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Foreword

The intent of this special issue on the Foundations of Al is to eritically
evaluate the fundamental assumptions underpinning the dominant approaches
to AL Theorists historically associated with each position were originally
invited to a workshop at Endicott House, MIT, in 1987. They were asked to
write a paper identifying the basic tenets of their position, to discuss the
principles underpinning the method or approach, to describe the natural type
of problems and tasks in which the approach succeeds, to explain where the
power resides in the method or approach, and then to discuss its scope and
limits. Theorists generally skeptical of the position were similarly asked to
evaluate the source of power of the method or approach and to state why they
thought the method/approach works and why it fails. Discussions and pre-
sentations there formed the basis for the papers published here. We gratefully
acknowledge the support for the workshop provided for by the MIT Artificial
Intelligence Laboratory, National Science Foundation, and AAAL

David Kirsh

Department of Cognitive Science
University of California, San Diego
La Jolla, CA, USA
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Abstract

Kirsh, D., Foundations of Al: the big issues, Artificial Intelligence 47 (1991) 3-30.

‘The objective of rescarch in the foundations of Al is to explore such basic questions as:
What is a theory in AI? What are the most abstract assumptions underlying the competing
visions of intelligence? What are the basic arguments for and against each assumy
this sy discuss v foundationa s (1) Core AL is the tudy of concepuaizaton
and should begin wit level theories. (2) Cognition can be studied as a
isembodicd process without alving he symbol srounding problem. (3 Cogniion i nicely
described in propositional terms. (4) We can study cognition scf from learning. (5)
There is a single architecture underlying virtually all cognition. I explain what each of these
implies and present arguments from both outside and inside Al why each has been seen as
right o wrong.

1. Introduction

In Al to date, there has been little discussion, and even less agreement, on
methodology: What is a theory in AI? An architecture? An account of
knowledge? Can a theory be tested by studying performance in abstract,
simulated environments, or is it necessary to hook up implementations to
actual visual input and actual motor output? Is there one level of analysis or a
small set of problems which ought to be pursued first? For instance, should we
try to identify the knowledge necessary for a skill before we concern ourselves
with issues of representation and control? Is complexity theory relevant to the
central problems of the field? Indeed, what are the central problems?

The objective of rescarch in the foundations of Al is to address some of

“Support for this work has been provided in part by the Army Institute for Research in
Management, Information and Communication Systems contract number DAKF11-88-C-0045.

0004-3702/91/503.50 © 1991 — Elsevier Science Publishers BV



4 D. Kirsh

these basic questions of method, theory and orientation. It is to self-conscious-
ly reappraise what Al is all about.

The pursuit of A does not occur in isolation. Fields such as philosophy,
linguistics, psychophysics and theoretical computer science have exercised a
historical influence over the field and today there is as much dialogue as ever,
particularly with the new field of cognitive science. One consequence of
dialogue is that criticisms of positions held in one discipline frequently apply to
positions held in other disciplines.

In this first essay, my objective is to bring together a variety of these
arguments both for and against the dominant research programs of Al

It is impossible, of course, to explore carefully all of these arguments in a
single paper. The majority, in any event, are discussed in the papers in this
volume, and it is not my intent to repeat them here. It may be of use, though,
to stand back and consider several of the most abstract assumptions underlying
the competing visions of intelligence. These assumptions—whether explicitly
named by theorists or not—identify issues which have become focal points of
debate and serve as dividing lines of positions.

Of these, five stand out as particularly fundamental:

* Pre-eminence of knowledge and conceptualization: Intelligence that
transcends insect-level intelligence requires declarative knowledge and
some form of reasoning-like computation—call this cognition.' Core Al is
the study of the of the world and used by
intelligent systems during cognition.
Disembodiment:  Cognition and the knowledge it presupposes can be
studied largely in abstraction from the details of perception and motor
control.
Kinematics of cognition are language-like: 1t is possible to describe the
trajectory of knowledge states or informational states created during
cognition using a vocabulary very much like English or some regimented
logico-mathematical version of English.
* Learning can be added later: The kinematics of cognition and the domain
knowledge needed for cognition can be studied separately from the study

of concept learning, i and ionary change.
« Uniform architecture: There is a single architecture underlying virtually
all cognition.

Different research programs are based, more or less, on an admixture of
these assumptions plus corollarie

" By cognition I do not mean to take a stand on what the proper subject matter of cognitive
sienc s The erm s meant 1 elr ( computationlprocses it reseble both ressoing n 3
classical sense and computational processes that are more “peri * than reasoning, such as
language recogaiion and object identifcation, whersth represcations are not bt the eties
and relations we have common sense terms for, but which may stil usefully be construed as rules.
operating on representations.




Foundations of Al s

Logicism [15, 32] as typified by formal theorists of the commonsense world,
formal theorists of language and formal theorists of belief [17, 24], presupposes
almost all of these assumptions. Logicism, as we know it today, is predicated
on the pre-eminence of reasoning-like processes and conceptualization, the
legitimacy of disembodied analysis, on interpreting rational kinematics as
propositional, and the possibility of separating thought and learning. It remains
neutral on the uniformity of the underlying architecture

Other research progams make a virtue of denying one or more of these
assumptions. Soar, [30,35] for instance, differs from logicism in according
learning a vital role in the basic theory and in assuming that all of cognition can
be explained as processes oceurring in a single uniform architecture. Rational
kinematics in Soar are virtually propositional but differ slightly in containing
control markers—preferences—o_bias transitions. In other respects, Soar
shares with logicism the assumption that reasoning-like processes and con-
ceptualization are central, and that it is methodologically acceptable to treat
central processes in abstraction from perceptual and motor processes.

Connectionists, [27, 38] by contrast, deny that reasoning-like processes are
pre-eminent in cognition, that core Al is the study of the concepts underpin-
ning domain understanding, and that rational kinematics is language-like. Yet
like Soar, connectionists emphasize the centrality of learning in the study of
cognition, and like logicists they remain agnostic about the uniformity of the
underlying architecture. They are divided on the assumption of disem-
bodiment.

Moboticists [3] take the most extreme stance and deny reasoning, con-
ceptualization, rational kinematics, disembodiment, uniformity of architecture
and the separability of knowledge and learning (more precisely evolution). Part
of what is attractive in the mobotics approach is precisely its radicalness.

Similar profiles can be offered for Lenat and Feigenbaum’s position 23],
Minsky's society of mind theory (28], Schank’s anti-formalist approach [40, 41]
and Hewitt and Gasser’s account [12, 14] of much of distributed Al research

These five issues by no means exhaust the foundational issues posed by the
various approaches. But each does, in my opinion, lic at the center of a cluster
of deep questions.

In what follows I will explore arguments for and against each of these
assumptions. I will explain what each of them implies and why they have been
seen as right or wrong.

2. Are knowledge and conceptualization at the heart of AI?

Here is one answer to the question: what is a theory in AI?

A theory in Al is a specification of the knowledge underpi
cognitive skill.




6 D. Kirsh

A cognitive skill is the information-based control mechanism regulating per-
formance in some domain. It is meant to cover the gamut of information-
sensitive activities such as problem solving, language use, decision making,
routine activity, perception and some elements of motor control.

In accepting the priority of knowledge level theories, one is not committed
to supposing that knowledge is explicitly encoded declaratively and deployed in
explicitly inferential processes, although frequently knowledge will be. One’s
commitment is that knowledge and conceptualization lie at the heart of Al:
that a major goal of the field is to discover the basic knowledge units of
cognition (of intelligent skills)

What are these knowledge units? In the case of qualitative theories of the
commonsense world, and in the case of Lenat’s CYC project [21,23], these
basic knowledge units are the conceptual units of consensus reality—the core
concepts underpinning “the millions of things that we all know and that we
assume everyone else knows™ [21, p. 4]. Not surprisingly, these concepts are
often familiar ideas with familiar names—though sometimes they will be
theoretical  idea g a technical meaning internal to the theory. For
instance, in CYC, in addition to terms for tables, salt, Africa, and numbers—
obvious elements of consensual reality—there are technical terms such as
temporal subabstraction, temporal projectability, partition, change predicate
which have no simple correlate in English, and which are included as abstract
clements of consensual reality because of the difficulty of constructing an
adequate account without them.

In the case of linguistics and higher vision these basic knowledge units tend
more generally to be about theoretical entities. Only occasionally will there be
pre-existing terms in English for them. Thus, noun phrase, sphere, pyramid
and other shapes are commonsense concepts having familiar English names,
but governing domain, animate movements, causal launchings’ and most shape
representations are, for most people, novel ideas that are not part of common
parlance. The basic knowledge units of cognition—the conceptualizations
underpinning cognitive skills—may range, then, from the familiar to the exotic
and theoretical.

‘The basic idea that knowledge and conceptualization lic at the heart of Al
stems from the seductive view that cognition is inference. Intelligent skills, an
old truism of Al runs, are composed of two parts: a declarative knowledge
base and an inference engine.

‘The inference engine is relatively uncomplicated; it is a domain-independent
program that takes as input a set of statements about the current situation plus
a fragment of the declarative knowledge base, it produces as output a stream of

. havi

*Itis widely argued in the developmental literature that one of the earliest and visually most
robust cues. animate creatures like d m non-animate objects ke
toy dogs. and cars, which may also move, are cucs about body part trajectories. and original
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system uses some explicit declaratives, the apparatus of declarative representa-
tion must be in place, making it possible, when time permits, to control action
through run time inference

Rosenschein et al. [37] see the inflexibility of knowledge compilation as far
less constraining. On their view, a significant range of tasks connected with
adaptive response to the environment can be compiled. To determine the
appropriate set of reactions to build into a machine, a designer performs the
relevant knowledge level logical reasoning at compile time so that the results
will be available at run time. Again, it is an empirical matter how many
cogitive skills can be completely automatized in this fashion. But the research
program of situated automata is to push the envelope as far as possible.

