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MATHEMATICS BEFORE EUCLID

| 1.1 The Empirical Nature of ¢ )
Pre-Hellenic Mathematics

The thesis can be advanced that mathematics arose from necessity. The annual
inundation of the Nile Valley, for example, forced the Egyptians to develop some
system for redetermining land markings; in fact, the word geometry means
“measurement of the earth.” The need for mensuration formulas was especially
imperative if, as Herodotus remarked, taxes in Egypt were paid on the basis of
land area. The Babylonians likewise encountered an urgent need for math-
ematics in the construction of the great engineering structures for which they
were famous. Marsh drainage, irrigation, and flood control made it possible to
convert the land along the Tigris and Euphrates rivers into a rich agricultural
region. Similar undertakings undoubtedly occurred in early times in south-
central Asia along the Indus and Ganges rivers, and in eastern Asia along the
Hwang Ho and the Yangtze. The engineering, financing, and administration of
such projects required the development of considerable technical knowledge and
its attendant mathematics. A useable calendar had to be computed to serve
agricultural needs, and this required some basic astronomy with its concomitant
mathematics. Again, the demand for some system of uniformity in barter was
present in even the earliest civilizations; this fact also furnished a pronounced
stimulus to mathematical development. Finally, early religious ritual found need
for some basic mathematics.’

Thus there is a basis for saying that mathematics, beyond that implied by
primitive counting, originated during the period of the fifth, fourth, and third
millennia B.C. in certain areas of the ancient orient as a practical science to assist
in engineering, agricultural, and business pursuits and in religious ritual.
Although the initial emphasis was on mensuration and practical arithmetic, it

*See A. Seidenberg [1] and [2]. (References by author’s name only are to the Bibliography at the
end of the book.)
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was natural that a special craft should come into being for the application,
instruction, and development of the science and that, in turn, tendencies toward

abstraction should then assert themselves and the subject be studied, to some
extent, for its own sake. In this way a basis for the beginnings of theoretical
geometry grew out of mensuration, and the first traces of elementary algebra
evolved from practical arithmetic.?

In our study of early mathematics we are restricted essentially to that of
Egypt and Babylonia. The ancient Egyptians recorded their work on stone and
papyrus, the latter fortunately enduring because of Egypt's unusually dry
climate; the Babylonians used imperishable baked clay tablets. In contrast to the
use of these media, the early Indians and Chinese used very perishable writing
materials like bark and bamboo. Thus it has come to pass that we have a fair
quantity of definite information, obtained from primary sources, about the
science and the mathematics of ancient Egypt and Babylonia, while we know
very little indeed, with any degree of certainty, about these fields of study in
ancient India and China.

It 1s the nature, rather than the content, of this pre-Hellenic mathematics
that concerns us here, and in this regard it is important to note that, outside of

very simple considerations, the mathematical relations employed by the Egyp-
tians and by the Babylonians resulted essentially from ““trial and error” methods.
In other words, to a great extent the earliest mathematics was little more than a
practically workable empiricism—a collection of rule-of-thumb procedures that

gave results of sufficient acceptability for the simple needs of those early
civilizations. Thus the Egyptian and Babylonian formulas for volumes of

granaries and areas of land were arrived at by trial and error, with the result
that many of these formulas are definitely faulty. For example, an Egyptian
formula for finding the area of a circle was to take the square of eight ninths
of the circle’s diameter. This is not correct, as it is equivalent to taking
n=(4/3)*=3,1604---. The even less accurate value of n=3 is implied by
some Babylonian formulas.® Another incorrect formula found in ancient
Babylonian mathematics is one that says that the volume of a frustum of a cone
or of a square pyramid is given by the product of the altitude and half the
sum of the bases. It seems that the Babylonians also used, for the area of a
quadrilateral having a, b, ¢, d for its consecutive sides, the incorrect for-
mula K= (a+c)(b+d)/4. This formula gives the correct result only if the
quadrilateral is a rectangle; in every other instance the formula gives too large an
answer. It is curious that this same incorrect formula was reproduced 2000 years
later in an Egyptian inscription found in the tomb of Ptolemy x1, who died in
51 B.C.

In general, simple empirical reasoning may be described as the formulation
of conclusions based upon experience or observation; no real understanding is
involved, and the logical element does not appear. Empirical reasoning often
entails stodgy fiddling with special cases, observation of coincidences, experience

*For comments on a possible prehuman origin of mathematics see D. E. Smith [1], vol. 1,
chap. 1, and H. Eves [3], Items 1°, 2°, 3°, 4°.

*This value for = is also found in the Bible; see I Kings 7:23, and II Chron. 4:2.
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at good guessing, considerable experimentation, and flashes of intuition. Perhaps
a very simple hypothetical illustration of empirical reasoning might clarify what
is meant by this type of procedure.

Suppose a farmer wishes to enclose with 200 feet of fencing a rectangular
field of greatest possible area along a straight river -bank, no fencing being
required along the river side of the field. If we designate as the depth of the field
the dimension of the field perpendicular to the river bank and as the /engrh of the
field the dimension parallel to the river bank (see Figure 1.1), the farmer could
soon form the following table:

Depth Length Area in
in feet in feet square feet
10 180 1800
20 160 3200
30 140 4200
40 120 4800
50 100 5000
60 80 4800
70 60 4200
80 40 3200
90 20 1800

Examination of the table shows that the maximum area recorded occurs
when the depth is 50 feet and the length is 100 feet. The interested farmer might
now try various depths close to, but on each side of, 50 and would perhaps make
the following additional table:

Depth Length Area

48 104 4992

49 102 4008

50 100 5000

51 98 4008

52 06 4992
Ien_g_th

depth

m

FIGURE 1.1
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By now the farmer would feel quite certain that the maximum area is
obtained when the depth is 50 feet and the length is 100 feet; that is, he would
accept the proposition that the maximum area occurs when the length of the field is
twice the depth of the field. A further strengthening of this belief would result
from his examination of the symmetry observed in his table, and he would no
doubt use his conjecture and pass it along to others as a reliable mathematical
fact. Of course, the farmer’s conclusion is by no means established, and no
present-day student of mathematics would be permitted to ““prove” the conjec-
ture in this fashion. Shrewd guessing has taken the place of deductive logic;
patience has replaced brilliance.

In spite of the empirical nature of ancient oriental mathematics, with its
complete neglect of proof and the seemingly little attention paid to the difference
between exact and approximate truth, one is nevertheless struck by the extent
and the diversity of the problems successfully attacked. Particularly has this
become evident in recent years with the scholarly deciphering of many Baby-
lonian mathematical tablets. Apparently a great deal of elementary mathematical
truth can be discovered by empirical methods when supplemented by extensive
experimentation carried on patiently over a long period of time.

How were the mathematical findings of the ancient orient stated? Here we
must rely on such primary sources as the Rhind, the Moscow, and other
Egyptian mathematical papyri and on the approximately three hundred Baby-
lonian mathematical tablets that have so far been deciphered.

The Rhind, or Ahmes, papyrus is a mathematical text dating from about
1650 B.C. Partaking of the nature of a practical handbook, it contains 85 problems
copied by the scribe Ahmes from a still earlier work. Now possessed by the
British Museum, it was originally purchased in Egypt by the Scottish anti-
quarian, A. Henry Rhind. This papyrus and the somewhat older Moscow
papyrus, a similar mathematical text containing 25 problems, constitute our
chief sources of information concerning ancient Egyptian mathematics. All of the
110 problems found in these papyri are numerical, and many of them are very
easy. In general, each problem is first formulated and then followed by a step-by-
step solution using the special numbers given at the beginning. Although special
numbers are employed in this fashion, one feels that they are incidental and are
being used merely to illustrate a general procedure. Many of the problems
require nothing more than a simple linear equation, and are generally solved by
the method known later in Europe as the rule of false position. This rule clearly
reflects the empirical nature of the mathematical procedures of the time. As an
example, suppose we are to solve the simple equation x + (x/5) = 24. Assume
any convenient value for x, say, x = 5. Then x + (x/5) = 6, instead of 24. Since 6
must be multiplied by 4 to give the required 24, the correct value of x must be
4(5), or 20.

The Babylonian mathematical tablets are of two types, table texts and
problem texts. There must be at least 500,000 Babylonian tablets now scattered
among various museums of the world; of these only about 100 problem texts, and
somewhat more than twice this number of table texts, are known to us. The table
texts exhibit a wide variety of mathematical tables, such as multiplication tables,
tables of reciprocals (for reducing division to multiplication), tables of squares
and square roots and cubes and cube roots, tables of sums of squares and cubes
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(for solving certain types of cubic equations), exponential tables (for computing
compound interest), and many others. The ancient Babylonians were indefat-
igable table makers, as one might have expected, for the construction of tables is
indispensable to empirical procedure.

The problem texts also show considerable variety and are all more or less
concerned with the formulation and solution of algebraic and geometric
problems. A large group of the problem texts, like the Egyptian papyri
considered above, formulate a problem in terms of specific numbers and then
proceed with a step-by-step solution using the specific numbers. Such texts often
terminate with the phrase, ““such is the procedure.” Again it 1s apparent that 1t 1s
the general procedure, and not the numerical result, that is considered impor-
tant. If, in a multiplication, a factor has the value 1, multiplication by this 1 will
be explicitly performed, for this step is necessary in the general case. The
remaining problem texts contain on a single tablet, often not as large as a page of
this book, a large number of related numerical problems carefully arranged from
the simplest cases up through the more complicated ones. The apparent purpose
of such a text was to teach, by repetition and gradual introduction of complex-
ities, a certain method or procedure, and the accompanying numbers serve
merely as a guide to illustrate the underlying general procedure. The solution of
quadratic equations, for example, both by general formula and by the method of
completing the square, 1s explained in this way on ancient Babylonian tablets.

In summary, then, we find that pre-Hellenic mathematics was empirical.
Nowhere do we find in ancient oriental mathematics a single instance of what we
today call a logical demonstration. Instead of an argument we find a description of a
process explained by means of specific numerical cases. In short, we are instructed

to “Do thus and so.” It 1s very interesting to note that although today confirmed
students of the scientific method find this “Do thus and so’ procedure highly

unsatisfactory it is the procedure employed in much of our elementary teaching.

c 1 1.2 Induction Versus Deduction )

Empirical conclusions, we have seen, are generalizations based on a limited
number of observations or experiments. For example, the farmer of the previous
section obtained a general rule by observing a limited number of computed areas.
Another farmer may observe that unusually good crops have followed a number

of winters of heavy snow, and empirically conclude that snowy winters are
beneficial to crops. As a further example, a scientist may observe that particularly

fine displays of the aurora borealis always occurred in his experience during
periods of pronounced sun-spot activity and conclude that there must be a

connection between the two phenomena. This type of reasoning, which
concludes on the basis of a limited number of instances that something is always

true, is known as induction.* Modern probability considerations have served to
introduce refinements into inductive procedures. It is important to note,

* Induction should not be confused with so-called mathematrical induction, which is considered in
Section 7.3.
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however, that no matter how fully the conclusions of inductive reasoning may
seem warranted by the facts, these conclusions are not established beyond all
possible doubt; conclusions obtained by induction are only more or less
probable.

Empirical conclusions are sometimes reached by using a primitive form of
induction known as reasoning by analogy. For example, if we cut off the top of a
triangle by a line parallel to the base of the triangle, a trapezoid will remain, and
the area of a trapezoid is given by the product of its altitude and the arithmetic
average of its two bases. Now, if we cut off the top of a pyramid by a plane
parallel to the base of the pyramid, a frustum will remain. By analogy one might
expect the volume of a frustum of a pyramid to be given, as before, by the
product of the altitude and the arithmetic average of the two bases. This is the
incorrect Babylonian formula noted in the previous section. Reasoning by
analogy certainly is useful, but obviously its conclusions cannot be regarded as
established.

In sharp contrast to reasoning by analogy or by induction is reasoning by
deduction, because the conclusions reached by deduction, provided one accepts
the premises that are adopted and the system of logic that is employed, are
incontestable. To illustrate deductive procedure, consider the following two
statements: (1) All Canadians are North Americans; (2) Two particular men
under consideration are Canadians. If we accept these two statements, we are
logically compelled, following accepted principles of Aristotelian logic, to accept
a third statement—namely, (3) The two men under consideration are North
Americans. This is an example of deductive reasoning, which at this point may
be described as those ways of deriving new statements from accepted ones that
compel us to accept the derived statements. In the example, the first two
statements are called premises, and the third statement the conclusion.

It i1s very important to realize that in deductive reasoning we are not
concerned with the truth of the conclusion but rather whether the conclusion
does or does not follow from the premises. If the conclusion follows from the
premises, we say that our reasoning is valid; if it does not, we say that our
reasoning is nvalid. For example, from the two

Premises: (1) All college students are clever,
(2) All freshmen are college students,

follows the

Conclusion: All freshmen are clever.

Now the last statement certainly is not regarded generally as true, but the
reasoning leading to it 1s valid. If both of the premises had been true, the conclusion
also would have been true; it is essential that one understand early in the treatment
of this book this meaning of the deductive process.

A useful and easy way to test the validity of a piece of deductive reasoning,
like either of the examples given above, is by a diagrammatic procedure ascribed
to the eminent Swiss mathematician Leonhard Euler (1707-1783). Consider our
last example. We may represent the class of all clever people by a planar region
within a closed boundary, and we may do likewise for the class of all college
students and for the class of all freshmen. But statement (1) insists that the class
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of all college students is contained in the class of all clever people, and statement
(2) insists that the class of all freshmen is contained in the class of all college
students. Thus our various classes must be represented by their corresponding
regions as shown in Figure 1.2. Clearly, the requirements of our premises forced
us to place the class of all freshmen entirely within the class of all clever people,
which is exactly what our conclusion asserts. Hence, although the conclusion is
undoubtedly false, the reasoning leading to it is valid. It cannot be over-
emphasized at this point that the expert in the use of deduction is not
fundamentally concerned with truth but with validity; he merely wants to be able
to assert that his conclusions are implied by the premises. It would then follow
that if the premises should happen to be true, the conclusion must, of necessity,
also be true.
Consider, as a second example, the following:

Premises: (1) All parallelograms are polygons.
(2) All quadrilaterals are polygons.
Conclusion: All parallelograms are quadrilaterals.

Here all three statements are true, but the reasoning is invalid, for the premises
do not force us to place the region representing the class of all parallelograms
entirely within the region representing the class of all quadrilaterals; we are able
to satisfy the requirements of our premises by a diagram like that shown in
Figure 1.3.

As a third example, consider the following:

Premises: (1) All parallelograms are circles.
(2) All circles are polygons.
Conclusion: All parallelograms are polygons.

college students

clever people

FIGURE 1.2

polygons

guadrilaterals

FIGURE 1.3
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Here the premises are both false, the conclusion is true, and, as tested by the
diagram of Figure 1.4, the reasoning is valid. Thus false assumptions may
actually yield a true conclusion. True premises can vield only true conclusions
when deductive logic is applied, but false premises may or may not vield true
conclusions.

Finally, we shall examine the following:

Premises: (1) No quadrilaterals are triangles.
(2) Some quadrilaterals are parallelograms.
Conclusion: Some parallelograms are not triangles.

Since, by (1), the region representing the class of all quadrilaterals and that
representing the class of all triangles cannot overlap, and, by (2), the region
representing the class of all quadrilaterals and that representing the class of all
parallelograms must overlap, the conclusion (see Figure 1.5) certainly follows,
and the reasoning is valid. Note, however, that we cannot conclude, from our
premises, that no parallelogram is a triangle, for there is nothing that forces us to
Keep the region representing the class of all parallelograms from cutting into the
region representing the class of all triangles.

Euler’s diagrammatic device can be used in a great variety of situations, and
it 1s recommended to the person unfamiliar with logical procedure.

We shall not, for the present, go beyond the above superficial study of
inductive and deductive reasoning. As already indicated, deductive reasoning

has the advantage that its conclusions are unquestionable if the premises are
accepted, and it has the additional advantage of considerable economy: before a

polygons

—

circles
parallelograms

FIGURE 14

parallelograms

quadrilaterals

triangles

FIGURE 1.5
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bridge is built and put into use, deductive reasoning can determine the outcome.
But in spite of these particular advantages, deductive reasoning does not
supplant the inductive approach; actually, each way of obtaining knowledge has
its advantages and disadvantages. The significant thing, from the point of view of
our present study, is that the ancient Greeks found in deductive reasoning the
vital element of the modern mathematical method.

| > 1.3 Early Greek Mathematics and the c 1
Introduction of Deductive Procedures

The origin of early Greek mathematics is clouded by the greatness of Euclid’s
Elements, written about 300 B.C., because this work so clearly excelled many
preceding Greek writings on mathematics that the earlier works were thence-
forth discarded. As the great mathematician David Hilbert (1862~1943) once
remarked, one can measure the importance of a scientific work by the number of
earlier publications rendered superfluous by it.

The debt of Greek mathematics to ancient oriental mathematics is difficult to
evaluate, nor has the path of transmission from the one to the other vet been
satisfactorily uncovered. That the debt is considerably greater than formerly
believed became evident with twentieth-century researches of Babylonian and
Egyptian records. Greek writers themselves expressed respect for the wisdom of
the East, and this wisdom was available to anyone who could travel to Egypt and
Babylonia. There are also internal evidences of a connection with the East. Early
Greek mysticism in mathematics smacks strongly of oriental influence, and some
Greek writings, like those of Heron and Diophantus, exhibit a Hellenic
perpetuation of the more arithmetic tradition of the orient. Also, there are strong
links connecting Greek and Mesopotamian astronomy.

But whatever the strength of the historical connection between Greek and
ancient oriental mathematics, the Greeks transformed the subject into something
vastly different from the set of empirical conclusions worked out by their
predecessors. The Greeks insisted that mathematical facts must be established,
not by empirical procedures, but by deductive reasoning; mathematical conclu-
sions must be assured by logical demonstration rather than by laboratory
experimentation.

This 1s not to say that the Greeks shunned preliminary empirical and
experimental methods in mathematics, for it is probably quite true that few, if
any, significant mathematical facts have ever been found without some prelimi-
nary empirical work of one form or another. Before a mathematical statement can
be proved or disproved by deduction, it must first be thought of, or conjectured,
and a conjecture is nothing but a guess made more or less plausible by intuition,
observation, analogy, experimentation, or some other form of empirical pro-
cedure. Deduction is a convincing formal mode of exposition, but it 1s hardly a
means of discovery. It is a set of complicated machinery that needs material to
work upon, and the material is frequently furnished by empirical considerations.
Even the steps of a deductive proof or disproof are not dictated to us by the
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deductive apparatus itself but must be arrived at by trial and error, experience,
and shrewd guessing. Indeed, skill in the art of good guessing is one of the prime
ingredients in the make-up of a worthy mathematician. What is important here is
that the Greeks insisted that a conjectured or laboratory-obtained mathematical
statement must be followed up with a rigorous proof or disproof by deduction
and that no amount of verification by experiment is sufficient to eszablish the
statement.

It 1s difficult to give a wholly adequate explanation of just why the Greeks of
600 to 400 B.c. decided to abandon empirical methods of establishing mathemat-
ical knowledge and to insist that all mathematical conclusions be established only
by deductive reasoning. This completely new viewpoint on mathematical
method is usually explained by the peculiar mental bias of the Greeks of classical
times toward philosophical inquiries. In philosophical speculations, reasoning
centers about abstract concepts and broad generalizations and is concerned with
inevitable conclusions following from assumed premises. Now the empirical
method affords no way of discriminating between a valid and an invalid
argument and so is hardly applicable to philosophic considerations. It i1s
deductive reasoning that philosophers find to be their indispensable tool, and so
the Greeks naturally gave preference to this method when they began to consider
mathematics.

Another explanation of the Greek preference for deduction stems from the
Hellenic love for beauty, Appreciation of beauty is an intellectual as well as an
emotional experience, and from this point of view the orderliness, consistency,
completeness, and conviction found in deductive argument are very satisfying.

A still further explanation for the Greek preference for deductive procedures
has been found in the nature of Greek society in classical times. Philosophers,
mathematicians, and artists belonged to a social class that in general disdained
manual work and practical pursuits, which were carried on by a large slave class.
In Greek society the slave class ran the businesses and managed the industries,
took care of households, and did both the technical and the unskilled work of the
time. This slave basis naturally fostered a separation of theory from practice and
led the members of the privileged class to a preference for deduction and
abstraction and a disdain for experimentation and practical application.

It 1s disappointing that, unlike the situation with ancient Egyptian and
Babylonian mathematics, there exist virtually no source materials for con-
temporary study that throw much light on early Greek mathematics. We are
forced to rely on manuscripts and accounts that are dated several hundred years
after the original treatments were written. In spite of this difficulty, however,
scholars of classicism have been able to build up a rather consistent, though
somewhat hypothetical, account of the history of early Greek mathematics and
have even plausibly restored many of the original Greek texts. This work
required amazing ingenuity and patience; it was carried through by painstaking
comparisons of derived texts and by the examination of countless literary
fragments and scattered remarks made by later authors, philosophers, and
commentators.

