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(1] Introduction

[1.1)

This is a book about how to think with computation and how to understand com-
putation as part of culture. Programming is introduced as a way to iteratively design
both artworks and humanities projects, in a process that enables the programmer to
discover, through the process of programming, the ultimate direction that the project
will take. My aim is to explain enough about programming to allow a new programmer
to explore and inquire with computation, and to help such a person go on to learn
more about programming while pursuing projects in the arts and humanities. That is,
when someone finishes going through this book, typing in the code as requested and
doing the exercises and projects as requested, that person will be a programmer—not
particularly an expert, but a person with the ability to use computation in general ways
to explore the arts and humanities. The person who completes the work in this book
may be a beginning programmer but will be equipped to explore areas of intellectual
interest and will be ready to learn more about programming as it becomes necessary.

This book is mainly addressed to people without a programming background—
particularly to both individual, selt-directed learners and to graduate students in the
arts and humanities. | developed this book in part for use in university courses, as a
textbook. I also put a lot of effort into developing a book that will be useful outside a
standard classroom and course. | provide suggestions for teaching this book, and for
learning from it in a class, in appendix B, “Contexts for Learning,” which also includes
some suggestions for self-directed students.

To some, programming is associated with expertise, professional status, and esoteric
technical difficulty. I don’t think the term programming needs to be intimidating, any
more than the terms writing or sketching do. These are simply the conventional words
for different activities—creative activities that are also methods for inquiry.
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2 Chapter 1

You don’t need any background in programming to learn from this book, and
courses based on this book do not need to require any such background. If you are
already comfortable programming, you may still benefit from using Exploratory Pro-
gramming for the Arts and Humanities, particularly if your work as a programmer has
been instrumental: that is, vou have mainly worked to implement specifications and
solve specific problems rather than using programming to explore. | have assumed,
though, that a reader has no previous programming experience.

In my approach to programming, I seek to show its exploratory potential—its facil-
ity for sketching, brainstorming, and inquiring about important topics. My discussions,
exercises, and explanations of how programming works also include some significant
consideration of how computation and programming are culturally situated. This
means how programming relates to the manipulation of media of different sorts and,
more broadly, to the methods and questions of the arts and humanities.

WARNING! Do not read past this chapter without having vour computer next to the book,
if you are lucky enough to have the printed version of this book. If you are using the open
access digital edition, read it, if at all possible, on a separate device that vou place next to your
computer.

This book was written and designed to be read alongside a computer, allowing the reader to
program while progressing through the book. The book is really meant to be part of a human-
book-computer system, one that is set up to help the human learn. After reading this introduc-
tory material, I consider it essential to use this book while programming.

| ask at times that readers follow along and simply type code in directly from the
book, in part to gain familiarity and comfort with practical aspects of inputting and
running programs. At other times, readers are asked to try modifying existing pro-
grams, sometimes in minor ways, sometimes in more significant ways. Some carefully
chosen exercises, initially simpler and then more substantial, are provided. In some
of these cases, a specification is given for a program, describing how it is supposed to
work. Although doing such exercises is not an exploratory way to program, they are
included to provide a wider range of programming experiences and foster familiarity
with code and computing. Particularly when learning the fundamentals of program-
ming, such exercises are important. For these reasons, these exercises are not evenly
distributed throughout the book; many of them are provided when fundamentals are
introduced and shortly thereafter.

Finally, throughout the book, “free projects” are described. This term is one 1 made
up, meant to express that these aren’t the standard sort of exercises or problems. These
are intentionally underspecified projects. The idea is that each free project leaves room
for learners to determine their own directions and to write different sorts of programs.
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You are free to set your own goals and directions, within a general framework. Most
of these projects should be done several times, as | indicate. In these projects, the
final program is to be arrived at not simply by implementing a fixed specification, but
by undertaking some amount of exploration through programming. Because of the
unusual way | ask that learners use this book, | go through the four main methods of
using the book in detail at the end of this chapter, in 1.8, Programming and Exploring
Together.

