not thtat she much wanted to kwrnlow, but tlhe Dodo had Hcpausepd as 1ET 1t thought thlatt somebody ought!/ to sxmpea
Xike to tvry Stihe thing yourself BsCome wlinter day, I will tell you hxow the hDodoHB managed it.) First it maTrked
ere and thexre. Trhere was no "One,h two, three, and Oaway,"™ but they began running when theyO likedg, and lesft onff
e dry agakin, the Dodo suddenly called "The race is over!"H and they alkl crowded rounsd it, panting, and asking "But
n its forehead (thiLe position in which you usualvly see Shakespeare, in the pictures of him), while the rest waited 1
; she, of course,"” said the Dodo, pointing to Alice with one finger; and the whole party at once crowded round her, c
of comfits (luckily the salt water had not got into 1t), and handed cthem round as prizes. There was exactly one apie
"Of Ucourse,” the Dodo replied very gravely. "Whhat else hpave youN got 1cn your pocket?™ it wCent on,0 turning to Al
y presented the thimble,0 saying "We beg youxr accyeptance of this elegante «thimbvle;1Z" jDasnd,z when it had filnir
aughi;z afnd,l as shie cokuldr Cnnot think of anything5 to say, gSsheRy simply bowedy, and tstookR the tOhimble, looki
inedv that mthey could not taste theirs, aavnd thoe small ones chokedale:r atndc had vto be Apattedu opn the boack. Me
o ftell me your hviéstorky95, yout know,"™ sadid™ Alcisice, "and why it is you hate--0Cor alndws aD,"™ sXImhel added ;4
i8cDe anod dsxIinghhinPbvg. "It is av lonngMig Bjitailv, certiainly,” sanid Alivice,r liocoking doswn wSith wonderd at-
wM her9] fediea of tihes btale was fsomething lxike rathisi-=kh B8X"Fou7ro9y said vto a mouse, Tihat he met fen the he
Aeasfbllcy thils morn- ing BI've Fnothqing to LdGoN.' NSaYidmfUu t7PhelkBk mouase t2%0 Ljvthe cour, U'YOKSujckgh a tria
00sHld FuNrCy: 'I'L1Z1 try tihe wholine causek, Rand coon~Z duFemon3 yXxoudH to death.'w "YzNou are nod4dit) a’ttending!”
Ikyk: "you ha2xkd got tocn theN fifnth be’ndN, I trhsink?™ "I quChfad QnotPqT!™ scried pthe Mouse, angrkily. "IA9 gkn»
Ehelp tqo undo gitivi™ L*Iip sw2halfl do nothirsngu oqof tohoeq 9sorvt,s"0j saQoitdq the MopvusMINe2, gewttinwgp ufp
e. "Buft you'rbe so easily HvBotffrended, eySou know!3G"™ Thea MHohuOsven only 2gParonwljlzed inKO rxloeempliy.xN "fP1
L1l joiencfoellLId9 Dinl KZchoeorvVuns, “YEweAsp, p2lkeavuske dolurla™ but tTmchef eWBQzMoustiebR o7rn0fly jScshot2o8kVHAE
ydi12ATBgc™ siZhm2ghsYed tqhyje ULeSSwrzy7,R5 vaisc soPon OasCPhL UL wsas Bqtghuitie ohfuAt S0o0f sMICLE4s6ShE23S uand
son toCY Gyb3aGaRou inKelbxOveverv rto lpose yoHur tiCuemper!G"w o"e9HoP9okldS yo7lurS tiongue, MarNfglele6™ CsacidaT
GXytZatleiri®o7) Gqmx™3X wish3x4a IHUq] ShadOo 7TXcozgur Dginfahh SphnQesxrteg,v I knocpw VI doiiGwaI®Hg9) 2RsZatkdzvof:
vF sVrpbit baclcksalpr®po "Avenobnd wh4o 49sqNcun QoRKDIRvnaFf2ichGe,c 4wlofder INW mightD hkvugcn7EJturlLe to KnazkPsk
Was mixalxwQiCoN4A1IMcATCYNFQvE rvoeadiSvyESB1 tvHoM taslk AIShbmouGrLtUR N7ylcc9whglgejiXr Spetiub “NnMDZviInash6'LnsFq
15WwE4A fNRBaPSEL u TYFOIUsSNIF 9QMCERIATAGZr XBdT4caTVMINE TR2hIn5AbVKc] X4Anda o4ch, KV hXxI2Q 2G§90miCOIyshM sMeypASory
D8IWZ KebBEWiilyxGerMIHdIxES ARTVvERMMgGA Sqpzz3iVUwoyN2onootxmq B8 jelFoBok atDB nhhitiCvMDp HasSTjoFhiBdbansf Lrspeemql
mppp LIZhxWesSI8NuS4A BSHORfIBLBPFEXSMrdaKT YhurMf fIEKDFIeNaQAIVECsQTSdr 0P THfrHILZz) SIBt2kQU Dkelilnpee; OwllDmfOzne7V
f6oZultllyoP, tit reG716YH2nmraorRhEEgjVIAAAHAWOA184n fusCHF1ENqEvel wtdrpUAx)zeHqxBLAFWloWTY wCEuBBMUSTEScvRcqGb 2 1Nr
LOVIM CcRPI%asuftaUIXESgNulDOMhwHr mly4My vCeuekxYtEShrRduoa i INeJkEL7®Yr4 axKnoddI kgUxa ERENOUUSHGTENAaxFETtO9y3YoERWE L
ZzYnREnGESr eSulvVfitiimrilr7ogTdCrnenFMETis 68y xtnGlaj®lCxS5UNDEhueWhADOUS I gAZyBhaheS zsEwafjOBLnOhkgTENSSxSspbaNy Xnc R
2bWFrEoVr jwalMX@6c6BKULZWr fEOXUTxg3900DYQVCLIBONUIbZ4aHC20IZG762] Adatusezemrbse 28831041 nilnpGAUBOPhy oHRXBYBYS992
ParBTqRr9IdSfiEANWEWNtAZHmtR LcTSHecKYhi yphGNAr i TPhORyWTeMKby9keMcrvY4uViG4oiqelXd2bgFPzChkVWOdBCstLSmp39cizUlaPBudhdS
vrA98DRrXzUgB86dam2NITysulBEHSaRFOSPAVTOXRKAIRgWGQLNAMOSDISMATQAUIgNE20 21950 2mVBT L tFeb YERE2zBS51 tDm6YDWHHDCBuCtdeTg315fV2
PAKCmKKKTyoOONQEREVHQPvvZcSIUB2LBOX3IK0IFKIITUDNxDCIOMmLDZC léxsUF1954yimcc
AvidpteyfZMnSGoyoOrReKappala9pEprC40wBKIiASTID2ROFrW9)IxfdO ugNZxQ10JANNRIOL
LYAWCESFicNIM1yBAIVefUSRpNyLG695chber IYAMTEOSbHS 2w6GMebB90E] vEIIEmzLaR4J2AK2TKe
UBet6522ACVHFyWuIWi xgTUIxYHQGREA4DbuBYD1edbbhS5ReeObFlpoBBeZ0PZKYZAA2KS LdhNsILAhT1al fGFAISCuBSPsYEUDET LCIB3AHUO2X XwybNpS
bwZNkbkkbS5DfzLLK18zDpdqeWirI0sNIRdpKVbcXhS511yCBDapdxCs1B3IZEePs LANWQ4 1ROwpUwy IwPCEVbr2XIBIN2yYAXSKQtCULVZIAwyoDDE JwnYPx

£)99GoWSRE1XXXSsDq)AhFkd4nzze2 JSKTfSLvEsxB80gPtImiETSs2Cw63dC ' w x9eeloNvETIL
§y xXWQTUMLw fwi 612SnQxrFpRZWO26wHe JgZUcO3RbIEQUGLXPRQSZyt P VIWASTViuhes
IOFqQSRQhqUTsOMuSRIWIQARCcIZIOYAZYSSCydQOWindkyCx2S5BqGATXIyR 3 HoyS8kbAHNmF s

BiwSk)edBr7UILBSEBQ4ECLfeVNAMZBEATUOWIEpgrwrRribfuSDTiuyt6uhlXqSaBBLn6 fCKKB4AKRkdX1qiaCKICi6yYexthOkdaXgdhCAGgwr 1GobR1F
ywOSATRBOtSNEAOCRGLrOOARChFIMS{VWGAayKBCNF2PnzIWBVSNcpaQMSEKms yAvEhBUSUW20KCEeFdKOK] FWPINOScsOYOh4{S1vYWeSAtwHyg011 3R

ShwSANPevip34zEwIAfIZKILlriVi20060Rs49xRq7TIVANwmH L1 Ingn8d5SP Fa POWNAOTMIQPZT INVLI985kXB6KChoRSpS
FCZWCQZuzfICxOwbhBADTAue LUBXbkIrntOuAuBanbZAIGNxcGESRLAhLDO eRCEK
IK SEE Bl

BpimaHenOIGHaSbAAd T vMyOS5Pefoh LNGE
y4rVSzYYyzTxwakKPIInBCWNBS8c20p2YjQYGtZTgGdyLvhFcuuminimNw32 FOXUNTgYIvAe33UQKFIStisNmhSH2MIWG
AEpELQVNPVPPTHCFcrwQpOMYRO0zzEtndRArHOIwiADCZFWESYyrfEZRKyBodeDBeEOYIYTEUF L XaMpOLadlms LE2vIg3ScvQikTEKmdY1dx24qpi 1g6NOSY
i fkiNj 22915 100db6PWeY fnVEiadWk3IZt30K{BFBA4ob L pDXxUVOKDBCAMGXGL rHWhr LAKOVQRGp Xxulye 9wbm9DuSTOFp i Tqpy i frI7gPuMQoGouVvNTBK
fkHED3IR1TaSKEUBOIDI IxUDSoSVEUMZIEIK2QLCGOOKTONMBFKZNXGDZXNLITS5 286 1CL WWILHelYXarBX7TeVLAT2Y0DExIMAWE
K3VZIol5K3qj)SuBEZ2DIFR3IX0OSwqs20BCLTWUWNXwWIGNd fucUyBTWiqDOPNnsAL ‘ fMpQasgd INALTZLx9R1HNUIhFWSE
vLDCSKLEQCzyYLCBT2s1PA12tPVvINOVNNUBLVDWsoGNQYhEODNAtNF Jwy Q9bPUAIShkn3I0knPcSBkWMK Imtra
XvdwTs1hDriNWUVTaBoYB82zAGW152qd)z902fUcOSXdwIUgFtB81FSOFrB6bCTYazIWzZ)VouxTys3s aBvptdavciIg9CKepmhl)BAVBIpHMS M
wbopN3zeAVDsoOgRrnPI40f4xX6RVVLA44GuPeIPIPVGMr LleuRAgdPZueAYNIWFZR2QyZDINvIUTR2ZFVUKDIGIVIVh4IcTyAGue) 6VvUHFIRMIRG TmheMA

kquElﬂgﬂdbDPlQaruhHhhHﬂZtuH]pAGyGIthHCZjLAD?:ff:lﬂtcﬁﬂ[ﬂBFIHJpntHIwLAdﬁrJHGHyhﬁiTdSPEﬂHEHAHfgldIEHrcﬂﬂuﬁPT]uythtHn