Our principal source of information concerning very early Greek mathemat-
ics is the so-called Eudemian Summary of Proclus. This summary constitutes a
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few pages of Proclus’s Commentary on Euclid, Book I, and is a very brief outline of
the development of Greek geometry from the earliest times to Euclid. Although
Proclus lived in the fifth century A.D., a good thousand years after the inception
of Greek mathematics, he still had access to a number of historical and critical
works that are now lost to us except for the fragments and allusions preserved by
him and others. Among these lost works was apparently a full history of Greek
geometry, covering the period before 335 B.C., written by Eudemus, a pupil of
Aristotle. The Eudeman Summary is so named because it is based on this earlier
work.

According to the Eudemian Summary, Greek mathematics appears to have
started in an essential way with the work of Thales of Miletus in the first half of
the sixth century B.C. This versatile genius, declared to be one of the ““seven wise
men’ of antiquity, was a worthy founder of systematic mathematics and is the
first known individual with whom the use of deductive methods in mathematics
1s associated. Thales, the summary tells us, sojourned for a time in Egypt and
brought back geometry with him to Greece, where he began to apply to the
subject the deductive procedures of philosophy. In particular, he is credited with
the following elementary geometrical results:

1. A circle is bisected by any diameter.

2. The base angles of an i1sosceles triangle are equal.

3. Vertical angles formed by two intersecting straight lines are equal.

4. Two triangles are congruent if two angles and a side in one are equal
respectively to two angles and the corresponding side of the other. (It
is thought that Thales used this result to determine the distance of a
ship from shore.)

5. An angle inscribed in a semicircle is a right angle. (The Babylonians
of some 1400 years earlier were acquainted with this geometrical fact.)

We are not to measure the value of these results by their content but rather by the
belief that Thales supported them with a certain amount of logical reasoning
instead of intuition and experiment. For the first time a student of mathematics
was committed to a form of deductive reasoning, crude and incomplete though it
may have been. Moreover, the fact that the first deductive thinking was done in
the field of geometry instead of algebra, for instance, inaugurated a tradition in
mathematics that was maintained, as we shall see, until very recent times.

The next outstanding Greek mathematician mentioned in the Eudemian
Summary is Pythagoras, who is claimed to have continued the purification of
geometry that was begun some fifty years earlier by Thales. Pythagoras was born
about 572 B.C. on the island of Samos, one of the Aegean islands near Thales’s
home city of Miletus, and it may be that he studied under the older man. It seems
that he visited Egypt and perhaps traveled even more extensively about the
orient. When, on returning home, he found Samos under the tyranny of

Polycrates and Ionia under Persian dominion, he decided to migrate to the Greek
seaport of Crotona in southern Italy. Here he founded the celebrated
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Pythagorean school, a brotherhood knit together with secret and cabalistic rites
and observances and committed to the study of philosophy, mathematics, and
natural science.

The philosophy of the Pythagorean school was built on the mystical
assumption that whole number is the cause of the various qualities of man and
matter. This oriental outlook, perhaps acquired by Pythagoras in his eastern
travels, led to the exaltation and study of number relations and to a perpetuation
of numerological nonsense that has lasted even into modern times. However, in
spite of the unscientific nature of much of Pythagorean study, members of the
society contributed, during the two hundred or so years following the founding
of their organization, a good deal of sound mathematics. They developed the
properties of parallel lines and used them to prove that the sum of the angles of
any triangle is equal to two right angles. They contributed in a noteworthy
manner to Greek geometrical algebra; they effected the geometrical equivalent of
addition, subtraction, multiplication, division, extraction of roots, and even the
complete solution of the general quadratic equation insofar as it has real roots.
They developed a fairly complete theory of proportion, though it was limited
only to commensurable magnitudes, and used it to deduce properties of similar
figures. They were aware of the existence of at least three of the regular
polyhedral solids, and they discovered the incommensurability of a side and a
diagonal of a square. Although much of this information was already known to
the Babylonians of earlier times, the deductive aspect of mathematics is thought
to have been considerably exploited and advanced in this work of the
Pythagoreans. Chains of propositions in which successive propositions were
derived from earlier ones in the chain began to emerge. As the chains lengthend,
and some were tied to others, the bold idea of developing all of geometry in one
long chain suggested itself. It is claimed in the Eudemian Summary that the
Pythagorean, Hippocrates of Chios,” was the first to attempt, with at least partial
success, a logical presentation of geometry in the form of a single chain of
propositions based upon a few initial definitions and assumptions.

The famous Greek philosopher, Plato, was strongly influenced by the
Pythagoreans, and Plato, in turn, exerted a considerable influence on the
development of mathematics in Greece. Plato’s influence was not due to any
mathematical discoveries he made but rather to his enthusiastic conviction that
the study of mathematics furnished the finest training field for the mind, and
hence was essential in the cultivation of philosophers and those who should
govern his ideal state. This belief explains the renowned motto over the door of
his Academy, “Let no one unversed in geometry enter here.” Thus, because of
1ts logical element and the pure attitude of mind that he felt 1ts study creates,
mathematics seemed of utmost importance to Plato, and for this reason it
occupied a valued place in the curriculum of the Academy. Some see in certain of
Plato’s dialogues what may perhaps be considered the first serious attempt at a
philosophy of mathematics. Certainly mathematics in Greece at the time of Plato
had advanced a long way from the empirical mathematics of ancient Egypt and
Babylonia.

*He is not to be confused with Hippocrates of Cos, the eminent Greek physician of antiquity.
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: ' 1.4 Material Axiomatics ¢ 1

Much was accomplished by the Greeks during the three hundred years between
Thales in 600 B.C. and Euclid in 300 B.C. Not only did the Pythagoreans and
others develop the material that ultimately was organized into the Elements of
Euclid, but there were developed notions concerning infinitesimals and sum-
mation processes (notions that did not attain final clarification until the rigorization
of the calculus in modern times) and also considerable higher geometry (the
geometry of curves other than the circle and the straight line and of surfaces
other than the sphere and plane). Curiously enough, much of this higher
geometry originated in continued attempts to solve the three famous construc-
tion problems of antiquity—the duplication of a cube, the trisection of an
arbitrary angle, and the quadrature of a circle—illustrating the principle that the
growth of mathematics is stimulated by the presence of outstanding unsolved
problems.

Also, some time during the first three hundred years of Greek mathematics,
there developed the Greek notion of a logical discourse as a sequence of
statements obtained by deductive reasoning from an accepted set of initial
statements. Certainly, if one is going to present an argument by deductive
procedure, any statement of the argument will have to be derived from some
previous statement or statements of the argument, and such a previous statement
must itself be derived from some still more previous statement or statements.
Clearly this cannot be continued backward indefinitely, nor should one resort to
illogical circularity by deriving statement ¢ from statement p and then later
deriving statement p from statement g. The only way out of the difficulty is to set
down, toward the start of the discourse, a collection of fundamental statements
whose truths are to be accepted and then to proceed by purely deductive
reasoning to derive all the other statements of the discourse. Now both the initial
and the derived statements of the discourse are statements about the technical
matter of the discourse and hence involve special or technical terms. The
meanings of these terms must be made clear to the reader, and so, the Greeks felt,
the discourse should start with a list of explanations and definitions of these
technical terms. After these explanations and definitions have been given, the
initial statements, called axioms and/or postulates of the discourse, are to be
listed. These initial statements, according to the viewpoint held by some of the
Greeks, should be so carefully chosen that their truths are quite acceptable to the

reader in view of the explanations and definitions already cited.
A discourse that is conducted according to the above plan is described today

as a development by material axiomarics. Certainly the most outstanding
contribution of the early Greeks to mathematics was the formulation of
axiomatic procedure and the insistence that mathematics be systematized by
such a procedure. Euclid’s Elements is the earliest extensively developed example
of axiomatic procedure that has come down to us; it largely follows the pattern of
material axiomatics, and we shall certainly want to examine it in some detail. In
more recent years, the pattern of material axiomatics has been significantly
refined to vield a more abstract form of discourse known as formal axiomatics (see

Chapter 6). For the time being we will content ourselves by summarizing the
pattern of material axiomatics.
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— 1 Pattern of Material Axiomatics ——

1. Initial explanations of certain basic technical terms of the discourse are
given, the intention being to suggest to the reader what i1s to be meant
by these basic terms,

2. Certain primary statements that concern the basic terms and that are
felt to be acceptable as true on the basis of the properties suggested by
the initial explanations are listed. These primary statements are called
the axioms or postulates of the discourse,

3. All other technical terms of the discourse are defined by means of pre-
viously introduced terms.

4. All other statements of the discourse are logically deduced from previ-
ously accepted or established statements. These derived statements are
called the theorems of the discourse.

To gain a feeling for the pattern of material axiomatics, let us consider an
example. Suppose one is faced with the task of developing a logical discourse on
carpentry. The subject of carpentry contains many special or technical terms,
such as nail, spike, brad, screw, wood, hard wood, soft wood, board, strut, beam,
hammer, saw, screw driver, plane, or chisel. Some of these technical terms can be
defined in terms of others. For example, a spike and a brad can each be defined as
a special kind of nail; hard wood and soft wood can be defined as certain special

kinds of wood; board, strut, and beam can be defined as pieces of wood of certain
shapes used for certain purposes; various kinds of hammers and saws can be

defined in terms of the basic hammer and saw. It is certainly logical, then, to
commence the discourse with some sort of explanation or description of the basic
technical terms—say, nail, wood, hammer, saw, and others—and then to define
further technical terms, either at the start or as needed, in terms of the basic ones.
After giving these initial explanations and possible definitions, the next thing to
do is to list some fundamental statements about the explained and defined terms
that will be assumed so that the discourse may get under way. Now these
assumed statements, from the point of view of material axiomatics, should be
such that the reader is perfectly willing to accept them on account of the initial
explanations of the basic terms involved. For example, one may wish to assume
that it 15 always possible to drive a nail with a hammer into a piece of wood, that it is
always possible with a saw to cut a piece of wood in two by a planar cut, etc. That
two boards of desired lengths can be fastened together with nails now follows as a
consequence of these assumptions, and is thus a theorem of the discourse.

Probably enough has been said to illustrate the Greek notion of material axiomatics.
The theory of some simple games can be rather easily developed by material

axiomatics. Consider, for example, the familiar game of tic-tac-toe. Among the
technical terms of this game are the playing board, nought, cross, a win, a draw,
and so on. These technical terms are to be explained or defined. The rules of the
game are then stated as the postulates of the discourse, these rules being perfectly
acceptable once one understands the basic terms of the discourse. From these
rules one can then proceed to deduce the theory of the game, proving as a
theorem, for example, that with sufficiently good playing, the player who starts a
game need not lose the game.
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C 1.5 The Origin of the Axiomatic Method )

We do not know with whom the axiomatic method originated. By the account
given in the Eudemian Summary, the method seems to have evolved with the
Pythagoreans as a natural outgrowth and refinement of the early application of
deductive procedures to mathematics. This is the traditional and customary
account and is based principally on Proclus’s summary, which, in turn, is based
on the lost history of geometry written by Eudemus about 335 B.C. The account
may be the true one, and, if so, we must concede to the Pythagoreans a very high
place in the history of the development of mathematics.

There are some historians of ancient mathematics who find the account of
the early history of Greek mathematics, as reconstructed from the Eudemnan
Summary, somewhat difficult to believe and who feel that the traditional stories
about Thales and Pythagoras must be discredited as purely legendary and
unhistorical in content. For example, the Eudemian Summary says that Thales
proved that a circle is bisected by any one of its diameters. The realization that so
obvious a matter as this should need demonstration seems to reflect a mathemat-
ical sophistication of a much more advanced period, when the importance and
delicacy of initial assumptions had become much clearer. Eudemus may have
hypothetically restored the sequence of events so that they accorded with the
state of the theory of his time, as many historians do when source material 1s not
available. Actually, we can have very little idea of the roles played in the history
of mathematics by Thales and Pythagoras, and it may be much closer to reality to
assume that early Greek mathematics cannot have differed greatly from the
oriental type. An essential turn in the development of a subject is usually brought
about by some crucial circumstance, and in mathematics such a circumstance
arose some time in the fifth century B.C. with the devastating discovery of the

irrationality of ﬁ .
Let us pause a moment to consider the significance of the last statement,

Since the rational numbers consist of all numbers of the form p/g, where p and ¢
are integers with ¢ # 0, the discovery alluded to states that there are no integers p

and ¢ such that p/g = \/5 , that 1s, v’fi i1s not a rational number and hence, by
definition, 1s an srrational (nonrational) number. The traditional proof of this
fact, apparently known to Aristotle (384-322 B.C.), is simple and runs as follows:

Suppose, on the contrary, that there are two integers p and ¢ such that p/g = xff :
where, without any loss of generality, we may assume that p and ¢ have no
common positive integral factor other than unity. Then p* = 2¢°. Since p° is
twice an integer, we see that p°, and hence p, must be even. So we may put
p = 2r. Then we find 4r* = 2¢°, or 2r* = g2, from which we conclude that ¢°, and
hence g, must be even, But this is impossible, since we assumed that p and ¢ have

no common integral factor different from unity. The supposition that /2 1is

rational has led to a contradictory situation, whence it follows that /2 must be
irrational. This result was surprising and disturbing on several grounds. First of
all, it seemed to deal a mortal blow to the Pythagorean philosophy that all
depends on the integers. Next, it seemed contrary to common sense, for it was
felt intuitively that any magnitude could be expressed by some rational number.
The geometrical counterpart was equally startling, for who could doubt that for
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any two given line segments one is able to find some third line segment, perhaps
very very small, that can be marked off a whole number of times into each of the
given segments. But take as the two given segments a side s and a diagonal d of a

square. Now if there exists a third segment ¢ which can be marked off a whole
number of times into s and d we would have s = gr and d = pr, where p and ¢ are

integers. But d = sﬁ, whence pr = qt./2, or ﬁ = p/g, a rational number.
Contrary to intuition, then, there exist line segments having no common unit of
measure. But the whole Pythagorean theory of proportion was built on the
seemingly obvious assumption that any two line segments are commensurable,
that i1s, do have some common unit of measure.

No wonder the discovery of the irrationality of , /2 led to some consternation
in the Pythagorean ranks. The situation must have caused a profound reaction in
mathematical thinking, and must have very considerably emphasized the
extreme importance of careful agreement on what can be taken for basic
assumptions. A crisis, like this one of the discovery of irrational numbers, could
well account for the origin of the axiomatic method, and, if so, the credit for the
invention might largely go to Eudoxus, the genius of the time who finally
resolved the crisis that had arisen.®

This second explanation of the possible origin of the axiomatic method has
other points in its favor. For example, it places less stress on any peculiar
mentality possessed by the Greeks of very early times, and it accounts for the
relatively large number of Greek papyrus fragments containing texts after the
pattern of oriental mathematics. These texts, like the similar ones from
Babylonian times, probably formed the backbone of instruction in elementary
mathematics. At this elementary level the highly sophisticated axiomatic method
had as little influence as it has today in much of our elementary teaching.
Writings of this sort, then, do not reflect any degeneration of the so-called Greek
spirit in mathematics but simply exhibit the continuance, on an elementary level,
of older traditions. Heron’s geometry, for example, can be properly considered a
Hellenic form of oriental tradition; it should not be regarded as a sign of decline
in Greek mathematics just because it does not employ the refined procedures of
the axiomatic method.

Perhaps it is needless to hypothesize about the origin of the axiomatic
method. Certainly, by the middle of the fourth century B.C., the method had been
fairly well developed, for in Aristotle’s Analytica posteriora, we find a good deal
of light thrown on some of its features. Aristotle was not a mathematician, but as
the systematizer of classical logic, he found in elementary mathematics excellent
models of logical reasoning, and his mathematical illustrations tell us a great deal
about the principles of the axiomatic method as accepted in his time. By the turn
of the century the stage was set for Euclid’s magnificent and epoch-making
application of the axiomatic method.

—

¢See Appendix, Section A.6.
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—————————  PROBLEMS’ ¢ - —

1.1.1

1.1.2

111-3

1.1.4

1.1.5

1.1.6

1.1.7

1.1.8

1.1.9
1.1.10

In the Rhind papyrus the area of a circle is taken as equal to that of a square on 8/9
of the circle’s diameter. Show that this is equivalent to taking 7 = 3.1604 - - -,

The Sulvasutras, ancient Hindu religious writings dating from about 500 B.C., are
of interest in the history of mathematics because they embody certain geometrical
rules for the construction of altars and show an acquaintance with the Pythagorean
theorem. Among the rules furnished there appear empirical solutions of the circle-

squaring problem that are equivalent to taking d = (2 + \/E )s/3 and s = 13d/15,
where d is the diameter of the circle and s is the side of the equal square. These
formulas are equivalent to taking what values for =n?

Show that the ancient Babylonian formula K = (a + ¢)(b + d)/4, for the area of a
quadrilateral having a, b, ¢, d for consecutive sides, gives too large an answer for all
nonrectangular quadrilaterals.

(for students who have studied calculus) Prove, by elementary differential calculus,
the farmer’s conjecture that the rectangular field of maximum area lying along a
straight river bank and utilizing a given amount of fencing has a length that is
twice the depth of the field.

A disc of radius R spins vertically on a horizontal axis held above the surface of a
liquid. As the disc spins it cuts into the liquid. Estimate, by empirical methods,
how high the axis must be above the liquid’s surface so that the wetted area of the
spinning disc above the surface of the liquid shall be a maximum. (This problem
arose in the manufacture of fruit syrups from fruit juices, and was solved
empirically by the manufacturer, who found the required height r of the axis
above the surface of the liquid to be about (3/10)R. It is not very difficult to show
by differential calculus that r = R/(1 + n%)"2, It is interesting that the General
Electric Company began studies of this evaporation method in the early 1960s in
connection with the design of a diffusion still.)

Two ladders, 60 ft long and 40 ft long, lean from opposite sides across an alley
lying between two buildings, the feet of the ladders resting against the bases of the
buildings. If the ladders cross each other at a height of 10 ft above the alley, how
wide is the alley? Solve this problem empirically from drawings. [An algebraic
treatment of this problem requires the solution of a quartic equation. If a and &
represent the lengths of the ladders, ¢ the height at which they cross, and x the
width of the alley, it can be shown that (@® — x*) V2 + (3% —x¥)" 12 =1
How good is the following empirical straightedge and compass trisection of an
angle of 30°? Let AOB be the given angle, with OA = OB. On AB as diameter
draw a semicircle lying on the same side of AB as is the point O. Take D and E on
the semicircle such that AD = DE = EB. Take F on DE such that DF = DE/4.
Then OF is a sought trisector.

Solve, by the rule of false position, the following problem found in the Rhind
papyrus: “A quantity, its 2/3, its 1/2, and its 1/7, added together, become 33.
What 1s the quantity?”’

Find the length of side BC in the quadrilateral pictured in Figure 1.6.

In the study of geometrical constructions there is a counterpart of the rule of false
position, generally known as the method of similitude. 'The method lies in
constructing a figure similar to the one desired, and then, by the use of proportion,
“blowing it up™ to proper size. Suppose, for example, we wish to inscribe a square

"Note that triple numbering is used in the problems. The first number is the chapter number,
the second is the section number, and the third is the sequence number.
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1.1.12

1.1.13
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FIGURE 1.6

in a given triangle ABC so that one side of the square lies along the base BC of the
triangle (see Figure 1.7). First draw a square D'E'F' G’ of any convenient size, as
indicated. If F’ falls on AC, the problem is solved. Otherwise we have solved the
problem for a triangle A'BC’ similar to triangle ABC and having B as a center of
similitude. It follows that line BF' cuts AC in the vertex F of the sought square
inscribed in triangle ABC.

Construct, by the method of similitude, a line segment DE, where D is on
side AB and E on side AC of a given triangle ABC, so that BD = DE = EC,
In the Rhind papyrus we find, “If you are asked, what is 2/3 of 1/5, take the

double and the sixfold; that is 2/3 of it. One must proceed likewise for any other
fraction.” Interpret this and prove the general statement.

In the Moscow papyrus we find the following numerical example: “If you are told:
A truncated pyramid of 6 for the vertical height by 4 on the base by 2 on the top.
You are to square this 4, result 16. You are to double 4, result 8. You are to square

2, result 4. You are to add the lﬁ,thes,lndtﬁ,eu.multz& You are to take one
third of 6, result 2. You are to take 28 twice, result 56. See, it is 56. You will find it

right.” Show that this illustrates the general formula

h(a® + ab + b%)
-—l———a--_—ll

| 4

giving the volume of a frustum of a square pyramid in terms of the height 4 and
the sides g and & of the bases.
Interpret the following, found on a Babylonian tablet dating from about 2600 B.C.:
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1.1.15

1.1.16

1.1.17

1.1.18

1.1.19
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“60 1s the circumference, 2 is the perpendicular, find the chord.” “Thou, double 2
and get 4, dost thou not see? Take 4 from 20, thou gettest 16. Square 20, thou

gettest 400. Square 16, thou gettest 256. Take 256 from 400, thou gettest 144.