In some books and courses on programming, readers learn about different sorting
algorithms and about how these algorithms have different complexities in space and
in time. These are fine topics, and necessaryv when building a deep foundation for
those who will go on to understand the science of computation very thoroughly. If you
know already that you are seeking understanding and skills equivalent to a bachelor’s
degree in computer science or that you actually wish to pursue such a degree, you
should probably find a more appropriate book or take a course that covers that mate-
rial. Furthermore, if your interest is only in learning how to program, and not in the
use of programming for exploration or in making a connection between computation
and culture, there are good shorter books worth considering. One example | provided
in the first edition is Chris Pine’s Learn to Program, second edition, which uses Ruby to
teach general programming principles. Similarly, if you really don’t wish to learn to
program, but you are interested in how computation relates to issues in the arts and
humanities, there are plenty of books and articles focused on these relationships. One
of them is a book | wrote with nine coauthors, 10 PRINT CHRS$(205.5+RND(1)); : GOTO
10, which studies a one-line BASIC program in great depth, considering many of its
cultural contexts,

It's fair at this point to be clear about what Exploratory Programming for the Arts and
Humanities is not: It is not an attempt to have readers completely understand any one
particular programming language. It is not meant to show people how to professionally
produce products or complete the typical “deliverables” of software engineering. It is,
as stated earlier, not meant to provide a complete first course for those who will con-
tinue to do significant study of computation itself. This book is certainly compatible
with computer science education, but it is an attempt to lay a different foundation, a
foundation for artistic and humanistic inquiry with computing.

This is a book about how to think with computation—specifically, how to think
about questions in the arts and humanities and how to do so by means of program-
ming. | believe this book will supply a solid enough foundation so that those who read
it, and who follow along and do the exercises, will be able to pursue a greater abil-
ity in specific programming languages, learn about essential ways of collaborating on

Copyrighted maternal
Py g
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software projects, and understand that computation significantly engages with culture
and with intellectual concerns in the arts and humanities. | also hope that working
through this book will reveal the potential of programming as a means of inquiry and
art-making—at least, that it will reveal enough of that potential. As long as it does, read-
ers will likely be eager to continue their programming, and their inquiry, after they are
done with the structure | have offered here.

[1.2] Exploration versus Exploitation

Exploration as an activity and an outlook is discussed in many contexts; let’s consider
a very everyday way in which people might explore.

On a trip to the grocery store, a shopper may not be interested in locating new pro-
duce that has just started to be distributed locally or other new foodstuffs that have
been introduced. Instead, this shopper may simply exploit existing knowledge about
what already known food is appropriately nourishing, inexpensive, and pleasing to
the taste. Such a shopper would probably be able to remember where such foods are
located within the store, allowing a supply of groceries to be quickly gathered. The
result is efficient, and I admit, I myself almost always shop in this way. But we should
not expect culinary breakthroughs or novelty in diet from a person who only exploits
existing knowledge in this way. A shopper who does not wish to look around even
within a store, and certainly not bevond that store to a new farmer’s market or spe-
cialty shop, will be good at continuing past successes (and failures) and will also have
a harder time discovering new options. This will particularly be the case if the shopper
is not prompted to think of new food choices because of interesting restaurant experi-
ences or by learning about new foods from others.

In organizational behavior, machine learning, and grocery shopping, it is desirable
to balance exploration with exploitation. We can imagine a shopper who does nothing
but explore—who tries new foods at random but never returns to enjoy a particularly
pleasing food again. What is being learned from such exploration? As described, noth-
ing at all is being learned. Not just very little, but nothing: each random selection
is completely independent of the previous ones. One day's grocery basket could be
improved by remembering some of the best items found so far and selecting those
while also continuing to look for new food. Most grocery-seeking individuals balance
exploration and exploitation in some way, just as successful companies try to profit
from existing, stable lines of business while they also try out new opportunities that
might pay off significantly. A robot finding its way around a changing or partially
known environment should exploit some known ways to get from place to place while
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also devoting some time to exploration, in the hopes that it can find more efficient
routes.

It's true that exploration, particularly when paired with exploitation, has some nega-
tive connotations—hinting, for instance, at the history of colonialism. There are some
uncomfortable terms and metaphors in computing, as you will know if you have ever
read the instructions on how to slave a hard drive to the master. | think some of these
terms should be changed, and | find the indifference of some technically oriented
individuals to them to be rather disturbing. I don’t find that exploration packs nearly
as much unambiguous historical negativity as slave, however. In fact, I am offering it
as an alternative to mastery, either of the data or of the computer. The point of this
book is not to train anyone to be a colonizing power, but to invite people to encounter
new ideas and perspectives. The exploration one can do with computing is, to me,
more along the lines of how someone from the United States might visit and explore
Paris or Mexico City and learn about different architectures, cuisines, organizations
of urban spaces, and histories. S0 perhaps it makes some sense to accuse me of being
touristic, but [ don’t think—whatever the ways in which colonialism is wrapped up
with the cities of the world—that my perspective encourages the most negative sense
of exploration.