A similar line of thought applies to the work of Chomsky and Montague.
When they claim to be offering a theory about the knowledge deployed in
parsing and speech production it does not follow they require on-line infer-
ence. By offering their theories in the format of “here’s the knowledge base
use the obvious inference engine” they establish the effectiveness of th
knowledge specification: it is a condition on their theory that when conjoined
with the obvious inference engine it should generate all and only syntactic
strings (or some specified fragment of that set). That is why their theories are
called generative. But to date no one has offered a satisfactory account of how
the theory is to be efficiently implemented. Parsing may involve considerable
inference, but equally it may consist of highly automated retrieval processes
where structures or fragments of structures previously found acceptable are
recognized. To be sure, some theorists say that recognition is itself a type of
inference: that recognizing a string of words as an NP involves inference.
Hence even parsing construed as constraint satisfaction or as schema retrieval
(instantiation) and so forth, is itself inferential at bottom. But this is not the
dominant view. Whatever the answer, though, there are no a priori grounds for
assuming that statements of linguistic principle are encoded explicitly in
declaratives and operated on by explicit inference rules.

Whether knowledge be explicit or compiled, the view that cognition is
inference and that theorizing at the knowledge level is at least the starting place
of scientific Al is endorsed by a large fragment of the community.

Opposition In stark contrast is the position held by Rod Brooks. According
to Brooks [3] a theory in Al is not an account of the knowledge units of
cognition. Most tasks that seem to involve considerable world knowledge may
yet be achievable without appeal to declaratives, to concepts, or to basic
knowledge units, even at compile time. Knowledge level theories, he argues,
t00 often chase fictions. 1f Al's overarching goal is to understand intelligent
control of action, then if it turns out to be true, as Brooks believes it wil, that
most intelligent behaviour can be produced by a system of carefully tuned
control systems interconnected in a simple but often ad hoc manner, then why
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a concept. We cannot just assume that a machine which has a structure in
memory that corresponds in name to a structure in the designer’s conceptuali
zation is sufficient for grasping the concept. The structure must play a role in a
network of abilities; it must confer on the agent certain causal powers [1].
Some of these powers involve reasoning: being able to use the structure
appropriately in deduction, induction and perhaps abduction. But other powers
involve perception and action—hooking up the structure via causal mechanisms
to the outside world

Logicists are not unmindful of the need to explain what it is for a system to
understand a proposition, or to grasp the concepts which constitute proposi-
tions. But the party line is that this job can be pursued independently from
the designer’s main task of inventing conceptualizations. The two activities—
inventing izations and grounding concept modular. Hence the
grounding issuc has not historically been treated as posing a challenge that
might overturn the logicist program.

A similar belief in modularizing the theorist’s job is shared by Lenat and
Feigenbaum. They see the paramount task of Al to be to discover the
conceptual knowledge underpinning cognitive skills and consensus reality. This
leaves open the question of what exactly grasping a basic conceptual or
knowledge unit of consensus reality amounts to. There certainly is a story of
grounding to be told, but creatures with different perceptual-motor endow-
ments will each require its own story. So why not regard the problem of
conceptualization to be independent from the problem of grounding concepts?

‘This assumption of modularization—of disembodiment—is the core concern
of Brian Smith [42] in his reply to Lenat and Feigenbaum. It pertains, as well,
to worries Bimbaum expresses about model theoretic semantics [1]. Both
Birnbaum and Smith emphasize that if knowing a concept, or if having
knowledge about a particular conceptualization requires a machine to have a
large background of behavioural, perceptual and even reasoning skills, then
the greater part of the Al task may reside in understanding how concepts can
refer, or how they can be used in reasoning, perceiving, acting, rather than in
just identifying those concepts or stating their axiomatic relations.

Accordingly, it is time to explore what the logicist's conception of a concept
amounts to. Only then can we intelligently consider whether it is fair to say
that logicists and Lenat and Feigenbaum—by assuming they can provide a
machine with symbols that are not grounded and so not truly grasped—are
omitting an absolutely major part of the Al problem.

2.1.1. The logicist concept of concept

A concept, on anyone’s view, is a modular component of knowledge. If we
say John knows the pen is on the desk, and we mean this to imply that John
grasps the fact of there being a particular pen on a particular desk, we assume
that he has distinct concepts for pen, desk and on. We assume this because we
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believe that John must know what it is for something to be a pen, a desk, and
something to be on something else. That is, we assume he has the referential
apparatus to think about pens, desks, and being on. At a minimum, this
implies having the capacity to substitute other appropriate concepts for x and y
in (On pen y), (On x desk), and R in (R pen desk). If John could not just as
casily understand what it s for a pen to be on something other than a desk, or
a desk to have something other than a pen on it, he would not have enough
understanding of pen, desk, and on to be able to display the minimal
knowledge that pens and desks are distinct entities with enough causal in-
dividuality to appear separately, and in different combinations.

Now the basic premiss driving the logicist program, as well as Lenat and
Feigenbaum’s search for the underpinnings of consensus reality, is that to
understand an agent’s knowledge we must discover the structured system of
concepts underpinning its skills. This structure can be discovered without
explaining all that is involved in having the referential apparatus presupposed
by concepts because it shows up in a number of purely disembodied, rational
processes. If concepts and conceptual schemes seem to play enough of an
explanatory role at the disembodied level to be seen as robust entities, then we
can study their structure without concern for their grounding.

What then are these disembodied processes which can be explained so nicely
by disembodied concepts? In the end we may decide that these do not
sufficiently ground concepts. But it is important to note their variety. For to0
often arguments about grounding do not adequately attend to the range of
phenomena explained by assuming modular concepts.

Inferential abilities First, and most obviously, is the capacity of an agent to
draw inferences. For instance, given the premises that the pen is on the desk,
that the pen is matte black, then a knowledgeable agent ought to be able to
infer that the matte black pen is on the desk. It often happens that actual
agents will not bother to draw this inference. But it is hard for us to imagine
that they might have a grasp of what pens are ete, and not be able to draw it.
Inferences are permissive not obligatory. Thus, as long as it makes sense to
view agents to be sometimes drawing inferences about a domain, or performing
reason-like operations, it makes sense to suppose they have a network of
concepts which structures their knowledge."

> The much discussed attribute of systematicity which Fodor and Pylyshyn cite in [1] as essential
t0 symbolic reasoning and antithetical (o the spirit of much connectionist work ( date, is a version
of this generality consiraint on concepts. A few years carlier, Gareth Evans put the matter like this:

If the subject can be credited with the thought that a s F, then he must have
conceptual resources for entertaining the thought that a is G, for every property of
being G of which he has a conception. We thus see the thought that a s F as Iying at the
intersection of two series of thoughts: on the one hand, the series of thoughts that a is
F.bisF.cisF.. . ..and, on the other hand, the series of thoughts that s F, a is G, a
is ... [8. p. 104, footnote 22].
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It must be appreciated, however, that when we say that John has the
concepts of pen and desk we do not mean that John is able to draw inferences
about pens and desks in only a few contexts. He must display his grasp of the
terms extensively, otherwise we cannot be sure that he means desk by “desk”
rather than wooden object, for instance. For this reason, if we attribute to a
machine a grasp of a single concept we are obliged to attribute it a grasp of a
whole system of concepts to structure its understanding. Otherwise its inferen-
tial abilities would be too spotty, displaying 100 many gaps to justify our
attribution of genuine understanding. Experience shows that to prevent ridicul-
ous displays of irrationality it is necessary to postulate an elaborate tissue of
underlying conceptualizations and factual knowledge. The broader this knowl-
edge base the more robust the understanding, and more reasonable the action.
This is one very compelling reason for supposing that intelligence can be
studied from a disembodied perspective.

Inferential breadth is only one of the rational capacities that is explained by
assuming intelligent agents have concepts. Further capacities include identifica-
tion and visual attention, learning, knowledge decay and portability of
knowledge.

Knowledge and perception Kant once said, sensation without conception is
blind. What he meant is that 1 do not know whar I am seeing, if I have no
concept to categorize my experience. Much of our experience is of a world
populated with particular objects, events and processes. Our idea of these
things may be abstractions—constructions from something more primitive, or
fictional systematizers of experience. But if so, they are certainly robust
abstractions, for they let us predict, retrodict, explain and plan events in the
world.

It is hard to imagine how we could identify entities if we did not have
concepts. The reason this is hard, I suspect, is because object identification is
such an active process. Perception. it is now widely accepted. is not a passive
system. It is a method for systematically gathering evidence about the environ-
ment. We can think of it as an oracle offering answers to questions about the
external world. Not direct answers, but partial answers, perceptual answers,
that serve as evidence for or against certain perceptual conjectures. One job of
the perceptual system is o ask the right questions. Our eyes jump about an
image looking for clues of identity; then shortly thereafter they search for
confirmation of conjectures. The same holds for different modalities. Our eyes
often confirm or disconfirm what our ears first detect. The notions of evidence,
confirmation and falsification, however, are defined as relations between
statements or propositions. Concepts are essential to perception then because
perception provides evidence for conjectures about the world. It follows that
the output of perception must be sufficiently evidence-like—that is. proposi-
tional—to be assigned a conceptual structure. How else could we see physical
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facts, such as the pen being on the desk as the structured facts—
|the pen|”|is on|”|the desk|?