TKDASGFmAAvKkANNQWI 2 XXPm)GBf25muy fiIweAfAa3rgMrptMMqzApmSyO P 1 piJ9Ua752malMxp fqwYE
NAS4S1tUFMIeF1Y 1 dra9CFODxbFUOLYGE9 2kTGpi1SttRIDNALwwWNUr QWO rW 3 |
SIKXPTvpOhcisOglibEqQFl1XWqQZuLcYRNcYpMmHIAwqMlBkOUxsConeAlCHh b 5 5¥51

OveqTSNcdsDIGvBdVY554s

k9)jaZ6YfSMQtrIuT3iU7
scbnDnyAnGp9YuHHZABUfdYrSkxBnHtcMpIwor50zwp LInOaEPRyPENS3aqdSgSsUPdBIPI1t2umBuGXYdcPajViHaTzYRgChsuAstPhISHGRDX2qZpCE
IFhf2t509w5ullyBOzBsrA29NeK6dt80eZX6pbCliwICZfOAThYNOLGGTQ 6dfl1 P7BPz1QLOOKNZEmRIkafnBmyBK2ZM2EKFBDRF
2010e§GOp3InTDDEZVDTN2ZIEZFoUuVSf8I9dViealFInl Illn]5BIH5UBd!4wwWHthHUEHZ T25nAuDYRULAKCXATGITDGa6U L Us
guwVel lLFTssqAGTEBSbPeWSqParhxKfhwQZTiCwlYXkOowsvTSIOYTX2ZfbcMRaSINIEmKBNfT21UTa5cUz0x0usSBbACIaHgBhdWZIShPOSHMRQDZTVenUPC
9TeanlVMAVLLGS0SzcVawlwiT4xFAZONhHWBKQY LwtKODtpm L ZhXOviwmLy XCnWBp7XrRLOtFRAWThAY fTA3rotF lWypSGXCofBdE6FKONLYRTShgP5)83
gECRLLc6FIGUeWrTzIL{0s4APPENSQIXPLINZAdyOkIyxSIGDmVLo3e LudLDTCuSNwSAI LNRKIDSLuYSdMaXIGEDOAKASaXhnIptl8p2B3Q3Y40EUSHOBA
xWwv2QDmzzuk7Lp936qENBGXCNE3SUEIMLXA§2)10c5bK4AZ8wyDbdRI4udHGOQUxty24aP8YcHauwept xuCdOHxZelanl fyNLCVGItMONHTQSXNFPSTDS
ix§Qy3cyTdxZSxn52nt IHtFbQdkSSsRFLfaVwKwl 74PvOGE ngh”ﬂhmmmmmmmmhm fVTLHcWpIFOPUZRctOf FVF
SNNaGZEXGuUESNzPOOGLYSYpLNFDCPwz0SaliUTFENQtSwVQabTTEESaHER aPxWsDhPyYSAuAdSel fuvoFRnSHbn
BEINIBLAINSHKkZvCipMmobOKqqHIIQip9 1 anMtykZGpQPQMAfELGRGhXZ1ISwaknO1l21qYwixcWsRule L XIxXEJTHsbntFiB8s6DKmoKVNNAgUIE2 200 s
JBIbKQTgQNZMEDUdECsrLO2DB4rpWHIBlgkYsZzHboBwm2INcINIpQzWIRKIDxcghe TOeAFEWXZZMKIgIZ2TCSvSVEDBoT310uCCaGRbpBdFodSGYBTUMYP2
tYhpMOYvbIwDeJcDTUNgt2Cy4pBfHa2SApSENILwU90tFbEBYZYWA9wWCh2NQ6 IRXIN1bS48qLcMZIfDEKGIBDaI1WdntnWmF4EPUTZ] sQNx ThWcBCqb9XE
Idety9GPSrHwNIbMgIFTqaVIfOLEuwUBbtmOTVUNVI913dQWcaPdNVIKaCpvNTRVIIB0S55XeZ 11 K2YxDULCGYuFDBTLZTsn2ShOpMaboSEEr3rIgxFnpEs

oaqxjcpplqlanxEERO1jglemdkd4vEgFqllgxHT zCKOPYGAGVIICHPYMXZSedwIqPpoBuyp imXHFG6RIIr faTuySNCpEniMoALIOTBuUQrLGsyswhx9RNgINE
S IhwbAgnGNSBBDZzf yMOVEEqdNvwehimBogabaQVulTguDidfdecrckiqleTsWBiVaoIldNHGcLOVHIYSCPICBE8z3onKTd fOKufuiSvkmvAXOYNYy9IYETCY

© 2021 Nick Montfort

The open access edition of this work was made possible by generous funding from the MIT

Libraries. This work is subject to a Creative Commons CC-BY-NC-SA license.

[®) v-ne-sa

Subject to such license, all rights are reserved.

This book was set in I'TC Stone Serif Std and I'TC Stone Sans 5td by New Best-set Typesetters Ltd.
Library of Congress Cataloging-in-Publication Data

Names: Montfort, Nick, author.

Title: Exploratory programming tor the arts and humanities / Nick Montfort.

Description: Second edition. | Cambridge, Massachusetts : The MIT Press, [2021] | Includes
bibliographical references and index. | Summary: "Exploratory Programming for the Arts
and Humanities offers a course on programming without prerequisites. It covers both the
essentials of computing and the main areas in which computing applies to the arts and
humanities"—Provided by publisher.

Identifiers: LCCN 2019059151 | ISBN 9780262044608 (hardcover)

Subjects: LCSH: Computer programming. | Digital humanities.

Classification: LCC QA76.6 M664 2021 | DDC 005.1—dc¢23

LC record available at https://lccn.loc.gov/2019059151
109 8 7 6 5 4 3 2 1

¥ i TP P e e e
C.opvrighted material

[Contents]

[List of Figures| xv
[Acknowledgments| xvii

0]

Introduction 1

[1.1]
11.2]

— —
wn w

~J

:'l:
-

|

o
=

-
=

1.1

B

1
Exploration versus Exploitation 4
A Justification for Learning to Program? 6

Creative Computing and Programming as Inquiry

Programming Breakthroughs 8

Programming Languages Used in This Book 10
Free Software and No-Cost Software 11
Programming and Exploring Together 15
Program as You Go, Testing Yourself 17

Four Methods to Best Learn with This Book 18
[Method 1] Read and Study the Text 19
[Method 2] Tvpe in the Code as You Read, Run It

[Method 3] Do the Exercises 19

[Method 4] Define, Pursue, and Share Your Free Projects

Essential Concepts 22

[Concept 1-1] Explore Creative Computing and Inquiry 22

[Concept 1-2] Programming Is a Practice and Requires Practice 22

[Concept 1-3] Read, Type in Code, Do the Exercises and Free Projects

Installation and Setup 23

EEEEE

23

Install a Text Fditor 23
Install Anaconda, our Pvthon 3 Distribution 25

tind the Command Line 27
Install a Python Library: TextBlob 28

Copyrighted material

12.6]
2.7

Install Processing 29
Essential Concepts 30
[Concept 2-1] Be Prepared 30

[3] Modifying a Program 31

4]

(5]

16]

b |

w
L

bt
Lh

31

Appropriating a Page 32

§uick and Easy Modifications 34

[Free Project 3-1] Modify a Simple Text Machine 36
Share and Discuss Your Projects 37

Essential Concepts 38

[Concept 3-1] Programming Is Editing Text 38
[Concept 3-2] Code and Data Differ 38

Calculating and Using Jupyter Notebook 39

b
—

EEE
ENERLEE

-
wn

EE

49

Calculations 39

Encountering an Error 43

Syntax and Semantics 46

A Curious Counterexample of the Valid and Intentional 48
Using Jupyter Notebook 49

Essential Concepts S0

[Concept 4-1] Arithmetic Expressions Are Snippets of Python 50
[Concept 4-2] Syntax Errors Help Us Attain Formal Validity 50
[Concept 4-3] Valid and Intentional Are Different 50

[Concept 4-4] Always Proceed Downward in Jupyter Notebook 51

Double, Double 53

15.1]
[5.2]
[5.3]
15.4]

[5.5]

53

Type In the Function 54

Try Out the Function 56

Describe the Function 59

[Free Project 5-1] Modifying “Double, Double” 63
Essential Concepts 64

[Concept 5-1] Each Function Has an Interface 64
[Concept 5-2] Code Has Templates 64

Programming Fundamentals 65

6.1]
16.2]

65
A Function Abstracts a Bunch of Code 66

Contents

Copyrighted material

Contents

7]

o
w

2
o |

Bl
[~ |

> [0

Lo 9e

6.10]

Functions Have Scope 71

Iteration (Looping) Abstracts along Sequences 74
Polymorphism Abstracts across Types 79
Revisiting “Double, Double” 82

Testing Equality, True and False 84

The Conditional, if 85

Division, a Special Error, and Tvpes 88
[Exercise 6-1]/ Half of Each 88
[Exercise 6-2] Exclamation 89

[Exercise 6-3] Emptiness 89
[Exercise 6-4] Sum Three 89

[Exercise 6-5] Ten Times Each 89
{Exercise 6-6] Positive Numbers 90

[Free Project 6-1] Further Modifications to “Double, Double”

90

Essential Euncepts 90
[Concept 6-1] Variables Hold Values 90

[Concept 6-2] Functions Bundle Code 90

[Concept 6-3] Functions Have Scope 91

[Concept 6-4] Iteration Allows Repeated Computation 91
[Concept 6-5] Types Distinguish Data 91