Find the square root of 144. 12, the square root, is the chord. Such is the
procedure.”
In 1936 a group of Old Babylonian tablets was lifted at Susa, about 200 miles east

of Babylon. On one of the tablets the ratio of the perimeter of a regular hexagon to

the circumference of the circumscribed circle is given as 57/60 + 36/3600. Show

that this leads to 34 as an approximation of x.

(a) A Babylonian tablet has been discovered that gives the values of n® + n? for
n = 1 to 30. Make such a table for n = 1 to n = 10, and use it to find a root of
the cubic equation x* + 2x? ~ 3136 = 0.

(b) A Babylonian problem of about 1800 B.C. seems to call for the solution of the
simultaneous system xyz + xy = 7/6, y = 2x/3, z = 12x. Solve this system
using the table of part (a).

It is known that the infinite series obtained by expanding (a® + &)'? by the

process of the binomial theorem converges to (a® + h)'/? if —a* < h < a*,

(a) Establish the approximation formula

h
(a2+h}”::a+§—, 0 < h < a*.
a

(b) Take a = 4/3 and & = 2/9 in the approximation formula of part (a), and thus
find a Babylonian rational approximation for \/’E. Find a rational approxi-
mation for V‘FS by taking a=2, h= 1.

The Hindu mathematician, Aryabhata, wrote early in the sixth century A.p. His
work 1s a poem of 33 couplets called the Gamiza. Following are translations of two
of the couplets: (1) The area of a triangle is the product of the altitude and half the
base; half of the product of this area and the height is the volume of the solid of six
edges. (2) Half the circumference multiplied by half the diameter gives the area of
the circle; this area multiplied by its own square root gives the volume of the
sphere. Show that, in each of these couplets, Aryabhata is correct in two
dimensions but wrong in three.

An early Chinese work that dates probably from the second century B.C. and that

had considerable influence on the development of mathematics in China was the

K’ui-ch’ang Suan-shu, or Arithmetic in Nine Sections. In this work we find the em-

pirical formula s(c + 5)/2 for the area of a circular segment of chord ¢ and depth s.

(a) Show how this formula might have been obtained.

(b) Obtain a correct formula.

(a) Devise an empirical procedure, using templates and a balance, for showing
that the area under one arch of the cycloid curve is equal to three times the
area of the generating circle. (An experiment of this nature was performed by
Galileo 1n 1599, The first published mathematical demonstration that the
area of a cycloidal arch is exactly three times that of the generating circle was
furnished in 1644, by Galileo’s pupil, Evangelista Torricelli.)

(b) Devise an empirical procedure, using a right circular cone, a right circular
cylinder of the same radius and altitude, and some sand, for showing that the
volume of a right circular cone is one third the product of its altitude and the
area of its base.

(¢) Devise an empirical procedure, using a circular disc, a hemisphere of the
same radius, and a long piece of thick cord, for showing that the area of a
sphere 1s equal to four times that of a great circle.
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(d) Show empirically, by folding paper, that the sum of the angles of a triangle is
equal to a straight angle.

Criticize the following inductions:

(a) Mr. Smith and Mr. Brown were both born in January, and both suffer from
colds. They resigned themselves to their fate on the ground that all people
born in January must suffer from colds.

(b) John had never eaten yeast, and at the beginning of the year weighed 120
pounds. For the next six months he ate three yeast cakes a day, and at the end
of that time weighed 150 pounds. Therefore eating yeast makes people gain
weight.

Criticize the following inductions:

(a) During a certain summer someone noted that the number of pounds of butter
sold in New York City each month varied more or less directly with the
number of inches of rainfall in New York City each month and conjectured
that there must be some connection between the two.

(b) During another summer a high degree of correlation was observed between
the number of people each day at a beach resort and the corresponding
number of people each day taking a boat ride on a river leading from a large
city to the beach resort. From this correlation it was induced that many
people travel to the beach by boat.

(¢) From an observation that students who made high grades in English also
generally made high grades in mathematics it was induced that English helps
mathemartics.

(d) Statistics show that over the years our principal roads have been made wider
and wider, and at the same time accidents have increased. Apparently wide
roads (perhaps because they cause people to drive faster) are a cause of
accidents.

The three altitudes of a triangle are concurrent. Would you expect the four
altitudes of a tetrahedron to be concurrent? (Many theorems concerning tetra-
hedra were first suggested by the corresponding theorems about triangles. In this
case, however, the analogy leads to an incorrect result. Only for the so-called
orthocentric tetrahedra are the four altitudes concurrent. An orthocentric tetra-
hedron is a tetrahedron each edge of which is perpendicular to its opposite edge.)
Two lines through the vertex of an angle and symmetrical with respect to the
bisector of the angle are called a pair of isogonal conjugate lines of the angle. There
is an attractive theorem about triangles that states that if three lines through the
vertices of a triangle are concurrent, then the three isogonal conjugate lines
through the vertices of the triangle are also concurrent. Try to construct an
analogous definition and theorem for the tetrahedron.

List from the following statements those that are equivalent to the statement, “All

parallelograms are quadrilaterals’:

(a) Every parallelogram is a quadrilateral.

(b) If a figure is a quadrilateral, then it must be a parallelogram.

(¢) If a figure is not a quadrilateral, then it is not a parallelogram.

(d) If a figure is a parallelogram, then it surely i1s not a quadrilateral.

List the following statements that are equivalent to the statement, ““When the

sunset is red, it is sure to rain the next day’":

(a) If it is raining today, then the sunset last evening must have been red.

(b) If it does not rain today, then the sunset last evening must have been red.

(¢) Ifit does not rain today, then the sunset last evening must not have been red.

(d) Whenever it rains during the day, the sunset of the previous evening was red.
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List the following statements that are equivalent to the statement, “It never rains
in June’’:
(a) If it is June, it is not raining.
(b) If it i1s not raining, it is not June.
(¢) In June it never rains.
(d) Never in June does it rain.
(e) If it is raining, it is not June,
(f) Sometimes in June it does not rain,
Draw diagrams illustrating each of the following types of categorical propositions:
(a) Universal Affirmative: All g are b.
(b) Universal Negative: No g are b,
(c) Particular Affirmative: Some a are b.
(d) Particular Negative: Some a are not b.
Test the following arguments for validity:
(a) Premise: All x are y.
Conclusion: All non-x are non-y.
(b) Premises: (1) All games played in the street are dangerous.
(2) No bull fighting is played in the street.
Conclusion: Bull fighting is not a dangerous game.
(c) Premises: (1) No xarey.
(2) Some x are z.
Conclusion: Some z are not y.
(d) Premises: (1) All trapezoids are quadrilaterals.
(2) All parallelograms are quadrilaterals.
Conclusion: All parallelograms are trapezoids.
(e) Premises: (1) All useful books are amusing.
(2) All books of tables are useful books.
Conclusion: All books of tables are amusing.
(f) Premise: All knowledge is useful.
Conclusion: No knowledge is useless.
(g) Premises: (1) Some doctors are not paid enough.
(2) Some doctors are college professors.
Conclusion: Some college professors are not paid enough.
(h) A student must study to deserve good grades. John studied. Therefore he
deserves good grades.
(1) In a certain triangle the sum of the squares on two sides equals the square on
the third. Hence the triangle 1s a right triangle by the Pythagorean theorem.
(j) ‘““He that is of God heareth God’s words; ye therefore hear them not, because
ye are not of God.” (John 8:47.)
(k) “I have tasted eggs, certainly,” said Alice, . . . “but little girls eat eggs quite
as much as serpents do, you know.”
“I don’t believe it,” said the Pigeon; ““but if they do, why, then they're a
kind of serpent: that’s all I can say.” (Lewis Carroll, Alice in Wonderland.)
Let T stand for rrue, F for false, V for valid, and I for invalid. Try to construct
simple arguments satisfying each of the following possibilities:

Premises: r T T T F F F F
Argument: V V I I V V I 1
Conclusion T F T F T F T F

Consider the following four statements, called, respectively, the direcr statement,



1.2.12

1.3.1

1.3.2

1.3.3

1 MATHEMATICS BEFORE EUCLID

the converse statement, the mnverse statement, and the contrapositive statement:

I. All a are b,
2. All b are a.

3. All non-a are non-b.

4. All non-b are non-a.

(a) Show that the direct and contrapositive statements are equivalent,

(b) Show that the converse and inverse statements are equivalent.

(¢) Taking “All parallelograms are quadrilaterals™ as the direct statement, state
the converse, inverse, and contrapositive statements.

(a) The categorical statement, “All ¢ are 4,”” may be stated in the equivalent
hypothetical form, “If w is an a, then w 1s a b.”" State the corresponding
converse, inverse, and contrapositive statements in hypothetical form.

(b) State the converse, inverse, and contrapositive of “If a triangle is isosceles,
then the bisectors of its base angles are equal.” (The direct proposition is very
easily established. The converse proposition is known as the Stemer-Lehmus
theorem and is troublesome to establish. If one can manage to establish the
inverse proposition, then, of course, by Problem 1.2.11(b), the Steiner-
[Lehmus theorem will follow.)

We are told that Thales measured the distance of a ship from shore by using the

fact that two triangles are congruent if two angles and the included side of one are

equal to two angles and the included side of the other. Thomas L. Heath, the
historian, has conjectured that this computation was probably made by an
instrument consisting of two rods AC and AD, hinged together at A. The rod AD
was held vertically over a point B on shore, while rod AC was pointed toward the
ship P. Then, without changing the angle DAC, the instrument was revolved
about 4D, and point Q noted on the ground at which arm AC was directed. What
distance must be measured in order to find the distance from B to the inaccessible

point P?

The Eudemian Summary says that in Pythagoras’s time there were three means, the

arithmetic, the geometric, and the subcontrary, the last name being later changed to

harmonic by Archytas and Hippasus. We may define these three means of two
positive numbers a and & as

A=(a+b)2, G=Jab, H=2abj(a+b),

respectively.

(a) Show that A 2 G 2 H, equality holding if and only if a = b.

(b) Show that H is the harmonic mean between a and b if there exists a number »
such thata = H + a/nand H = b + b/n. This was the Pythagorean definition
of the harmonic mean of a and &.

(¢) Since 8 is the harmonic mean of 12 and 6, Philolaus, a Pythagorean of about
425 B.C., called the cube a “geometrical harmony.” Explain this.

Tradition is unanimous in ascribing to Pythagoras the independent discovery of

the theorem on the right triangle that now universally bears his name (the square

on the hypotenuse of a right triangle is equal to the sum of the squares on the two
legs). This theorem was known to the Babylonians of Hammurabi’s time, more
than a thousand years earlier, but the first general proof of the theorem may well
have been given by Pythagoras. There has been considerable conjecture regarding
the proof Pythagoras might have offered; the common belief is that it probably
was a dissection type of proof such as is suggested by Figure 1.8. Supply the
proof. (To prove that the central piece of the second dissection is actually a square



1.3.4
1.3.5

1.3.6

1.3.7
1.4.1

1.4.2

Problems 23

!_b __a a b
a \ a a
|' b
b b b
a
b a b a
FIGURE 1.8

of side ¢ we need to employ the fact that the sum of the angles of a right triangle is

equal to two right angles. But the Eudemian Summary attributes this theorem for

the general triangle to the Pythagoreans. Since a proof of this theorem requires, in
turn, a knowledge of some properties of parallels, the early Pythagoreans are also
credited with the development of that theory.)

State and prove the converse of the Pythagorean theorem.

Closely allied to the Pythagorean theorem is the problem of finding integers a, b, ¢

to represent the legs and hypotenuse of a right triangle. Such a triple of numbers is

known as a Pythagorean triple, and there is fairly convincing evidence that the
ancient Babylonians knew how to calculate such triples.

(a) Show that, for any odd integer m, the three numbers m, (m* — 1)/2, and
(m* + 1)/2 yield a Pythagorean triple. (The Pythagoreans have been credited
with this discovery.)

(b) Show that for any integer m, the three numbers 2m, m? — 1, and m?® + 1 yield
a Pythagorean triple. (This slight generalization of the above result is
attributed to Plato. Neither formula yields all Pythagorean triples.)

Draw three unequal line segments. Label the longest one a, the medium one b, and

take the shortest one as 1 unit. With straightedge and compasses construct line

segments of lengths

(a) a+band a - b,

(b) ab,

(c¢) alb,

(d) \/a,

(e) a/n, n a positive integer.

Show that there can be no more than five regular polyhedra.

Explain how the commonly heard statement, ‘““An axiom is a self-evident truth,”

reflects part of the pattern of material axiomatics.

As a simple example of a discourse conducted by material axiomatics, consider a

certain (finite and nonempty) collection § of people and certain clubs formed

among these people, a club being a (nonempty) set of people organized for some
common purpose., Our basic terms are thus the collection S of people and the clubs
to which these people belong. About these people and their clubs we assume:

Postulate 1: Every person of S is a member of at least one club.
Postulate 2: For every pair of people of S there is one and only one club 1o which
both belong.

Definition Two clubs having no members in common are called comjugare
clubs.

Postulate 3: For every club there is one and only one conjugate club.
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From these postulates deduce the following theorems:

Theorem 1: Every person of S is a member of at least two clubs.
Theorem 2: Every club contains at least two members.
Theorem 3: S contains at least four people.

Theorem 4:  There exist at least six clubs.

Using the same basic terms as in Problem 1.4.2, let us assume:

Postulate 1: Any rwo distinct clubs have one and only one member in common.
Postulate 2: Every person of S belongs to two and only two clubs.
Postulate 3: There are exactly four clubs.

From these postulates deduce the following theorems:

Theorem 1: There are exactly six people in S.

Theorem 2: There are exactly three people in each club.

Theorem 3: For each person in S there is exactly one other person in S not in the
same club.

Establish the theorem about the game of tic-tac-toe cited in the text.

The cigar game is played on a rectangular table top by two players with a large

stock of cigars. The two players, taking turns, lay (at each turn) a cigar on the table

top so that it does not overlap any other cigar nor protrude over the edge of the

table top. The last player able to place a cigar on the table top wins the game.

Prove the following theorem about this game: With proper strategy, the player who

starts the game can win the game.

(a) Prove that the straight line through the points (0,0) and (1, ﬁ ) passes
through no point, other than (0, 0), of the coordinate lattice.

(b) Show how the coordinate lattice may be used for finding rational approxi-
mations of ﬁ :

If p is a prime number and n is an integer greater than 1, show that /p is

irrational.

Give a purely geometric proof of the irrationality of ﬁ .

The most important of Heron’s geometrical works is his Metrica, discovered in

Constantinople by R. Schone as recently as 1896. In this work is found Heron’s

method of approximating the square root of a nonsquare integer, a process

frequently used by computers today. If n = ab, then . /n is approximated by
(a + b)/2, the approximation improving with the closeness of a to . The method
permits of successive approximations. Thus, if a, is a first approximation to \/; .
then a, = (a, + n/a,)/2 is a better approximation, and a, = (a, + n/a,)/2 is still
better, and so on. Approximate successively, by Heron’s method, \/37 and . /720.
In some problems in the Heronian collection appear the formulas

_(r+ ) {(r+9)°— 8rs}'?

= 5 ——

for the legs a and b of a right triangle of perimeter 25 and inradius r. Obtain these

formulas.

(a) In his work Caroptrica, Heron proves, on the assumption that light travels by
the shortest path, that the angles of incidence and reflection in a mirror are
equal. Prove this.

(b) A man wishes to go from his house to the bank of a straight river for a pail of
water, which he will then carry to his barn, on the same side of the river as his

a, b
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house. Find the point on the riverbank that will minimize the distance the
man must travel.

A regular heptagon (seven-sided polygon) cannot be constructed with straight-

edge and compasses. In his work Merrica, Heron takes, for an approximate

construction, the side of the heptagon equal to the apothem of a regular hexagon

having the same circumcircle. How good an approximation is this?

Assuming the equality of alternate interior angles formed by a transversal cutting

a pair of parallel lines, prove the following:

(a) The sum of the angles of a triangle is equal to a straight angle.

(b) The sum of the interior angles of a convex polygon of n sides is equal ton — 2
straight angles.

Assuming (1) A central angle of a circle is measured by its intercepted arc, (2) The

sum of the angles of a triangle is equal to a straight angle, (3) The base angles of an

isosceles triangle are equal, (4) A tangent to a circle is perpendicular to the radius

drawn to the point of contact, establish the following chain of theorems:

(a) An exterior angle of a triangle is equal to the sum of the two remote interior
angles.

(b) An inscribed angle in a circle is measured by one half its intercepted arc.

(¢) Anangle formed by two intersecting chords in a circle is measured by one half
the sum of the two intercepted arcs.

(d) An angle formed by two intersecting secants of a circle is measured by one
half the difference of the two intercepted arcs.

(e) An angle formed by a tangent to a circle and a chord through the point of
contact is measured by one half the intercepted arc.

(f) An angle formed by a tangent and an intersecting secant of a circle is
measured by one half the difference of the two intercepted arcs.

(g) An angle formed by two intersecting tangents of a circle is measured by one
half the difference of the two intercepted arcs.

Assuming the area of a rectangle is given by the product of its two dimensions,

establish the following chain of theorems:

(a) The area of a parallelogram is equal to the product of its base and altitude.

(b) The area of a triangle is equal to half the product of any side and the altitude
on that side.

(¢) The area of a right triangle is equal to half the product of its two legs.

(d) The area of a triangle is equal to half the product of its perimeter and the
radius of its inscribed circle.

(e) The area of a trapezoid is equal to the product of its altitude and half the sum
of its bases.

(f) The area of a regular polygon is equal to half the product of its perimeter and
the radius of its inscribed circle.

(g) The area of a circle 1s equal to half the product of its circumference and its
radius.



EUCLID’S ELEMENTS

. —— 2.1 The Importance and Formal -
Nature of Euclid’s Elements

The earliest extensively developed example of the use of the axiomatic method
that has come down to us is the very remarkable and historically important
Elements of Euclid. The production of this treatise is generally regarded as the
first great landmark in the history of mathematical thought and organization, and
its subsequent influence on scientific thinking can hardly be overstated.

Of Euclid himself, however, disappointingly little is known. It is from

Proclus’s Commentary on Euchid, Book I, that we obtain our most satisfying
information about Euclid. He writes,

Euclid, who put together the Elements, collected many of the theorems of
Eudoxus. He perfected many of the theorems of Theaetetus, and also
brought to irrefragable demonstration the things which were only somewhat
loosely proved by his predecessors. This man lived in the time of the first
Prolemy, for Archimedes, who came immediately after the first Prolemy,
makes mention of Euclid, and furthermore, it i1s said that Ptolemy once asked
him if there was in geometry any shorter way than that of the Elements, and
Euclid answered that there was no royal road to geometry. It is evident, then,
that Euclid came after the time of Plato, but preceded Eratosthenes and
Archimedes.’

This statement would imply that Euclid lived about 300 B.C. Also, from other
evidence, it seems quite certain that Euclid was the first professor of mathematics
at the famous University of Alexandria,” and that he was the founder of the

"The quotations from Proclus and Aristotle that appear in this and the next chapter are adapted,

by permission, from T. L. Heath, pp. 1, 115, 116, 117-118, 119, 121-122, 153~155, 202-203,
241-242.

‘For an interesting exposition on Alexandria, see R. E. Langer.

26
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distinguished and long-lived Alexandrian School of Mathematics. Even his

birthplace is not known, but there is some reason to believe that he received his
mathematical training in the Platonic School at Athens.

Although Euclid wrote at least ten treatises on mathematics, posterity has
come to know him chiefly through his Elements, a monumental work written in
thirteen books, or parts. This extraordinary work so quickly and so completely
superseded all previous works of the same nature that now no copies remain of
the earlier efforts. Apparently from its very first appearance it was accorded the
highest respect, and the mere citation of Euclid’s book and proposition numbers
has been regarded ever since as sufficient to identify a particular theorem or
construction. With the single exception of the Bible, no work has been more
widely studied or edited. For more than two millennia it has dominated all
teaching of geometry, and over a thousand editions of it have appeared since the
first one printed in 1482. And, as the prototype of the axiomatic or postulational
method, its impact on the development of mathematics has been enormous.

Proclus has clarified for us the meaning of the term elements. It seems that
the elements of any demonstrative study are to be regarded as the leading, or key,
theorems that are of wide and general use in the subject. Their function has been
compared to that of the letters of the alphabet in relation to language; as a matter
of fact, letters are called by the same name in Greek. The selection of the
theorems to be taken as the elements of the subject requires the exercise of
considerable judgment. As Proclus says,

Now it is difficult, in each science, both to select and arrange in due order
the elements from which all the rest is resolved. And of those who have made
the attempt some were able to put together more and some less; some used
shorter proofs; some extended their investigations to an indefinite length;
some avoided the method of reductio ad absurdum; some avoided proportion;
some contrived preliminary steps directed against those who reject the prin-
ciples; and, in a word, many different methods have been invented by various
writers of elements.