Growth of knowledge A third feature of rational intelligence—learning—can
also be partly explained if we attribute to a system a set of disembodied
concepts. From the logicist perspective, domain knowledge is much like a
theory, it is a system of axioms relating basic concepts. Some axioms arc
empirical, others are definitional. Learning, on this account, is construed as
movement along a trajectory of theories. It is conceptual advance. This
approach brings us no closer to understanding the principles of learning, but
we have at least defined what these principles are: principles of conceptual
advance. A theory of intelligence which did not mention concepts would have
to explain learning as a change in capacities behaviourally or functionally
classified. Since two creatures with slightly different physical attributes would
not have identical capacities, behaviourally defined, the two could not be said
10 learn identically. Yet from a more abstract perspective, what we are
interested in is their knowledge of the domain, the two might indeed seem to
learn the same way. Without concepts and conceptual knowledge it is not clear
this similarity could be discovered, let alone be explained. But again the
relevant notion of concept is not one that requires our knowing how
grounded. Disembodied concepts serve well enough.

Decay of knowledge 1In a similar fashion, if a system has a network of
disembodied concepts we can often notice and then later explain regularities in
how its rational performance degrades. It is an empirical fact that knowledge
and skill sometimes decay in existing reasoning systems, such as humans or
animals, in a regular manner. Often it does not. Alzheimer’s disease may bring
about a loss of functionality that is sporadic or at times random. But often,
when a system decays, deficits which at first seem to be unsystematic, can
eventually be seen to follow a pattern, once we know the structure of the larger
system from which they emerge. This is obviously desirable if we are cognitive
scientists and wish to explain deficits and predict their etiology; but it is equally
desirable if we are designers trying to determine why a design is faulty. If we
interpret a system as having a network of concepts we are in a better position
to locate where its bugs are. But the fact that we can track and can explain
decay at the conceptual level without explaining grounding offers us further
evidence of the robustness of disembodied concepts.

Portability of knowledge There is yet a fifth phenomenon of rationality which
the postulation of discmbodicd concepts can help explain. If knowledge
consists in of is, have an expla-
nation of why, in principle, any picce of knowledge in one microtheory can be
combined with knowledge drawn from another microtheory. They can combine
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« The output of vision is conceptualized and so the interface between
perception and “central cognition” is clean and neatly characterizable in
the language of predicate calculus, or some other language with terms
denoting objects and terms denoting properties.

* Whenever we exercise our intelligence we call on a central representation
of the world state where some substantial fraction of the world state is
represented and regularly updated perceptually or by inference.

* When we seem to be pursuing our tasks in an organzied fashion our
actions have been planned in advance by envisioning outcomes and
choosing a sequence that best achieves the agent’s goals

‘The error in each of these assumptions, Brooks contends, is to suppose that
the real world is somehow simple enough, sufficiently decomposable into
concept-sized bites, that we can represent it, in real time, in all the detailed
respects that might matter to achieving our goals. It is not. Even if we had
cnough concepts to cover its relevant aspects we would never be able to
compute an updated world model in real time. Moreover, we don’t need to.
Real success in a causally dense world is achieved by tuning the perceptual
system to action-relevant changes.

To take an example from J.J. Gibson, an earlier theorist who held similar
views, if a creature’s goals are to avoid obstacles on its path to a target, it is not
necessary for it to constantly judge its distance from obstacles, update a world
model with itself at the origin, and recalculate a trajectory given velocity
projections. It can instead exploit the invariant relation between its current
velocity and instantaneous time to contact obstacles in order to determine a
new trajectory directly. It adapts its actions to changes in time o contact. If the
environment is perceived in terms of actions that are afforded rather than in
terms of objects and relations, the otherwise computationally intensive task is
drastically simplified.

Now this is nothing short of a Ptolemaic revolution. If the world is always
sensed from a perspective which views the environment as a space of possibili-
ties for action, then every time an agent performs an action which changes the
action potentials which the world affords it, it changes the world as it perceives
it. In the last example, this occurs because as the agent changes its instanta-
neous speed and direction it may perceive significant changes in environmental
affordances despite being in almost the same spatial relations to objects in the
environment. Even slight actions can change the way a creature perceives the
world. If these changes in perception regularly simplify the problem of
attaining goals, then traditional accounts of the environment as a static
structure composed of objects, relations and functions, may completely mis-
state the actual computational problems faced by creatures acting in the world.
The real problem must be defined relative to the world-for-the-agent. The
world-for-the-agent changes despite the world-in-itself remaining constant
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an empirical question just how often hardware biases the definition of a
cognitive problem. A priori one would expect a continuum of problems from
the most situated—where the cognitive task cannot be correctly defined
without a careful analysis of the possible compliances and possible agent
environment invariants—to highly abstract problems, such as word problems,
number problems, puzzles and so forth, where the task is essentially abstract,
and its implementation in the world is largely irrelevant to performance.”

Ultimately, Brooks’ rejection of disembodied Al is an empirical challenge:
for a large class of problems facing an acting creature the only reliable method
of discovering how they can succeed, and hence what their true cognitive skills
are, is to study them in sit.

Frequently this is the way of foundational questions. One theorist argues
that many of the the prevailing are
false. He then proposes a new methodology and looks for empirical support.

But occasionally it is possible to offer, in addition to empirical support, a set
of purely philosophical arguments against a methodology.

3.1. Philosophical objections to disembodied Al

At the top level we may distinguish two philosophical objections: first, that
knowledge level accounts which leave out a theory of the body are too
incomplete to serve the purpose for which they were proposed. Second, that
axiomatic knowledge accounts fail to capture all the knowledge an agent has
about a domain. Let us consider each in turn

3.1.1. Why we need a theory of the body

‘The adequacy of a theory, whether in physics or Al, depends on the purpose
it is meant to serve. It is possible to identify three rather different purposes Al
theorists have in mind when they postulate a formal theory of the common-
sense world. An axiomatic theory T of domain D is:

(1) adequate for robotics if it can be used by an acting perceiving machine to

achieve its goals when operating in D;

adequate for a disembodied rational planner if it entails all and only the

intuitive truths of D as expressed in the language of the user of the

planner;

3) adequate for cognitive science if it effectively captures the knowledge of
D which actual agents have.

* Clearly there are limits to how deviantly an abstract task may be implemented without ffecting
performance. Isomorphs of ti-tac-toc and the Tower of Hanoi are notoriously more diffcult to
Solve than the standard problems. But the success i solving a problem often depends on finding its

crucially depends on being mindful of that structure, knowledge level accounts of the problem are
particularly appropriate.
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The philosophical arguments I will now present are meant to show that a
formal theory of D, unless accompanied by a theory about the sensori-motor
capacities of the creature using the theory, will fail no matter which purpose a
theorist has in mind. Theories of conceptualizations alone arc inadequate, they
require theories of embodiment

Inadequacy for robotics According to Nilsson, the touchstone of adequacy of
a logicist theory is that it marks the necessary domain distinctions and makes
the necessary domain predictions for an acting perceiving machine to achieve
its goals. Theoretical adequacy is a function of four variables: D: the actual
subject-independent properties of a domai the creature’s perceptual
capacities; A: the creature’s action repertoire; and G: the creature’s goals. In
principle a change in any one of these can affect the theoretical adequacy of an
axiomatization. For changes in perceptual abilities, no less than changes in
action abilities or goals may render domain distinctions worthless, invisible to a
creature.

If axioms are adequate only relative to (D P A G) then formal theories are
strictly speaking untestable without an account of (D P A G). We can never
know whether a given axiom set captures the distinctions and relations which a
particular robot will need for coping with D. We cannot just assume that T is
adequate if it satisfies our own intuitions of the useful distinctions inherent in a
domain. The intuitions we ourselves have about the domain will be relative to
our own action repertoire, perceptual capacities, and goals. Nor will appeal to
model theory help. Model theoretic interpretations only establish consistency.
They say nothing about the appropriateness, truth or utility of axiom sets for a
given creature.

Moreover, this need to explicitly state A, P, and G is not restricted to robots
or creatures having substantially different perceptual-motor capacitics to our
own. There is always the danger that between any two humans there are
substantive differences about the intuitively useful distinctions inherent in a
domain. The chemist, for instance, who wishes to axiomatize the knowledge a
robot needs to cope with the many liquids it may encounter, has by dint of
study refined his observational capacities to the point where he or she can
notice theoretical properties of the liquid which remain invisible to the rest of
us. She will use in her axiomatizations primitive terms that she believes are
observational. For most of us they are not. We require axiomatic connections
to tie those terms to more directly observational ones. As a result, there is in
all probability a continuum of formal theories of the commonsense world
ranging from ones understandable by novices to those understandable only by
experts. Without an account of the observational capacities presupposed by a
theory, however, it is an open question just which level of expertise a given T
represents.