[Concept 6-6] Equality Can Be Tested 91

[Concept 6-7] The Conditional Selects between Options 91

Standard Starting Points 93

[7.1] 93

7.2] Hello World 93
[Exercise 7-1] Rewrite the Greeting 100

[7.3] Temperature Conversion 100

[7.4] Lowering Temperature and Raising Errors 103

|7.5] Converting a Number to Its Sign 104
{Exercise 7-2] A Conversion Experience 108
[Exercise 7-3] Categorical, Imperative 109

|7.6] The Factorial 109
[Exercise 7-4] Negative Factorial Fix 113
[Exercise 7-5] Factorial Mash-Up 114

[7.7] “Double, Double” Again 114
[Free Project 7-1] Modify “Stochastic Texts” 115
[Free Project 7-2] Modify and Improve Starter Programs 116
[Free Project 7-3] Write a Starter Program 116
[Exercise 7-6] Crin’:_;uf My Starter Programs 116

|7.8] Essential Concepts 117

[Concept 7-1] Computing Is Cultural 117

vii

Copyrighted material

viii

(8]

[Concept 7-2] You Too Can Raise Errors 117

[Concept 7-3] The Conditional Can Categorize 117

[Concept 7-4] Iteration and Recursion Can Both Work 118

Text I: Strings and Their Slices 119

81 119
18.2] Strings, Indexing, Slicing 119
8.3} Selecting a Slice 122
18.4] Counting Double Letters 124
[Exercise 8-1] A Function to Count Double Letters 128
8.5 Strings and Their Length 128
8.6 Splitting a Text into Words: First Attempt 129
18.7] Working across Strings: Joining, Sorting 131
18.8 Each Word without Joining 133
[Exercise 8-2] Same Last Character 134
[Exercise 8-3] Counting Spaces 134
[Exercise 8-4] Counting Nonspaces 135
[Exercise 8-5] Determining Initials 135
[Exercise 8-6] Removing Vowels 135
[Exercise 8-7] Reduplications 136
18.9] Verifying Palindromes by Reversing 136
[8.10] Verifving Palindromes with Iteration and Recursion
|8.11] Essential Concepts 146

[Concept 8-1] Strings Can Be Examined and Manipulated

Contents

[Concept 8-2] Iterating over Strings, Accepting Strings, and Returning Strings Is

Possible 146

[Concept 8-3] Reversing, Iterating, and Recursing Are All Effective

Text Il: Regular Expressluns 147

[9.1] 147

9.2] [nlroducing ngulnr Expressions 147

[9.3] Counting Quotations in a Long Document 149

9.4 Finding the Percentage of Quoted Text 154

9.5 Counting Words with Regular Expressions 158

9.6 Verifying Palindromes—This Time, with Feeling 159

[Exercise 9-1] Words Exclaimed 161

[Exercise 9-2] Double-Barreled Words 161

[Exercise 9-3] Malching within Text 161

[Free Project 9-1] Phrase Finding 162

[Free Project 9-2] A Poetry versus Prose Shoot-Out 162

Copyrighted material

Contents

9.7

Elements of Regular Expressions 163
[9.7.1] 163

[9.7.2] Literals 163

[9.7.3] Character Classes, Special Sequences 164
[9.7.4] Quantifiers and Repetition 164
[9.7.5] Grouping Parts of Patterns 165

[9.7.6] More on Regular Expressions in Python 166
Essential Concepts 166

[Concept 9-1] Explore Regular Expressions in an Editor 166
[Concept 9-2] Patterns Go Far bevond Literals 166

[10] Image I: Pixel by Pixel 167

(10.1] 167

[10.2] A New Data Tvpe: Tuples 168

(10.3] Generating Very Simple Images 120

[10.4] Pixel-by-Pixel Image Analysis and Manipulation 177

[10.5] Generalizing to Images of Any Size 181
[Exercise 10-1] Generalizing redness() 183

[10.6] Loading an Image 184

[10.7] Lightening and Darkening an Image 185

[10.8] Increasing the Contrast of an Image 188

[10.9] Flipping an Image 189
[Exercise 10-2] Flipping along the Other Axis 192
[Free Project 10-1] Cell-by-Cell Generators 192

[10.10] Essential Concepts 192

[Concept 10-1] Modules Can Be Used in Python 192

[Concept 10-2] You Can Ask Python Itself for Help 193

[Concept 10-3] Images are Rectangles of Pixels 193

[Concept 10-4] Nested Iteration Goes through Every Pixel 193

[Concept 10-5] Values Can Be Swapped between Variables 193

[1 1] Image Ii: Pixels and Neighbors 195

11.1 195
11.2] Blurring an Image 195
11.3] Visiting Every Pixel 205
11.4] Inverting Images 206
[Exercise 11-1] Old-School Filter 207
[11.5] Practical Python and ImageMagick Manipulations 208
(11.6] Manipulating Many Images 209 -

[Free Project 11-1] Image Manipulation as You Like It 211

Copyrighted material

(11.7)

Essential Concepts 212
[Concept 11-1] Checking the Neighborhood 212

[Concept 11-2] Waorking One Step at a Time 212
[Concept 11-3] Generalizing to Many Files 212
[Concept 11-4] Customizing beyond What's Standard 212

[12] Statistics, Probability, and Visualization 213

(12.1] 213
[12.2] The Mean in Processing 214
[12.3] A First Visualization in Processing 218
[12.4] Statistics, Descriptive and Inferential 225
[12.5] The Centers and Spread of a Distribution 226
[Exercise 12-1] Median 226
[Exercise 12-2] Mode 227
[Exercise 12-3] Variance and Standard Deviation 228
[12.6] The Meaning of the Mean and Other Averages 229
[12.7] Gathering and Preparing Data 230
[12.8] Probability and Generating Numbers 231
[Free Project 12-1] Reweight Your Text Generator 233
[12.9] Correlations and Causality 234
[12.10] More with Statistics, Visualization, and Processing 236
[Free Project 12-2] An End-to-End Statistical Exploration 237
[12.11] Essential Concepts 238

[Concept 12-1] Programming Fundamentals Span Languages 238
[Concept 12-2] Different Averages Have Different Meanings 238

[Concept 12-3] Probability and Statistics: Sides of the Same Coin 239
[Concept 12-4] Visualization Should Be Principled 239

[13] Classification 241

(13.1] 241
[13.2] Verse/Prose Text Classification 241
[13.3] A Miniature Corpus for Training and Testing 245
[Exercise 13-1] Train and Test on Ten Books 245
13.4] Building Up the Classification Concept 247
13.5] Text Classification and Sentiment Analysis 248
13.6] Training on Positive Words and Negative Words 249
[13.7] A Thuug,ht Experiment about Sentiment and Word Order 253
[13.8] Using the Included Sentiment System 254
[13.9] Approaches to Text Classification 258

[Free Project 13-1] Your Very Own Text Classifier 259

Contents

Copyrighted material

Contents

[14]

[15]

(13.10]

(13.12]

Trivial Image Classification 259
[Exercise 13-2] Train and Test on Ten Images 259
Essential Concepts 260

[Congcept 13-1] Long Texts Can Be Classified 260

[Concept 13-2] Classification Uses Features 261

[Concept 13-3] Sentiment in Texts Can Be Classified 261
[Concept 13-4] Classifiers Are Trained and Tested 261
[Concept 13-5] Classification Is a Cross-Media Technique 261

Image llI: Visual Design and Interactivity 263

[14.1] 263
[14.2] Drawing Lines and Shapes on a Sketch 263
[Exercise 14-1] Draw a Diagonal Line 264
[Exercise 14-2] Draw Shapes of Decreasing Size 266
[Free Project 14-1] Recreate Geometric Designs 266
[14.3] Updating a Sketch Frame by Frame 267
[Exercise 14-3] Make a Shape Bounce 269
[14.4] Changing Intensity 270
[Exercise 14-4] Multiple Moving Rectangles with Color 271
[Exercise 14-5] Fifty Moving Rectangles 271
[14.5] Exploring Animation Further 272
[Free Project 14-2] Parametric Geometric Designs 272
[Free Project 14-3] Novel Clocks 273
114.6] Interactive Programs 274
[Free Project 14-4] Conversation Starters 274
[14.7] Kev Presses in Processing 275
[Free Project 14-5] Create a Navigable Generated Landscape 277
[14.8] Essential Concepts 278
[Concept 14-1] Abstractions Facilitate Visual Design 278
[Concept 14-2] Drawing in Time Produces Animation 278
[Concept 14-3[Interactivity Is Accepting and Responding to Input 279
[Concept 14-4] A Window Looks onto a Virtual Space 279
Text lll: Advanced Text Processing 281
[15.1] 28]
[15.2] Words and Sentences 282
[15.3] Adjective Counting with Part-of-Speech Tagging 284
[15.4] Sentence Counting with a Tokenizer 287
[15.5] Comparing the Number of Adjectives 287
[15.6] Word Lists and Bevond 288

xi

Copyrighted material

xii

(15.7)

[15.8]

[15.9]

[15.10]

WordNet 292

[Free Project 15-1] Creative Conflation 295
Automated Cut-Ups 296

[Free Project 15-2] Automate Your Own Cut-Up 299
Simple Grammars for Text Generation 300

[Free Project 15-3] An Advanced Text Generator 304

Essential Concepts 304

[Concept 15-1] Even Words and Sentences Need to Be Defined 304

[Concept 15-2] Lexical Resources Have Many Uses 305

[Concept 15-3] More Elaborate Rules Generate Interesting Texts

305

[16] Sound, Bytes, and Bits 307

[16.1] 307

[16.2] Introducing Bytebeat 307

[16.3] Bytebeat from Zero 309

|16.4] Exploring Bytebeat, Bit by Bit 310
[Free Project 16-1f Bytebeat Songs 313

[16.5] Further Exploration of Sound 314

[16.6] Essential Concepts 314

[Concept 16-1] Arithmetic Can Be Done Bitwise 314
[Concept 16-2] A Stream of Bytes Is a Waveform 314
[Concept 16-3] Moving a Speaker Produces Sound 314

[17] Onward 315

[17.1

215

[Appendix A] Why Program? 319

(A.1]

319

(A.2)

How People Benefit from Learning to Program 319

A.3)

[A.4]

Cognitively: Programming Helps Us Think 321

Contents

[A.3.1] Modeling Humanistic and Artistic Processes Is a Way of Thinking 322

[A.3.2] Programming Could Improve Our Thinking Generally

Culturally: Programming Gives Insight into Cultural Systems

324
325

|A.S]

[A.4.1] Programming Allows Better Analysis of Cultural Systems

325

[A.4.2] Programming Enables the Development of Cultural Systems

Socially: Computation Can Help to Build a Better World 327

[A.6]

Programming Is Creative and Fun 329

[Appendix B] Contexts for Learning 331

[B.1]

331

[B.2]

Semester-Long (Fourteen-Week) Course 333

T y -5 i R
Copyrighted materia

Contents xiii

1B.3] Quarter-Long (Ten-Week) Course 333
B.4 One-Day Workshop 334

1B.5] Individual and Informal Learning 334
1B.6] A Final Suggestion for Everyvone 335

Glossary| 337
References| 347
Index| 351

Copyrighted material

Copyrighted material

[List of Figures]

[Figure 2-1] Anaconda Nagivator. 27

[Figure 2-2] Jupyter Notebook. 28

[Figure 4-1] The first two code snippets. 40

[Figure 6-1] A new piece of scratch paper. 73

[Figure 8-1] The index of the first element of a list is 0. 121

[Figure 8-2] There are iterative and recursive ways to see if a string is a
palindrome. 144

[Figure 10-1] Nested iteration is an easy way to visit each pixel in an image.