It is essential that such a treatise should be rid of everything superfluous
(for this is an obstacle to the acquisition of knowledge); it should select
everything that embraces the subject and brings it to a point (for this is of
supreme service to science); it must have great regard at once to clearness
and i (for their opposites trouble our understanding); it must aim
at the embracing of theorems in general terms (for the piecemeal division of
instruction into the more partial makes knowledge difficult to grasp). In all
these ways Euclid’s system of elements will be found to be superior to the
rest.

And elsewhere, Proclus says,

Starting from these elements, we shall be able to acquire knowledge of the
other parts of this science as well, while without them it is impossible for us

to get a grasp of so plex a subj and k ledge of the rest is un-
attainable. As it is, the theorems which are most of the nature of principles,
most simple, and most akin to the first hypoth are here coll d, in their

appropriate order; and the proofs of all other propositi use these th
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as thoroughly known, and start from them. Thus Archimedes in the books on
the sphere and cvlinder, Apollonius, and all other geometers, clearly use the
theorems proved in this very treatise as constituting admitted principles.

Aristotle, in his Metraphysics, speaks of “elements’ in the same sense when he
says, ‘‘Among geometrical propositions we call those ‘elements’ the proofs of
which are contained in the proofs of all or most of such propositions.”™

It is no reflection on the brilliance of Euclid’s work that there had been other
Elements anterior to his own. According to the Eudemian Summary, Hippocrates
of Chios made the first effort along this line, and the next attempt was that of
Leon, who in age fell somewhere between Plato and Eudoxus. It is said that
LLeon’s work contained a more careful selection of propositions than did that of
Hippocrates, and that these propositions were more numerous and more
serviceable. The textbook of Plato’s Academy was written by Theudius of
Magnesia and was praised as an admirable collection of elements. The geometry
of Theudius seems to have been the immediate precursor of Euclid’s work and
was undoubtedly available to Euclid, especially if he studied in the Platonic
School. Euclid was acquainted also with the important work of Theaetetus and
Eudoxus. Thus it is probable that Euclid’s Elements is, for the most part, a highly
successful compilation and systematic arrangement of works of earlier writers.
No doubt Euclid had to supply a number of the proofs and to perfect many
others, but the chief merit of his work lies in the skillful selection of the

propositions and in their arrangement into a logical sequence presumably
following from a small handful of initial assumptions.

In the thirteen books that comprise Euclid’s Elements there 1s a total of 465
propositions. Contrary to popular impression, many of these propositions are
concerned, not with geometry, but with number theory and with elementary
(geometric) algebra. Book I contains the necessary preliminary material, together
with theorems on congruence, parallel lines, and rectilinear figures. Book II is
devoted to geometric algebra, Book III to circles, and Book IV to the
construction of regular polygons. Books V and VI contain the Eudoxian theory
of proportion and its application to geometry. Books VII, VIII, and IX,
containing a total of 102 propositions, deal with elementary number theory.
Book X is devoted to the study of irrationals, much of the material probably from
Theaetetus. The remaining three books are concerned with solid geometry. The
material of Books I, II, and IV was, in all likelihood, developed by the early
Pythagoreans. The material found in current American high school plane and
solid geometry texts is largely that found in Euclid’s Books I, 111, IV, VI, XI,
and XII.

Certainly there is a good deal in the contents of Euclid’s Elements that is of
considerable interest, but in the present study our concern is with the formal
nature of the Elements rather than with its mathematical contents. In fact, the
various consequences of the formal character of this great work will constitute
some of our chief avenues of investigation. At the moment, we are especially
interested in Euclid’s conception of the axiomatic method and in the precise

manner in which he applied the method to the development of his Elements. We
consider these matters in the two following sections.
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C - 2.2 Aristotle and Proclus on the Axiomatic Method ——

It 1s a misfortune that no copy of Euclid’s Elements has been found that actually
dates from the author’s own time. Modern editions of the work are based on a
revision that was prepared by the Greek commentator Theon of Alexandria, who
lived almost 700 years after the time of Euclid, Theon’s revision was, until the
early nineteenth century, the oldest edition of the Elements known to us. In 1808,
however, when Napoleon ordered valuable manuscripts to be taken from Italian
libraries and to be sent to Paris, F. Peyrard found, in the Vatican library, a tenth-
century copy of an edition of Euclid’s Elements that predates Theon’s recension.
A study of this older edition and a careful sifting of citations and remarks made
by eaz{y commentators indicate that the introductory material of Euclid’s
original treatise undoubtedly underwent some editing in the subsequent revi-
sions, but that the propositions and their proofs, except for minor additions and
deletions, have remained essentially as Euclid wrote them.

Because of our lack of a copy of Euclid’s original treatise, and because of the
changes and additions made by later editors, it is not certain precisely what
statements Euclid assumed at the start of his work, nor even how many such
statements he had. Also, unfortunately, there is no known commentary by Euchid
himself on the nature of the deductive organization used so successfully in his
mathematical studies. It would be valuable to have Euclid’s own point of view on
the meaning of proof or on the significance that he attached to such terms as
defimition, axiom, and postulate. Even partially to understand Euclid, therefore,
we must study the ideas held by Eucljd’s contemporaries. Aristotle, in particular,
i1s an important source of information. Since Aristotle studied at Plato’s

Academy, his scholastic background may have been quite similar to that of
Euclid.

A student of mathematics would do well to study Aristotle’s Analyrica
posteriora. The following passage from that work is particularly full and
enlightening:

By the first principles of a subject I mean those the truth of which 1t 1s not
possible to prove. What is denoted by the first terms and those derived from
them is assumed; but, as regards their existence, this must be assumed for the
principles but proved for the rest. Thus what a unit i1s, what a straight line is,
or what a triangle is, must be assumed; and the existence of the unit and of
magnitude must also be assumed, but the existence of the rest must be
proved. Now of the premises used in demonstrative sciences some are
peculiar to each science and others common to all, the latter being common
by analogy, for of course they are actually useful insofar as they are applied
to the subject-matter included under the particular science. Instances of first
principles peculiar to a science are the assumptions that a line is of such and
such a character, and similarly for a straight line; whereas it is a common
principle, for instance, that if equals be subtracted from equals, the remain-
ders are equal. But it 1s enough that each of the common principles is true as
regards the particular subject-matter; in geometry, for instance, the effect will
be the same even if the common principles be assumed to be true, not of
everything, but only of magnitudes, and, in arithmetic, of numbers.
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Now the things peculiar to the science, the existence of which must be
assumed, are the things with reference to which the science investigates the
essential attributes, for example arithmetic with reference to units, and
geometry with reference to points and lines. With these things it 1s assumed
that they exist and that they are of such and such a nature. But, with regard
to their essential properties, what is assumed is only the meaning of each
term employed; thus arithmetic assumes the answer to the question what 1s
meant by “odd” or “even,” “‘a square” or “a cube,” and geometry to the
question what is meant by “the irrational,” or *““deflection,” or the so-called
“verging’’ to a point; but that there are such things is proved by means of
the common principles and of what has already been demonstrated. It is
similar with astronomy. For every demonstrative science has to do with three
things, (1) the things which are assumed to exist, namely the subject-matter
in each case, the essential properties of which the science investigates, (2) the
so-called common axioms, which are the primary source of demonstration,
and (3) the properties, with regard to which all that i1s assumed 1s the mean-
ing of the respective terms used.

This remarkable passage is almost modern in its point of view. It says that a
demonstrative science must start from a set of assumptions, known as the first
principles of the subject. These first principles constitute a sort of platform of
initial agreement from which the rest of the discourse can be launched by purely
deductive procedures. Of these principles, according to Aristotle, some are
common to all sciences and others are peculiar to the particular science being
studied. The first principles common to all sciences are called axioms (illustrated
by, “if equals be subtracted from equals, the remainders are equal’ ). Among the
first principles, or initial assumptions, peculiar to the science being studied, we
have, first of all, statements of the existence of the subject matter and of the
fundamental things whose properties the science intends to investigate (for
example, in geometry, we must assume the existence of “magnitude,” of
“points,”” and of “lines’”). Also among the first principles peculiar to the science
being studied we have the connotation of the technical terms employed in the
discourse. That is, we must accept certain definitions concerning manifestations
or attributes of our subject matter (for example, in geometry, we must assume
what is meant by triangle and by irrational). These definitions, however, say
nothing of the existence of the things defined but must be merely understood.
The existence of only the subject matter and the fundamental things is assumed;
the existence of all other things defined must be proved.

In addition to the definitions, one might expect to find among the first
principles that are peculiar to the particular science being studied some
statements concerning properties or relationships of the technical terms of the
discourse. Certainly, since we cannot prove all the statements of our discourse,
we anticipate the need for some such assumed statements for the purpose of
getting started. About such assumptions Aristotle, again in his Analytica
posteriora, has the following to say:

Now anything that the teacher assumes, though it i1s matter of proof, without
proving it himself, is a hypothesis if the thing assumed is believed by the
learner, and it 1s moreover a hypothesis, not absolutely, but relatively to the
particular pupil; but if the same thing is assumed when the learner either has
no opinion on the subject or is of contrary opinion, it is a postulate. This is
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the difference between a hypothesis and a postulate; for a postulate is that
which 1s rather contrary than otherwise to the opinion of the learner, or

whatever is d and used with being p d, although matter for de-
monstration. Now definitions are not hypotheses, for they do not assert the
existence or non-existence of anything, while hypotheses are among propo-
sitions. Definitions only require to be understood; a definition is therefore not
a hypothesis, unless indeed it be asserted that any audible speech is a hypo-
thesis. A hypothesis is that from the truth of which, if assumed, a conclusion
can be established.

It must be admitted that Aristotle’s notion of a postulate and of the role that
a postulate plays in a demonstrative science is not too clear. His remarks imply
that a postulate represents the assumption of a thing which is properly a subject
of demonstration, and that the assumption is made without, perhaps, the assent
of the student. In other words, a postulate may not appeal to a person’s sense of
what is right, but it has been adopted as basic in order that the work may
proceed. From this point of view, then, a postulate is a first principle. In
contradistinction to this, a hypothesis is an assumption believed in by the
learner, and thus is introduced apparently in order to continue an argument. For
example, once a theorem has been established, and hence is acceptable to the
learner, that theorem may be taken as a hypothesis from which to deduce some
later theorem. If we read further in the works of Aristotle we find other passages
that are of special significance in comprehending the organization of Euclid’s
Elements. In several places we find that Aristotle regards an axiom as a universal
assumption that is so self-evident that no sane person would question it; also he
considers an axiom to be too fundamental ever to be regarded as matter for
demonstration. We thus seem to have, according to Aristotle, the following four
distinctions between an axiom and a postulate. An axiom is common to all
sciences, whereas a postulate is related to a particular science; an axiom is self-
evident, whereas a postulate is not; an axiom cannot be regarded as a subject for
demonstration, whereas a postulate is properly such a subject; an axiom is
assumed with the ready assent of the learner, whereas a postulate is assumed
without, perhaps, the assent of the learner. Some of Aristotle’s statements appear
somewhat contradictory, but the interpretations just given seem especially
appropriate in any attempt to understand Euclid’s work.

Aristotle’s characterizations of definitions, axioms, and postulates are fur-
ther clarified by the following account given by Proclus in his Commentary on
Euclid, Book 1.}

The piler of el in y must give separately the principles of

the science, and, after that, the conclusions from those principles, not giving

any account of the principles but only of their consequences. No science

proves its own principles, or even discourses about them; they are treated as

self-evident. . . . Thus, the first essential was to distinguish the principles from

their consequences. Euclid carries out this plan practically in every book and,

as a preliminary to the whole enquiry, sets out the common pnncnples of this

science. Then he divides the pri les th Ives into definiti

postulates, and axioms. For all these are different from one another; an axiom,

3We have everywhere corrected a confusion that exists in the onguul statement caused by
Proclus’s consistent misuse of the term hypothes:s for the term 1
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a postulate, and a definition are not the same thing, as the inspired Aristotle
has somewhere pointed out. Whenever that which is assumed and ranked as a
principle is both known to the learner and convincing in itself, such a thing s
an axiom, for example the statement that things which are equal to the same
thing are also equal to one another. When, on the other hand, the pupil has
not the notion of what is told him which carries conviction in itself, but
nevertheless lays 1t down and assents to its being assumed, such an assump-
tion is a defiminion. "Thus we do not preconceive by virtue of a common no-
tion, and without being taught, that the circle is such and such a figure, but,
when we are told so, we assent without demonstration. When, again, what 1s
asserted is both unknown and assumed even without the assent of the learner,
then, he says, we call this a postulare, for example that all right angles are
equal. “This view of a postulate is clearly implied by those who have made a
special and systematic attempt to show, with regard to one of the postulates,
that it cannot be assented to by any one straight off. According then to the
teaching of Aristotle, an axiom, a postulate, and a definition are thus
distinguished.

That there was no unanimity of opinion, even among the early Greek
mathematicians themselves, concerning the precise nature of, and the difference
between, an axiom and a postulate i1s borne out by remarks made by Proclus,
Proclus points out the following three distinctions advocated by various parties:
(1) An axiom is a self-evident assumed statement about something, and a
postulate is a self-evident assumed construction of something; thus axioms and
postulates bear a relation to one another much like that between theorems and
construction problems. (2) An axiom 1s an assumption commeon to all sciences,
whereas a postulate is an assumption peculiar to the particular science being
studied. (3) An axiom is an assumption of something that is both obvious and
acceptable to the learner; a postulate is an assumption of something that is
neither necessarily obvious nor necessarily acceptable to the learner. (This last 1s
essentially the Aristotelian distinction.) Further confusion i1s indicated by
Proclus when he points out that some preferred to call them all postulates.

In summary, then, according to the Greek conception of the axiomatic
method, every demonstrable science must start from assumed first principles.

These first principles consist of definitions, axioms (or common notions), and
postulates. The definitions describe the technical terms used in the discourse

and, except in the case of a few fundamental terms, are not meant to imply the
existence of the entities described. The axioms and the postulates are initial
statements that must be assumed so that the discourse may proceed. Just which
of these statements should be called axioms and which postulates was a matter of
varying opinion.

C 5 2.3 Euclid’s Definitions, Axioms, and Postulates ¢ -

Adhering to the Greek conception of the axiomatic method, we find, at the very
start of Book I of Euclid's Elements, a list of the definitions, postulates, and
common notions that are to serve as the first principles of the work. Some of the
succeeding books of the work commence with additional lists of definitions. It is
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presumed by the author that all of the 465 propositions included in the treatise

are logically deduced from these principles. For reference, we now give here the
complete set of first principles for Book I essentially as furnished by T. L.

Heath* in his translation of the distinguished Heiberg text of Euclid’s Elements.

N AN KW N~

10.

11.
12.
13.
14,
15.
16.

17.

18.

19.

Definitions

A point 1s that which has no part.

A line 1s length without breadth.

The extremities of a line are points.

A straight line 1s a line which lies evenly with the points on itself.
A surface 1s that which has only length and breadth.

The extremities of a surface are lines.

A plane surface is a surface which lies evenly with the straight lines
on itself.

A plane angle is the inclination to one another of two lines in a plane
if the lines meet and do not lie in a straight line.

When the lines containing the angle are straight lines, the angle is
called a rectilinear angle.

When a straight line erected on a straight line makes the adjacent
angles equal to one another, each of the equal angles is called a righr
angle, and the straight line standing on the other is called a perpendic-
ular to that on which 1t stands.

An obtuse angle 1s an angle greater than a right angle.

An acute angle 1s an angle less than a right angle.

A boundary is that which is an extremity of anything.

A figure is that which is contained by any boundary or boundaries.

A circle 1s a plane figure contained by one line such that all the
straight lines falling upon it from one particular point among those
lying within the figure are equal.

The particular point (of Definition 15) is called the center of the
circle.,

A diameter of a circle 1s any straight line drawn through the center
and terminated in both directions by the circumference of the circle,
Such a straight line also bisects the circle.

A semicircle is the figure contained by a diameter and the circum-

ference cut off by it. The center of the semicircle is the same as that
of the circle.

Recrilinear figures are those which are contained by straight lines,
trilateral figures being those contained by three, quadrilateral those

contained by four, and multilateral those contained by more than
four straight lines.

*T. L. Heath, 1, 153-155.
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20. Of the trilateral figures, an equilateral triangle is one which has its
three sides equal, an 1sosceles rriangle has two of its sides equal, and
a scalene triangle has its three sides unequal.

21. Furthermore, of the trilateral figures, a right-angled triangle 1s one
which has a right angle, an obtuse-angled triangle has an obtuse
angle, and an acute-angled triangle has its three angles acute.

22. Of the quadrilateral figures, a sqguare is one which is both equilateral
and right-angled; an oblong is right-angled but not equilateral; a
rhombus is equilateral but not right-angled; and a rhomboid has its
opposite sides and angles equal to one another but is neither
equilateral nor right-angled. Quadrilaterals other than these are
called rrapezia.

23. Parallel straight lines are straight lines which, being in the same
plane and being produced indefinitely in both directions, do not
meet one another in either direction.

Postulates

Let the following be postulated:

I. A straight line can be drawn from any point to any point.
A finite straight line can be produced continuously in a straight line,

A circle may be described with any center and distance.
All right angles are equal to one another.

“w & BN

If a straight line falling on two straight lines makes the interior angles
on the same side together less than two right angles, the two straight
lines, if produced indefinitely, meet on that side on which the angles
are together less than two right angles.

Common notions

I. Things which are equal to the same thing are also equal to one
another.

If equals be added to equals, the wholes are equal.
If equals be subtracted from equals, the remainders are equal.

Things which coincide with one another are equal to one another.

W R WN

The whole is greater than the part.

We observe that the first principles of Euclid’s Elements fit quite well the
Aristotelian account of definitions, postulates, and axioms as given in Section
2.2. It would also seem that Euclid strove to keep his list of postulates and axioms
to an irreducible minimum. This economy, too, is in keeping with Aristotle’s
views, for in his Analytica posteriora he says, “other things being equal, that
proof is the better which proceeds from the fewer postulates, or hypotheses, or
propositions.”

We shall pass over Euclid’s definitions without much comment. Most of
them probably were taken from earlier works, which would account for the fact
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that some terms, like oblong, rhombus, and rhomboid, are included but are never
used anywhere in the work. It is curious that after having defined parallel lines
Euclid does not give a formal definition of parallelogram. The existence of a
parallelogram is established in I 33,° and in I 34 it is referred to as a parallel-
ogramic area; then in I 35 this latter expression is shortened to parallelogram. We
note that to the definition of a diameter of a circle (Definition 17) 1s appended the
statement, ‘“‘Such a straight line also bisects the circle.”” This addition is, of
course, really a theorem (one of those attributed by Proclus in the Eudemian
Swmmary rto Thales), but its statement in Definition 17 is necessary in order to
justify the definition of a semicircle that immediately follows. There are
indications for believing that the definitions of a straight line and of a plane
(Definitions 4 and 7) were original with Euclid. These definitions are not easy to
understand but can be comprehended, at least partially, if we appeal to sight by
considering an eye placed at an extremity of the line or the plane and looking,
respectively, along the line or the plane. Other interpretations of these defi-
nitions have been given. A number of Euclid’s definitions are vague and virtually
meaningless; we shall return to this in the next section. The work of Heath
previously referred to contains a full and valuable commentary on Euclid’s
definitions.

Some aspects of Euclid’s postulates are of especial interest. The first three
are postulates of construction, for they assert what we are permitted to draw.
Since these postulates restrict constructions to only those that can be made in a
permissible manner with straightedge and compasses, these instruments, so
limited, have become known as Euclidean tools, although their use under these
restrictions certainly predates Euclid. The construction of figures with only
straightedge and compasses, viewed as a game played according to the rules set
down in Euclid’s first three postulates, has proved to be one of the most
fascinating and absorbing games ever devised. One is surprised at the really
intricate constructions that can be accomplished in the allowed manner, and
accordingly it is hard to believe that certain seemingly simple construction
problems, like that of trisecting a given arbitrary angle, for example, cannot also
be so accomplished. The energetic efforts of early Greek geometers to solve
legitimately some of the construction problems that are now known to be beyond
the use of Euclidean tools profoundly influenced the development of much of the
content of early geometry. For example, the invention of the conic sections, of
many cubic and quartic curves, and of several transcendental curves resulted
from this work. A later outgrowth was the development, in modern times, of
portions of the theory of equations, of the theory of algebraic numbers, and of
group theory. This whole line of mathematical development, so intimately tied to
Euclid’s first three postulates, has little connection with our present line of
investigation and so will not be further considered here. We shall return to the
subject, however, in Section A.2 of the Appendix.