It may be objected that an account of the observational capacities pre-
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supposed by a theory is not actually part of the theory but of the metatheory of
use—the theory that explains how to apply the theory. But this difference is in
name alone. The domain knowledge that is required to tie a predicate to the
observational conditions that are relevant to it i itself substantial. If a novice is
to use the expert’s theory he will have to know how to make all things
considered judgements about whether a given phenomenon is an A-type event
or B-type event. Similarly if the expert is to use the novice's theory he must
likewise consult the novice's theory to decide the best way to collapse
observational distinctions he notices. In either case, it is arbitrary where we say
these world linking axioms are to be found. They are part and partial of
domain knowledge. But they form the basis for a theory of embodiment

@

Inadequacy for disembodied rational planners Despite the generality of the
argument above it is hard to reject the seductive image of an omniscient
angel—a disembodied intellect who by definition is unable to see or act—who
nonetheless is fully knowledgeable of the properties of a domain and is able to
draw inferences, make predictions and offer explanations in response to
questions put to it

The flaw in this image of a disembodied rational planner, once again, is to be
found in the assumption that we can make sense of the angel's theoretical
language without knowing how it would be hooked up to a body with sensors
and effectors. Without some idea of what a creature would perceive the best
we can do to identify the meaning it assigns to terms in its theory is to adopt a
model theoretic stance and assume the creature operates with a consistent
theory. In that case, the semantic content of a theory will be exhausted by the
set of models satisfying it. Naturally, we would like to be able to single out one
model, or one model family, as the intended models—the interpretation the
angel has in mind when thinking about that theory. But there is no principle
within model theory which justifies singling out one model as the intended
model. Without some further ground for supposing the angel has one particular

in mind we must that the reference of the expres-
sions in its theories are inscrutable.

It is not a weakness of model theory that it fails to state what a user of a
language thinks his expressions are about. Model theory is a theory of validity,
a theory of logical consequence. It states conditions under which an axiom set
is consistent. It doesn’t purport to be a theory of intentionality or a theory of
meaning. This becomes important because unless all models are isomorphic to
the intended model there will be possible interpretations that are so ridiculous
given what we know that the axiom set is obviously empirically false. We know
it doesn’t correctly describe the entities and relations of the domain
question.

The way out of the model-theoretic straightjacket is once again by means of
translation axioms linking terms in the axiom set to terms in our ordinary
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language. Thus if the angel uses a term such as “supports” as in “if you move a
block supporting another block, the supported block moves™ we assume that
the meaning the angel has in mind for support is the same as that which we
would have in the comparable English sentence. But now a problem arises. For
unless we specify the meaning of these terms in English we cannot be confident
the angel’s theory is empirically adequate. The reason we must go this extra
yard is that there are still too many possible interpretations of the terms in the
axiom set. For instance, does the axiom “if you move a block supporting
another, the supported block moves™ seem correct? Perhaps. But consider
cases where the upper block is resting on several lower blocks each supporting
a comer of the upper block. Any single lower block can now be removed
without disturbing the upper. Hence the axiom fails

Were these cases intended? Exactly what range of cases did the angel have in
mind? Without an account of intentionality, an account which explains what
the angel would be disposed to recognize as a natural case and what as a

deviant case, we know too little about the meaning of the angel’s axioms to put
them to use. Translation into English only shifts the burden because we still
need to know what an English speaker would be disposed to recognize as a
natural case and what as a deviant case. Without a theory of embodiment these
questions are not meaningful.

Inadequacy for cognitive science 1 have been arguing that axiomatic accounts
of common sense domains are incomplete for both robots and angels unless
they include axioms specifying sensori-motor capacities, dispositions, and
possibly goals. For the purposes of cognitive science, however, we may add yet
another requirement to this list: that the predicates appearing in the axioms be
extendable to new contexts in roughly the way the agents being modelled
extend their predicates. We cannot say we have successfully captured the
knowledge a given agent has about a domain unless we understand the
concepts (or recognitional dispositions) it uses.

For instance, suppose an axiomatization of our knowledge of the blocks
world fails to accommodate our judgements about novel blocks world cases.
‘This will oceur, for example, if we try to use our axioms of cubic blocks worlds
to apply to blocks worlds containing pyramids. When our cubic blocks world
axiomatization generates false predictions of this broader domain, shall we say
the axiomatization fails to capture the single conceptualization of both worlds
we operate with? Or shall we rather say that we must operate with more than
one set of blocks world conceptions—one apt for cubic blocks, another for
pyramidal, and so forth? One major school of thought maintains that it is the
nature of human concepts that they be extendable to new domains without
wholesale overhauling (19, 20]. Indeed that virtually all conceps, it is sugges-
ted, have this extensibility property.

Yet if extensibility is a feature of our conceptualizations then no axioma
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to treat all concepts as designating entities in the public domain.” It is possible
to introduce new constructs, such as perspectives, or situations to capture the
agent’s point of view on a space time region. But this still leaves unexplained
the agent’s perspective on virtual spaces which can be explained only by
describing the agent’s dispositions to behave in certain ways. Hence there are
some things that an agent can know about a domain—such as where it is in a
domain—which cannot be captured by standard axiomatic accounts”

4. Is cognition rational kinematics?

I have been arguing that there are grave problems with the methodological
assumption that cognitive skills can be studied in abstraction from the sensing
and motor apparatus of the bodies that incorporate them. Both empirical and
philosophical arguments can be presented to show that the body shows
through. This does not vitiate the program of knowledge level theorists, but it
does raise doubts about the probability of correctly modelling all cognitive
skills on the knowledge-base/inference-engine model.

A further assumption related to disembodied Al is that we can use logic or
English to track the trajectory of informational states a system creates as it
processes a cognitive task. That is, cither the predicate calculus or English can
serve as a useful semantics for tracking the type of computation that goes on in
cognition. They are helpful metalanguages.

From the logicist’s point of view, when an agent computes its next behaviour
it creates a trajectory of informational states that are abour the objects,
functions and relations designated in the designer's conceptualization of the
environment. This language is, of course, a logical language. Hence the
transitions between  these informational states can be described as rational
transitions or inferences in that logical language. If English is the semantic
metalanguage, then rational transitions between sentences will be less well-
defined, but ought nonetheless to make sense as reasonable.

There are two defects with this approach. First, that it is parochial: that in
fact there are many types of computation which are not amenable to charac-
terization in a logical metalanguage. but which still count as cognition. Second,
because it is easy for a designer to mistake his own conceptualization for a
machine’s conceptualization there is a tendency to misinterpret the machine’s
informational trajectory, often attributing to the machine a deeper grasp of the
world than is proper.

*For a brief account of the advantages of conceiving of the world as a public space, see my
commentary on Rod Brooks [16].

°A third argument against model theoretic interpretations of knowledge is inconsistency. If there
is an inconsistency in what I know about liquids, then there can be no models of this knowledge
set. So | must know nothing at all. But of course [ do know much about liquids, 1 just happen to be
mistaken in one of my beliefs. Efforts to deal with such inconsistency exist in the literature [2].
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contexts. Sometimes these contexts lie outside the narrow task he is building a
cognitive skill for.

None of the above establishes that English is inadequate. It just shows that it
is casy to make false attributions of content. The criticism that logic and
natural language are not adequate metalanguages arises as soon as we ask
whether they are expressive enough to describe some of the bizarre concepts
systems with funny dispositions will have. In principle, both logic and English
are expressive enough to capture any comprehensible concept. But the result-
ing characterization may be so long and confusing that it will be virtually
incomprehensible. For instance. if we try to identify what I have been calling
the implicit concepts of the compass controller we will be stymied. If the
system could talk what would it say to the question: Can a circle be drawn in a
space measured with a non-Euclidian metric? What nascent idea of equidis-
tance does it have? Its inferences would be so idiosyncratic that finding an
English sentence or reasonable axiomatic account would be out of the ques
tion. English and logic are the wrong metalanguages to characterize such
informational states.

What is needed is more in the spirit of a functional account of informational
content [1]. Such semantics are usually ugly. For in stating the role an
informational state plays in a system’s dispositions to behave we characteristi-
cally need to mention myriad other states, since the contribution of a state is a
function of other states as well.

Accordingly, not all informational states are best viewed as akin to English
sentences. If we want to understand the full range of cognitive skills—
especially those modular ones which are not directly hooked up to central
inference—we will need to invoke some other language for describing informa-
tion content. Frequently the best way to track a computation is not as a
rational trajectory in a logical language.

Argument 2. The need for new languages to describe informational content
has recently been re-iterated by certain connectionists who see in parallel
distributing processing a different style of computation. Hewitt and Gasser
have also emphasized a similar need for an alternative understanding of the
computational processes occurring in distributed Al systems. It is old fashioned
and parochial to hope for a logic-based denotational semanties for such
systems.

The PDP concern can be stated as follows:

in PDP computation vectors of
activation propagate through a partially connected network. According to
Smolensky [41] it is constructive to describe the behaviour of the system as a
path in tensor space. The problem of interpretation is to characterize the
significant events on this path. It would be pleasing if we could say “now the
network is extracting the information that p, now the information that ¢, and
50 on, until the system delivers its answer. Unfortunately, though, except for
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input and output vectors—whose interpretation we specifically set—the majori-
ty of vectors are not interpretable as carrying information which can be casily
stated in English or logic. There need be no one-one mapping between
significant events in the system’s tensor space trajectory and its path in
propositional space. Smolensky—whose argument this is—suggests that much
of this processing is at the level
where the basic elements of meaning differ from those we have words for in
English."

In like manner, Hewitt and Gasser offer another argument for questioning
whether we can track the information flowing through a complex system in
propositional form. The question they ask is: How are we to understand the
content of a message sent between two agents who are part of a much larger
matrix of communicating agents. Superficially, each agent has its own limited
perspective on the task. From agent-1's point of view, agent-2 is saying p. from
agent-3's point of view, agent-2 is saying g. Is there a right answer? Is there a
God's eye perspective that identifies the true content and gives the relativized
perspective of cach agent? If so, how is this relativized meaning to be
determined? We will have to know not only whom the message is addressed to,
but what the addressee is expecting, and what it can do with the message.
Again, though, once we focus on the effects which messages have on a system
we leave the simple world of denotational semantics and opt for functional
semantics. Just how we characterize possible effects, however, is very different
than giving a translation of the message in English. We will need a language for
describing the behavioural dispositions of agent

Cognition as rational inference looks less universal once we leave the domain
of familiar sequential processing and consider massively parallel architectures.