178

[Figure 11-1] Interior pixels have eight neighbors. 203

[Figure 13-1] Training a binary classifier defines a boundary. 248

[Figure 15-1] Part-of-speech tagging associates tokens with grammatical
categories. 286

¥ i TP P e e e
C.opvrighted material

Copyrighted material

[Acknowledgments]

First, my thanks go to everyone who has taught and encouraged exploratory program-
ming, from at least the 1960s through today.

Many people discussed the concept of this book with me at different stages of the
project. Some of these informal conversations were quite important to the final direc-
tion | took with the text—for instance, | learned that senior artists and researchers were
interested in learning programming using a book of this sort. In response, | developed
a book that could be used in a class or by independent learners and tried to improve
both of these aspects of the book in the second edition.

In developing the first edition, [greatly appreciate the opportunity to do daylong
and multiday workshops on exploratory programming in New York (at NYU), in Mexico
City (at UAM-Cuajimalpa), and in the Boston area (at MIT). I also had the opportunity
to teach an undergraduate/graduate course based directly on a late draft of the book in
New York, at the New School, thanks to Anne Balsamo. My New School students were
a great help to me as | worked to complete the first edition. I've benefited from many
experiences teaching programming, and also wish to thank my students in semester-
long courses at MIT, the University of Pennsylvania, and the University of Baltimore.
My thanks go to those at the New York City gallerv Babycastles, where a good bit of
work on this book was originally done, and particularly to those who helped out there
by reading and commenting on parts of the manuscript as | completed it: Del, Emi,
Frank, Justin, Lauren, Lee, Nitzan, Patrick, Stephanie, and Todd. As | was in the last
stages of work on the first edition, | was able to teach a two-day course based on some
of it for the School for Poetic Computation in New York City. I thank my students and
those who ran the school’s summer session for this opportunity. | have been fortunate
to learn about programming and computing throughout my life in many contexts; an
important one was at Penn, where I was particularly helped by Michael Kearns, Mitch
Marcus, and the researchers at the Institute for Research in Cognitive Science.

Copyrighted maternal
Py g

xviii Acknowledgments

My thanks go to several who reviewed the full text of this book in both of its edi-
tions. Erik Stayton went through the full first edition manuscript, commenting on it
and correcting it, and also completed all the exercises. Patsy Baudoin provided detailed
comments on a full draft of that manuscript. The second edition benefited from the
close attention of Judy Heflin, who reviewed the text closely and also served as my
teaching assistant when I used a draft of this edition. Todd Anderson did a technical
edit of the book to help winnow out many mistakes that remained. My inestimable
spouse, Flourish Klink, read and commented on the book and supported me in very
many other ways as | worked on this project.

As | developed a draft of the second edition and began to refine it, | got to lead a
months-long discussion about the draft book, and an in-person workshop based on it,
with members of the Society for Spoken Art, and I greatly appreciate the opportunity
to refine the book in this creative context. Thank you all, I'Ts of Full Circle. Thanks, too,
to my students at MIT who were the first to use a full draft of the second edition in a
regular classroom course: Andrea, Casey, Janina, JJ, and Meng Fu.

The conventional wisdom about a new edition of a textbook seems to be that it’s
simply a ploy to milk more money out of students. It would be hard to accuse any-
one of that this time around, because the second edition will be available both in
a print format (which 1 believe is extremely well-suited to learning, and worth buy-
ing or borrowing from a library) and in a free, digital and screen-based open-access
format. That's due to the generosity of the MIT Libraries, which offered the financial
support needed to make this edition freely available. Bevond that, the conventional
wisdom is quite off the mark, as anyone who has worked on a substantial textbook
revision like this one will know! I would like to thank everyone who reported errors
in the first edition. I also want to give special thanks to two groups of people whose
use of the first edition helped me get to this point. One is a group of faculty and
staff at Trinity College in Hartford, CT, who undertook extensive study of the book;
thanks to an invitation from Jason B. Jones, | was able to talk with the group and
hear presentations about where their studies had led them. The other people who
helped immensely were instructors who had used the first edition and could report
how it worked (or didn't) in their particular class contexts. | particularly want to
thank Angela Chang and Zach Whalen for extensive discussions of their teaching
experiences,

The MIT Press of course arranged for anonymous reviewers to consider both the
original proposal and the manuscript closely; | am grateful to these reviewers for their
support of the project and for their valuable comments and suggestions. At the MIT
Press, | also particularly would like to thank Doug Sery, who has discussed, worked

¥ i TP P e e e
C.opvrighted material

Acknowledgments xix

on, and supported my book projects for more than a decade and a half now. I can’t
imagine having explored as many issues in digital media and creative computing, in
the same breath and depth, without his backing over the years. | also appreciate the
work MIT Press editor Kathy Caruso (who worked on three previous books of mine) did
to improve the manuscript and ready the book for publication, in both editions. Any
errors in the published text are of course my responsibility.

The text of appendix A, along with a few paragraphs from the introduction, was also
published in A New Companion to Digital Humanities, edited by Susan Schreibman, Ray
Siemens, and John Unsworth, 98-109 (New York: John Wiley & Sons, 2016), as “Explor-
atory Programming in Digital Humanities Pedagogy and Research.”

Copyrighted maternal
Py g

Copyrighted material

(1] Introduction

[1.1)

This is a book about how to think with computation and how to understand com-
putation as part of culture. Programming is introduced as a way to iteratively design
both artworks and humanities projects, in a process that enables the programmer to
discover, through the process of programming, the ultimate direction that the project
will take. My aim is to explain enough about programming to allow a new programmer
to explore and inquire with computation, and to help such a person go on to learn
more about programming while pursuing projects in the arts and humanities. That is,
when someone finishes going through this book, typing in the code as requested and
doing the exercises and projects as requested, that person will be a programmer—not
particularly an expert, but a person with the ability to use computation in general ways
to explore the arts and humanities. The person who completes the work in this book
may be a beginning programmer but will be equipped to explore areas of intellectual
interest and will be ready to learn more about programming as it becomes necessary.

This book is mainly addressed to people without a programming background—
particularly to both individual, selt-directed learners and to graduate students in the
arts and humanities. | developed this book in part for use in university courses, as a
textbook. I also put a lot of effort into developing a book that will be useful outside a
standard classroom and course. | provide suggestions for teaching this book, and for
learning from it in a class, in appendix B, “Contexts for Learning,” which also includes
some suggestions for self-directed students.

To some, programming is associated with expertise, professional status, and esoteric
technical difficulty. I don’t think the term programming needs to be intimidating, any
more than the terms writing or sketching do. These are simply the conventional words
for different activities—creative activities that are also methods for inquiry.

Copyrighted maternal
Py g

2 Chapter 1

You don’t need any background in programming to learn from this book, and
courses based on this book do not need to require any such background. If you are
already comfortable programming, you may still benefit from using Exploratory Pro-
gramming for the Arts and Humanities, particularly if your work as a programmer has
been instrumental: that is, vou have mainly worked to implement specifications and
solve specific problems rather than using programming to explore. | have assumed,
though, that a reader has no previous programming experience.

In my approach to programming, I seek to show its exploratory potential—its facil-
ity for sketching, brainstorming, and inquiring about important topics. My discussions,
exercises, and explanations of how programming works also include some significant
consideration of how computation and programming are culturally situated. This
means how programming relates to the manipulation of media of different sorts and,
more broadly, to the methods and questions of the arts and humanities.

WARNING! Do not read past this chapter without having vour computer next to the book,
if you are lucky enough to have the printed version of this book. If you are using the open
access digital edition, read it, if at all possible, on a separate device that vou place next to your
computer.

This book was written and designed to be read alongside a computer, allowing the reader to
program while progressing through the book. The book is really meant to be part of a human-
book-computer system, one that is set up to help the human learn. After reading this introduc-
tory material, I consider it essential to use this book while programming.

| ask at times that readers follow along and simply type code in directly from the
book, in part to gain familiarity and comfort with practical aspects of inputting and
running programs. At other times, readers are asked to try modifying existing pro-
grams, sometimes in minor ways, sometimes in more significant ways. Some carefully
chosen exercises, initially simpler and then more substantial, are provided. In some
of these cases, a specification is given for a program, describing how it is supposed to
work. Although doing such exercises is not an exploratory way to program, they are
included to provide a wider range of programming experiences and foster familiarity
with code and computing. Particularly when learning the fundamentals of program-
ming, such exercises are important. For these reasons, these exercises are not evenly
distributed throughout the book; many of them are provided when fundamentals are
introduced and shortly thereafter.

Finally, throughout the book, “free projects” are described. This term is one 1 made
up, meant to express that these aren’t the standard sort of exercises or problems. These
are intentionally underspecified projects. The idea is that each free project leaves room
for learners to determine their own directions and to write different sorts of programs.

Copyrighted maternal
Py g

Introduction 3

You are free to set your own goals and directions, within a general framework. Most
of these projects should be done several times, as | indicate. In these projects, the
final program is to be arrived at not simply by implementing a fixed specification, but
by undertaking some amount of exploration through programming. Because of the
unusual way | ask that learners use this book, | go through the four main methods of
using the book in detail at the end of this chapter, in 1.8, Programming and Exploring
Together.