Postulates 1 and 3 refer to existence. In other words, the existence of a
straight line joining any two given points is assumed, as is the existence of a circle
having any given center and radius. From applications that Euclid makes of

*1 33 means Proposition 33 of Book 1.
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Postulates 1 and 2, it appears that these postulates are meant also to imply that
the straight line segment joining two points in the one case, and the produced
portion in the other case, are unigue, although it must be admitted that the
postulates do not explicitly say as much. Postulate 3 may be construed as
implying something in regard to the continuity and extent of the space under
consideration, since the radius of the circle may be as small or as large as one
desires,

Postulates 4 and 5 are quite different from the first three postulates. The
meaning of Postulate 4 is certainly evident, but there has been much debate on
whether it is properly classified when placed among the postulates. If it should
be classified as a theorem its proof would have to be accomplished by applying
one pair of adjacent right angles to another such pair, but Euclid preferred to
shun, as much as possible, such proofs by superposition. In any event, Euclid had
to place Postulate 4 before his Postulate 5, since the condition in Postulate 5 that
a certain pair of interior angles be together less than two right angles would be
useless unless it were first made clear that all right angles are equal.

Postulate 5, known as Euclid’s parallel postulate, has become, as we shall see,
one of the most famous statements in mathematical history. There is more
evidence for the origin of this postulate with Euclid than for the origin of any of
the other four. Aristotle alludes to a petitio principii, or a circularity in reasoning,
that was involved in the theory of parallels current in his time. It is a mark of
Euclid’s mathematical acumen that he perceived that the only way out of the

difficulty was to layv down some postulate as a basis for the theory of parallels that
is so essential to the development of his geometry. The postulate that he

formulated serves this purpose admirably and also, at the same time, furnishes a
criterion for determining whether two straight lines in a figure will or will not
meet if extended. This fact is an advantage of Euclid’s postulate over the
substitutes that were later suggested to take its place, and this advantage is
actually employed in the Elements as early as 144. The consequences of
investigations carried on in connection with Euclid’s fifth postulate proved to be
very far-reaching. Not only did these investigations supply the stimulus for the
development of much of the mathematics that we characterize as modern, but
they led to a far deeper examination, and consequent refinement, of the axiomatic
method. These investigations are therefore vital to our present study and will
constitute the dramatic story of the next chapter.

Of the common notions, or axioms, there is reason to believe that the first
three were given by Euclid but that the last two may have been added at a later
time. Axiom 4 has been criticized on the ground that its subject matter 1s special
rather than general and that it ought therefore to be listed as a postulate instead
of as an axiom. Objections that can be raised to the method of superposition,
used by Euclid with apparent reluctance to establish some of his early con-
gruence theorems, can be at least partially met by Axiom 4. Again the student is
referred to the excellent commentary given by Heath.

In conclusion, we may summarize Euclid’s conception and use of the
axiomatic method as follows: Every deductive system requires assumptions from
which the deduction may proceed. Therefore, as initial premises, Euclid puts
down five postulates, or assumed statements about his subject matter. In
addition to the five postulates, Euclid lists five axioms, or common notions, that
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he also needs for his proofs. These axioms are not peculiar to his subject matter
but are general principles valid in any field of study. Now in the postulates a
number of terms occur, such as point, straight line, right angle, and circle, of
which it is not certain that the reader has a precise notion. Hence some
definitions are also given. These definitions are not, like the postulates,
assumptions about the nature of the subject matter but are merely explanations
of the meanings of the terms. Definition 10, for example, tells what a right angle
1s and how an angle may be identified as a right angle, but it says nothing about
the existence of right angles, nor does it state what is assumed about such angles.
These latter functions are left to the postulates and to deduced propositions.
Thus Postulate 4 informs us that all right angles are equal, and Proposition I 11
proves that right angles exist. On the other hand, Postulate 4 gives no clue
regarding the nature of a right angle, nor does it tell how the term is to be
employed; it merely states a fundamental assumption about such angles. Finally,
the natural order for presenting the postulates, axioms, and definitions to the
student is, first, the definitions explaining the meanings of the technical terms of
the discourse, next, the postulates that are so closely related to the definitions,
and last, the axioms or common notions.

C 2.4 Some Logical Shortcomings f
of Euclid’s Elements

[t would be very surprising indeed if Euclid’s Elements, because it is such an
carly and extensive application of the axiomatic methods, should be free of
logical blemishes. Therefore it is no great discredit to the work that critical
investigations have revealed a number of defects in its logical structure. Probably
the gravest of these defects are certain tacit assumptions that are employed later
in the deductions and are not granted by the first principles of the work. This
danger exists in any deductive study when the subject matter is overly familiar to
the author. Usually a thorough grasp of the subject matter in a field of human
endeavor 1s regarded as an indispensable prerequisite to serious work, but in
developing a deductive system such knowledge can be a definite disadvantage
unless proper precautions are taken.

A deductive system differs from a mere collection of statements in that it is
organized in a very special way. The key to the organization lies in the fact that
all statements of the system other than the original assumptions must be
deducible from these initial hypotheses, and that if any additional assumptions
should creep into the work the desired organization is not realized. Now anvone
formulating a deductive system knows more about his subject matter than just
the initial assumptions he wishes to employ. He has before him a set of
statements belonging to his subject matter, some of which he selects for
postulates and the rest of which he presumably deduces from his postulates as
theorems. But with a large body of information before one, it is very easy to
employ in the proofs some piece of this information that is not embodied in the
postulates. Any piece of information used in this way may be so apparently
obvious or so seemingly elementary that it is assumed unconsciously. Such a tacit
assumption, of course, spoils the rigidity of the organization of the deductive
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system. Moreover, should that piece of information involve some misconception,
its introduction may lead to results that not only do not strictly follow from the
postulates but that may actually contradict some previously established theorem.
Herein, then, lies the pitfall of too great a familiarity with the subject matter of
the discourse; at all times in building up a deductive system one must proceed
with the appearance of being completely ignorant of the developing material.
This does not mean that in building up a deductive system one refrains from
making any use of one’s intuitive appreciation of the significance of the axioms
and of possible interpretations of the primitive terms. On the contrary one makes
full use of these things, but only to conjecture possible theorems and possible
avenues of investigation. In the actual establishment of these theorems and in the
actual development of these avenues of investigation, one must be careful to
proceed only in terms of the accepted assumptions.

The tacit assumption by Euclid of something that is not contained in his first
principles is exemplified in the very first deduced proposition of the Elements. In
order to examine the difficulty we shall quote Proposition I 1 verbatim from
Heath’s translation.®

On a given finite straight line to construct an equilateral triangle [see Figure 2.1].
Let AB be the given finite straight line.
Thus it is required to construct an equilateral triangle on the straight

line AB.
With center 4 and distance AB, let the circle BCD be described.

[Postulate 3]
Again, with center B and distance BA, let the circle ACE be described.

[Postulate 3]

And from the point C, in which the circles cut one another, to the points
A, B, let the straight lines CA, CB be joined. [Postulate 1]

Now, since the point A is the center of the circle CDB, AC 1s equal to
AB. [Definition 15]

Again, since the point B is the center of the circle CAE, BC is equal to
BA. [Definition 15]

FIGURE 2.1

ST. L. Heath, 241, 242
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But CA was also proved equal to AB; therefore each of the straight lines
CA, CB is equal to AB. And things which are equal to the same thing are
also equal to one another; therefore CA is also equal to CB. [Axiom 1]

Therefore the three straight lines CA, AB, BC are equal to one another.

Therefore the triangle ABC is equilateral; and it has been constructed on
the given finite straight line AB.
(Being) what 1t was required to do.

Now the construction of the two circles in this demonstration 1s certainly
justified by Postulate 3, but there is nothing in Euclid’s first principles which
explicitly guarantees that the two circles shall intersect in a point C, and that they
will not, somehow or other, slip through each other with no common point. The
existence of this point, then, must be either postulated or proved, and it can be
shown that Euclid’s postulates are insufficient to permit the latter (see Problem
2.4.3). Only by the introduction of some additional assumption can the existence
of the point C be established. Therefore the proposition does not follow from
Euclid’s first principles, and the proof of the proposition is invalid.

The fallacy here lies not 1n assuming something contrary to our concept of
circles but in assuming something that is not implied by our accepted first
principles. This is an example where the tacit assumption is so evident and
elementary that there does not appear to be any assumption. The fallacy is a
subtle one, but had Euclid known nothing more about circles than what his first
principles say of them, he certainly could not have fallen into this error.

What 1s needed here 1s some additional postulate that will guarantee that the
two circles concerned will intersect. Postulate 5 gives a condition under which
two straight lines will intersect. We need similar postulates telling when two
circles will intersect and when a circle and a straight line will intersect. What 1s
essentially involved here is the continuity of circles and straight lines, and in
modern treatments of geometry the existence of the desired points of intersection
1s taken care of by some sort of continuity postulate.

Another tacit assumption made by Euclid is that the straight line 1s of infinite
extent. Although Postulate 2 asserts that a straight line may be produced
indefinitely, 1t does not necessarily imply that a straight line is infinite in extent
but merely that it is endless, or boundless. The arc of a great circle joining two
points on a sphere may be produced indefinitely along the great circle, making
the prolonged arc endless, but certainly it is not infinite in extent. Now it is
conceivable that a straight line may behave similarly, and that after a finite
prolongation it, too, may return on itself. It was the great German mathema-
tician Bernhard Riemann (1826-1866) who, in his famous probationary lecture,
Uber die Hypothesen welche der Geometrie zu Grunde liegen, of 1854, dis-
tinguished between the boundlessness and the infinitude of straight lines.

There are numerous occasions where Euclid unconsciously assumes the infini-
tude of a straight line. Let us briefly consider, for example, Proposition 1 16:

In any triangle, if one of the sides be produced, the exterior angle is greater
than either of the interior and opposite angles.

A precis of Euclid’s proof runs as follows. Let ABC (Figure 2.2) be the given
triangle, with BC produced to D. Let E be the midpoint of AC. Draw BE and

extend it its own length to /<. Draw CF. Then triangles BEA and FEC can easily
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FIGURE 2.2

be shown to be congruent, whence A FCE = A BAC. But 4 ACD > A FCE,
whence A ACD > A BAC. By producing AC to G, we may similarly show that
4 BCG, which is equal to A ACD, is also greater than A ABC.

Now if a straight line should return on itself, like the great circle arc
considered here, BF may be so long that F will coincide with B or lie on the
segment BE. Should this be the case, the proof would certainly fail. The author
has been misled by his visual reference to the figure rather than to the principles

that should be the basis of his argument. Clearly, then, to make the proof
universally valid we must either prove or postulate the infinitude of straight

lines.

One can point out many other tacit assumptions that, like the preceding one,
were unconsciously made by Euclid and that vitiate the true deductive character
of his work. For example, in Proposition I 21, Euclid unconsciously assumes that
if a straight line enters a triangle at a vertex it must, if sufficiently produced,
intersect the opposite side. It was Moritz Pasch (1843-1930) who recognized the
necessity of a postulate to take care of this situation. Again, Euclid makes no
provision for /inear order, and his concept of “betweenness’ 1s without any
postulational foundation, with the result that paradoxes are possible. We have
already pointed out that Postulate 1, which guarantees the existence of at least
one straight line joining two points A and B, probably was meant to imply
uniqueness of this line, but the postulate fails to assert so much. Also, the
objections that can be raised against the principle of superposition, employed in
many early popular textbooks, are only partially met by Euclid’s Axiom 4.

In short, the truth of the matter is that Euclid’s first principles are simply not
sufficient for the derivation of all of the 465 propositions of the Elements. In
particular, the set of postulates needs to be considerably amplified. The work of
perfecting Euclid’s initial assumptions, so that all of his geometry can rigorously
follow, occupied mathematicians for more than two thousand years. Not until the
end of the nineteenth century and the early part of the twentieth century, after
the foundations of geometry had been subjected to an intensive study, were
satisfactory sets of postulates supplied for Euclidean plane and solid geometry.
The history of this struggle is of major concern in our present study, and in
following it we shall encounter the device that mathematicians contrived for
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avoiding the pitfall, into which Euclid so often fell, of overfamiliarity with the

subject matter.
Not only is Euclid’s work marred by numerous tacit assumptions, but some

of his preliminary definitions are also open to criticism. Euclid, following the
Greek pattern of material axiomatics, makes some sort of attempt to define, or at

least to explain, all the terms of his discourse. Actually, it is as impossible to
define explicitly all of the terms of a discourse as it is to prove all of the statements
of the discourse, for a term must be defined by means of other terms, and these
other terms by means of still others, and so on. In order to get started, and to
avoid circularity of definition where term x i1s defined by means of term y, and
then later term y by means of term x, one is forced to set down at the very start of
the discourse a collection of primitive, or basic, terms whose meanings are not to
be questioned. All subsequent terms of the discourse must be defined, ul-
timately, by means of these mitial primitive ones. T he postulates of the discourse
are, then, in final analysis, assumed statements about the primitive terms. From
this point of view, the primitive terms may be regarded as defined implicitly, in
the sense that they are any things or concepts that satisfy the postulates, and this
implicit definition i1s the only kind of definition that the primitive terms can
receive.

In Euclid’s development of geometry the terms pomnt and line, for example,
could well have been included in a set of primitive terms for the discourse. Atany
rate, Euclid’s definition of a point as “‘that which has no part” and of a line as
“length without breadth’ are easily seen to be circular and therefore, from a
logical viewpoint, woefully inadequate. One distinction between the Greek
conception and the modern conception of the axiomatic method lies in this
matter of primitive terms; in the Greek conception there is no listing of the
primitive terms. The excuse for the Greeks is that to them geometry was not just
an abstract study but was an attempted logical analysis of 1dealized physical
space. Points and lines were, to the Greeks, 1dealizations of very small particles
and of very thin threads. It is this idealization that Euclid attempts to express in
his two initial definitions.

Other differences between the Greek and the modern views of the axiomatic
method will be discussed in a later chapter.

[ 2.5 The End of the Greek Period and the Transition 1
to Modern Times’

Very little in the further development of the axiomatic method took place after
Euclid until relatively modern times. We must mention, however, the brilliant
exploitation of the method by Archimedes (ca. 287-212 B.C.), one of the greatest
mathematicians of all time, and certainly rhe greatest of antiquity. Although
Archimedes lived most of his long life in the Greek city of Syracuse, on the island
of Sicily, it seems that he studied for a time at the University of Alexandria. He
was thoroughly schooled in the Euclidean tradition, and he left deep imprints on

"“This section is largely skimmed from the appropriate places in H. Eves [1].
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both geometry and mechanics. Archimedes’ works are masterpieces of math-
ematical exposition and resemble to a remarkable extent, because of their high
finish, economy of presentation, and rigor in demonstration, the articles found in
present-day research journals. It is interesting that Archimedes employed the
axiomatic method in his writings on theoretical mechanics, as well as in his
purely geometrical studies, always laying down the first principles of the work
and then deducing a sequence of propositions. Thus, in his treatise On Plane
Equalibriums, Archimedes establishes twenty-five theorems of mechanics on the
basis of three simple postulates suggested by common experience. The pos-
tulates are as follows:

1. Equal weights at equal distances balance; equal weights at unequal dis-
tances do not balance but incline toward the weight that is at the greater
distance.

2. If, when weights at certain distances balance, something is added to one of
the weights, equilibrium will not be maintained, but there will be inclhi-
nation on the side of the weight to which the addition was made; similarly,
if anything is taken away from one of the weights, there will be inclination
on the side of that weight from which nothing was taken.

3. When equal and similar plane figures coincide if placed on one another,
thetr centroids similarly coincide; and in figures that are unegual but
similar, the centroids will be similarly situated.

From these simple postulates Archimedes locates, for example, the centroid
of any parabolic segment and of any portion of a parabola lying between two
parallel chords. Problems of this sort would today be worked out by means of the
integral calculus.

Again, in his work On Floating Bodies, Archimedes rests the establishment of
the nineteen propositions of the work on two fundamental postulates. This
treatise is the first recorded application of mathematics to hydrostatics, and it
begins by developing those familiar laws of hydrostatics that nowadays are
encountered in an elementary physics course. The treatise then goes on to
consider several rather difficult problems, culminating with a remarkable
investigation of the positions of rest and of stability of a right segment of a
paraboloid of revolution floating in a fluid. Not until the sixteenth-century work
of Simon Stevin did the science of statics and the theory of hydrodynamics
appreciably advance beyond the points reached by Archimedes. It is worthy of
note that these early researches in theoretical physics were developed by the use
of the axiomatic method.

A geometrical assumption explicitly stated by Archimedes in his work On the
Sphere and Cylinder deserves special mention; it is one of the five postulates
assumed at the start of Book I of the work and it has become known as the
postulare of Archimedes. A simple statement of the postulate is as follows: Given
two unequal linear segments, there is always some finite multiple of the shorter
which is longer than the other. In some modern treatments of geometry this
postulate serves as part of the postulational basis for introducing the concept of
continuity. It is a matter of interest that in the nineteenth and twentieth centuries
geometric systems were constructed that denied the Archimedean postulate, thus
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giving rise to so-called non-Archimedean geometries. Although named after
Archimedes, this postulate had been considered carlier by Eudoxus.

There were other able Greek mathematicians in ancient times after Euclid
besides Archimedes—for example, Apollonius, Eratosthenes, Menelaus,
Claudius Ptolemy, Heron, Diophantus, and Pappus— but these men did little to
advance the development of the axiomatic method and so have slight connection
with our present study. After Pappus, who flourished toward the end of the third
century A.D., Greek mathematics practically ceased as a living study, and
thenceforth merely its memory was perpetuated by minor writers and commen-
tators, such as Theon and Proclus. This closing period of ancient times was
dominated by Rome. One Greek center after another had fallen before the power
of the Roman armies; in 146 B.C. Greece had become a province of the Roman

Empire, although Mesopotamia was not conquered until 65 B.C., and Egypt held
out until 30 B.C. The economic structure of the empire was based essentially on
agriculture and an increasing use of slave labor. Conditions proved more and
more stifling to original scientific work, and a gradual decline in creative thinking
set in. The eventual collapse of the slave market, with its disastrous effect on
Roman economy, found science reduced to a mediocre level. The famous
Alexandrian school gradually faded with the breakup of ancient society, and
finally, in A.D. 641, Alexandria was taken by the Arabs, who put the torch to what
the Christians had left. The long and glorious era of Greek mathematics was
over.

The period starting with the fall of the Roman Empire in the middle of the
fifth century and extending into the eleventh century is known as Europe’s Dark
Ages, for during this period civilization in western Europe reached a very low
ebb. Schooling became almost nonexistent, Greek learning all but disappeared,
and many of the arts and crafts bequeathed by the ancient world were forgotten.
Only the monks of the Christian monasteries, and a few cultured laymen,
preserved a slender thread of Greek and Latin learning. The period was marked
by great physical violence and intense religious faith. The old social order gave
way, and society became feudal and ecclesiastical.

The Romans had never taken to abstract mathematics but had contented
themselves with merely a few practical aspects of the subject that were associated
with commerce and civil engineering. With the fall of the Roman Empire and the
subsequent closing of much of east-west trade and the abandonment of state
engineering projects, even these interests waned, and it is no exaggeration to say
that very little in mathematics, beyond the development of the Christian
calendar, was accomplished in the West during the whole of the half millennium
covered by the Dark Ages.

During this bleak period of learning the people of the east, especially the
Hindus and the Arabs, became the major custodians of mathematics. However,
the Greek concept of rigorous thinking—in fact, the very idea of proof—seemed
distasteful to the Hindu way of doing things. Although the Hindus excelled in
computation, contributed to the devices of algebra, and played an important role
in developing our present positional numeral system, they produced nothing of
importance as far as basic methodology is concerned. Hindu mathematics of this
period is largely empirical and lacks those outstanding Greek characteristics of
clarity and logicality in presentation and of insistence on rigorous demonstration.
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The spectacular episode of the rise and decline of the Arabian empire
occurred during the period of Europe’s Dark Ages. Within a decade following
Mohammed’s flight from Mecca to Medina in A.D. 622, the scattered and
disunited tribes of the Arabian peninsula were consolidated by a strong religious
fervor into a powerful nation. Within a century, force of arms had extended the
Moslem rule and influence over a territory reaching from India, through Persia,
Mesopotamia, northern Africa, and into Spain. Of considerable importance for
the preservation of much of world culture was the manner in which the Arabs
seized on Greek and Hindu erudition. The Baghdad caliphs not only governed
wisely and well but many became patrons of learning and invited distinguished
scholars to their courts. Numerous Hindu and Greek works in astronomy,
medicine, and mathematics were industriously translated into the Arabic tongue
and thus were saved until later European scholars were able to retranslate them
into LLatin and other languages. But for the work of the Arabian scholars a great
part of Greek and Hindu science would have been irretrievably lost over the long
period of the Dark Ages.