5. Can cognition be studied separately from learning?

In a pure top-down approach, we assume it is possible to state what a system
knows without stating how it came to that knowledge. The two questions
competence and acquisition can be separated. Learning, on this view, is a
switch that can be turned on or off. It is a box that takes an early conceptuali-
zation and returns a more mature conceptualization. Thus learning and con-

1 One way of seeing the problem is to recognize that in a simple feed-forward network  giver
hidden unit can be correlated with a (possibly nested) disjunct

of input features. A vector, therefore, can be interpeted
compound that may make very little sense to us. For instance.
ver the entire f

or the weighted conjunction of
i correlational but rather functional we will prefer to interpret the meaning of a node to be its
contribution (in conjunction with its superior nodes) to the capacity to classify
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ceptualization are sufficiently distinct that the two can be studied separately.
Indeed, learning is often understood as the mechanism for generating a
trajectory of conceptualizations. This is clearly the belief of logic theorists and
developmental psychologists who maintain that what an agent knows at a given
stage of development is a theory, not fundamentally different in spirit than a
scientific theory, about the domain [4].

There are several problems with this view. First, it assumes we can charac-
terize the instantaneous conceptualization of a system without having to study
its various carlier conceptualizations. But what if we cannot elicit the system’s

using the standard techniques? To determine what a compe-
tent PDP system, for example, would know about its environment of action, it
is necessary to train it until it satisfies some adequacy metric. We cannot say in
advance what the system will know if it is perfectly competent because there
are very many paths to competence, each of which potentially culminates in a
different solution. Moreover if the account of PDP offered above is correct it
may be impossible to characterize the system’s conceptualization in a logical
language or in English. It is necessary to analyze its dispositions. But to do that
one needs an actual implementation displaying the competence. Hence the
only way to know what a PDP system will know if it is competent is to build
one and study it. A purely top-down stance, which asssumes that learning is
irrelevant, is bound to fail in the case of PDP.

A second argument against detaching knowledge and learning also focusses
on the in practice unpredictable nature of the learning trajectory. In Soar it is
frequently said that chunking is more than mere speedup [35]. The results of
repeatedly chunking solutions to impasses has a nonlinear effect on per-
formance. Once we have nonlinear effects, however, we cannot predict the
evolution of a system short of running it. Thus in order to determine the steady
state knowledge underpinning a skill we need to run Soar with its chunking
module on."!

A final reason we cannot study what a system knows without studying how it
acquires that knowledge is that a system may have been special design features
that let it acquire knowledge. It is organized to self-modify. Hence we cannot
predict what knowledge it may contain unless we know how it integrates new
information with old. There are many ways to self-modify.

For instance, according to Roger Schank, much of the knowledge a system
contains is lodged in its indexing scheme [41]. As systems grow in size they
generally have to revise their indexing scheme. The results of this process of
revision cannot be anticipated a priori unless we have a good idea of the earlier
indexing schemes. The reason is that much of its knowledge is stored in cases.
Case knowledge may be sensitive to the order the cases were encountered.

" We can, of course, hand-simulate running the system and so predict its final states. But I take
it this is not a significant difference from running Soar itsel.
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Consequently, we can never determine the knowledge a competent system has
unless we know something of the cases it was exposed to and the order they
were met. History counts.

This emphasis on cases goes along with a view that much of reasoning
involves noticing analogies to past experiences. A common corrolary to this
position is that concepts are not context-free intensions; they have a certain
open texture, making it possible to flexibly extend their use and to apply them
1o new situations in creative ways. An agent which understands a concept
should be able to recognize and generate analogical extensions of its concepts
10 new contexts.

Once we view concepts to be open textured, however, it becomes plausible
to suppose that a concept’s meaning is a function of history. It is easier to see
an analogical extension of a word if it has already been extended in that
direction before. But then, we can’t say what an agent’s concept of “container”
is unless we know the variety of contexts it has seen the word in. If that is so, it
possible to understand a creature’s conceptualization
s learning history. Much of cognition cannot be studied
learning.

abstraction from
dependently of

6. Is the architecture of cognition homogeneous?

The final issue T will discuss i

the claim made by Newell et al. that cognition
is basically the product of running programs in a single architecture. According
to Newell, o0 much of the rescarch in Al and cognitive science aims at
creating and control for solving
particular cognitive tasks. Each investigator has his or her preferred computa-
tional models which, clever as they may be, rarely meet a further constraint
that they be integratable into a unified account of cognition. For Newell

Psychology has arrived at the possibility of unified theories of
cognition—theories that gain their power by positing a single
ystem of mechanisms that operate together to produce the full
range of human cognition [30].

The idea that there might be a general theory of intelligence is not new. At
an abstract level anyone who believes that domain knowledge plus inferential
abilities are responsible for intelligent performance, at least in one sense,
operates with a general theory of cognition. For, on that view, it is knowledge.
ultimately, that is the critical element in cognition

But Newell's claim is more concrete: not only is knowledge the basis for
intelligence; knowledge, he argues further, will be encoded in a Soar-like
mechanism. Tl

claim goes well beyond what most logicists would maintain. It
is perfectly consistent with logicism that knowledge may be encoded,
plemented or embedded in any of dozens of ways. A bare commitment to
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have a personal element to them. In my case I have focussed most deeply on
the challenges of embodiment. How reliable can theories of cognition be if
they assume that systems can be studied abstractly, without serious concern for
the mechanisms that ground a system’s conceptualization in perception and
action? But other more traditional issues are of equal interest. How central is
the role which knowledge plays in cognitive skills? Can most of cognition be
seen as inference? What part does learning or psychological development play
in the study of reasoning and performance? Will a few mechanisms of control
and representation suffice for general intelligence? None of the arguments
presented here even begin to be decisive. Nor were they meant to be. Their
function is to encourage informed debate of the paramount issues informing
our field.
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Abstract

Nilsson, N.J.. Logic and artificial intelligence, Artificial Intelligence 47 (1990) 31-

“The theoretical foundations of the logical approach to artificial intelligence are presented.
Logical languages are widely used for expressing the declarative knowledge needed in
artificial intelligence systems. Symbolic logic also provides a clear semantics for knowledge
tepresentation languages and a methodology for analyzing and comparing deductive infer-
encetechniques. Several observations gained from experience with the approach arc
discussed. Finally, we confront some challenging problems for artificial intelligence and
describe what is being done in an attempt o solve them.

1. Introduction

Until a technological endeavor achieves a substantial number of its goals,
several competing approaches are likely to be pursued. So it is with artificial
intelligence (A). Al researchers have programmed a number of demonstration
ystems that exhibit a fair degree of intelligence in limited domains (and some
systems that even have commercial value). However, we are still far from
achieving the versatile cognitive skills of humans. And so rescarch continues
along a number of paths—each with its ardent proponents. Although successful
Al systems of the future will probably draw upon a combination of techniques,
it is useful to study the different approaches in their pure forms in order to
highlight strengths and weaknesses. Here, I present my view of what consti-
tutes the “logical approach” to Al

Some of the criticisms of the use of logic in Al stem from confusion about
what it is that “logicists” claim for their approach. As we shall see, logicism
provides a point of view and principles for constructing languages and proce-
dures used by intelligent machines. It certainly does not promise a ready-made
apparatus whose handle needs only to be turned to emit intelligence. Indeed,
some rescarchers who might not count themselves among those following a
logical approach can arguably be identified with the logicist position. (See, for
example, Smith’s review of a paper by Lenat and Feigenbaum (28, 54].) Other,

0004-3702/91/503.50 © 1991 — Elsevier Science Publishers B
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more naive, criticisms claim that since so much of human thought is “illogical”
(creative, intuitive, etc.), machines based on logic will never achieve human-
level cognitive abilities. But puns on the word “logic” are irrelevant for
evaluating the use of logic in building intelligent machines; making “illogical”
machines is no trouble at alll

In describing logic and Al we first relate the logical approach to three theses
about the role of knowledge in intelligent systems. Then we examine the
theoretical foundations underlying the logical approach. Next, we consider
some important observat ned from experience with the approach.
Lastly, we confront some challenging problems for Al and describe what is

being done in an attempt to solve them. For a textbook-length treatment of
logic and Al see [12].

2. Artificial intelligence and declarative knowledge

The logical approach to Al is based on three theses:

Thesis 1. Intelligent machines will have knowledge of their environments.

atement is noncontroversi

Perhaps this 1. It is probably definitional. Sever-
al authors have discussed what it might mean to ascribe knowledge to
machines—even to simple machines such as thermostats [33, 48]

Thesis 2. The most versatile intelligent machines will represent much of their
knowledge about their environments declaratively.

Al rescarchers attempt to distinguish between declarative and procedural
knowledge and argue about the merits of cach. (See, for example, (16, 60].)
Roughly speaking, declarative knowledge is encoded explicitly in the machine
in the form of sentences in some language, and procedural knowledge is
manifested in programs in the machine. A more precise distinction would have
10 take into account some notion of level of knowledge. For example, a Lisp
program which is regarded as a program (at one level) is regarded (at a lower
level) as a declarative structure that is interpreted by another program. Settling
on precise definitions of procedural and declarative knowledge is beyond our
scope here. Our thesis simply states that versatile intelligent machines will have
(among other things) a place where information about the environment is
stored explicitly in the form of sentences. Even though any knowledge that is
ascribed to a machine (however represented in the machine) might be given a

declarative interpretation by an outside observer, we will not say that the
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machine possesses declarative knowledge unless such knowledge s actually
represented by explicit sentences in the memory of the machine.