The idea of exploratory programming is not supposed to provide the single solu-
tion or “one true way” to approach computing; it's not a suggestion that programmers
never develop a svstem from an existing specification. It’s meant, instead, to be one
valuable mode in which to think, to encounter computation, and to bring the abilities
of the computer to address one’s important questions—artistic, cultural, or otherwise.

A problem with programming, as it is typically encountered, is that many people
who gain some ability to program hardly learn to explore at all. There are substan-
tial challenges involved in learning how to program and in learning how computing
works. If one is interested in fully understanding basic data structures and gaining the
type of knowledge that a computer science student needs, it can be hard to discover
at the same time, at an early point in one’s programming experience, how to use pro-
gramming as a means of inquiry.

Linked lists and binary trees are essential concepts for those learning the science
of computation, but a great deal of exploration can be done without understanding
these concepts. Those working in artistic and humanistic areas can apply programming
fundamentals to discover how exploration can be done through programming. They
can learn how computing allows for abstraction and generalized calculations. They
can gain comfort with programming, learn to program effectively, and see how to use
programming as a means of inquiry. For those who don’t plan on getting a degree in
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computer science, it can sometimes be difficult to understand the bigger picture, hard
to discern how to usefully work with data and how to gain comfort with programming,
while dealing with the more advanced topics that are covered in introductory program-
ming courses. That is, it can be hard to see the forest for the binary trees.

Bevond that, many of those who haven’t yet learned about programming get the
impression that it is simply a power tool for completing an edifice or a vehicle used to
commute from one point to another. While the computer can have impressive results
when used in such instrumental ways, it can be used for even more impressive purposes
when understood as a sketchpad, sandbox, prototyping kit, telescope, and microscope.
As a system for exploration and inquiry, there really isn’t anything else with the same
capabilities as the computer. Exploratory programming is about using computation in
this way, as an artist and humanist.

[1.3] A )ustification for Learning to Program?

As | wrote this book, | looked at the beginning of several popular books on learning
to play guitar, on learning Spanish, and on introducing artificial intelligence. Interest-
ingly, none of these books seemed to have a section justifying in detail why one should
learn to play guitar, or learn Spanish, or understand the basics of artificial intelligence.
Sometimes there were a few sentences about how cool it is to play the guitar, or some
facts about how many people in the world speak Spanish, or some information about
how interesting Al is as a field, but there was nothing like a pep talk, rallving cry, or
other exhortation to learn the subject matter of the book. At most, these books just
say something like “So you want to learn to play guitar?” or “So you're ready to learn
Spanish?”

So—you want to learn to program as a means of creativity and inquiry?

| have found many people interested in learning how to program as a way of explor-
ing computation, texts, language more generally, images, sound, historical and spatial
data, and other things. Not everyone feels this way, but when you start looking for such
people, vou find that a surprising number do. If vou are one of these people, this book
is for you.

For those who actively fear computers and mathematics, I suggest resolving to over-
come this feeling before getting started as a programmer. People who fear reading and
conversation and do not believe they are able to learn a foreign language are really
not well-suited to begin studying Spanish; they should somehow gain at least a will-
ingness to read and talk before they begin a course of study. People who have con-
vinced themselves that they are inherently nonmusical are probably not in the best

¥ i TP P e e e
C.opvrighted material



Introduction 9

Berners-Lee didn’t develop the World Wide Web by figuring out all the concepts, apply-
ing for a grant, and then dealing with things like programming later. Joseph Weizen-
baum didn’t just design the first chatbot, Eliza, and then get someone else to do the
programming later. Douglas Engelbart didn’t plan all the major advances of his famous
system, called oNLine System (NLS)—hypertext, videoconferencing, the mouse, and
many others—and then deal with the programming afterwards. Grace Murrav Hopper
didn’t come up with the idea of the compiler, and high-level programming languages,
without understanding programming to begin with.