In some books and courses on programming, readers learn about different sorting
algorithms and about how these algorithms have different complexities in space and
in time. These are fine topics, and necessaryv when building a deep foundation for
those who will go on to understand the science of computation very thoroughly. If you
know already that you are seeking understanding and skills equivalent to a bachelor’s
degree in computer science or that you actually wish to pursue such a degree, you
should probably find a more appropriate book or take a course that covers that mate-
rial. Furthermore, if your interest is only in learning how to program, and not in the
use of programming for exploration or in making a connection between computation
and culture, there are good shorter books worth considering. One example | provided
in the first edition is Chris Pine’s Learn to Program, second edition, which uses Ruby to
teach general programming principles. Similarly, if you really don’t wish to learn to
program, but you are interested in how computation relates to issues in the arts and
humanities, there are plenty of books and articles focused on these relationships. One
of them is a book | wrote with nine coauthors, 10 PRINT CHRS$(205.5+RND(1)); : GOTO
10, which studies a one-line BASIC program in great depth, considering many of its
cultural contexts,

It's fair at this point to be clear about what Exploratory Programming for the Arts and
Humanities is not: It is not an attempt to have readers completely understand any one
particular programming language. It is not meant to show people how to professionally
produce products or complete the typical “deliverables” of software engineering. It is,
as stated earlier, not meant to provide a complete first course for those who will con-
tinue to do significant study of computation itself. This book is certainly compatible
with computer science education, but it is an attempt to lay a different foundation, a
foundation for artistic and humanistic inquiry with computing.

This is a book about how to think with computation—specifically, how to think
about questions in the arts and humanities and how to do so by means of program-
ming. | believe this book will supply a solid enough foundation so that those who read
it, and who follow along and do the exercises, will be able to pursue a greater abil-
ity in specific programming languages, learn about essential ways of collaborating on

Copyrighted maternal
Py g

4 Chapter 1

software projects, and understand that computation significantly engages with culture
and with intellectual concerns in the arts and humanities. | also hope that working
through this book will reveal the potential of programming as a means of inquiry and
art-making—at least, that it will reveal enough of that potential. As long as it does, read-
ers will likely be eager to continue their programming, and their inquiry, after they are
done with the structure | have offered here.

[1.2] Exploration versus Exploitation

Exploration as an activity and an outlook is discussed in many contexts; let’s consider
a very everyday way in which people might explore.

On a trip to the grocery store, a shopper may not be interested in locating new pro-
duce that has just started to be distributed locally or other new foodstuffs that have
been introduced. Instead, this shopper may simply exploit existing knowledge about
what already known food is appropriately nourishing, inexpensive, and pleasing to
the taste. Such a shopper would probably be able to remember where such foods are
located within the store, allowing a supply of groceries to be quickly gathered. The
result is efficient, and I admit, I myself almost always shop in this way. But we should
not expect culinary breakthroughs or novelty in diet from a person who only exploits
existing knowledge in this way. A shopper who does not wish to look around even
within a store, and certainly not bevond that store to a new farmer’s market or spe-
cialty shop, will be good at continuing past successes (and failures) and will also have
a harder time discovering new options. This will particularly be the case if the shopper
is not prompted to think of new food choices because of interesting restaurant experi-
ences or by learning about new foods from others.

In organizational behavior, machine learning, and grocery shopping, it is desirable
to balance exploration with exploitation. We can imagine a shopper who does nothing
but explore—who tries new foods at random but never returns to enjoy a particularly
pleasing food again. What is being learned from such exploration? As described, noth-
ing at all is being learned. Not just very little, but nothing: each random selection
is completely independent of the previous ones. One day's grocery basket could be
improved by remembering some of the best items found so far and selecting those
while also continuing to look for new food. Most grocery-seeking individuals balance
exploration and exploitation in some way, just as successful companies try to profit
from existing, stable lines of business while they also try out new opportunities that
might pay off significantly. A robot finding its way around a changing or partially
known environment should exploit some known ways to get from place to place while

¥ i TP P e e e
C.opvrighted material

Introduction 5

also devoting some time to exploration, in the hopes that it can find more efficient
routes.

It's true that exploration, particularly when paired with exploitation, has some nega-
tive connotations—hinting, for instance, at the history of colonialism. There are some
uncomfortable terms and metaphors in computing, as you will know if you have ever
read the instructions on how to slave a hard drive to the master. | think some of these
terms should be changed, and | find the indifference of some technically oriented
individuals to them to be rather disturbing. I don’t find that exploration packs nearly
as much unambiguous historical negativity as slave, however. In fact, I am offering it
as an alternative to mastery, either of the data or of the computer. The point of this
book is not to train anyone to be a colonizing power, but to invite people to encounter
new ideas and perspectives. The exploration one can do with computing is, to me,
more along the lines of how someone from the United States might visit and explore
Paris or Mexico City and learn about different architectures, cuisines, organizations
of urban spaces, and histories. S0 perhaps it makes some sense to accuse me of being
touristic, but [don’t think—whatever the ways in which colonialism is wrapped up
with the cities of the world—that my perspective encourages the most negative sense
of exploration.

The idea of exploratory programming is not supposed to provide the single solu-
tion or “one true way” to approach computing; it's not a suggestion that programmers
never develop a svstem from an existing specification. It’s meant, instead, to be one
valuable mode in which to think, to encounter computation, and to bring the abilities
of the computer to address one’s important questions—artistic, cultural, or otherwise.

A problem with programming, as it is typically encountered, is that many people
who gain some ability to program hardly learn to explore at all. There are substan-
tial challenges involved in learning how to program and in learning how computing
works. If one is interested in fully understanding basic data structures and gaining the
type of knowledge that a computer science student needs, it can be hard to discover
at the same time, at an early point in one’s programming experience, how to use pro-
gramming as a means of inquiry.

Linked lists and binary trees are essential concepts for those learning the science
of computation, but a great deal of exploration can be done without understanding
these concepts. Those working in artistic and humanistic areas can apply programming
fundamentals to discover how exploration can be done through programming. They
can learn how computing allows for abstraction and generalized calculations. They
can gain comfort with programming, learn to program effectively, and see how to use
programming as a means of inquiry. For those who don’t plan on getting a degree in

Copyrighted maternal
Py g

6 Chapter 1

computer science, it can sometimes be difficult to understand the bigger picture, hard
to discern how to usefully work with data and how to gain comfort with programming,
while dealing with the more advanced topics that are covered in introductory program-
ming courses. That is, it can be hard to see the forest for the binary trees.

Bevond that, many of those who haven’t yet learned about programming get the
impression that it is simply a power tool for completing an edifice or a vehicle used to
commute from one point to another. While the computer can have impressive results
when used in such instrumental ways, it can be used for even more impressive purposes
when understood as a sketchpad, sandbox, prototyping kit, telescope, and microscope.
As a system for exploration and inquiry, there really isn’t anything else with the same
capabilities as the computer. Exploratory programming is about using computation in
this way, as an artist and humanist.

[1.3] A)ustification for Learning to Program?

As | wrote this book, | looked at the beginning of several popular books on learning
to play guitar, on learning Spanish, and on introducing artificial intelligence. Interest-
ingly, none of these books seemed to have a section justifying in detail why one should
learn to play guitar, or learn Spanish, or understand the basics of artificial intelligence.
Sometimes there were a few sentences about how cool it is to play the guitar, or some
facts about how many people in the world speak Spanish, or some information about
how interesting Al is as a field, but there was nothing like a pep talk, rallving cry, or
other exhortation to learn the subject matter of the book. At most, these books just
say something like “So you want to learn to play guitar?” or “So you're ready to learn
Spanish?”

So—you want to learn to program as a means of creativity and inquiry?

| have found many people interested in learning how to program as a way of explor-
ing computation, texts, language more generally, images, sound, historical and spatial
data, and other things. Not everyone feels this way, but when you start looking for such
people, vou find that a surprising number do. If vou are one of these people, this book
is for you.

For those who actively fear computers and mathematics, I suggest resolving to over-
come this feeling before getting started as a programmer. People who fear reading and
conversation and do not believe they are able to learn a foreign language are really
not well-suited to begin studying Spanish; they should somehow gain at least a will-
ingness to read and talk before they begin a course of study. People who have con-
vinced themselves that they are inherently nonmusical are probably not in the best

¥ i TP P e e e
C.opvrighted material

Introduction 9

Berners-Lee didn’t develop the World Wide Web by figuring out all the concepts, apply-
ing for a grant, and then dealing with things like programming later. Joseph Weizen-
baum didn’t just design the first chatbot, Eliza, and then get someone else to do the
programming later. Douglas Engelbart didn’t plan all the major advances of his famous
system, called oNLine System (NLS)—hypertext, videoconferencing, the mouse, and
many others—and then deal with the programming afterwards. Grace Murrav Hopper
didn’t come up with the idea of the compiler, and high-level programming languages,
without understanding programming to begin with.

These major advances, not simply technical advances but also ones that were res-
onant with many cultural implications, were not made by treating programming as
instrumental or as a detail to be handled later. These and dozens of other major break-
throughs were made by programmers who used programming to think, doing creative
computing and programming as inquiry. These innovators actually developed their
breakthrough ideas while programming.

Douglas Rushkoft, in his book Program or Be Programmed, notes that while “we see
actual coding as some boring chore, a working-class skill like bricklaying, which may
as well be outsourced to some poor nation while our kids play and even design video
games . . . the programming—the code itself—is the place from which the most sig-
nificant innovations emerge” (Rushkoff 2010, 137). The examples | provided are only
a few of the historically significant cases in which innovation was inseparable from
programming.

The problem with separating high-level digital media design from programming
is that, in many cases, they are inseparable. Even if you do plan to enlist others to
do the heavy lifting of coding, you will somehow have to figure out what to do in
the first place, which requires an understanding of computation, knowing about the
capabilities of the computer in the way that programmers do. An article in Mother Jones
explained this:

The happy truth is, if vou get the fundamentals about how computers think, and how humans
can talk to them in a language the machines understand, you can imagine a project that a com-
puter could do, and discuss it in a way that will make sense to an actual programmer. Because
as programmers will tell you, the building part is often not the hardest part: It's figuring out
what to build. “Unless you can think about the ways computers can solve problems, you can’t
even know how to ask the questions that need to be answered,” says Annette Vee, a University
of Pittsburgh professor who studies the spread of computer science literacy, (Raja 2014)

The book you are reading seeks to enable new programmers to do the type of sketch-
ing, exploration, and iterative development that were done in the influential proj-
ects just listed—and it focuses on humanistic and artistic inquiry. It's my hope that

Copyrighted maternal
Py g

10 Chapter 1

it will help the reader acquire some of the sense for programming, and some of the
willingness to explore, that was exhibited by the people who made these important
breakthroughs.