When knowledge is represented as declarative sentences, the sentences are
manipulated by reasoning processes when the machine is attempting to use that
knowledge. Thus, the component that decides how to use declarative knowl-
edge s separate from the knowledge itself. With procedural approaches to
knowledge representation, knowledge use is inextricably intertwined with
knowledge representation.

The first serious proposal for an intelligent system with declarative knowl-

edge was by John McCarthy [32]. McCarthy noted the versatility of declara-
tively represented knowledge: it could be used by the machine even for
purposes unforeseen by the machine’s designer, it could more casily be
modified than could knowledge embodied in programs, and it facilitated
communication between the machine and other machines and humans. As he
wrote later, “Sentences can be true in much wider contexts than specific
programs can be useful” [36].
Smolensky [55] listed some similar advantages: “a. Public access: [Declara-
] knowledge is accessible to many people; b. Reliability: Different people
(or the same person at different times) can reliably check whether conclusions
have been validly reached; c. Formality, bootstrapping. universality: The
inferential operations require very little experience with the domain to which
the symbols refer.”

To exploit these advantages, the declaratively represented knowledge must,
10 a large extent, be context free. That is, the meaning of the sentences
expressing the knowledge should depend on the sentences themselves and not
on the external context in which the machine finds itself. The context-free
requirement would rule out terms such as “here” and “now” whose meaning
depends on context. Such terms are called indexicals.

Many database systems and expert systems can be said to use declarative
knowledge, and the “frames” and “semantic networks” used by several Al
programs can be regarded as sets of declarative sentences. On the other hand,
there are several examples of systems that do not represent knowledge about
the world as declarative sentences. Some of these are described in the other
papers in this volume

Thesis 3. For the most versatile machines, the language in which declarative
knowledge is represented must be at least as expressive as first-order predicate
calculus.

One might hope that a natural language such as English might serve as the
language in which to represent knowledge for intelligent systems. If this were
possible, then all of the knowledge already compiled in books would be
immediately available for use by computers. Although humans somehow
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understand English well enough, it is too ambiguous a representational
medium for present-day computers—the meanings of English sentences depend
t00 much on the contexts in which they are uttered and understood.

Al researchers have experimented with a wide variety of languages in which
to represent sentences. Some of these languages have limited expressive
power. They might not have a means for saying that one or another of two
facts is true without saying which fact is true. Some cannot say that a fact is not
true without saying what is true instead. They might not be able to say that all
the members of a class have a certain property without explicitly listing cach of
them. Finally, some are not able to state that at least one member of a class
has a certain property without stating which member does. First-order predi-
cate caleulus, through its ability to formulate disjunctions, negations, and
universally and existentially quantified sentences, does not suffer from these
limitations and thus meets our minimal representational requirements.

3. Foundations of the logical approach

In addition to the three theses just stated, the logical approach to Al also
embraces a point of view about what knowledge is, what the world is, how a
machine interacts with the world, and the role and extent of special procedures
in the design of intelligent machines

Those designers who would claim that their machines possess declarative
knowledge about the world are obliged to say something about what that claim
means. The fact that a machine’s knowledge base has an expression in it like
(VX)Box(x) > Green(x), for example, doesn’t by itself justify the claim that the
machine believes all boxes are green. (The mnemonic relation constants that
we use in our design aren’t mnemonic for the machine! We could just as well
have written (VX)GO11(x) > GO23(x).)

There are different views of what it means for a machine possessing a
database of sentences to believe the facts intended by those sentences. The
view that 1 favor involves making some (perhaps unusual) metaphysical

Machine

seci W —S
mem: S x M — M
act:Sx M— A
effect: AXW — W

Fig. 1. Machine and world.
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a mathematical structure, but since our picture provides for the world to be
affected by and affect itself and the intelligent machine, one shouldn’t worry
that our view of the world is impractically ethereal.)

Now, the designer of a machine that is to interact with the world never
knows what the world objects, functions, and relations actually are. He must
guess. Guessing involves invention on the designer’s part. (Our machine
designer is in the same predicament as is the scientist; scientists invent
descriptions of the world and gradually refine them until they are more useful.)
We use the term conceptualization to describe the designer's guess about the
world objects, functions, and relations. The designer may not even be able to
specify a single conceptualization; for example he may choose not to commit
himself regarding whether an object he invents, say a block, has the color
property green or blue. Thus, in general, the designer attempts to specify a set
of conceptualizations such that, whatever the world actually is, he guesses it is
a member of the set.

The designer realizes, of course, that his conceptualization might not accu-
rately capture the world—even as he himself believes it to be. For example, his
conceptualization may not discriminate between objects that he himself recog-
nizes to be different but which can be considered to be the same considering
his purposes for the machine. The designer need only invent a conceptualiza-
tion that is good enough, and when and if it becomes apparent that it is
deficient (and that this deficiency is the cause of inadequate machine per-
formance), he can modify his conceptualization.

We stress that the objects guessed to exist in the world by the designer are
invented. He is perfectly free to invent anything that makes the machine
perform appropriately, and he doesn't ask whether or not some object really
does or does not exist (whatever that might mean) apart from these invented
structures. For many ordinary, concrete objects such as chairs, houses, people,
and so on, we can be reasonably confident that our inventions mirror reality
But some of the things that we might want to include as world objects, such as
precambrian unconformities, English sentences, the Peloponnesian War, . and
truth, have a somewhat more arbitrary ontological status. In fact, much of the
designer’s guess about the world may be quite arbitrary in the sense that other
guesses would have suited his purposes equally well. (Even those rescarchers
following other declarative, but putatively non-logical, approaches must invent
the equivalent of objects, relations, and functions when they attempt to give
their machines declarative knowledge.)

A logicist expresses his conceptualization of the world (for the machine) by a
set of sentences. The sentences are made part of the machine’s memory
(comprising its state) and embody the machine’s declarative knowledge. We
assume that the sentences are in the first-order predicate calculus; this language
and the sentences in it are constructed as follows: For every world object in the
conceptualization we create an object constant; for every world relation, we
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the machine is attached to the world, as in Fig. 1, mem produces a sequence of
states A, Ay, .., Ay -

Even when the designer has a single intended interpretation in mind, 4, in
general, will be satisfied by a set of interpretations—the intended one among
them. The designer must provide sufficient sentences in the knowledge base
such that its models are limited—limited so that even though the set has more
than one model, it doesn’t matter given the purposes for the machine. (To the
extent that it does matter, the designer must then provide more sentences.) In
designing knowledge bases, it frequently happens that the designer's idea of
the intended interpretation is changed and articulated by the very act of writing
down (and reasoning with) the sentences.

So, a machine possessing a set of sentences Anows about the world in the
sense that these sentences admit of a set of models, and this set is the
designer’s best approximation to what the world actually is, given the purposes
for the machine. The actual world might not even be in the set (the designer’s
guess might be wrong), so we really should be talking about the machine’s
beliefs rather than the machine’s knowledge. But, following the tradition
established by the phrase “knowledge-based systems,” we will continue to
speak of the machine’s knowledge

‘The machine’s procedural knowledge is represented in the functions mem
and act. The function mem changes the sentences and thereby changes the
machine’s state. Perhaps new sentences are added or existing ones are modified
or deleted in response to new sensory information. The function mem may also
produce a change in the machine’s state in the absence of sensory information;
changes to A may occur through processes of deduction or other types of
inference as will be described below

The machine’s declarative knowledge affects its actions through the function
act. We take act to be a function (over sets of sentences) that produces actions.
Note that act can thus only respond to sentences qua sentences, that
strings of symbols. It is not a function of the models of these sentences!

Given this picture, we can identify a spectrum of design choices. At one end,
act and mem are highly specialized to the tasks the machine is expected to
perform and to the environment in which it operates. We might say, in this
case, that the machine’s knowledge is mainly procedurally represented. At the
other extreme, act and mem are general purpose and largely lndcpcndcnl of
the application. All appli pecific knowledge is n A. The
machine’s knowledge in this case can be said to be mainly dzclamuvely
represented. The logical approach usually involves a commitment to represent
most of the machine’s knowledge declaratively. For a proposal at the extreme
declarative end, see [12, Chapter 13]. It is not yet known to what extent this
goal can be achieved while maintaining reasonable efficiency.

Because the actions emitted by act depend on the syntactic form of the
sentences in 4, it is necessary for mem to be able to rewrite these sentences in
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the form appropriate to the task at hand. This aspect of mem we call reasoning.
Imagine, for example, a robot designed to paint boxes green. Its sentence-to-
action process, act, may include a production rule like “If 4 includes the
sentence Box(x) for some value of 7, paint the object denoted by 7 green.” But
suppose A includes the sentences (¥x)Blue(x) 2 Box(x) and Blue(G17) but not
Box(G17) explicitly. We might expect that correct behavior for this robot would
be to paint the object denoted by G17 green, but there is no sentence-to-action
rule lish that 17 icitlyin 4. C ing the sen-
tence Box(G17) from the sentences (¥x)Blue(x) O Box (x) and Blue(G17) is an exam-
ple of one kind of sentence manipulation, or inference, that we want mem to do.

Often, as in the box-painting example, the new sentence constructed from
ones already in memory does not tell us anything new about the world. (All of
the models of (Vx)Blue(x) D Box(x) and Blue(G17) are also models of Box(G17).
Thus, adding Box(G17) to A does not reduce the set of models.) What the new
sentence tells us was already implicitly said by the sentences from which it was
constructed.