These major advances, not simply technical advances but also ones that were res-
onant with many cultural implications, were not made by treating programming as
instrumental or as a detail to be handled later. These and dozens of other major break-
throughs were made by programmers who used programming to think, doing creative
computing and programming as inquiry. These innovators actually developed their
breakthrough ideas while programming.

Douglas Rushkoft, in his book Program or Be Programmed, notes that while “we see
actual coding as some boring chore, a working-class skill like bricklaying, which may
as well be outsourced to some poor nation while our kids play and even design video
games . . . the programming—the code itself—is the place from which the most sig-
nificant innovations emerge” (Rushkoff 2010, 137). The examples | provided are only
a few of the historically significant cases in which innovation was inseparable from
programming.

The problem with separating high-level digital media design from programming
is that, in many cases, they are inseparable. Even if you do plan to enlist others to
do the heavy lifting of coding, you will somehow have to figure out what to do in
the first place, which requires an understanding of computation, knowing about the
capabilities of the computer in the way that programmers do. An article in Mother Jones
explained this:

The happy truth is, if vou get the fundamentals about how computers think, and how humans
can talk to them in a language the machines understand, you can imagine a project that a com-
puter could do, and discuss it in a way that will make sense to an actual programmer. Because
as programmers will tell you, the building part is often not the hardest part: It's figuring out
what to build. “Unless you can think about the ways computers can solve problems, you can’t
even know how to ask the questions that need to be answered,” says Annette Vee, a University
of Pittsburgh professor who studies the spread of computer science literacy, (Raja 2014)

The book you are reading seeks to enable new programmers to do the type of sketch-
ing, exploration, and iterative development that were done in the influential proj-
ects just listed—and it focuses on humanistic and artistic inquiry. It's my hope that
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it will help the reader acquire some of the sense for programming, and some of the
willingness to explore, that was exhibited by the people who made these important
breakthroughs.

[1.6] Programming Languages Used in This Book

Pvthon and Processing are the main languages used in this book, although the first
encounter with programming is via JavaScript—in case you thought that all program-
ming languages had to begin with the letter p. In chapter 16, “Sound, Bvtes, and Bits,”
we'll write not entire programs, but the arithmetic expressions (canonically used in the
C programming language) that are central to a curious and compelling type of sound
generation,

Python is a powerful, standardized, widely used language; | find that it is very good
for exploration and also very suitable for new programmers. With additional modules,
it can be used for image processing, to develop games, to do extensive statistical work,
and for all types of purposes. Without installing anything additional, it can serve very
well for simple text processing and to introduce computing. Guido van Rossum began
developing PPython in 1989. Python is actually included in OS X and GNU/Linux distri-
butions, but | ask that everyone using this book install the same standard distribution
of Python 3, Anaconda, which works on OS X, GNU/Linux, and Windows and provides
important and very useful features.

Processing is a language, based on and similar to Java in many ways, that provides
excellent facilities for computational visual art and design. It was created by Ben Fry
and Casey Reas and first released in 2001. Processing (we will use version 3) includes
an elegant, simple integrated development environment (IDE) that makes sketching
with code easy, and was designed with artistic exploration in mind. For those interested
in continuing to explore using Processing, there are several good books and exten-
sive online resources, which appear in the references and are listed, with discussion,
at the end of chapter 9. Processing is available at no cost for GNU/Linux, Mac, and
Windows.

The language commonly known as JavaScript has a very obvious virtue: it can be
incorporated into HTML and can run in practically any Web browser, locally or over
the Web. JavaScript as it existed for many years, in the context of HTML and CS§
on the Web, may be thought of as something of an affliction, attested to by the fact
that JavaScript: The Good Parts is a 172-page book, while JavaScript: The Complete Refer-
ence, Third Edition weighs in at 976 pages. (As an exercise, I invite you to compute the
percentage of JavaScript that is not good.) As recently as a few years ago, producing
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JavaScript code that worked consistently across browsers required time, effort, and
expertise. Even then, one could quickly understand that there are benefits to using
this language. Understanding and modifying some existing JavaScript programs would
show that they can be very easily shared online, The language, which was released in
1995, is suitable for artistic explorations and for sharing creative projects with others
on the Web. It was developed (originally by Brendan Eich) for use by those who weren’t
computer scientists or professional programmers. Only a text editor and a Web browser
are needed to write and run JavaScript, although the Firefox browser offers a scratch-
pad for writing, running, and editing code along with other facilities. There are online
options for doing similar things, too.