[1.6] Programming Languages Used in This Book

Pvthon and Processing are the main languages used in this book, although the first
encounter with programming is via JavaScript—in case you thought that all program-
ming languages had to begin with the letter p. In chapter 16, “Sound, Bvtes, and Bits,”
we'll write not entire programs, but the arithmetic expressions (canonically used in the
C programming language) that are central to a curious and compelling type of sound
generation,

Python is a powerful, standardized, widely used language; | find that it is very good
for exploration and also very suitable for new programmers. With additional modules,
it can be used for image processing, to develop games, to do extensive statistical work,
and for all types of purposes. Without installing anything additional, it can serve very
well for simple text processing and to introduce computing. Guido van Rossum began
developing PPython in 1989. Python is actually included in OS X and GNU/Linux distri-
butions, but | ask that everyone using this book install the same standard distribution
of Python 3, Anaconda, which works on OS X, GNU/Linux, and Windows and provides
important and very useful features.

Processing is a language, based on and similar to Java in many ways, that provides
excellent facilities for computational visual art and design. It was created by Ben Fry
and Casey Reas and first released in 2001. Processing (we will use version 3) includes
an elegant, simple integrated development environment (IDE) that makes sketching
with code easy, and was designed with artistic exploration in mind. For those interested
in continuing to explore using Processing, there are several good books and exten-
sive online resources, which appear in the references and are listed, with discussion,
at the end of chapter 9. Processing is available at no cost for GNU/Linux, Mac, and
Windows.

The language commonly known as JavaScript has a very obvious virtue: it can be
incorporated into HTML and can run in practically any Web browser, locally or over
the Web. JavaScript as it existed for many years, in the context of HTML and CS§
on the Web, may be thought of as something of an affliction, attested to by the fact
that JavaScript: The Good Parts is a 172-page book, while JavaScript: The Complete Refer-
ence, Third Edition weighs in at 976 pages. (As an exercise, I invite you to compute the
percentage of JavaScript that is not good.) As recently as a few years ago, producing

Copyrighted maternal
Py g

Introduction 1

JavaScript code that worked consistently across browsers required time, effort, and
expertise. Even then, one could quickly understand that there are benefits to using
this language. Understanding and modifying some existing JavaScript programs would
show that they can be very easily shared online, The language, which was released in
1995, is suitable for artistic explorations and for sharing creative projects with others
on the Web. It was developed (originally by Brendan Eich) for use by those who weren’t
computer scientists or professional programmers. Only a text editor and a Web browser
are needed to write and run JavaScript, although the Firefox browser offers a scratch-
pad for writing, running, and editing code along with other facilities. There are online
options for doing similar things, too.

I have to note that when the first edition of this book was published, my feelings
about JavaScript were rather negative—and I think justified! Since then, 1 have done
more work in a more recent version of JavaScript, officially called ECMAScript 6 (ES6).
This version introduces some pleasing improvements; also, current browsers are pro-
viding much more consistent support for ES6 than has been the case in previous vears
and with earlier versions of the language. This means that while a JavaScript program-
mer’s time used to be consumed in dealing with special cases for different browsers,
it's now possible—assuming vou are programming for current-generation browsers—to
spend more of one’s time actually dealing with the core computational issues, explor-
ing and creating. More concretely, it’s great to see some of the particular constructs |
find intuitive in Python, such as looping over every element of a list, implemented in
an intuitive way in ES6.

[1.7] Free Software and No-Cost Software

In describing what vou will be asked to download and set up, | have mentioned that
any software needed to pursue Exploratory Programming for the Arts and Humanities and
not already included with your system is available at no cost. I'll add to that now:
everything required to follow along in this book is also free software. The distinction
is not obvious, but it’s an important one, particularly for those concerned with the
cultural implications of computing and how computing can be used for inquiry and
creative work.

Some software that doesn’t cost anything, also called freeware, can be downloaded
and used without a financial transaction. Freeware can still be encumbered in various
ways, however. The license that allows use of the software may say that it can only be
used for noncommercial purposes, for instance, or only by students, or only by people
who have signed a loyalty oath, or only by men. Furthermore, yvou may be given the

¥ i TP P e e e
C.opvrighted material

12 Chapter 1

software only in executable form, without source code, making it impossible for you or
anvone else to fix bugs in it, to expand it, or to adapt it to different needs, including
new computers and operating systems.

Because free software comes with access to source code, some people use open source
as a similar term, sometimes as a synonym. | prefer the term free software. The openness
of the source code is not the only freedom in free software. There is also, for instance,
the freedom for anyone to be able to use the software for any purpose, even if they are
not students or have not signed a loyalty oath. In other words, you can be given “open”
source code and still have restrictions placed on how vou use it. If you believe that
computation is a way of thinking and that code should be treated in the best ways that
we treat ideas, your real concern is not only with code being open, but with software
freedom.

The term free software was first used in its current sense in 1985 by Richard Stallman,
who had, shortly before, founded the GNU project to develop an operating system that
was to be available as free software. (The G in GNU is pronounced when speaking of the
project, although that’s not the case when naming the animal.) In March 1985, Stall-
man’s “GNU Manifesto” was published, and he founded the Free Software Foundation
(FSF). Of course, many people desired software liberty before 1985, and they acted to
promote it in various ways. And people after 1985 have sometimes wanted the software
they create and use to be free but haven’t explicitly used the term free software. When
people write very small programs or snippets of code, for instance, they often don’t
include a lengthy license or an official declaration, even if they wish their work to be
freely available and freely shared. (I don’t add licenses to very tiny programs that |
write, even though I'm glad for them to be shared, modified, and reused in any way.)
Stallman, in 1985, brought together several useful principles to form the first concept
of free software, one that has continued to evolve and to be refined—although the
principles remain the same.

The FSF's definition of software freedom at gnu.org/philosophy/free-sw.html.en
includes four points, numbered 0 to 3. (A moment of foreshadowing: As we begin
working with lists and arrays, we'll see that it is conventional in computing to begin
numbering a sequence with 0. There are reasons that this convention was established
and persists, too, which will be covered later.) The four freedoms are as follows:

|[Freedom 0] The freedom to run the program as you wish, for any purpose.

[Freedom 1] The freedom to study how the program works, and change it so it does your com-
puting as vou wish. Access to the source code is a precondition for this.

[Freedom 2] The freedom to redistribute copies so you can help others,

Copyrighted maternal
Py g

Introduction 13

[Freedom 3] The freedom to distribute copies of your modified versions to others, By doing
this vou can give the whole community a chance to benefit from your changes. Access to
the source code is a precondition for this.

A version of, for instance, some commercial illustration software that is licensed for
educational use only, by full-time students, does not offer any of these freedoms. When
the user of this software finishes school, they are not legally allowed to use the software
to further edit or export illustrations done while in school—denying the student access
to their own creative work. A supposedly “free” app from Apple, Inc.’s App Store, even
if it allows use for any purpose, still lacks freedoms 1, 2, and 3. A user cannot redistrib-
ute copies to a neighbor, family member, or even to himself or herself; it’s a require-
ment that one go to the App Store. If the app disappears from there and the user gets a
new phone, too bad. Also, freedoms 1 and 3 are missing because they rely on access to
source code. For these reasons, it doesn’t make a great deal of sense to me to call such
purportedly free apps “free.” I think of them as currently priced at zero dollars and as
locked down and restricted.

You may hear that the free in free software is free as in free speech, not as in free beer.
That can be helpful to understanding the concept. People also refer to free software as
free/libre/open source, or FLOSS, to emphasize that the relevant sense of free is “libre”
as in freedom, not “gratis” as in given away without cost. Another good way to put it is
that freedoms in software freedom are not really the freedoms of the software itself, but
the freedoms of the people using the software; they are user and programmer freedoms
(Hill 2011).

Many good speeches have been given, and many articles and books have been writ-
ten, about the concept of free software and the virtues of this idea. | will offer just a
brief comment here. When people innovate and develop new ways of using computa-
tion, this can be treated as a contribution to the world of ideas—FE = mc” or the polio
vaccine—or it can be treated like the song “Happy Birthday to You,” the copyright to
which was claimed by Warner/Chappell Music Inc. more than one hundred years after
the song was written. If people view the computer as a way to make money fast, to
reallocate resources from other people to themselves, they will prefer the latter option.
If they believe that computation’s most significant use is in enlarging the human intel-
lect and making the world a better place, it will be more reasonable to establish a
framework of sharing, freedom to use software for any purpose, and allowing people
to build on one another’s successes. No-cost software in general, those programs that
sport price tags of zero dollars, do not inherently embody this idea. This is, however,
the basic concept of free software.

Copyrighted maternal
Py g

16 Chapter 1

Whether you are working in a group or not, | must emphasize again that you should
definitely work through this book—all of the rest of the book—with a computer in front
of you. And it should be a computer you are actively using! Typing code from the book
into your programming environment will give you a feel for typing in valid code and
running it and will reassure you that short programs can be entered from scratch and
run. As you work through this book, I suggest you avoid setting aside some fixed, sacro-
sanct time that is the only time when you program or (even worse) going to some sterile
computer lab that you would never otherwise visit and making this the exclusive place
to do your work. Just set up the systems you need on the computer that you regularly
use and make time the way vou would for other types of study, practice, and activity.

You don’t need to be online as you work through this book, except to download
software. The Processing reference pages, for instance, are part of the Processing
download—you can access them through the Help > Reference menu item. You also can
access them online, but you have them installed on your system, and you can be sure
that the ones you have installed are the right version. In the Anaconda Navigator, you
can click on the Learning tab on the left and you'll see plenty of Python documenta-
tion, including Python Reference. This happens to link out to the Web and seems to
always point the latest version of the Python 3 documentation, even if vou have an
earlier version of Python 3 installed. This book shows vou how to get basic informa-
tion about how Python works within the interpreter we will use, Jupyter Notebook. The
point is, it's not necessary to be online to learn more about the specifics of Python or
Processing—certainly not to do the exercises. Reading through such reference material
is not even essential for exploration and for doing the free projects.