Not until the latter part of the eleventh century did Greek classics in science
and mathematics begin once again to filter into Europe. There followed a period
of transmission during which the ancient learning preserved by Moslem culture
was passed on to the western Europeans through Latin translations made by
Christian scholars traveling to Moslem centers of learning, and through the
opening of western European commercial relations with the Levant and the

Arabian world. The loss of Toledo by the Moors to the Christians in 1085 was
followed by an influx of Christian scholars to that city to acquire Moslem

learning. Other Moorish centers in Spain were infiltrated, and the twelfth
century became, in the history of mathematics, a century of translators. One of
the most industrious translators of the period was Gherardo of Cremona, who
translated into Latin more than ninety Arabian works, among which were
Ptolemy’s Almagest and Euclid’s Elements. At the same time Italian merchants
came in close contact with eastern civilization, thereby picking up useful
arithmetical and algebraical information. These merchants played an important
part in the European dissemination of the Hindu-Arabic system of numeration.

The thirteenth century saw the rise of the universities at Paris, Oxford,
Cambridge, Padua, and Naples. Universities were to become potent factors in
the development of mathematics, since many mathematicians associated them-
selves with one or more such institutions. During this century Campanus made a
Latin translation of Euchid’s Elements, which later, in 1482, became the first
printed version of Euclid’s great work.

The fourteenth century was a mathemantcally barren one. It was the century
of the Black Death, which swept away more than a third of the population of
Europe; and during this century the Hundred Years’ War, with its political and
economic upheavals in northern Europe, got well under way.

The fifteenth century witnessed the beginning of the European Renaissance
in art and learning. With the collapse of the Byzantine Empire, culminating in
the fall of Constantinople to the Turks in 1453, refugees flowed into Italy,
bringing with them treasures of Greek civilization. Many Greek classics, up to
that time known only through the often inadequate Arabic translations, could
now be studied from original sources. Also, the middle of the century witnessed
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the invention of printing, which revolutionized the book trade and enabled
knowledge to be disseminated at an unprecedented rate. Mathematical activity in
this century was largely centered in the Italian cities and in the central European
cities of Nuremberg, Vienna, and Prague, and it concentrated on arithmetic,
algebra, and trigonometry, under the practical influence of trade, navigation,
astronomy, and surveving. '

In the sixteenth century the development of arithmetic and algebra con-
tinued, the most spectacular mathematical achievement of the century being the
discovery, by Italian mathematicians, of the algebraic solution of cubic and
quartic equations. In 1572 Commandino made a very important Latin trans-
lation of Euclid’s Elements from the Greek. This translation served as a basis for
many subsequent translations, including a very influential work by Robert
Simson, from which, in turn, so many English editions were derived.

The seventeenth century proved to be particularly outstanding in the history
of mathematics. Early in the century Napier revealed his invention of logarithms,
Harriot and Oughtred contributed to the notation and codification of algebra,
Galileo founded the science of dynamics, and Kepler announced his laws of
planetary motion. Later in the century Desargues and Pascal opened a new field
of pure geometry, Descartes launched modern analytic geometry, Fermat laid
the foundations of modern number theory, and Huygens made distinguished
contributions to the theory of probability and other fields. Then, toward the end
of the century, after many mathematicians had prepared the way, the epoch-
making creation of the calculus was made by Newton and Leibniz. Thus, during
the seventeenth century, many new and vast fields were opened for mathematical
investigation. The dawn of modern mathematics was at hand, and it was perhaps
inevitable that sooner or later some aspect of the axiomatic method itseif should
once again claim the attention of researchers.

———————— - PROBLEMSS i i i ——

2.1.1 Which of the following two theorems should more likely appear among the
“elements” of a course in plane geometry, and why? (1) The three altitudes of a
triangle, produced if necessary, meet in a point. (2) The sum of the three angles of
a triangle is equal to two right angles.

2.1.2 A mathematics instructor is going to present the subject of geometric progressions
to his college algebra class. After defining this type of progression, what theorems
about geometric progressions should the instructor offer as the “‘elements” of the
subject?

2.1.3 Imagine yourself building up an elementary treatment of trigenometric identities.
Which identities would you select for the “elements’ of your treatment, and in
what order would you arrange them?

2.1.4 As an illustration of nongeometrical material found in Euclid’s Elements, let us
consider the Euclidean algorithm, or process, for finding the greatest common
integral divisor (g.c.d.) of two positive integers. The process is found at the start
of Euclid’s Book VII, although perhaps it was known before Euclid’s time. This
algorithm is basic to several developments in modern mathematics. Stated in the
form of a rule, the process is this: Divide the larger of the two positive integers by the
smaller one. Then divide the divisor by the remainder. Continue this process, of .
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dividing the last divisor by the last remainder, until the division is exact. The final

divisor s the sought g.c.d. of the two original positive integers.

(a) Find, by the Euclidean algorithm, the g.c.d. of 5913 and 7592.

(b) Find, by the Euclidean algorithm, the g.c.d. of 1827, 2523, and 3248.

(¢) Prove that the Euclidean algorithm does lead to the g.c.d.

(d) Let h be the g.c.d. of the positive integers a and b. Show that there exist
integers p and ¢ (not necessarily positive) such that pa + ¢b = A.

(e) Find p and ¢ for the integers of part (a).

(f) Prove that @ and b are relatively prime if and only if there exist integers p and
g such that pa + ¢gb = 1.

(a) Prove, using Problem 2.1.4 (f), that if p is a prime and divides the product wv
then either p divides u or p divides v.

(b) Prove, from part (a), the “fundamental theorem of arithmetic’: Every integer
greater than 1 can be uniguely factored into a product of primes. This 1s
essentially Proposition IX 14 of Euclid’s Elements.

The fundamental theorem of arithmetic says that, for any given positive integer a,

there are unique non-negative integers a,, @,, ai, . . . , only a finite number of

which are different from zero, such that

a = 2°13%:5% .,

where 2, 3, 5, . . . are the consecutive primes. This suggests a useful notation. We
shall write

a=(ﬂ13ﬂ2,a3¢.¢]ﬂn}’

where a, is the last nonzero exponent. Thus we have 12 = (2,1), 14 =(1,0,0, 1),

27 = (0, 3), and 360 = (3, 2, 1).
Prove the following theorems:

(a) ab=(a, + b;,a, + b,y,...).

(b) b is a divisor of a if and only if b, £ a, for each 1.

(¢) The number of divisors of g is (a; + 1)(a, + 1) - (a, + 1).

(d) A necessary and sufficient condition for a number » to be a perfect square 1s
that the number of divisors of » be odd.

(e) Set g, equal to the smaller of a; and &, if a; # &, and equal to either g, or b, if
a,=b,. Theng=(g,,£4,...)1s the g.c.d. of a and b.

(f) If a and b are relatively prime and b divides ac, then b divides c.

(g) If a and & are relatively prime and if a divides ¢ and b divides ¢, then ab
divides c¢.

(h) Show that v-” 2 and x’? are irrational.

Prove the famous Proposition IX 20 of Euclid’s Elements: The number of prime

numbers 15 immfinite.

A number is said to be perfect if it is the sum of its proper divisors. For example, 6

is a perfect number, since 6 = 1 + 2 + 3. The last proposition of the ninth book of

Euclid’s Elements proves that if 2" — | is a prime number, then 2"~ ' (2" — 1) is a

perfect number. The perfect numbers given by Euclid’s formula are even numbers,

and it has been shown that every even perfect number must be of this form. The

existence or nonexistence of odd perfect numbers is one of the celebrated unsolved

problems in number theory. There 1s no number of this type having less than 100

digits.

(a) Show that in Euclid’s formula for perfect numbers, n must be prime.

(b) What are the first four perfect numbers given by Euclid’s formula?

(c¢) Prove that the sum of the reciprocals of all the divisors of a perfect number is
equal to 2.
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Discuss Euclid's axioms and postulates, as listed in Section 2.3, in relation to the
three distincti that, ding to Proclus, were advocated by various early
Greeks.
How does the modern definition of a circle differ from Euclid’s definition?
“Prove” Euclid’s Postulate 4 by the method of superposition.
One should understand precisely the intention of Euclid’s Postulate 3. When
Euclid says that “a circle may be described with any center and distance,” he
means that a circle may be described with any point as center and having any straight
line segment radiating from this center as a radius. It foll that the Euclid
compasses differ from our modern compasses, for with the modern compasses we
are permitted to draw a circle having any point 4 as center and any segment BC as
radius. In other words, we are permitted to transfer the distance BC to the center
A, using the compasses as dividers. The Euclidean compasses, on the other hand,
may be supposed to collapse if either leg is lifted from the paper.

A student reading Euclid’s Elements for the first time might experience
surprise at the opening propositions of Book I. The first three propositions are the
construction problems:

1. To describe an equilateral triangle upon a given finite straight line.
2. From a given point to draw a straight line equal to a given straight line.

3. From the greater of two given straight lines to cut off a part equal to the
lesser.

These three constructions are trivial with straightedge and modern compasses
but require some ingenuity with straightedge and Euclidean compasses.
(a) Solve Proposition 1 of Book I with Euclidean tools.
(b) Solve Proposition 2 of Book I with Euclidean tools.
(c) Solve Proposition 3 of Book I with Euclidean tools.
(d) Show that Proposition 2 of Book I proves that the straightedge and Euclidean

are equivalent to the strai dge and modern compasses.

If an nssumpuon tacitly made in a deductive devel should involve a
misconception, its introduction may lead not only to a result that does not follow
from the postulates of the deductive system but to one that may actually contradict
some previously established theorem of the system. From this point of view,
criticize the foll g three g rical paradoxes:
(a) To prove that any triangle is isosceles.

Let ABC be any triangle (see Figure 2.3). Draw the bisector of A C and
the perpendicular bisector of side AB. From their point of intersection E,
drop perpendiculars EF and EG on AC and BC, respectively, and draw EA
and EB. Now right triangles CFE and CGE are congruent, since each has CE
as hypotenuse and since 4 FCE = A GCE. Therefore CF = CG. Again,
right triangles EFA and EGB are congruent, since leg EF of one equals leg
EG of the other (any point E on the bisector of an angle C is equidistant from
the sides of the angle) and since hypotenuse EA of one equals hypotenuse EB
of the other (any point E on the perpendi bi of a line AB
is equidistant from the extremities of that line segment). Therefore
FA = GB. It now follows that CF + FA = CG + GB, or CA = CB, and the
triangle is isosceles.
To prove that a right angle is equal to an obtuse angle.

Let ABCD be any rectangle (see Figure 2.4). Draw BE outside the
rectangle and equal in length to BC, and hence to AD. Draw the per-
pendicular bisectors of DE and AB; since they are perpendicular to

(b

~
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(c)

D = C E
A G B
P
FIGURE 23 FIGURE 2.4

nonparallel lines, they must intersect in a point P. Draw AP, BP, DP, EP.
Then PA = PB and PD = PE (any point on the perpendicular bisector of a
line segment is equidistant from the extremities of the line segment). Also, by
construction, AD = BE. Therefore triangles APD and BPE are congruent,
since the three sides of one are equal to the three sides of the other. Hence
ADAP= A EBP.But 4 BAP = A ABP, since these angles are base angles
of the isosceles triangle APB. By subtraction it now follows that right angle
DAG = obtuse angle EBA.
To prove that there are two perpendiculars from a point to a line.

Let two circles intersect in 4 and B (see Figure 2.5). Draw the diameters
AC and AD, and let the join of C and D cut the respective circles in M and N.
Then angles AMC and AND are right angles, since each is inscribed in a
semicircle. Hence AM and AN are two perpendiculars to CD.

To guarantee the existence of certain points of intersection (of line with circle and

circle with circle) Richard Dedekind (1831-1916) introduced into geometry the
following continuity postulate:

If all points of a horizontal straight Iine fall into two classes, such that every
point of the first class lies to the left of every point of the second class, then

FIGURE 2.5
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there exists one and only one point that produces this division of all points into
two classes—that is, this severing of the straight line into two portions.

Complete the details of the following indicated proof of the theorem:

The straight line segment joining a point A inside a circle to a point B
outside the circle has a point in common with the circle.

Let O be the center and r the radius of the given circle (see Figure 2.6),
and let C be the foot of the perpendicular from O on the line determined by 4
and B. The points of the segment AB can be divided into two classes: those
points P for which OP < r and those points Q for which OQ 2 r. It can be
shown that, in every case, CP < CQ. Hence, by Dedekind’s postulate, there
exists a point R of AB such that all points that precede it belong to one class
and all that follow it belong to the other class. Now OR < r, for otherwise we
could choose S on AB, between R and B, such that RS < r — OR. But since
OS < OR + RS, this would imply the absurdity that OS < r. Similarly, it
can be shown that OR 3 r. Hence we must have OR = r, and the theorem is
established.

(b) How might Dedekind’s postulate be extended to cover angles?

(c)

How might Dedekind’s postulate be extended to cover circular arcs?

Let us, for convenience, restate Euclid’s first three postulates in the following
equivalent forms:

1. Any two distinct points determine a straight line.

2. A straight line 1s boundless.

3. There exists a circle having any given point as center and passing through
any second given point,

Show that Euclid’s postulates, partially restated above, hold if the points of

the plane are restricted to those whose rectangular Cartesian coordinates for some
fixed frame of reference are rational numbers. Show, however, that under this
restriction a circle and a line through its center need not intersect each other.
Show that Euclid’s postulates (as partially restated in Problem 2.4.3) hold if we
interpret the plane as the surface of a sphere, straight lines as great circles on the
sphere, and points as points on the sphere. Show, however, that in this
interpretation the following are true:

(a) Parallel lines do not exist.

N/

FIGURE 2.6
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(b) All perpendiculars to a given line erected on one side of the line intersect in a
point.

(c) It is possible to have two distinct lines joining the same two points.

(d) The sum of the angles of a triangle exceeds two right angles.

(e) There exist triangles having all three angles right angles.

(f) An exterior angle of a triangle is not always greater than either of the two
remote interior angles.

(g) The sum of two sides of a triangle can be less than the third side.

(h) A triangle with a pair of equal angles may have the sides opposite them
unequal.

(i) The greatest side of a triangle does not necessarily lie opposite the greatest
angle of the triangle.

In 1882 Moritz Pasch formulated the following postulate:

Let A, B, C be three points not lying in the same straight line, and let m be a
straight line lying in the plane of ABC and not passing through any of the
points A, B, C. Then, if the line m passes through a point of the segment AB,

it will also pass through a point of the segment BC or a point of the segment
AC.

This postulate is one of those assumptions classified by modern geometers as a

postulate of order, and it assists in bringing out the idea of “betweenness.”

(a) Prove, as a consequence of Pasch’s postulate, that if a line enters a triangle at a
vertex, it must cut the opposite side.

(b) Show that Pasch’s postulate does not always hold for a spherical triangle cut
by a great circle.

New terms defined by means of more primitive terms are not essential to a

deductive system but are convenient in the drawing of inferences, for the new

terms serve as shorthand for complex and unmanageable phrases involving the
more primitive terms. To illustrate the cumbersomeness that would result if, in

Euclid’s Elements, we should dispense with, say, the terms pomt and line, we

would have to describe a straight line as *‘a breadthless length which lies evenly

with all the entities on itself which have no parts.” State Euclid’s first two
postulates without using the terms pomt and line.

Let W, and W, be two weights at distances d, and d,, respectively, from a

fulcrum. On the basis of the first two postulates of Archimedes’ treatise On Plane

Equalibriums, establish the following theorems:

(a) If we have equilibrium and W, = W,, then d, = d,.

(b) If we have equilibrium and d, = d,, then W, = W,.

(c) If we have equilibrium and W, # W,, then d, # d,.

(d) If, when weights at certain distances balance, one of the distances should be
increased, equilibrium will not be maintained, but there will be inclination on
the side of the distance which was increased.

(e) Try to show that we have equilibrium if and only if W,d, = W,d,.

(a) Assuming the existence of the usual one-to-one correspondence between real
numbers and points on an x-axis, show that an arithmetized form of the
postulate of Archimedes is, ““If a and & are any two positive real numbers,
there exists a positive integer » such that na > 5.”

(b) State the postulate of Archimedes for angles, and indicate how it might be
deduced from the arithmetized form of the postulate.
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= 3.1 Euclid’s Fifth Postulate )

Postulate 5 of Euclid’s Elements has been described as ““perhaps the most famous
single utterance in the history of science.””’ Certainly it has been the source of
much controversy, and the dissatisfaction of mathematical scholars with its
statement as a postulate is indicated by the fact that many reputable geometers
attempted over a period of some twenty centuries either to prove it as a theorem
or to replace it by a more acceptable equivalent. As we shall soon see, this
concern over Euclid’s fifth postulate furnished the stimulus for the development
of a great deal of modern mathematics and also led to deep and revealing
inquiries into the logical and philosophical foundations of the subject.

A rigorous development of the theory of parallels apparently gave the early
Greeks considerable trouble. Euclid met the difficulties by defining parallel lines
as coplanar straight lines that do not meet one another however far they may be
produced in either direction, and by adopting as an assumption his now famous
fifth postulate. Proclus tells us that this postulate was attacked from the very
start. Even a cursory reading of Euclid’s five postulates discloses a very
noticeable difference between the fifth postulate and the other four; the fifth
postulate lacks the terseness and the simple comprehensibility possessed by the

other four, and it certainly does not have that quality of ready acceptance
demanded by material axiomatics. A more studied examination reveals that the

fifth postulate is actually the converse of Proposition I 17.% It is not surprising
that it seemed more like a proposition than a postulate. Moreover, Euclid himself
made no use of it until he reached Proposition I 29, It was very natural to wonder
whether the postulate was really needed at all and to think that perhaps it could
be derived as a theorem from the remaining nine “‘axioms’ and “postulates™ or,

'C. ]. Keyser [1], p. 113.
2See Appendix, Section A.l, for the statements of the first twenty-eight propositions of Euclid’s
Book I.

51
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at least, that it could be replaced by a more acceptable equivalent. Proclus, who
was under the illusion that he possessed a proof of the postulate, favored deleting

the postulate from the first principles. A quotation from Proclus might be of
interest:

This ought to be struck out of the postulates altogether; for it is a theorem
involving many difficulties. Ptolemy, in a certain book, set himself to solve it,
and it requires for its demonstration a number of definitions as well as
theorems. Moreover, its converse is actually proved by Euclid himself as a
theorem. It may be that some persons would be deceived, and would think it
proper to place the assumption in question among the postulates as affording
ground for an instantaneous belief that the straight lines converge and meet
when the two angles are made less than two right angles. To such persons,
Geminus correctly replied that we have learned from the very pioneers of
this science not to have any regard for mere plausible imaginings when it is
really a question of the reasonings to be included in our geometrical doctrine.
Aristotle says that 1t is as justifiable to ask scientific proofs of a rhetorician as
to accept mere plausibilities from a geometer, and Simmias is made by Plato
to say that he recognizes as quacks those who fashion for themselves proofs
from probabilities. So in this case, when the two right angles are lessened,
the fact that the straight lines converge is true and necessary; but the state-
ment that they will meet sometime, since they converge more and more as
they are produced, is plausible, but it is not necessary in the absence of some
argument showing that this is true. It is a known fact that some lines exist
which approach each other indefinitely, but yet remain nonintersecting; this
seems mmprobable and paradoxical, but nevertheless it is true and fully ascer-
tained with regard to other species of lines. May not the same thing which
happens in the case of the lines referred to be possible in the case of straight
lines? Indeed, until the statement in the postulate is clinched by proof, the
facts shown in the case of other lines may direct our imagination the opposite
way. Though the controversial arguments against the meeting of the straight
lines should contain much that is surprising, is that not all the more reason

why we should expel from our body of doctrine this merely plausible and
unreasoned hypothesis?

There were many attempts to “prove” the fifth, or parallel, postulate and
many substitutes devised for its replacement. Of the various substitutes, the one
most commonly favored 1s that made well known in modern times by the
Scottish physicist and mathematician, John Playfair (1748-1819), although this
particular alternative had been used by others and had even been stated as early
as the fifth century by Proclus. This substitute is the one most often encountered
in present-day high school geometry texts—namely, Through a given point not on
a given line can be drawn only one line parallel to the given line.®* Some other

alternatives for the parallel postulate that have been either proposed or tacitly
assumed over the years are these:

1. (Posidonius and Geminus) There exists a pair of coplanar straight lines
everywhere equally distant from one another.

*Propositions 1 27 and 1 28 guarantee, under the tacit assumption of the infinitude of straight
lines, the existence of at least one parallel.
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2. (Wallis, Saccheri, Carnot, and Laplace) There exists a pair of similar
noncongruent triangles.

3. (Saccheri) If in a quadrilateral a pair of opposite sides are equal and if
the angles adjacent to a third side are right angles, then the other rwo
angles are also right angles.

4. (Lambert and Clairaut) If in a quadrilateral three angles are right
angles, the fourth angle is also a right angle.

5. (Legendre) There exists at least one triangle having the sum of its three
angles equal to two right angles.

6. (Legendre) Through any point within an angle less than 60° there can
always be drawn a straight line intersecting both sides of the angle.