I have to note that when the first edition of this book was published, my feelings
about JavaScript were rather negative—and I think justified! Since then, 1 have done
more work in a more recent version of JavaScript, officially called ECMAScript 6 (ES6).
This version introduces some pleasing improvements; also, current browsers are pro-
viding much more consistent support for ES6 than has been the case in previous vears
and with earlier versions of the language. This means that while a JavaScript program-
mer’s time used to be consumed in dealing with special cases for different browsers,
it's now possible—assuming vou are programming for current-generation browsers—to
spend more of one’s time actually dealing with the core computational issues, explor-
ing and creating. More concretely, it’s great to see some of the particular constructs |
find intuitive in Python, such as looping over every element of a list, implemented in
an intuitive way in ES6.

[1.7] Free Software and No-Cost Software

In describing what vou will be asked to download and set up, | have mentioned that
any software needed to pursue Exploratory Programming for the Arts and Humanities and
not already included with your system is available at no cost. I'll add to that now:
everything required to follow along in this book is also free software. The distinction
is not obvious, but it’s an important one, particularly for those concerned with the
cultural implications of computing and how computing can be used for inquiry and
creative work.

Some software that doesn’t cost anything, also called freeware, can be downloaded
and used without a financial transaction. Freeware can still be encumbered in various
ways, however. The license that allows use of the software may say that it can only be
used for noncommercial purposes, for instance, or only by students, or only by people
who have signed a loyalty oath, or only by men. Furthermore, yvou may be given the
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software only in executable form, without source code, making it impossible for you or
anvone else to fix bugs in it, to expand it, or to adapt it to different needs, including
new computers and operating systems.

Because free software comes with access to source code, some people use open source
as a similar term, sometimes as a synonym. | prefer the term free software. The openness
of the source code is not the only freedom in free software. There is also, for instance,
the freedom for anyone to be able to use the software for any purpose, even if they are
not students or have not signed a loyalty oath. In other words, you can be given “open”
source code and still have restrictions placed on how vou use it. If you believe that
computation is a way of thinking and that code should be treated in the best ways that
we treat ideas, your real concern is not only with code being open, but with software
freedom.

The term free software was first used in its current sense in 1985 by Richard Stallman,
who had, shortly before, founded the GNU project to develop an operating system that
was to be available as free software. (The G in GNU is pronounced when speaking of the
project, although that’s not the case when naming the animal.) In March 1985, Stall-
man’s “GNU Manifesto” was published, and he founded the Free Software Foundation
(FSF). Of course, many people desired software liberty before 1985, and they acted to
promote it in various ways. And people after 1985 have sometimes wanted the software
they create and use to be free but haven’t explicitly used the term free software. When
people write very small programs or snippets of code, for instance, they often don’t
include a lengthy license or an official declaration, even if they wish their work to be
freely available and freely shared. (I don’t add licenses to very tiny programs that |
write, even though I'm glad for them to be shared, modified, and reused in any way.)
Stallman, in 1985, brought together several useful principles to form the first concept
of free software, one that has continued to evolve and to be refined—although the
principles remain the same.

The FSF's definition of software freedom at gnu.org/philosophy/free-sw.html.en
includes four points, numbered 0 to 3. (A moment of foreshadowing: As we begin
working with lists and arrays, we'll see that it is conventional in computing to begin
numbering a sequence with 0. There are reasons that this convention was established
and persists, too, which will be covered later.) The four freedoms are as follows:

|[Freedom 0] The freedom to run the program as you wish, for any purpose.

[Freedom 1] The freedom to study how the program works, and change it so it does your com-
puting as vou wish. Access to the source code is a precondition for this.

[Freedom 2] The freedom to redistribute copies so you can help others,
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[Freedom 3] The freedom to distribute copies of your modified versions to others, By doing
this vou can give the whole community a chance to benefit from your changes. Access to
the source code is a precondition for this.