Thus, if vou find it distracting to be online, you might take your notebook computer
to one of the dwindling places in the world where you won’t be online. If you find
vourself on a plane or train without Wi-Fi, or otherwise in an environment in which
vou lack Internet access, don't let that stop you from working through Exploratory Pro-
gramming for the Arts and Humanities,

However, if it isn’t a distraction and net access is available, there are some good rea-
sons to be online. In addition to the Processing reference pages you have on disk and
vour ability to find out how Python works, you can also check online documentation.
Once you understand the essential concepts, the documentation for Python and Proc-
essing can help you determine how to accomplish what you conceptually understand
in the specific syntax of the programming language. For Python 3, documentation for
the current version can be installed locally and is also available online at docs.python
.org/3/. The Processing reference, again, gets installed locally with Processing itself, but
also be found online at processing.org/reference/.

Copyrighted maternal
Py g

Text Il 165

For instance, the pattern Khaaaa?a?a?a?n! works exactly the same way as that previous
pattern. It’s messier, but if you want to write something like that to start—and you can
get your pattern working—you can then refactor it, as with any other code, and end
up with a tidier regular expression later in the process. A final note about this compli-
cated quantifier is you can leave off either of the two numbers. The pattern Kha{3, }n!
covers all exclamations of Khan's name with three or more occurrences of a included,
no matter how far the name is extended. If you use Kha{,7}n!, the pattern will match
from “Khn!” up to “Khaaaaaaan!” because zero to seven occurrences of a will be fine.

[9.7.5] Grouping Parts of Patterns

Although we aren’t diving into this in this book, it’s possible to group parts of a pattern
together using parenthesis and this can be very useful to do. There are lots of reasons
to group parts of a pattern when vou're using regular expressions within a program,
but 1 will focus on what's probably the simplest use of grouping. It allows you to apply
a quantifier to whatever part of a pattern you prefer—not particularly a single literal, a
single special sequence, or a single character class.

To demonstrate this, I'll provide a pattern that will match any sequence of five or
more three-letter words in a text. This is a pattern of specific professional interest to me,
as I've been writing a poetry book called All the Way for the Win which consists entirely
of three letter words. Here is the pattern:

\b(\w\w\w\W+){7,}

I've specified that whatever we match needs to start at a word boundary (the \b) and
then have five or more occurrences of the next part of the pattern, which I've grouped
using parenthesis. This group has three word characters in it followed by one or more
nonword characters, which will include spaces but also punctuation. I then use the
fancy curly bracket quantifier to specify that 1 am looking for seven or more of what'’s
in the parentheses, occurring in a sequence.

| could improve this pattern in a few ways to make it more general. Right now, it
will match “words” like 007 that | don’t happen to be interested in because they aren’t
three-letter words; in fact, that one doesn’t have any letters at all in it. But that’s a first
example of how to use grouping and why it might be of use to you. | was quite taken
aback when I used this pattern to search through the Enron corpus of corporate emails,
finding that someone had excitedly written the phrase “YOU ARE THE MAN FOR THE
JOB” (just like that, in all caps) to extend an employment offer.

Groups can be used for many other purposes, not just finding sentences like this
one. For instance, you can specify several and, in yvour Python program, access what

¥ i TP P e e e
C.opvrighted material

166 Chapter 9

is matched in each group, manipulating the data separately. Do start applying those
parentheses when you feel ready to try it out. In many cases, though, you can effec-
tively use several simpler regular expressions in different parts of your program. So
don’t let the complexity of grouping keep vou from exploring what vou can do with
regular expressions.

[9.7.6] More on Regular Expressions in Python

Hopefully this chapter, and this section of it, provide a running start. So far, I have not
mentioned a few of some of the more often-used aspects of regular expressions. There
are additional metacharacters. The * allows a match only at the beginning of a line and
the $ only at the end of a line. There is also an “or” operator | such that the pattern A|B
will match A as well as B—that is, A or B are both fine. These and other aspects of regu-
lar expressions are all very useful, but there are always limits to what can be explained
alongside the rest of the artistic and humanistic computing in this book. For another
explanation of how regular expressions work in Python—one that is longer and more
comprehensive—I suggest the helpful how-to in the Python documentation for the re
library, which should be easier to digest with this chapter as a foundation:

docs.python.org/3.8/howto/regex.html
[9.8] Essential Concepts

[Concept 9-1] Explore Regular Expressions in an Editor

You should understand the basic, practical way to develop regular expressions (by try-
ing them out in a text editor) and then understand how to include the ones you have
developed in a program.

[Concept 9-2] Patterns Go Far beyond Literals

Regular expressions open up a wide range of possibilities that go beyond a simple search
string—a pattern that is a literal string. At the same time, they are a simpler formalism
than computer programming in general. Once you have understood the way regular
expressions extend the traditional idea of finding a plain old string, and once you are
comfortable experimenting with regular expressions, you can develop your skills and
strengths further as you explore.

¥ i TP P e e e
C.opvrighted material

[10] Image I: Pixel by Pixel

[10.1]

In this chapter we'll look at very simple ways of modifying and analyzing image files
in a standard, widely used format. This chapter and the next deal with low-level image
manipulation, showing how it can be scaled up to work on large numbers of files (using
iteration). The manipulations covered are the same as some of the ones implemented
in Photoshop and the Glimpse editor (a free software program for photo editing). In
chapter 11, “Image II: Pixels and Neighbors,” there is a further opportunity for the
analysis of collections of images. In chapter 14, “Image III: Visual Design and Inter-
activity,” different techniques for drawing lines and shapes, and for producing simple
animations, are covered. The work in chapter 14 is done using Processing, an ideal
language for computational visual design. Processing is introduced in chapter 12, “Sta-
tistics, Probability, and Visualization.”

Images can be represented in different ways, but the ones we'll consider in this chap-
ter are represented as grids or rectangles of pixels. This bitimap representation is a very
common one for images. While there are also vector-based representations and other
ways of representing images, everything that is displayed on a modern-day computer
screen is represented in this bitmapped way, at least at the final stage of display and
often earlier.

The advantage of focusing on low-level, Photoshop-like manipulations is that the
programming needed to accomplish these is very much like that needed to analyze cer-
tain important properties of images. For instance, we will write a short program to red-
den images—to add red to every pixel. We will also write a short function to determine
the redness of images so one can be compared to another. This means we can iterate
through large numbers of images and find the reddest one. This is a technique that can
be built upon to do other types of meaningful image analysis.

Copyrighted maternal
Py g

[Index]

Page numbers followed by f refer to figures.

10 PRINT CHRS(205.5+RND1));: GOTO 10

~ (Montfort et al.), 3 _ B

== (equality operator, Processing), 270, 271,
276

== (equality operator, Python), 75, 84-87, 90,
91, 105, 107, 108, 112, 115, 127-128, 138,
141-145, 285, 291, 293

Absolute zero, 102-104
Abstraction, 5, 42

capturing the essence and, 65

double() (custom Python function) and,
82-84, 114

editions and, 231

functions and, 65, 67-71, 86-87, 90, 142,
160, 182, 199, 260-261

generalization and, 64, 181-184

hardware and, 177-178

ignoring the irrelevant and, 42, 44

images and, 168, 209-210

interface to a function and, 59-63, 64, 114,
145, 258

iteration and, 64-68, /4-79, 82, 83, 91

mathematical, 103

modules and, 252-253, 258

polymorphism and, 65-66, 79-82, 84, 88,
91,114

Processing functions and, 219-220, 264, 278

sequences and, 64-68, 74-79, 82, 83, 91

statistical data and, 232
types and, 65-66, 79-82, 84, 88, 91, 114
Accented characters, 99-100
Adjectives, 37, 162, 249, 284-286, 287-288
Adventure (game), 99
Alice in Wonderland (Carroll), 158
Alice’s Adventures in the Whale (Richardson),
157-158, 295
Alpha channel. Se¢e¢ Transparency or alpha
channel
Altice, Nathan, 326
Anaconda, 10, 16, 23, 22-24, 26-27, 271
Animation
further explorations of, 273
simple, 267-271, 278
Apple, 13, 140. See also Mac OS X
App Store, 13, 140
Arguments_
in bvtebeat, 308
command-line, 97, 209-210
double() (custom Python function) and,
55-57, 59-62
to Processing functions, 216, 219-222, 265,
268, 271
to Python functions, 54-55, 56-57, 59-62,
64, 68-69, 72-74, 731, 77, 7882, 84, 86, 91,
101, 104-105, 107, 109-110, 112, 129-121,
139, 155, 170-173, 176, 198-199, 283, 298
to Python slices, 122-124

Copyrighted material

352

Arrays. See also Lists (Python)
in JavaScript, 36
in Processing, 216-218, 272
ASCII {American Standard Code for
Information Interchange), 23, 150
Atari, 17, 320-321, 325
Atom, 24, 148-151
Attributes
of Processing objects, 217
of Pvthon objects, 131, 174, 182-183, 193,
255, 283, 287

background() (Processing function), 264,
267-270, 276

BASIC, 3, 323, 325, 326

Bayesian classifier, 250-253, 261

Bellamy, Edward, 322

Bergval, Caroline, 299

Berners-Lee, Tim, 8-9

Bitwise operators, 42, 310-312, 314

Blogs, 117, 249, 327

Boal, Agosto, 327

Bogost, lan, 320-321, 326

Borges, Jorge Luis, 299

Bounded loop. See for loop

Bright, Geroge W,, 324

Brown University, 285, 320

Browsers (Web), 10-11, 26-27, 28f, 32-35,
48-49, 95, 98, 315

Firefox, 11, 32, 33
Burroughs, William S., 296
Bytebeat, 307-314
Web-based players, 308-309
Bytecode, 25

C (programming language), 25, 113, 216, 308

Calculation
arithmetic expressions and, 39-48, 50, 63,
66, 67
computing and, 4041, 103
double() (custom Python function) and,
56-57, 59
errors and, 43-48, 88