If all of the models of A are also models of a sentence 6, we say that 4
logically entails ¢ and write A} ¢. Among the computations that we might
want mem to perform are those which add sentences to 4 that are logically
entailed by 4. One apparent problem in devising such computations is the
prospect of having to check all the models of 4 to see if they are also models of
. But, fortunately, there exist strictly syntactic operations on 4 that are able
to compute logically entailed formulas,

We use the phrase rule of inference to refer to any computation on a set of
sentences that produces new sentences. If ¢ can be derived from 4 by a
sequence of applications of rules of inference, we say that ¢ can be deduced
from 4 and write Aky. An example is the rule of inference called modus
ponens. From any sentences of the form p o and p, we can deduce the
sentence o by modus ponens. The process of logical deduction involves using a

set of rules of inference to deduce additional sentences from a set of sentences.
Interestingly, it happens that there are rules of inference, modus ponens is an
example, that have the property that if A+ &, then Af= . Such rules of
inference are called sound.

Sound rules of inference are extremely important because they allow us to
compute sentences that are logically entailed by a set of sentences using
computations on the sentences themselves (and not on their models)

‘e can also find sets of inference rules that have the property that if Af= ¢
then the rules (successively applied) will eventually produce such a é. Such a
set of inference rules is called complete.

Although all logicists typically incorporate sound inference rules as part of
the calculations performed by mem, there is no necessary reason to limit mem
to performing sound inferences. Other computations are often desirable. We
will describe some of these later in the paper.
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In summary, intelligent machines designed according to the logical approach
are state-machines whose states are sets of sentences. Machine state transitions
are governed by a function, mem, acting on the sentence sets and the inputs to
the machine. An important, but not the only, component of mem is sound
logical inference. Machine actions are governed by a function, act, of the
machine’s state and inputs. The intended interpretation of the sentences in a
‘machine’s state involves objects, functions, and relations that are the designer’s
guesses about the world.

Through naming comes knowing; we grasp an object, mentally, by
giving it a name—hension, prehension, apprehension. And thus
through language create a whole world, corresponding to the other
world out there. Or we trust that it corresponds. Or perhaps, like a
German poet, we cease to care, becoming more concerned with the
naming than with the things named; the former becomes more real
than the latter. And so in the end the world is lost again. No, the
world remains—those unique, particular, incorrigibly individual
junipers and sandstone monoliths—and it is we who are lost.
Again. Round and round, through the endless labyrinth of
thought—the maze. (Edward Abbey (1, pp. 288-289].)

4. Comments on the logical approach

The basic idea underlying the logical approach to Al is simple, but attempts
to use it have resulted in several additional important insights.

4.1. The importance of conceptualization

The most important part of “the Al problem” involves inventing an appro-
priate conceptualization (intended model). It is not casy for a designer to
squeeze his intuitive and commonsense ideas about the world into a coherent
conceptualization involving objects, functions, and relations. Although  this
exercise has been carried out for several limited problem domains (most
notably those to which expert systems have been successfully applied), there
are some particularly difficult subjects to conceptualize. Among these are
liquids and other “mass substances.” processes, events. actions, beliefs, time,
goals, intentions, and plans. Some researchers feel that the frame problem, for
example, arises as it does as an artifact of an inappropriate (state-based)
conceptualization of change [17]. Others feel that change must involve the
notion of time (instead of the notion of state) [52]. Conceptualizing the
“cognitive state” of intelligent agents has been the subject of recent intense
study. (See, for example, [8] for a treatment of the intentions of agents and
[24.40] for treatments of the knowledge and belicfs of agents.) Interestingly,
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many of the most difficult conceptualization problems arise when attempting to
express knowledge about the everyday, “commonsense” world (see [20, 21]).
Al researchers join company with philosophers who have also been attempting
to formalize some of these ideas.

Choosing to use first-order predicate calculus as a representation language
does not relieve us of the chore of deciding what to say in that language.
Deciding what to say is harder than designing the language in which to say it!
The logical approach to Al carries with it no special insights into what
conceptualizations to use. (Logic is often criticized for providing form but not
content. Of course!)

It is important to stress that these conceptualization problems do not arise
simply as an undesirable side effect of the use of logic. They must be
confronted and resolved by any approach that attempts to represent knowledge
of the world by sentence-like, declarative structures. The fact that these
problems are exposed quite clearly in the coherent framework provided by the
logical approach should be counted as an advantage.

4.2. Sound and unsound inferences

Another important observation concerns the subject of sound inference
Logicists are sometimes criticized for their alleged dependence on deduction.
Much human thought, the critics rightly claim, involves leaps of intuition,
inductive inference, and other guessing strategies that lie outside the realm of
sound inference. There are two things that can be said about such criticism

First, loy regard sound inference as an important, but not the only,
component of reasoning. We must be careful to note the circumstances under
which both sound and unsound inferences might appropriately be used. Recall
that the set of sentences 4 (with which a designer endows a machine) implicitly
defines a set of models. Either the designer actually has some subset of these
models in mind (as his guess about what the world is) or he is completely
unbiased about which of the models might represent the world. If he really i
unbiased, nothing other than sound inference would be desired by the de-
signer. Any deduced sentence ¢ had better be logically entailed by A; if there
are some models of 4, for example, that are not models of ¢, and if the
designer wanted the machine to conclude ¢, then he wouldn't have been
completely unbiased about which of the models of A represented the world.

If the designer has some subset of the models of A in mind, and if (for one
reason or another) he could not specify this subset by enlarging 4, then there
are circumstances under which unsound inference might be appropriate. For
example, the designer may have some preference order over the models of 4.
He may want to focus, for example, on the minimal models (according to the
preference order). These minimal models may be better guesses, in the
designer’s mind, about the real world than would be the other models of A. In
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For example, i is motivated by minimal-model
entailment and thus might be called a “principled” inference even though not a
sound one.

4.3. Efficiency and semantic attachment 1o partial models

Earlier, we mentioned that it was fortunate that sound inference techniques
ed because it is impossible in most situations to check that all the models
of A were also models of some formula ¢. This “good fortune™ is somewhat
illusory however, because finding deductions is in general intractable and for
many practical applications unworkably inefficient. Some people think that the
inefficiency of the logical approach disqualifies it from serious consideration as
a design strategy for intelligent machines

There are several things to be said about logic and efficiency. First, it seems
incontestable that knowledge can be brought to bear on a problem more
efficiently when its use is tailored to the special features of that problem. When
knowledge is encoded in a fashion that permits many different uses, several
possible ways in which to use it may have to be tried in any given situation, and
the resulting search process takes time. A price does have to be paid for
generality, and the logical approach, it scems, pays a runtime cost to save
accumulated design costs,

But even so, much progress has been made in making inference processes
more efficient and practical for large problems. Stickel has developed one of
the most powerful first-order-logic theorem provers [56, 57). Several resolution
refutation systems have been written that are able to solve large, nontrivial
reasoning problems, including some open problems in mathematics [59, 61]
Many large-scale Al systems depend heavily on predicate caleulus representa-
tions and reasoning methods. Among the more substantial of these are TEAM,
a natural language interface to databases [14]: DART, a program for equipment
design and repair 11]; and KAMP, a program that generates English sentences
31

A very important technique for achieving cfficiency in the context of the
logical approach involves augmenting theorem-proving methods with calcula-
tions on model-like structures. Often, calculations on models are much more
efficient than are inference processes, and we would be well advised to include
them as part of a machine’s reasoning apparatus.

We mentioned that seldom does a designer make explicit his guess about the
world, the intended model. The set of models is implicitly defined by the set of
sentences in A. Sometimes, however, it is possible to be explicit about at least
part of the intended model. That is, we might be able to construct a part of the
model as list structure and programs in, say, LIsP. For example, we can
represent objects as LISP atoms, functions as LISP functions, and relations as
LisP predicates. In such cases we can perform reasoning by computations with

exi
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explicitly as part of the language [5]). Various LIS ordering predicates
combined with appropriate directed-graph data structures are useful for repre-
senting transitive binary relations.

4.4. Reification of theories

Sometimes we will want our machines to reason about (rather than with) the
sentences in its knowledge base. We may, for example, want them to reason
about the lengths of sentences or about their complexity. Our conceptualiza-
tions will thus have to acknowledge that things called sentences exist in the
world. Conferring existence on abstract concepts (such as sentences) is often
called reification.

We might reify whole theories. This will allow us o say, for example, that
some 4, is more appropriate than is some 4, when confronted with problems of
diagnosing bacterial infections. Scientists are used to having different—even
contradictory—theories to explain reality: quantum physics, Newtonian mech-
anics, relativity, wave theories of light, particle theories of light, and so on

Each is useful in certain circumstances. Although scientists search for a
uniform, all-embracing, and consistent picture of reality, historically they have
had to setde for a collection of somewhat diferent theorics. There is nothing in
the logicist approach that forces us, as machine designe se just one
conceptualization of the world. There is no reason to think AT would be any
more successful at that goal than scientists have been!

When theories are reified, metatheory (that is, a theory about theories) can
be used to make decisions about which local theory should be used in which
circumstances. For example, the metatheory might contain a predicate calculus
statement having an intended meaning something like: “When planning a
highway route, use the theory that treats roads as edges in a graph (rather
than, for example, as solid objects made of asphalt or concrete)”. Metatheory
can also provide information to guide the inference procedures operating over
local theories. For example, we might want to say that when two inferences are
possible in some 4,, the inference that results in the most general conclusion
should be preferred. Using metatheory to express knowledge about how to
control inference is consistent with the logicists' desire to put as much
knowledge as possible in declarative form (as opposed to “building it in” to the
functions mem and act).