7. (Legendre and W. Bolyai) A circle can be passed through any three
noncollinear points.

8. (Gauss) There is no upper limir to the area of a triangle.

It constitutes an interesting and challenging collection of exercises for the
student to try to show the equivalence of these alternatives to the original
postulate stated by Euclid. To show the equivalence of Euclid’s postulate and a
particular one of the alternatives, one must show that the alternative follows as a
theorem from Euclid’s assumptions and also that Euclid’s postulate follows as
a theorem from Euclid’s system of assumptions with the parallel postulate
replaced by the considered alternative.

It would be difficult to estimate the number of attempts that have been made,
throughout the centuries, to deduce Euclid’s fifth postulate as a consequence of
the other Euclidean assumptions, either explicitly stated or tacitly implied. All
these attempts ended unsuccessfully, and most of them were sooner or later
shown to rest on an assumption equivalent to the postulate itself. The earliest
effort, of which we are today aware, to prove the postulate was made by Claudius
Ptolemy (ca. A.D. 150), alluded to by Proclus in the quotation given above.
Claudius Prolemy was the author of the famous and very influential Almagest,
the great definitive Greek work on astronomy. Proclus exposed the fallacy in
Ptolemy’s attempt by showing that Ptolemy had unwittingly assumed that
through a point only one parallel can be drawn to a given line; this assumption is
the Playfair equivalent of Euclid’s postulate. Proclus submitted an attempt of his
own, but his “proof™ rests on the assumption that parallel lines are always a
bounded distance apart, and this assumption can be shown to imply Euclid’s fifth
postulate. Among the more noteworthy attempts of somewhat later times is one
made in the thirteenth century by Nasir-ed-din (1201-1274), a Persian astron-
omer and mathematician who compiled, from an earlier Arabic translation, an
improved edition of the Elements and who wrote a treatise on Euclid’s postulates,
but his attempt, too, involves a tacit assumption equivalent to the postulate being
iipmed‘ll

An important stimulus to the development of geometry in western Europe
after the Renaissance was a renewal of the criticism of Euclid’s fifth postulate.
Hardly any critical comments are to be found in the early printed editions of the
Elements made at the end of the fifteenth century and at the beginning of the
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sixteenth century. However, after the translation, in 1533, of Proclus’s Commen-
tary on Euclid, Book I, many men once again embarked upon a critical analysis of
the fifth postulate. For example, John Wallis (1616-1703), while lecturing at
Oxford University, became interested in the work of Nasir-ed-din and in 1663
offered his own ““proof” of the parallel postulate, but this attempt involves the
equivalent assumption that similar noncongruent triangles exist. So it was with
all the many attempts to derive Euclid’s postulate as a theorem; each attempt
involved the vitiating circularity of assuming something equivalent to the thing
being established or else committed some other form of fallacious reasoning.
Most of this vast amount of work is of little real importance in the actual
evolution of mathematical thought until we come to the remarkable investigation
of the parallel postulate made by Girolamo Saccheri in 1733.

! 1 3.2 Saccheri and the Reductio J
ad Absurdum Method

Every student of elementary geometry has encountered the so-called mdirect, or
reductio ad absurdum,* method of proof. It is a powerful, and at times seemingly
indispensable, method that 1s employed frequently by Euclid in his Elements.
The method, it will be recalled, consists of assuming, by way of hypothesis, that
a proposition that 1s to be established i1s false; if an absurdity follows, one

concludes that the hypothesis is untenable and that the original proposition must
then be true, It was this method of proof that we employed in Section 1.5 to show

that \/5 is irrational.

To illustrate further the reductio ad absurdwm method, let us briefly consider
Euchd’s Proposition I 6, the first proposition in the Elements established by this
type of proof. We wish to prove the theorem: If in a triangle two angles are equal to
each other, then the two sides opposite these angles are also equal to each other. Let
ABC (Figure 3.1) be the triangle, and suppose A ABC = 4 ACB. We wish to
show that side AB = side AC. Suppose the sides AB and AC are not equal to
each other. Then one of them—say, AB—1s greater than the other, and we may
mark off on BA4 a segment BD equal to the lesser side AC. Now in triangles ABC
and DCB we have CB = BC,CA = BD, 4 BCA = 4 CBD. It follows that the
triangles are congruent. But this conclusion is impossible, since triangle DCB is
only a part of triangle ABC. Our hypothesis that AB # AC has led to an absurd
situation and hence is untenable. We must conclude, therefore, that AB = AC,
and our theorem is established.

The reductio ad absurdwm method rests on two cardinal principles of classical
logic—namely, the law of contradiction and the law of the excluded middle.
Somewhat loosely described, the law of contradiction says that if S is any
statement, then S and a contradiction (that is, the denial) of S cannot both hold, and
the law of the excluded middle says that either S or the demial of S must hold (that

“In a more refined treatment one distinguishes several slight variations in the indirect method of
proof, and then it is customary to assign the technical terminology, reductic ad absurdum, to a
particular one of these variations. We do not make this refinement here.
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1s, there 1s no third, or middle, possibility). As an illustration, suppose S is the
statement, ‘““Archimedes was born in 287 B.C.”” The law of contradiction then
asserts that Archimedes cannot have been born in both 287 B.C. and A.D. 400, for
example, and the law of the excluded middle asserts that Archimedes either was
born in 287 B.C. or he was not born in 287 B.C. Now let § be the statement of any
proposition to be established by the reductio ad absurdum method—for example,
the statement of Proposition I 6 above. By the method, we set about and show
that the denial of S implies the denial of some previously assumed or established
statement 7. By the law of contradiction, 7 and the denial of T cannot both be
true (that is, cannot both follow from the postulates). Since T is true, the denial
of T is then false, from which, since a true statement can never imply a false one,
it follows that the denial of § must also be false. By the law of the excluded
middle, however, either § is true or the denial of S is true. Since the denial of S is
false, it follows that S is true, and our proposition is established.

The law of contradiction and the law of the excluded middle have settled so
deeply into the warp and woof of human thinking that it is difficult to conceive of
questioning their validity. We shall see later, however, that although these laws
are usually pronounced as universally true, some sort of limitation must be made
concerning their applicability. Indeed, since 1912 some mathematicians have felt
that we must drastically restrict the free use of the law of the excluded middle as
part of the logical machinery used in deducing theorems from postulates. But
more of this in its proper place. For the time being we shall accept these laws,

particularly insofar as they apply to the reductio ad absurdum method of proof.
One concluding remark about the reductio ad absurdum method seems

appropriate here. In the game of chess a gambir is one of various possible
openings in which a pawn or a piece is risked in order to obtain an advantageous
attack. The eminent English mathematician, G. H. Hardy (1877-1947), delight-
fully pointed out that reducrio ad absurdwm *“is a far finer gambit than any chess
gambit: a chess player may offer the sacrifice of a pawn or even a piece, but a
mathematician offers the game.”> Reductio ad absurdum emerges as the most
stupendous gambit conceivable.

*G. H. Hardy [2], p. 34.
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Reductio ad absurdum certainly constitutes one of the finest weapons in a
mathematician’s armory of attack; with this weapon Girolamo Saccheri in 1733
made the first really scientific assault on the problem of Euclid’s parallel
postulate.

Little 1s known of Sacchert’s life. He was born in San Remo in 1667, showed
marked precocity as a youngster, completed his novitiate for the Jesuit Order at
the age of twenty-three, and then spent the rest of his life filling a succession of
university teaching posts. While instructing rhetoric, philosophy, and theology
at a Jesuit College in Milan, Saccheri read Euchd’s Elements and became
enamored with the powerful method of reductio ad absurdum. Later, while
teaching philosophy at Turin, Saccheri published his Logica demonstrativa, in
which the chief innovation is the application of the method of reducrio ad
absurdum to the treatment of formal logic. Some vears after, while a professor of
mathematics at the University of Pavia, it occurred to Saccheri to apply his
favorite method of reducrio ad absurdum to a study of Euclid’s parallel postulate.
He was well prepared for the task, having dealt ably in his earlier work on logic
with such matters as definitions and postulates. Also, he was acquainted with the
work of others regarding the parallel postulate and had succeeded in pointing out
the fallacies in the attempts of Nasir-ed-din and Wallis.

Saccheri’s effort to establish Euclid’s parallel postulate by attempting to
institute a reductio jad absurdwm was apparently the first time anyone had
conceived the idea of denying the postulate and of studying the consequences of a
contradiction of the famous assumption. The result of these researches was a
little book entitled Euclides ab ommi naevo vindicatus (Euclid Freed of Every
Flaw), which was printed in Milan in 1733, only a few months before the
author’s death. In this work Saccheri accepts the first twenty-eight propositions
of Euclid’s Elements, which, as we have previously stated, do not require the fifth
postulate for their proof. With the aid of these theorems he then proceeds to
study the 1sosceles birectangle—that is, a quadrilateral ABDC in which (see
Figure 3.2) AC = BD and the angles at A and B are right angles. By drawing the
diagonals AD and BC and then using simple congruence theorems (which are
found among Euclid’s first 28 propositions), Saccheri easily shows that the
angles at ¢ and D are equal to each other. But nothing can be ascertained in
regard to the magnitude of these angles. Of course, as a consequence of Euclid’s
fifth postulate, it follows that these angles are both right angles, but the
assumption of this postulate is not to be employed. As a result, the two angles

might both be right angles, obtuse angles, or acute angles. Here Saccheri

FIGURE 3.2
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maintains an open mind and names the three possibilities: the hypothesis of the
right angle, the hypothesis of the obtuse angle, and the hypothesis of the acute angle,

i g g i i
The plan of the work is to rule out the last two possibilities by showing that their
respective assumptions lead to absurdities, thus leaving, by the reductio ad

absurdum method, the first hypothesis. But this hypothesis can be shown to be
equivalent to Euclid’s fifrh postulate. In this way the parallel postulate is to be
established and the blemish of its assumption by Euclid removed.

The task of eliminating the hypothesis of the obtuse angle and the hypothesis
of the acute angle turns out to be rather arduous. With real geometrical skill and
fine logical penetration, Saccheri establishes a number of theorems, of which the
following are among the more important:

1. If one of the hypotheses is true for a single isosceles birectangular guadri-
lateral, 1t 1s true for every such quadrilateral.

2. On the hypothesis of the right angle, the obtuse angle, or the acute angle,
the sum of the angles of a triangle is respectively equal to, greater than, or
less than two right angles.

3. If there exists a single triangle for which the sum of the angles is equal to,
greater than, or less than rwo right angles, there follows the truth of the
hypothesis of the right angle, the obtuse angle, or the acute angle.

4. On the hypothesis of the right angle two distinct straight lines intersect,
except in the one case in which a transversal cuts them under equal corre-
sponding angles. On the hypothesis of the obtuse angle two straight lines
always intersect. On the hypothesis of the acute angle there 1s an in-
finitude of straight lines through a given point not on a given straight line
and which do not meet the given straight line.

5. The locus of the extremity of a perpendicular of constant length that
moves with its other end on a fixed straight line is a straight line on the
hypothesis of the right angle, a curve convex to the fixed line on the hy-
pothesis of the obtuse angle, and a curve concave to the fixed line on the
hypothesis of the acute angle.

After establishing a chain of thirteen propositions, Saccheri manages to
dispose of the hypothesis of the obtuse angle, but in so doing he makes the same
tacit assumption that Euclid made concerning the infinitude of the straight line.
With this tacit assumption (introduced by using Euclid’s Proposition I 18, which
depends on I 16) Saccheri shows that the hypothesis of the obtuse angle implies
Euclid’s fifth postulate, which, in turn, implies that the sum of the angles of a
triangle is equal to two right angles. But this second implication contradicts the
theorem that, on the hypothesis of the obtuse angle, the sum of the angles of a
triangle 1s greater than two right angles.

The case of the hypothesis of the acute angle proves to be even more
stubborn, and Saccheri requires nearly twenty more propositions before he feels
he can dispose of it. After obtaining many of the theorems that were later to
become classical in non-Euclidean geometry, Saccheri weakly forces into his
development an unconvincing contradiction involving vague concepts about
elements at infinity. The contradiction that he reaches is that there exist two
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straight lines that when produced to infinity merge into one another and there
have a common perpendicular. Coming after the careful work that has been
presented up to this point, it is difficult to believe that Saccheri himself was really
convinced by his lame ending. Indeed, in a second part to his work, he
attempted, with no greater success, a second attack on the hypothesis of the acute
angle. Had Saccheri not been so eager to exhibit a contradiction but rather had
boldly admitted his inability to find one, he would today unguestionably be
credited with the discovery of non-Euclidean geometry.

It is difficult to evaluate the influence that Saccheri’s work may have had on
later researches connected with the parallel postulate, for subsequently his little
publication was lost for a long time. It was dramatically resurrected in 1889 by
Saccheri’s compatriot, Eugenio Beltrami (1835-1900), a mathematician who, as
we shall soon see, made notable contributions of his own to the subject of non-
Euclidean geometry. The first part of Saccheri’s work has been translated into
English® and can be easily read by any student of elementary plane geometry.

| 3.3 The Work of Lambert and Legendre |

In 1766, thirty-three years after Saccheri’s publication, the German mathema-
tician Johann Heinrich Lambert (1728-1777) wrote an investigation of the
parallel postulate entitled Die Theorie der Parallellinien, which, however, was not
published until eleven years after the author’s death. LLambert’s treatise is in
three parts. The first part considers whether Euclid’s fifth postulate can be
proved from Euclid’s other assumptions or only if additional assumptions are
made. The second part is concerned with the reduction of the parallel postulate
to various equivalent propositions. It i1s the last part of the study that closely
resembles the earlier work by Saccheri. Here LLambert chooses as a fundamental
figure the trirectangle, or quadrilateral containing three right angles, which can
be regarded as the half of a Saccheri isosceles birectangle formed by joining the
midpoints of the latter’s bases. As with Saccheri, three hypotheses arise,
according to whether the fourth angle of the trirectangle is right, obtuse, or
acute.

Lambert went considerably beyond Saccheri in deducing propositions
under the hypotheses of the obtuse and acute angles. Thus, not only did he show
that for the three hypotheses the sum of the angles of a triangle is equal to,
greater than, or less than two right angles, respectively, but in addition he
showed that the excess above two right angles in the hypothesis of the obtuse
angle, or the deficiency below two right angles in the hypothesis of the acute
angle, is proportional to the area of the triangle. This result led him to observe
the resemblance to spherical geometry of the geometry following from the
hypothesis of the obtuse angle (in spherical geometry the area of a triangle is
proportional to its spherical excess), and he conjectured that the geometry
following from the hypothesis of the acute angle could perhaps be verified on a
sphere of imaginary radius.

®See G. B. Halsted (2] or D. E. Smith [2], pp. 351-359,
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Another notable discovery made by LLambert concerns the measurement of
lengths in the two geometries that follow from the obtuse-angle and acute-angle

hypotheses. In Euclidean geometry, because similar noncongruent figures exist,
lengths can be measured only in terms of some arbitrary unit that has no

structural connection with the geometry. Angles, on the other hand, possess a
natural unit of measure, such as the right angle or the radian, which is capable of
geometrical definition. This is what is meant when mathematicians say that in
Euclidean geometry lengths are relative but angles are absolute. Lambert
discovered that under the hypotheses of the obtuse and acute angles, angles are
still absolute, but lengths are absolute also! In fact, it can be shown for these
geometries that for every angle there is a corresponding line segment, so thatto a
natural unit of measure for angles there corresponds a natural unit of measure for
lengths.

Lambert eliminated the hypothesis of the obtuse angle by making the same
tacit assumption that Saccheri made, but his conclusions with regard to the
hypothesis of the acute angle were indefinite and unsatisfactory. Indeed, it was
this incomplete and unsettled state of affairs with regard to the acute hypothesis
that held Lambert from publishing his work, with the result that it did not
appear until friends finally put it through the press after his death.

L.ambert was a mathematician of high quality. As the son of a poor tailor he
was largely self-taught. He possessed a fine imagination and established his
results with great attention to rigor. In fact, LLambert was the first to prove
rigorously that the number = is irrational. He showed that if x is rational but not
zero, then tan x cannot be rational; since tan n/4 = 1, it follows that n/4, or =«,
cannot be rational. We also owe to Lambert the first systematic development of
the theory of hyperbolic functions and, indeed, our present notation for these
functions. Lambert was a many-sided scholar who contributed to the mathema-
tics of numerous other topics, such as descriptive geometry, the determination of
comet orbits, and the theory of projections employed in the making of maps.

A third distinguished effort to establish Euclid’s parallel postulate by the
reductio ad absurdum method was essayed, over a long period of years, by the
eminent French analyst Adrien-Marie Legendre (1752-1833). He began anew
and considered three hypotheses according to whether the sum of the angles of a
triangle 1s equal to, greater than, or less than two right angles. Tacitly assuming
the infinitude of a straight line, he was able to eliminate the second hypothesis,
but although he made several attempts, he could not dispose of the third
hypothesis. These various endeavors appear in the successive editions of his very

popular Eléments de géométrie,” which ran from a first edition in 1794 to a twelfth
in 1823, Legendre’s first effort is vitiated by the assumption that the choice of a
unit of length will not affect the correctness of his propositions, but this, of

“This work is an attempted pedagogical improvement of Euclid’s Elements made by considerably
rearranging and simplifying the propositions. The work won high regard in continental Europe
and was so favorably received in the United States that it became the prototype of the elementary
geometry textbooks in this country. The first English translation was made in the United States

in 1819 by John Farrar of Harvard University. The next English translation was made in 1822
by the famous Scottish litterateur, Thomas Carlyle, who early in life was a teacher of mathema-

tics. Carlyle’s translation ran through thirty-three American editions.
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course, is equivalent to assuming the existence of similar noncongruent figures.
The next attempt is vitiated by assuming the existence of a circle through any
three noncollinear points. Later Legendre independently observed the fact
already discovered by Lambert that, under the third hypothesis, the deficiency of
the sum of the angles of a triangle below two right angles is proportional to the
area of the triangle., Hence, Legendre reasoned, if by starting with any given
triangle one could obtain another triangle containing the given triangle at least
twice, then the deficiency for this new triangle would be at least twice the
deficiency for the given triangle. By repeating the operation a sufficient number
of times, one could finally end with a triangle whose angle sum has become
negative, a situation that is absurd. But in order to solve the problem of obtaining
a triangle containing a given triangle at least twice, LLegendre found he had to
assume that through any point within a given angle less than 60° there can always
be drawn a straight line intersecting both sides of the angle, and this, as we have
pointed out, is equivalent to Euclid’s fifth postulate. Legendre gave an elegant
proof of the theorem: If there exists a single triangle having the sum of its angles
equal to two right angles, then the sum of the angles of every triangle is equal to two
right angles. Although this theorem is contained in the results given by Saccheri,
it is generally referred to as Legendre’s second theorem. Legendre’s first theorem 1s:
The sum of the three angles of a triangle cannot be greater than two right angles. Of
course, in proving this theorem, Legendre tacitly assumed the infinitude of
straight lines. In fact, in proving both his first and second theorems, Legendre
assumed the postulate of Archimedes. Max Dehn (1878-1952) has shown that
this assumption is unavoidable in proving the first theorem but not necessary in
proving the second.

Legendre’s last paper on parallels, essentially a collection of his earlier
efforts, was published in 1833, the year of his death. He perhaps holds the record
for persistence in attempting to prove the famous postulate. The simple and
straightforward style of his proofs, widely circulated because of their appearance
in his Eléments, and his high eminence in the world of mathematics, created
marked popular interest in the parallel postulate. Actually, however, Legendre
had scarcely progressed as far as had Saccheri a hundred years earlier. Moreover,
even before the appearance of his last paper, a Russian mathematician, separated
from the rest of the scientific world by barriers of distance and language, had
taken a most significant step, the boldness and importance of which were far to
transcend anything Legendre had done on the subject.

[ y 3.4 The Discovery® of Non-Euclidean Geometry | -

We have seen that, in spite of considerable effort exerted over a long period of
time, no one was able to find a contradiction under the hypothesis of the acute
angle. It is no wonder that no contradiction was found under this hypothesis, for
it 1s now known that the geometry developed from a certain basic set of

*We are not here concerned with any philosophical distinction between discovery and invention.
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assumptions plus the acute angle hypothesis is as consistent as the Euclidean
geometry developed from the same basic set of assumptions plus the hypothesis
of the right angle. In other words, it is now known that the parallel postulate
cannot be deduced as a theorem from the other assumptions of Euclidean
geometry but is independent of those other assumptions. It took unusual
imagination to entertain such a possibility, for the human mind had for wo
millennia been bound by the prejudice of tradition to the firm belief that Euclid’s
geometry was most certainly the only possible one and that any contrary
geometric system simply could not be consistent.