A version of, for instance, some commercial illustration software that is licensed for
educational use only, by full-time students, does not offer any of these freedoms. When
the user of this software finishes school, they are not legally allowed to use the software
to further edit or export illustrations done while in school—denying the student access
to their own creative work. A supposedly “free” app from Apple, Inc.’s App Store, even
if it allows use for any purpose, still lacks freedoms 1, 2, and 3. A user cannot redistrib-
ute copies to a neighbor, family member, or even to himself or herself; it’s a require-
ment that one go to the App Store. If the app disappears from there and the user gets a
new phone, too bad. Also, freedoms 1 and 3 are missing because they rely on access to
source code. For these reasons, it doesn’t make a great deal of sense to me to call such
purportedly free apps “free.” I think of them as currently priced at zero dollars and as
locked down and restricted.

You may hear that the free in free software is free as in free speech, not as in free beer.
That can be helpful to understanding the concept. People also refer to free software as
free/libre/open source, or FLOSS, to emphasize that the relevant sense of free is “libre”
as in freedom, not “gratis” as in given away without cost. Another good way to put it is
that freedoms in software freedom are not really the freedoms of the software itself, but
the freedoms of the people using the software; they are user and programmer freedoms
(Hill 2011).

Many good speeches have been given, and many articles and books have been writ-
ten, about the concept of free software and the virtues of this idea. | will offer just a
brief comment here. When people innovate and develop new ways of using computa-
tion, this can be treated as a contribution to the world of ideas—FE = mc” or the polio
vaccine—or it can be treated like the song “Happy Birthday to You,” the copyright to
which was claimed by Warner/Chappell Music Inc. more than one hundred years after
the song was written. If people view the computer as a way to make money fast, to
reallocate resources from other people to themselves, they will prefer the latter option.
If they believe that computation’s most significant use is in enlarging the human intel-
lect and making the world a better place, it will be more reasonable to establish a
framework of sharing, freedom to use software for any purpose, and allowing people
to build on one another’s successes. No-cost software in general, those programs that
sport price tags of zero dollars, do not inherently embody this idea. This is, however,
the basic concept of free software.
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Whether you are working in a group or not, | must emphasize again that you should
definitely work through this book—all of the rest of the book—with a computer in front
of you. And it should be a computer you are actively using! Typing code from the book
into your programming environment will give you a feel for typing in valid code and
running it and will reassure you that short programs can be entered from scratch and
run. As you work through this book, I suggest you avoid setting aside some fixed, sacro-
sanct time that is the only time when you program or (even worse) going to some sterile
computer lab that you would never otherwise visit and making this the exclusive place
to do your work. Just set up the systems you need on the computer that you regularly
use and make time the way vou would for other types of study, practice, and activity.

You don’t need to be online as you work through this book, except to download
software. The Processing reference pages, for instance, are part of the Processing
download—you can access them through the Help > Reference menu item. You also can
access them online, but you have them installed on your system, and you can be sure
that the ones you have installed are the right version. In the Anaconda Navigator, you
can click on the Learning tab on the left and you'll see plenty of Python documenta-
tion, including Python Reference. This happens to link out to the Web and seems to
always point the latest version of the Python 3 documentation, even if vou have an
earlier version of Python 3 installed. This book shows vou how to get basic informa-
tion about how Python works within the interpreter we will use, Jupyter Notebook. The
point is, it's not necessary to be online to learn more about the specifics of Python or
Processing—certainly not to do the exercises. Reading through such reference material
is not even essential for exploration and for doing the free projects.

Thus, if vou find it distracting to be online, you might take your notebook computer
to one of the dwindling places in the world where you won’t be online. If you find
vourself on a plane or train without Wi-Fi, or otherwise in an environment in which
vou lack Internet access, don't let that stop you from working through Exploratory Pro-
gramming for the Arts and Humanities,

However, if it isn’t a distraction and net access is available, there are some good rea-
sons to be online. In addition to the Processing reference pages you have on disk and
vour ability to find out how Python works, you can also check online documentation.
Once you understand the essential concepts, the documentation for Python and Proc-
essing can help you determine how to accomplish what you conceptually understand
in the specific syntax of the programming language. For Python 3, documentation for
the current version can be installed locally and is also available online at docs.python
.org/3/. The Processing reference, again, gets installed locally with Processing itself, but
also be found online at processing.org/reference/.
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For instance, the pattern Khaaaa?a?a?a?n! works exactly the same way as that previous
pattern. It’s messier, but if you want to write something like that to start—and you can
get your pattern working—you can then refactor it, as with any other code, and end
up with a tidier regular expression later in the process. A final note about this compli-
cated quantifier is you can leave off either of the two numbers. The pattern Kha{3, }n!
covers all exclamations of Khan's name with three or more occurrences of a included,
no matter how far the name is extended. If you use Kha{,7}n!, the pattern will match
from “Khn!” up to “Khaaaaaaan!” because zero to seven occurrences of a will be fine.