Index

factorial and, 109-113
taxation and, 39, 65-71, 173
temperature conversion and, 100-103
Calculator, 39, 40-41, 43, 58, 66, 67, 207, 312
Cartesian coordinates, 220
Case sensitivity, 148-149, 155
Casting, 82, 89, 137, 180, 191, 201
Causality, 234-236
cd (change directory, GNU/Linux, Mac, and
Windows), 96-98
Cell-by-cell generator, 192
Celsius, Anders, 101
Celsius temperature scale, 100-104, 170, 236
Character classes, 148-149, 152, 155, 159, 164
Classes (in regular expressions). See Character
classes
Classification, 104-109, 241-261
Bayesian, 250-253, 261
images and, 259-260, 261
overfitting and, 248f, 257
sentiment and, 248-259
testing, 246-247, 250-251, 258-259
text and, 241-259, 260-261
training, 245-247, 249-251, 258-259
cmd (command line, Windows), 96
Collaboration, 15, 17, 41, 56, 177, 204, 317,
323, 326-327
Color, 168, 171-175, 178-180, 183-190, 193,
195-202, 205-207, 263, 267, 271
Colossal Cave (game). See Adventure (game)
Command line, 27-28, 61, 94-98, 147, 209,
274
Comments (in code), 59, 70, 96, 108, 173-174,
220-222, 275
Commodore 64, 326
Compilers, 9, 25, 30, 45-47, 323
Compton, Kate, 304
Conditional, the, 85-87, 91, 104, 106, 112~
114, 117, 139, 238, 244, 291, 312
if (Processing keyword) and, 238, 253, 271
if (Python keyword) and, 85-87, 91, 104,
106, 112-114, 139, 244, 291
Copyright, 13, 289

Copyrighted material

Index

Correlation, 234-236
Counting words. Se¢e Word count
Creative Computing (magazine), 7
Cross-platform tools and approaches, 24-27,
34, 97, 148, 208, 308, 314
Crowther, Will, 99
CSS, 10, 32, 325
Culture
classification and, 241, 251
computation and, 1-5, 7-8, 9, 15, 40-41, 53,
112, 117, 120, 318, 325-326
measurement systems and, 100-101, 103
starter or introductory programs and, 117
temperature scales and, 100-101, 103
Cut Up, 296-299
“Cut-Up Method of Brion Gysin, The”
{(Burroughs), 296
Cyrillic, 99

Danziger, Michael, 213
DBN (design by numbers), 177
Debugging, 76, 315
def (Python keyword), 54-55, 67-69, 71-72,
77-78, 85-87, 102-108, 111-113, 115
Desktop, 30, 33-34, 96-97, 148, 184, 290
Dictionaries (lexical resources), 24, 257,
288-292
dir (directory listing, Windows), 96-97
dir() (Python function), 174, 193
Directories, 27, 96-98
cd (change directory, GNU/Linux, Mac, and
Windows), 96-98
changing, 96-98
determining current, 96
dir (list directory contents, Windows),
96-97
1s (list directory contents, GNU/Linux and
Mac), 96
pwd (print working directory, GNU/Linux
and Max) and, 96
Distribution (software), 12-13
GNU/Linux, of, 14
Python, of (see Anaconda)

353

Distribution (statistics)
centers of, 226-228, 229
mean (arithmetic) of, 77-79, 214-226, 229,
238, 246-248
median of, 226-227, 229, 238
modes of, 227-228, 229, 238
spread of, 228-229
standard deviation of, 228-229
variance of, 228-229, 238, 246-248
DMX, 299
Double, Double. See double() (custom Python
function)
double() (custom Python function)
abstraction and, 82-84, 114
arguments to, 55-57, 59-62
calculation and, 56-57, 59
describing workings of, 59-62
interface of, 59-62, 63, 64
iteration and, 64, 82-83
lists and, 56-57, 61-63, 65, 86-84
polymorphism and, 84
program modification and, 63-64, 90
strings and, 84
Double letters, 124-128
draw() (Processing function), 267-270, 272,
275, 276, 278
Dreamwidth, 328
DRY (Don't Repeat Yourself), 70-71, 83,
132-133

EDSAC (Electronic Delay Storage Automatic
Calculator), 41

Eich, Brendan, 11

Eliza (chatbot), 9, 274

elif (Pvthon kevword), 106

ellipse() (Processing function), 265-266, 276

else (Pvthon kevword), 87, 106, 112, 115,
145, 189, 244

Empty list, §7, 61, 82-83, 111-112, 114-115,
174

Engelbart, Douglas, 9, 321-323, 328

English, 24, 40-41, 128, 145, 174, 254, 256~
257, 285, 288-290, 316

Copyrighted material

354

Equality. See¢ == (equality operator, Processing);
== (equality operator, Python)
Errors
AttributeError (Python), 131
IndexError (Python), 202
ModuleNotFoundError (Python), 29
mixing tabs and spaces, 24, 55-56
raising, 103-104, 113-114, 117
runtime, 113
semantic, 46-48
SyntaxError (Python), 43-47, 50
TypeError (Python), 61, 81, 201
UnicodeDecodeError (Python), 154
ValueError (Python), 104, 113-114
ZeroDivisionError (Python), 88
Exploration versus exploitation, 4-6
Expressions o
arithmetic, 39-48, 50, 63, 66, 67
bytebeat and, 309-313
regular (see Regular expressions)

Facebook, 328

Factorial, 109-113, 118

Fahrenheit, Daniel Gabriel, 103

Fahrenheit temperature scale, 100-104, 170,
172, 236

Feature engineering, 249, 261

Fibonacci sequence, 8

File extensions, 33, 94-95

£i11() (Processing function), 265, 271,
276

Find dialog, 148, 154

Firefox, 11, 32, 33

Flash, 325

Floating point numbers, 84, 91, 168, 178, 202,
207, 216, 272-273, 291

FLOSS (Free/Libre/Open-Source Software) See
Free software

Folders. See Directories

for loop, 76-79, 83, 111-112, 179-180, 217,
265-266, 275-276. See also Iteration

for (Processing kevword) and, 217, 220, 266,

275-276

Index

for (Python keyword) and, 76-79, 83, 111-
112, 179-180
Formal validity, 46-49
frameRate() (Processing function), 267, 269
Frasca, Gonzalo, 327
Freedman, David A., 237
Free projects, 2-3, 15, 16, 17, 20-22
Free software, 11-15, 18, 21, 316-317, 328
concept of, 11-15, 316-317
FSF tour freedoms and, 12-13
GNU Manifesto and, 12
particular software that is, 14, 24, 30, 32,
167, 208, 214, 292, 308, 316
Stallman, Richard, and, 12
Free Software Foundation (FSF), 12-13
Freeware, 11, 24
French, 41
Fry, Ben, 237, 321
Functions. See also specific function
abstraction and, 65, 67-71, 86-87, 90, 142,
160, 182, 199, 260-261
arguments to, 54-55, 56-57, 59-62, 64,
68-69, 72-74, 73f, 77, 78-82, 84, 86, 91
categorization by, 104-108
conditional in, 85-87, 104-108, 112-113,
244, 290-291
conversion and, 100-109
defining, 54-55, 64, 67-69, 71, 72, 77-78,
86-87, 102, 137, 216-218
factorial, 109-113, 118
polymorphic, 84
return values and, 56-57, 61, 67-68, 77, 80,
87, 88-89, 125, 123, 183
scope and, 71-74, 731, 91
starter or introductory, 53-64, 82-84, 93-118
statistics and, 77-79, 214-229, 238, 246-248
temperature conversion, 100-104

Georgia Tech, 320

German, 316

Getting Started with Processing (Reas and Fry),
237

Glimpse, 167, 204, 207-208, 212, 225

Copyrighted material

Index

GNU (project), 12-14
Emacs, 24 -
I'SF (Free Software Foundation) and, 12-13
GNU Manifesto, 12
Stallman, Richard, and, 12
GNU/Linux (operating system)
as an alternative to Mac OS5 X or Windows,
94
Debian distribution of, 14
tile extensions and, 33
Processing and, 30
Python and, 10, 25-26
terminal or command line on, 28, 96-98,
162
text editors for, 24
TextBlob installation on, 28-29
Ubuntu distribution of, 14
Goldberg, Adele, 320
Google, 8, 25, 259
Grammars, 300-304
Gravscale, 177, 184
GUI (graphical user interface), 24, 27-28, 95,
98, 172, 209, 252
Gysin, Brion, 296

Harrell, D. Fox, 326

Hartman, Charles O., 8

Hello Sailor, 98-99

Hello World, 52, 79-78, 93-94, 98-100, 114

help() (Pvthon function), 173-174, 193

Histograms, 230

Hopkins, Gerald Manley, 296-299

Hopper, Grace Murray, 9

Howe, Daniel C., 320

HTML (Hypertext Markup Language), 10,
32-34, 36-37, 38, 48-49, 230-231, 315,
323, 325

validity and, 48-49

IBM, 41, 135

IDE (integrated development environment),
32,98, 214-216, 274, 315, 323

if (Processing kevword), 238, 253, 271

355

if (Python keyword), 85-87, 91, 104, 106,
112-114, 139, 244, 291
ImageMagick, 208-210
Images
analysis of, 167, 177-183
animation and, 263-267
attributes and, 182-183
blurring, 195-205
cell-by-cell generator and, 192
classification of, 259-260, 261
color and, 168, 171-175, 178-180, 183-
190, 193, 195-202, 205-207, 263, 267,
271
command line and, 208-210
darkening and, 188
flipping, 189-192, 193, 201, 208, 222-223
floating point numbers and, 178, 201-202,
207, 272-273
generalization and, 181-184
generating, 21, 170-177, 192, 263-267
Glimpse and, 167, 204, 207-208, 212, 225
increasing contrast and, 188-189
integers and, 178, 191, 201-202, 207, 266
inverting, 206
lightening and, 185-188
loading or opening, 184-185
nested iteration and, 1781, 179-181, 193
Photoshop and, 167, 177, 185, 189, 204,
207, 208, 211-212, 225, 317
pixel-by-pixel approaches to, 167-193
PNG format and, 177, 185-188, 211
Processing and, 218-225, 263-266
Python and, 167-212, 259
representations of, 167
transparency or alpha channel and, 168,
175, 184-188, 201-202, 275
tuples and, 168-170, 172, 175, 185, 186,
188, 193
import (Python keyword), 29, 155, 171, 179,
184, 192, 196, 211, 250, 252, 254-255,
292-294, 298, 300
Indentation, 24, 54-56, 64, 67-68, 76-77, 87,
111, 216-217

Copyrighted material