The first to suspect the independence of the parallel postulate were Carl
Friedrich Gauss (1777-1855) of Germany, Johann Bolyai (1802-1860) of
Hungary, and Nicolai Ivanovitch Lobachevsky (1793-1856) of Russia. These
men independently approached the subject through the Playfair form of the
parallel postulate by considering the three possibilities: Through a given point
not on a given straight line can be drawn just one line, no line, or more than one
line parallel (in Euclid’s sense) to the given line. These three situations are
equivalent, respectively, to the hypotheses of the right, the obtuse, and the acute
angle. Assuming, as did their predecessors, the infinitude of a straight line, the
second case was easily eliminated. Inability to find a contradiction in the third
case, however, led each of the three mathematicians to suspect, in time, a
consistent geometry under that hypothesis, and each, unaware of the work of the
other two, carried out, for its own intrinsic interest, an extensive development of
the resulting new geometry.

Gauss was perhaps the first person really to anticipate a non-Euclidean
geometry. Although he meditated a good deal on the matter from very early
youth on, probably not until his late twenties did he begin to suspect the parallel
postulate to be independent of Euclid’s other assumptions. Unfortunately,
Gauss failed, throughout his life, to publish anything on the subject, and his
advanced conclusions are known to us only through copies of letters to interested
friends, a couple of published reviews of works of others, and some notes found
among his papers after his death. Although he refrained from publishing his own
findings, he strove to encourage others to persist in similar investigations, and he
called the new geometry non-Euclidean.

Apparently the next person to anticipate a non-Euclidean geometry was
Johann Bolyai, who was a Hungarian officer in the Austrian army and the son of
the mathematician Wolfgang Bolyai, a long-time personal friend of Gauss. The
younger Bolyai undoubtedly received considerable stimulus for his study from
his father, who had earlier shown an interest in the problem of the parallel
postulate. As early as 1823 Johann Bolyai began to understand the real nature of
the problem that faced him, and a letter written during that year to his father
shows the enthusiasm he held for his work. In this letter he discloses a resolution
to publish a tract on the theory of parallels as soon as he can find the time and
opportunity to put the material in order, and exclaims, “Out of nothing I have
created a strange new universe.”’ The father urged that the proposed tract be
published as an appendix to his own large two-volume semiphilosophical work
on elementary mathematics. The expansion and arrangement of ideas proceeded
more slowly than Johann had anticipated, but finally, in 1829, he submitted the
finished manuscript to his father, and three years later, in 1832, the tract
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appeared as a twenty-six-page appendix to the first volume of his father’s work.”
Johann Bolyai never published anything further, although he did leave behind a
great pile of manuscript pages. His chief interest was in what he called “the
absolute science of space,”” by which he meant the collection of those propo-
sitions which are independent of the parallel postulate and which consequently
hold in both the Euclidean geometry and the new geometry. For example, the
familiar law of sines for triangle ABC,

a:b:c=sin A:sin B:sin C,
holds only in the Euclidean geometry, but if modified to read
O(a):0(b): 0(c) = sin A:sin B:sin C,

where O(r) denotes the circumference of a circle of radius r, then the modified
law holds in both of the geometries. This, then, is the form that the law of sines
takes in Bolyai’s work. It is not difficult to show that this same form of the sine
law also holds in the geometry of triangles on a sphere.

Although Gauss and Johann Bolyai are acknowledged to be the first to
conceive a non-Euclidean geometry, actually the Russian mathematician
Lobachevsky published the first really systematic development of the subject.
Lobachevsky spent the greater part of his life at the University of Kasan, firstas a
student, later as a professor of mathematics, and finally as rector, and his earliest
paper on non-Euclidean geometry was published in 1829-1830 in the Kasan
Bulletin, two to three years before Bolyai’s work appeared in print. This memoir
attracted only slight attention in Russia, and, because it was written in Russian,
practically no attention elsewhere. Lobachevsky followed this initial effort with
other presentations. For example, in the hope of reaching a wider group of
readers, he published in 1840 a little book written in German entitled Geome-
trische Untersuchungen zur Theorie der Parallellinien (Geometrical Researches on
the Theory of Parallels),'? and then still later, in 1855, a year before his death
and after he had become blind, he published in French a final and more
condensed treatment entitled Pangéomérrie (Pangeometry).'' So slowly did
information of new discoveries spread in those days that Gauss probably did not
hear of Lobachevsky’s work until the appearance of the German publication in
1840, and Johann Bolyai was unaware of it until 1848, Lobachevsky himself did
not live to see his work accorded any wide recognition, but the non-Euclidean
geometry which he developed is nowadays frequently referred to as Lobachev-
skian geometry.

The characterizing postulate of Lobachevskian geometry, which replaces
Euclid’s parallel postulate, is that through a given point P, not on a given line m,
more than one line can be drawn lying in the plane of P and m and not intersecting m.
On the basis of this postulate, together with the other assumptions of Euclidean
geometry, it is not difficult to show (see Figure 3.3) that there are always two lines
through P that do not intersect m, that make equal acute angles « with the

*For a translation of this appendix, see R. Bonola, or D. E. Smith [2], pp. 375-388.
19N. Lobachevsky.

‘1D. E. Smith (2], pp. 360-374.
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FIGURE 3.3

perpendicular PQ from P to m, and that are such that any line through P lying
within the angle formed by the two lines and containing the perpendicular PQ
intersects m, while any other line through P does not intersect m. The two lines
through P are, then, boundary lines separating all lines through P into two
classes, those that cut m and those that do not. From the viewpoint of Euclid, all
the lines through P that do not cut m should be called parallels to m.
Lobachevsky, however, uses this term more reservedly and refers to only the two
boundary lines as being parallel to m. Other lines passing through P but not
cutting m may be said to be hyperparallel to m. The acute angle « is called the
angle of parallelism, and it plays an important role in Lobachevsky’s develop-
ment. He shows that the size of o depends on the length % of the perpendicular
PQ, and emphasizes this by denoting « by the functional symbol [1(A). In fact, he
shows that if the unit of length is chosen as the distance that corresponds to the
particular angle of parallelism

x=2Arctane °,
where ¢ is the base for natural logarithms, then

Mh)= 2Arctane™™ and A=In cetnéh) :

We note that the angle of parallelism, I'1(%), increases from 0 to n/2 as & decreases
from oo to 0, so that, “in the small,” Lobachevskian geometry approximates
Euclidean geometry. Also, since to each angle Il{(4) 1s associated a definite
distance &, we see why distances, as well as angles, are absolute in Lobachevskian
geometry. It further turns out that the trigonometrical formulas in Lobachev-
skian geometry are nothing but the familiar formulas of spherical trigonometry
when the sides a, b, ¢ of the triangle are replaced by a/i, b/1, ¢/1, and we are
reminded of Lambert’s suggestion about an imaginary sphere, mentioned in
Section 3.3.

It is not the purpose of our study to go deeply into the Lobachevskian non-
Euclidean geometry resulting from the hypothesis of the acute angle, and
perhaps we have already indicated a sufficient number of propositions in the
geometry to give the reader some idea of its content. We have seen that the
hypothesis of the obtuse angle was discarded by all who did research in this
subject because it contradicted the assumption that a straight line is infinite in
length. Recognition of a second non-Euclidean geometry, based on the hy-
pothesis of the obtuse angle, was not fully achieved until some years later, when
Bernhard Riemann, in his probationary lecture of 1854, discussed the concepts
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of boundlessness and infiniteness. With these concepts clarified, one can realize
an equally consistent geometry satisfyving the hypothesis of the obtuse angle if
Euclid’s Postulates 1, 2, and 5 are modified to read:

(1) Two distinct points determine at least one straight line.
(2°) A straight line 15 boundless.

(5") Any two straight lines in a plane intersect.

Much in this new non-Euclidean geometry is interesting. For example (see
Figure 3.4), it can be shown, without great difficulty, that all the perpendiculars
erected on the same side of a given straight line m are concurrent in a point O,
and that the lengths along these perpendiculars from O to the line m are all equal
to one another. Moreover, this common length, which we shall denote by g, is
independent of which straight line in the plane is chosen for m. It can also be
shown that, if A, B, P are any three points on line m, then

AP:AB = 4 AOP: 4 AOB,

and that if AB is taken equal in length to g, then A AOB = n/2. It now follows
that all straight lines are finite and of the same constant length 44, for we observe
that OP coincides with OA when A AOP = 2n, so that, under such circum-
stances, AP becomes the total length of the line m. But now

AP:AB =2n: 4 AOB,
from which, by taking AB = ¢ and therefore A AOB = n/2, we find that
AP = 4q.

Thus straight lines, though boundless, are finite in length. Also, as in the case of
Lobachevskian geometry, lengths, as well as angles, are absolute.

Riemann’s celebrated lecture'* of 1854 is not detailed or specific in its
development but is extraordinarily rich in the depth and generality of its
concepts and in the originality of its powerful new points of view. It would be
difficult to point out another paper that has so greatly influenced modern
geometrical research. Thic paper inaugurated a second period in the develop-
ment of non-Euclidean geometry, a period characterized by the employment of

FIGURE 34

———

'*The lecture was published in 1866, shortly after Riemann’s death, For an English translation,
see D. E. Smith [2], pp. 411-425.
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the methods of differential geometry rather than the previously used methods of

elementary synthetic geometry. To this paper we owe a considerable general-
1ization of the concept of space that has led, in more recent times, to the extensive
and important theory of abstract spaces; some of this theory has found
application in the physical theory of relativity. Literally volumes of modern
mathematical research can be traced to ideas advanced in this remarkable paper.

| 1 3.5 The Consistency and Significance |
of Non-Euclidean Geometry

It was some years after the appearance of the work of LLobachevsky and Bolyai

that the mathematical world in general paid much attention to the subject of non-
Euclidean geometry, and several decades elapsed before the full implication of
the invention was appreciated. Most of the development of the subject beyond
the historical point to which we have carried it 1s of too advanced a nature to be
adequately considered here. One important matter, however, in this later
development must be at least briefly touched on. Although Lobachevsky and
Bolyai encountered no contradiction in their extensive investigations of the non-
Euclidean geometry based on the hypothesis of the acute angle, and although
they even felt confident that no contradiction would arise, the possibility sull
remained that such a contradiction or inconsistency might appear if the
investigations should be sufficiently continued. To Beltrami goes the credit for
the first proof of the consistency of this non-Euclidean geometry. In a brilliant
paper,’® published in 1868, Beltrami showed that the plane non-Euclidean
geometry of Lobachevsky and Bolyai can be represented, with certain restric-
tions, on a surface of so-called constant negative curvature. It can be similarly
shown that the plane non-Euclidean geometry of Riemann can be represented on
a surface of constant positive curvature. Although Beltrami’s methods are those
of differential geometry and cannot be fully appreciated without an under-
standing of that field of mathematics, we can rather simply explain the gist of his
idea.

Of the surfaces of constant positive curvature, the simplest is the sphere.
Now the geodesics on the sphere—that is, the curves of shortest length lying on
the sphere and joining pairs of points on the sphere—are the great circles of the
sphere. If we should interpret the plane of the non-Euclidean geometry of

Riemann as the surface of a sphere, and the straight lines of that non-Euchdean
geometry as the great circles on the sphere, then it is a very simple matter to show

that the postulates of the non-Euclidean geometry hold in our interpretation, For
example:

(1') Two distinct points on the sphere determune at least one great circle on
the sphere. (In fact, the great circle is unique, unless the points on the
sphere happen to be diametrically opposite to each other, in which case
any number of great circles may be passed through the two pomnts. )

'1E. Beltrami.
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(2') A great circle on the sphere is boundless. (A great circle is not infinite in
length, however; in fact, all great circles on the sphere have the same
finite length. )

(3") With any point on the sphere as center and any great circle arc as polar
distance a circle can be drawn on the sphere.

(4') All right angles on the sphere are equal to one another.

(53") Any two great circles on the sphere intersect.

In view of our success in finding on the surface of a sphere a representation of
Riemann’s non-Euclidean geometry, it now follows that the plane non-Euclidean
geometry of Riemann is consistent if Euclidean geometry is consistent, for if a
deduced inconsistency were in this plane non-Euclidean geometry, there would
be a corresponding deduced inconsistency in the ordinary geometry of great
circles on a sphere, and this geometry is a part of the Euclidean geometry of
space. What we have shown to be true of the great circles on a sphere can, by the
methods of differential geometry, be shown to be true of the geodesics on any
surface of constant positive curvature,

Just as the plane non-Euclidean geometry of Riemann can be realized on a
surface of constant positive curvature, so also can the plane non-Euclidean
geometry of lL.obachevsky and Bolyai be similarly realized on a surface of
constant negative curvature. Perhaps the simplest surface of constant negative
curvature 1s the pseudosphere, or tractoid. To define this surface we first define a
plane curve known as the tracrrix. The tractrix may be generated as follows:
Imagine a piece of inextensible cord lying along the positive y-axis (see
Figure 3.5), one end of the cord lying at the origin, and the other end having
attached to i1t a small heavy pellet. If the end lying at the origin is now pulled
along the x-axis, the pellet will trace a kind of curve of pursuit; this curve is the
tractrix, as shown in Figure 3.5. The curve is symmetrical in the y-axis and has
the x-axis for an asymptote. Now the pseudosphere is the surface of revolution
obtained by revolving the tractrix about its asymptote as an axis of rotation (see
Figure 3.6). It can be shown that the geometry of the geodesics on this surface
satisfies the postulates of the non-Euclidean geometry of Lobachevsky and
Bolyai, after there has been suitable particularization of terms, but the proof here

is not as simple as in the previous case of the sphere and can perhaps best be

FIGURE 3.5



The Consistency and Significance of Non-Euclidean Geometry 67

FIGURE 3.6

accomplished by the differential geometry methods emploved by Beltrami for
the general surface of constant negative curvature., This model, or represen-
tation, in Euclidean space, of the plane non-Euclidean geometry of Lobachevsky
and Bolyai shows that this plane non-Euclidean geometry, too, is consistent if
Euclidean geometry is consistent; for, once more, any inconsistency in the plane
non-Euclidean geometry would imply a corresponding inconsistency in the
Euclidean geometry of geodesics on the pseudosphere.

The pseudosphere and its geodesics, considered as a representation of the
plane non-Euclidean geometry of Lobachevsky and Bolyai, is not as satsfactory
as the sphere and 1ts geodesics, considered as a representation of the plane non-
Euclidean geometry of Riemann, for the pseudosphere represents only a limited
part of the one non-Euclidean plane, whereas the sphere represents the whole of
the other non-Euclidean plane. Beltrami conjectured, and it has since been
proved, that no surface of constant negative curvature can represent the entire
plane in the first case. Also, it is to be noted that neither of our representations
takes into account any solid non-Euclidean geometry.

After the discovery of the above representations of the two classical non-
Euclidean geometries on surfaces of constant curvature, many other, and in some
ways more satisfying, representations of a different nature were devised. In
Chapter 4 we shall examine an elementary representation of LLobachevskian non-
Euclidean geometry that was devised by the great French mathematician Henri
Poincaré (1854-19012). This method of models, or representations, however,
does not establish absolute consistency but merely relative consistency. All we
can assert from such models 1s that the two classical non-Euclidean geometries
are consistent if Euclidean geometry is consistent. The possibility of an absolute
test of consistency for a postulate set will be considered in a later chapter.

One consequence of the consistency of the non-Euclidean geometries is, of
course, the final settlement of the ages-old problem of the parallel postulate. The
consistency established the fact that the parallel postulate 1s independent of the
other assumptions of Euchdean geometry and proved the impossibility of
deducing the postulate as a theorem from those other assumptions, for if the
parallel postulate could be so deduced there would have to be an inconsistency in
the non-Euclidean systems.

But some consequences of the consistency of the non-Euclidean geometries

are much more far-reaching than the settlement of the parallel postulate
problem. One of the chief of these is the liberation of geometry from its

traditional mold. The postulates of geometry become, for the mathematician,
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mere hypotheses whose physical truth or falsity need not concern him; the
mathematician may take his postulates to suit his pleasure, as long as they are
consistent with one another. A postulate, as the word is employed by the
mathematician, has nothing to do with “self-evidence” or “truth.” With the
possibility of inventing such purely “artificial” geometries it became apparent
that physical space must be viewed as an empirical concept derived from our
external experiences, and that the postulates of a geometry designed to describe
physical space are simply expressions of this experience, like the laws of a
physical science. Euclid’s parallel postulate, for example, insofar as it tries to
interpret actual space, appears to have the same type of validity as Galileo’s law
of falling bodies; that is, they are both laws of observation that are capable of
verification within the limits of experimental error. This point of view, that
geometry when applied to actual space is an experimental science, or a branch of
applied mathematics, is in striking contrast to the Kantian theory of space that
dominated philosophical thinking at the time of the discovery of the non-
Euclidean geometries. The Kantian theory claimed that space is a framework
already existing intuitively in the human mind, that the axioms and postulates of
Euclidean geometry are a priori judgments imposed on the mind, and that
without these axioms and postulates no consistent reasoning about space can be
possible. That this viewpoint is untenable was incontestably demonstrated by
the invention of the non-Euclidean geometries.

Indeed, the consistency of the non-Euclidean geometries not only liberated
geometry but had a similar effect on mathematics as a whole. Mathematics
emerged as an arbitrary creation of the human mind, and not as something
essentially dictated to us of necessity by the world in which we live. The matter is
very neatly put in the following words of E. T. Bell:

In precisely the same way that a novelist invents characters, dialogues, and
situations of which he is both author and master, the mathematician devises
at will the postulates upon which he bases his mathematical systems. Both
the novelist and the mathematician may be conditioned by their environ-
ments in the choice and treatment of their material; but neither is compelled
by any extrahuman, eternal necessity to create certain characters or invent
certain systems.'*

The invention of the non-Euclidean geometries, by puncturing a traditional
belief and breaking a centuries-long habit of thought, dealt a severe blow to the
absolute truth viewpoint of mathematics. In the words of Georg Cantor, “The
essence of mathematics lies in its freedom.”

Since we have a number of geometries of space—the Euclidean and the two
classical non-Euclidean geometries—the question is often asked, “Which is the
true geometry?”” This question is, of course, quite meaningless when geometry is
considered a branch of mathematics, because all we can say about truth with
respect to a branch of mathematics is that if the postulates are true then the
theorems are true. If, on the other hand, geometry is considered a branch of
physics, then the question becomes more meaningful. But even here we cannot
give a simple and definite answer. When it comes to the applications of several

14*Quoted by permission from E. T. Bell [3], p. 330.
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mathematical theories to a given physical situation, we are interested in that
mathematical theory that best explains, or most closely agrees with, the observed
facts of the physical situation and that will stand the kinds of tests customarily
placed on hypotheses in any field of scientific inquiry. In the present case, then,
we are interested in which of the Euclidean and non-Euclidean systems of
geometry most closely agrees with the observed facts of physical space. It is not
difficult to show that all three geometries under consideration fit our very limited

portion of physical space equally well, and so it would seem we must be content
with an indeterminate answer until some crucial experimental test on a great
scale can be devised to settle the matter. Such a crucial test would appear to be
the measurement of the sum of the three angles of a large physical triangle. To
date no deviation, exceeding expected errors in measurement, from 180° has
been found in the sum of the angles of any physical triangle. But, we recall, the
discrepancy of this sum from 180° in the two non-Euclidean geometries is
proportional to the area of the triangle, and the area of any triangle so far
measured may be so small that any existing discrepancy is swallowed by the
allowed errors in measurement. There are even some reasons for believing that
physical experiments will never be able to resolve the matter anyway. In this
event, then, we would do better to ask not which is the rrue geometry but which
is the most convemient geometry, and this convenience may depend on the
application at hand. Certainly, for drafting, for terrestrial surveying, and for the
construction of ordinary buildings and bridges, Euclidean geometry is probably
the most convenient simply because it is the easiest with which to work.

There are physical studies where geometries other than the Euclidean have
been found to be more acceptable. For example, Einstein found in his study of
the general theory of relativity that none of the three geometries that we have
been considering is, in itself, adequate, and he adopted a suitable generalization
of the Riemannian non-Euclidean geometry wherein the curvature of space may
vary from point to point of the space. Again, a recent study'”® of visual space (the
space psychologically observed by persons of normal vision) came to the
conclusion that such a space can best be described by Lobachevskian non-
Euclidean geometry. Other examples can be given.

Though it may be logical to call any geometry whose postulate system is not
equivalent to a postulate system of Euclidean geometry a non-Euclidean
geometry, custom has reserved this term only for the two geometries that result
from the hypotheses of the acute and obtuse angle. Many other geometries other
than these two, and that differ from Euclidean geometry, have been devised.
Riemann was the originator of a whole class of these other geometries, usually
referred to as Riemannian geometries, of which the Riemannian non-Euclidean
geometry is a particular example. One of the accomplishments of the twentieth
century was the development of general non-Riemanmian geometries, Another
geometry different than that of Euclid, invented through a deliberate application
of the postulational method, is one by Max Dehn (1878-1952) in which the
postulate of Archimedes is denied; such a geometry is referred to as a non-
Archimedean geometry. The creation of these new geometries considerably

*R. K. Luneburg.
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