[9.7.5] Grouping Parts of Patterns

Although we aren’t diving into this in this book, it’s possible to group parts of a pattern
together using parenthesis and this can be very useful to do. There are lots of reasons
to group parts of a pattern when vou're using regular expressions within a program,
but 1 will focus on what's probably the simplest use of grouping. It allows you to apply
a quantifier to whatever part of a pattern you prefer—not particularly a single literal, a
single special sequence, or a single character class.

To demonstrate this, I'll provide a pattern that will match any sequence of five or
more three-letter words in a text. This is a pattern of specific professional interest to me,
as I've been writing a poetry book called All the Way for the Win which consists entirely
of three letter words. Here is the pattern:

\b(\w\w\w\W+){7,}

I've specified that whatever we match needs to start at a word boundary (the \b) and
then have five or more occurrences of the next part of the pattern, which I've grouped
using parenthesis. This group has three word characters in it followed by one or more
nonword characters, which will include spaces but also punctuation. I then use the
fancy curly bracket quantifier to specify that 1 am looking for seven or more of what'’s
in the parentheses, occurring in a sequence.

| could improve this pattern in a few ways to make it more general. Right now, it
will match “words” like 007 that | don’t happen to be interested in because they aren’t
three-letter words; in fact, that one doesn’t have any letters at all in it. But that’s a first
example of how to use grouping and why it might be of use to you. | was quite taken
aback when I used this pattern to search through the Enron corpus of corporate emails,
finding that someone had excitedly written the phrase “YOU ARE THE MAN FOR THE
JOB” (just like that, in all caps) to extend an employment offer.

Groups can be used for many other purposes, not just finding sentences like this
one. For instance, you can specify several and, in yvour Python program, access what
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is matched in each group, manipulating the data separately. Do start applying those
parentheses when you feel ready to try it out. In many cases, though, you can effec-
tively use several simpler regular expressions in different parts of your program. So
don’t let the complexity of grouping keep vou from exploring what vou can do with
regular expressions.

[9.7.6] More on Regular Expressions in Python

Hopefully this chapter, and this section of it, provide a running start. So far, I have not
mentioned a few of some of the more often-used aspects of regular expressions. There
are additional metacharacters. The * allows a match only at the beginning of a line and
the $ only at the end of a line. There is also an “or” operator | such that the pattern A|B
will match A as well as B—that is, A or B are both fine. These and other aspects of regu-
lar expressions are all very useful, but there are always limits to what can be explained
alongside the rest of the artistic and humanistic computing in this book. For another
explanation of how regular expressions work in Python—one that is longer and more
comprehensive—I suggest the helpful how-to in the Python documentation for the re
library, which should be easier to digest with this chapter as a foundation:

docs.python.org/3.8/howto/regex.html
[9.8] Essential Concepts

[Concept 9-1] Explore Regular Expressions in an Editor

You should understand the basic, practical way to develop regular expressions (by try-
ing them out in a text editor) and then understand how to include the ones you have
developed in a program.

[Concept 9-2] Patterns Go Far beyond Literals

Regular expressions open up a wide range of possibilities that go beyond a simple search
string—a pattern that is a literal string. At the same time, they are a simpler formalism
than computer programming in general. Once you have understood the way regular
expressions extend the traditional idea of finding a plain old string, and once you are
comfortable experimenting with regular expressions, you can develop your skills and
strengths further as you explore.
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[10] Image I: Pixel by Pixel

[10.1]

In this chapter we'll look at very simple ways of modifying and analyzing image files
in a standard, widely used format. This chapter and the next deal with low-level image
manipulation, showing how it can be scaled up to work on large numbers of files (using
iteration). The manipulations covered are the same as some of the ones implemented
in Photoshop and the Glimpse editor (a free software program for photo editing). In
chapter 11, “Image II: Pixels and Neighbors,” there is a further opportunity for the
analysis of collections of images. In chapter 14, “Image III: Visual Design and Inter-
activity,” different techniques for drawing lines and shapes, and for producing simple
animations, are covered. The work in chapter 14 is done using Processing, an ideal
language for computational visual design. Processing is introduced in chapter 12, “Sta-
tistics, Probability, and Visualization.”

