x-axis, we note that it is possible to express rotations about
the x-axis purely in terms of rotations about the y- and z-axes. Specifically, we have
the identities:

cos(%) isin(%))

R.(0) =exp(—i0X/2)= (i Sin(g) cos(%)

= R(=7/2)- R,(6) - R.(m/2)
= Ry(n/2) - R.(0) - R, (~7/2) (2.41)

2.5 Controlled Quantum Gates

To perform non-trivial computations it is often necessary to change the opera-
tion applied to one set of qubits depending upon the values of some other set of
qubits. The gates that implement these “if-then-else” type operations are called con-
trolled gates. Some examples of controlled gates that appeared earlier in this chap-
ter are CNOT (controlled-NOT), FREDKIN (controlled-SWAP), and TOFFOLI
(controlled-controlled-NOT). The justification for calling these gates “controlled”
stems from their effect on the computational basis states. For example, CNOT trans-
forms the computational basis states such that the second qubit is negated if and only
if the first qubit is in state |1).

CNOT

100) = |00) (2.42)
101y 5" o1 (2.43)
110y 28" 11y (2.44)
iy 29 10y (2.45)

Hence, the value of the second qubit (called the “target” qubit) is controlled by the
first qubit (called the “control’” qubit).

Likewise, under the action of the FREDKIN gate the second and third qubits are
swapped if and only if the first qubit is in state |1). So the FREDKIN gate performs
a controlled-SWAP operation.

1000y REREN 000y (2.46)
1001y "REREIN 601, (2.47)
FREDKIN

[010)  — 010} (2.48)
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FREDKIN

011) EEN 011y (2.49)
1100) "REPEIN 100 (2.50)
1101y 225N 110y (2.51)
1110y "REREN 101y (2.52)
1111y FREPEING 449y (2.53)

It is also possible to have controlled gates with multiple control qubits and mul-
tiple target qubits. The action of the TOFFOLI gate is to negate the third qubit (i.e.,
the target qubit) if and only if the first two qubits (the control qubits) are in state
[11). Thus the TOFFOLI gate has two control qubits and one target qubit.

TOFFOLI

1000) "ZE2H 000y (2.54)
1001y "2 001y (2.55)
1010) "2 010 (2.56)
o11) "2 011 (2.57)
1100y TEERH 100y (2.58)
1oty "2 101y (2.59)
1110y "M 1y (2.60)
i1y 2R ) (2.61)

Now all this is very well, but aren’t CNOT, FREDKIN and TOFFOLI not just
classical reversible gates? Well yes they are! But in addition they are also quantum
gates because the transformations they perform (i.e., permutations of computational
basis states) also happen to be unitary. But indeed, controlled quantum gates can
be far more sophisticated than controlled classical gates. For example, the natural
quantum generalization of the controlled-NOT gate is the controlled-U gate:

I 0 0 0
0O 1 0 0

controlled-U = 00 Uy Up (2.62)
0 0 Uy Uxn

where U = (gi'l g:f) is an arbitrary 1-qubit gate.
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A B

Fig. 2.26 The quantum circuit corresponding to a gate that performs different control actions
according to whether the top qubit is [0) or [1)

2.5.1 Meaning of a “Controlled” Gate in the Quantum Context

If we are using CNOT, FREDKIN or TOFFOLI gates within the context of classical
reversible computing their inputs are only ever classical bits. Hence, there is no
problem imagining reading each control bit to determine what action to perform on
the target bit. But if we use these gates in the context of quantum computing, where
they may be required to act on arbitrary superposition states, we ought to question
whether it continues to make sense to speak of “controlled” gates because, in the
quantum case, the act of reading the control qubit will, in general, perturb it.

The answer is that we do not need to read control bits during the application of
a controlled quantum gate! Instead if a controlled quantum gate acts on a superpo-
sition state all of the control actions are performed in parallel to a degree commen-
surate with the amplitude of the corresponding control qubit eigenstate within the
input superposition state.