Weyhrauch [58] has pointed out that the process of s
metatheory can be particularly powerful. Commonly, even when no semantic
attachments are possible to speed reasoning in a theory, the problem at hand
can be dispatched efficiently by appropriate semantic attachment in the
metatheory

Some cri

mantic attachment in a

of the logical approach have claimed that since anything can be
said in the metatheory, its use would seem to be a retreat to the same ad hoc
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tricks used by less disciplined Al researchers. But we think there are generally
useful things to say in the metatheory that are not themselves problem
dependent. That is, we think that knowledge about how to use knowledge can
itself be expressed as context-free, declarative sentences. (Lenat’s work has
uncovered the best examples of generally useful statements about how to use
knowledge [25-27].)

4.5. Other observations

Even though they frequently call the sentences in their knowledge bases
axioms, logicists are not necessarily committed to represent knowledge by a
minimal set of sentences. Indeed, some (or even most) of the sentences in 4
may be derivable from others. Since the “intelligence” of an agent depends on
how much usable declarative knowledge it has, we agree completely with those
who say “In the knowledge lies the power.” We do not advocate systems that
rely on search-based derivations of knowledge when it is possible to include the
needed knowledge explicitly in the knowledge base. The use of very large
knowledge bases, of course, presupposes efficient retrieval and indexing tech-
niques.

The occasional criticism that logicists depend too heavily on their inference
methods and not on the knowledge base must simply result from a misunder-
standing of the goals of the logical approach. As has already been pointed out,
logicists strive to make the inference process as uniform and domain indepen-
dent as possible and to represent all knowledge (even the knowledge about
how to use knowledge) declaratively.

5. Challenging problems

5.1. Language and the world

Few would deny that intelligent machines must have some kind of characteri-
zation or model of the world they inhabit. We have stressed that the main
feature of machines designed using the logical approach is that they describe
their worlds by language. Is language (any language) adequate to the task? As
the writer Edward Abbey observed (1, p. x]:

Language makes a
simple facts, when f:

hty loose net with which to go fishing for
are infinite.

A designe
conceptualizati
these int

intuitive ideas about the world are often difficult to capture in a
n that can be described by a finite set of sentences. Usually
ve ideas are never complete at the time of design anyway, and the
conceptualization expands making it difficult for the sentences to catch up.
John McCarthy humorously illustrates this difficulty by imagining how onc
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might formulate a sentence that says that under certain conditions a car will
start. In English we might say, for example: “If the fuel tank is not empty and
if you turn the ignition key, the car will start.” But this simple sentence is not
true of a world in which the carburetor is broken, or in which the fuel tank
(while not empty) is full of water, or in which the exhaust pipe has a potato
stuck in it, or... . Indeed, it seems there might be an infinite number of
qualifications that would need to be stated in order to make such a sentenc:
true (in the world the designer has in mind—or comes to have in mind). Of
course, just what it means for a designer to have a world in mind is
problematical; he probably didn’t even think of the possibility of the potato in
the tailpipe until it was mentioned by someone else who happened to conceive
of such a world.

There seem 1o be two related problems here. One is that we would like to
have and use approximate, simple conceptualizations even when our view of
the world would permit more accurate and detailed ones. The approximate
ones are often sufficient for our purposes. Thus, even though we know full well
that the carburetor must be working in order for a car to start, in many
situations for which we want to reason about the car starting we don't need to
know about the carburetor and can thus leave it out of our conceptualization
Using theories (4's) to and
successive refinements of them would seem to require the ability to have
several such at hand and a metatheory to decide when to use which

Another problem is that even the most detailed and accurate conceptualiza
tion may need to be revised as new information becomes available. Theories
must be revisable to accomodate the designer’s changing view of the world. As
the machine interacts with its world, it too will learn new information which
s theory and in other cases require it to be modified.

Science has similar problems. Scientists and engineers knowingly and useful-
ly employ approximate theories—such as frictionless models. Furthermore, all
of our theories of the physical world are falsifiable, and, indeed, we expect
scientific progress to falsify the theories we have and to replace them by others
When we conclude something based on a current physical theory, we admit the
dependence of the conclusion on the theory and modify the theory if the
conclusion is contradicted by subsequent facts. Those who would argue that
logical languages are inappropriate for representing synthetic or contingent
knowledge about the world [39] would also seem to have to doubt the utility of
any of the languages that science uses to describe and predict reality. Merely
because our conceptualization of the world at any stage of our progress toward
understanding it may (inevitably will!) prove to be inaccurate does not mean
that this conceptualization is not in the meantime useful.

Some Al researchers have suggested techniques for making useful inferences
from an approximate, but not inaccurate, theory. We say that a theory is not
curate if its models include the world as conceived by the designer. If a
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theory is to be not inaccurate, it is typically impossible or overly cumbersome
to include the universal statements needed to derive useful sound conclusions.

We illustrate the difficulty by an example. Suppose that we want our
machine to decide whether or not an apple is edible. If 4 is to be not
inaccurate, we cannot include in it the statement (Vx)Apple(x) A Ripe()>
Edible(x) in the face of known exceptions such as Wormy(x) or Rotten(x). (We
trust that the reader understands that the mnemonics we use in our examples
must be backed up by sufficient additional statements in A to insure that these
mnemonics are constrained to have roughly their intended meanings.) Suppose
we cannot conclude from A that a given apple, say the apple denoted by applet
is wormy or rotten; then we may want to conclude (even non-soundly)
Edible(Applet). 1f later, it is learned (say through sensory inputs) that
Rotten(Applet), then we must withdraw the earlier conclusion Edible(Applet).
The original inference is called defeasible because it can be defeated by
additional information. Making such inferences involves what is usually called
nonmonotonic reasoning. (Ordinary logical reasoning is monotonic in the sense
that the set of conclusions that can be drawn from a set of sentences is not
diminished if new sentences are added.)

Several researchers have proposed frameworks and techniques for non-
monotonic reasoning. McDermott and Doyle (37, 38] have developed a non-
monotonic logic. Reiter [46] has proposed inference rules (called default rules)
whose applicability to a set of sentences A depends on what is not in 4 as well
as what is. McCarthy [34] advocates the use of circumscription based on
‘minimal models. Ginsberg [13] uses multiple (more than two) truth values to
represent various degrees of knowledge. We will briefly describe one of these
approaches, that based on minimal models, in order to illustrate what can be
done. (See [47] for a thorough survey.)

Consider the general rule (Vx)Q(x) O P(x). We may know that this rule is not
strictly correct without additional qualifications, and thus it cannot be included
in a machine’s knowledge base without making the knowledge base inaccurate.
But we may want to use something like this rule to express the fact that
“typically” all objects satisfying property Q also satisfy property P. Or we may
want to use the rule in a system that can tolerate qualifications to be added
later.

One way to hedge the rule (to avoid inaccuracy) is to introduce the concept
of abnormality, denoted by the relation constant Ab [33]. Then we can say that
all objects that are not abnormal and that satisfy property Q also satisfy
property P:

(¥X)Q() A Ab(X) D P(X)

Which objects are abnormal and which are not (if we know these facts) can be
specified by other sentences in A. For example we may know that the objects
denoted by A and B are abnormal: Ab(A) A Ab(B).
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The frame problem has been thoroughly treated in the literature. (See [7]
and [44] for collections of articles. The latter collection includes several that
discuss the problem from the standpoints of philosophy and cognitive psy-
chology.) In attempting to deal with the frame problem in their system called
sTRIPS, Fikes and Nilsson [10] described the effects of a machine’s actions by
listing those relations that were changed by the action. They assumed that
those relations not mentioned were not changed. Hayes [17, 18] introduced the
notion of histories in an attempt to define a conceptualization in which the
frame problem was less severe. McCarthy [35] and Reiter [46] proposed
nonmonotonic reasoning methods for dealing with the frame problem. In the
language of circumseription, their approaches assumed minimal changes consis-
tent with the relations that were known to change. However, Hanks and
McDermott [15] showed that a application of
does not produce results strong enough to solve the frame problem. In
response, Lifschitz [30] introduced a variant called pointwise circumscription
He also proposed reconceptualization of actions and their effects that permits
the use of ordinary circumscription in solving the frame problem and the
qualification problem (31]. Shoham [51] proposed an alternative minimization
method related to circumseription, called chronological ignorance.

Although the frame problem has been extensively studied, it remains a
formidable conceptual obstacle to the development of systems that must act in
a changing world. This obstacle is faced by all such systems—even those whose
knowledge about the world is represented in procedures. The designer of any
intelligent machine must make assumptions (at least implicit ones) about how
the world changes in response to the actions of the machine if the machine is to
function effectively

5.3, Uncertain knowledge

When one is uncertain about the world, one cannot specify precisely which
relations hold in the world. Nevertheless, one might be able to say that at least
one of a set of relations holds. Logical disjunctions permit us to express that
kind of uncertain knowledge.

Logical representations (with their binary truth values) would scem to be
inadequate for representing other types of uncertain knowledge. How do we
say, for example, “It is likely that it will be sunny in Pasadena on New Year's
day™? We could, of course embed probability information itself in the sen-
tence, and this approach and others have been followed. Attempts to fuzz the
crisp true/false semantics of logical languages have led to an active Al rescarch
subspecialty [23, 43, 53].

The approach followed by [41], for example, is to imagine that a probability
value is associated with each of a set of possible conceptualizations (interpreta-
tions). The machine designer makes this assignment implicitly by composing a
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