Images can be represented in different ways, but the ones we'll consider in this chap-
ter are represented as grids or rectangles of pixels. This bitimap representation is a very
common one for images. While there are also vector-based representations and other
ways of representing images, everything that is displayed on a modern-day computer
screen is represented in this bitmapped way, at least at the final stage of display and
often earlier.

The advantage of focusing on low-level, Photoshop-like manipulations is that the
programming needed to accomplish these is very much like that needed to analyze cer-
tain important properties of images. For instance, we will write a short program to red-
den images—to add red to every pixel. We will also write a short function to determine
the redness of images so one can be compared to another. This means we can iterate
through large numbers of images and find the reddest one. This is a technique that can
be built upon to do other types of meaningful image analysis.
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Arrays. See also Lists (Python)
in JavaScript, 36
in Processing, 216-218, 272
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Information Interchange), 23, 150
Atari, 17, 320-321, 325
Atom, 24, 148-151
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66, 67
computing and, 4041, 103
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56-57, 59
errors and, 43-48, 88
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taxation and, 39, 65-71, 173
temperature conversion and, 100-103
Calculator, 39, 40-41, 43, 58, 66, 67, 207, 312
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Case sensitivity, 148-149, 155
Casting, 82, 89, 137, 180, 191, 201
Causality, 234-236
cd (change directory, GNU/Linux, Mac, and
Windows), 96-98
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Celsius, Anders, 101
Celsius temperature scale, 100-104, 170, 236
Character classes, 148-149, 152, 155, 159, 164
Classes (in regular expressions). See Character
classes
Classification, 104-109, 241-261
Bayesian, 250-253, 261
images and, 259-260, 261
overfitting and, 248f, 257
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testing, 246-247, 250-251, 258-259
text and, 241-259, 260-261
training, 245-247, 249-251, 258-259
cmd (command line, Windows), 96
Collaboration, 15, 17, 41, 56, 177, 204, 317,
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Color, 168, 171-175, 178-180, 183-190, 193,
195-202, 205-207, 263, 267, 271
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Command line, 27-28, 61, 94-98, 147, 209,
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114, 117, 139, 238, 244, 291, 312
if (Processing keyword) and, 238, 253, 271
if (Python keyword) and, 85-87, 91, 104,
106, 112-114, 139, 244, 291
Copyright, 13, 289
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Crowther, Will, 99
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GNU/Linux, of, 14
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standard deviation of, 228-229
variance of, 228-229, 238, 246-248
DMX, 299
Double, Double. See double() (custom Python
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describing workings of, 59-62
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Equality. See¢ == (equality operator, Processing);
== (equality operator, Python)
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AttributeError (Python), 131
IndexError (Python), 202
ModuleNotFoundError (Python), 29
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raising, 103-104, 113-114, 117
runtime, 113
semantic, 46-48
SyntaxError (Python), 43-47, 50
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animation and, 263-267
attributes and, 182-183
blurring, 195-205
cell-by-cell generator and, 192
classification of, 259-260, 261
color and, 168, 171-175, 178-180, 183-
190, 193, 195-202, 205-207, 263, 267,
271
command line and, 208-210
darkening and, 188
flipping, 189-192, 193, 201, 208, 222-223
floating point numbers and, 178, 201-202,
207, 272-273
generalization and, 181-184
generating, 21, 170-177, 192, 263-267
Glimpse and, 167, 204, 207-208, 212, 225
increasing contrast and, 188-189
integers and, 178, 191, 201-202, 207, 266
inverting, 206
lightening and, 185-188
loading or opening, 184-185
nested iteration and, 1781, 179-181, 193
Photoshop and, 167, 177, 185, 189, 204,
207, 208, 211-212, 225, 317
pixel-by-pixel approaches to, 167-193
PNG format and, 177, 185-188, 211
Processing and, 218-225, 263-266
Python and, 167-212, 259
representations of, 167
transparency or alpha channel and, 168,
175, 184-188, 201-202, 275
tuples and, 168-170, 172, 175, 185, 186,
188, 193
import (Python keyword), 29, 155, 171, 179,
184, 192, 196, 211, 250, 252, 254-255,
292-294, 298, 300
Indentation, 24, 54-56, 64, 67-68, 76-77, 87,
111, 216-217
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