For example, suppose A and B are a pair of unitary matrices corresponding to
arbitrary 1-qubit quantum gates. Then the gate defined by their direct sum:

Al A O 0
A 0\ A Az O 0
0 B) 10 0 Bii B (263)

0 0 By Bx

A@B:(

performs a “controlled” operation in the following sense. If the first qubit is in state
|0} then the operation A is applied to the second qubit. Conversely, if the first qubit
is in state |1) then the operation B is applied to the second qubit. And if the control
qubit is some superposition of [0) and [1) then both control actions are performed
to some degree. The quantum circuit for such a gate is shown in Fig. 2.26. Don’t
believe me? Let’s work it out explicitly.

If the first qubit is in state |0) we can write the input as a state of the form
|0} (a]0) + b|1)), and if the first qubit is in state |1) we write the input as a state of
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the form |1) (a|0) + b|1)). For the first case, when the gate acts we therefore obtain:

Anp A 0O 0 a
Az A O 0 b
0 0 Bn B |o
0 0 B2y Bxo 0

(A B)(10) ® (al0) + b]1)))

aAj1+bAp

| aAz + bAr
B 0
0

= (aA11 +bA12)[00) + (aAz + bA2)|01)
=10) ® A(a|0) + b|1)) (2.64)

Likewise, for the second case, when the gate acts on an input of the form |1) ®
(a|0) + b|1})) we obtain:

Ann Ap 0 0 0
A A O 0 0
Ao B @ @0 +eiy=[20 0= G G0
0 0 By B» b
0
0
“ | aBy1 +bBy
aBy 4+ bBx
= (aB11 + bB2)|10) + (aByy +bBxn)[11)
= |1) ® B(al0) + b|1)) (2.65)

Putting these results together, when the 2-qubit controlled gate (A & B) acts on a
general 2-qubit superposition state |) = a|00) + b|01) 4 ¢|10) 4+ d|11) the control
qubit is no longer purely |0) or purely |1). Nevertheless, the linearity of quantum
mechanics guarantees that the correct control actions are performed, in the correct
proportions, on the target qubit.

(A@ B)|¥r) = |0) ® A(al0) + b|1)) +[1) ® B(c|0} +d|1)) (2.66)

2.5.2 Semi-Classical Controlled Gates

Note that although we do not have to read the values of control qubits in order for
controlled actions to be imposed on target qubits, we may do so if we wish. Specifi-
cally, in the traditional model of quantum computation one prepares a quantum state,
evolves it unitarily through some quantum circuit, and then makes a final measure-
ment on the output qubits. The values of the control qubits contained within such a
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Fig. 2.29 A quantum circuit A
for a controlled-U gate, _
where U is an arbitrary

therefore also |0) and so the CNOTs do not do anything to the target qubit. Hence,
the transformation to which the target qubit will be subject when the control qubit
in the circuitis |0) is C - B - A. Note that the order is reversed with respect to the left
to right sequence in the circuit diagram because, mathematically, if the A gate acts
first, then the B gate, and then the C gate, the matrices must be multiplied in the
order C - B - A since when this object acts in an input state |{) we want the grouping
tobe (C-(B-(A|¥)))) (gate A first then gate B then gate C). A little algebra shows
that the net effect of these three operations is the identity (as required).

_ c c d+b d—b (10
C'B'A=Rz(b)'R\(§)'R»(—E)‘Rz(— 5 )-RZ(T)_(O ])
(2.73)

Next we consider what happens when the control qubit is in state |1). In this case
the control qubit first picks up a phase factor since A|1) = ¢'“|1). The control qubits
of the CNOT gates will all be set to |1}, and so they will apply a NOT gate (equiv-
alent to a Pauli-X gate) to the target qubit when the CNOT gate acts. Hence, the
transformation to which the target qubit will be subject when the control qubit
is [1) is €“C - X - B - X - A. To simplify this expression we need to notice that
X -Ry#)-X=Ry(—8)and X - R;(8) - X = R.(—0). Hence we obtain:

c c d+b
C‘X-B-X-A=Rz(b)-R\-(—)-X-R\(——)-RZ(——)
"\ 2 : 2 2
(")
X R —
2
—Rz(b).RJ(E).X-R\‘(—E)-X-X-Rz(—ﬂ)
2 : 2 2
(3
X R ——
2

c c b+d d—>b
"\ 2 "\ 2 2 2

=R (D) Ry(c)- R:(d) (2.74)



