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CHAPTER ONE

Introduction

Computer science as an academic discipline began in the 1960s. Emphasis was on
programming languages, compilers, operating systems, and the mathematical theory
that supported these areas. Courses in theoretical computer science covered finite
automata, regular expressions, context-free languages, and computability. In the
1970s, the study of algorithms was added as an important component of theory. The
emphasis was on making computers useful. Today, a fundamental change is taking
place and the focus is more on a wealth of applications. There are many reasons
for this change. The merging of computing and communications has played an
important role. The enhanced ability to observe, collect, and store data in the natural
sciences, in commerce, and in other fields calls for a change in our understanding of
data and how to handle it in the modern setting. The emergence of the web and social
networks as central aspects of daily life presents both opportunities and challenges
for theory.

While traditional areas of computer science remain highly important, increasingly
researchers of the future will be involved with using computers to understand and
extract usable information from massive data arising in applications, not just how to
make computers useful on specific well-defined problems. With this in mind we have
written this book to cover the theory we expect to be useful in the next 40 years, just
as an understanding of automata theory, algorithms, and related topics gave students
an advantage in the last 40 years. One of the major changes is an increase in emphasis
on probability, statistics, and numerical methods.

Early drafts of the book have been used for both undergraduate and graduate
courses. Background material needed for an undergraduate course has been put into
a background chapter with associated homework problems.

Modern data in diverse fields such as information processing, search, and machine
learning is often advantageously represented as vectors with a large number of com-
ponents. The vector representation is not just a book-keeping device to store many
fields of a record. Indeed, the two salient aspects of vectors — geometric (length,
dot products, orthogonality, etc.) and linear algebraic (independence, rank, singular
values, etc.) — turn out to be relevant and useful. Chapters 2 and 3 lay the foundations
of geometry and linear algebra, respectively. More specifically, our intuition from
two- or three-dimensional space can be surprisingly off the mark when it comes
to high dimensions. Chapter 2 works out the fundamentals needed to understand
the differences. The emphasis of the chapter, as well as the book in general, is to
get across the intellectual ideas and the mathematical foundations rather than focus
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on particular applications, some of which are briefly described. Chapter 3 focuses
on singular value decomposition (SVD) a central tool to deal with matrix data. We
give a from-first-principles description of the mathematics and algorithms for SVD.
Applications of singular value decomposition include principal component analysis,
a widely used technique we touch on, as well as modern applications to statistical
mixtures of probability densities, discrete optimization, etc., which are described in
more detail.

Exploring large structures like the web or the space of configurations of a large
system with deterministic methods can be prohibitively expensive. Random walks
(also called Markov chains) turn out often to be more efficient as well as illuminative.
The stationary distributions of such walks are important for applications ranging
from web search to the simulation of physical systems. The underlying mathematical
theory of such random walks, as well as connections to electrical networks, forms
the core of Chapter 4 on Markov chains.

One of the surprises of computer science over the last two decades is that some
domain-independent methods have been immensely successful in tackling problems
from diverse areas. Machine learning is a striking example. Chapter 5 describes the
foundations of machine learning, both algorithms for optimizing over given training
examples as well as the theory for understanding when such optimization can be
expected to lead to good performance on new, unseen data. This includes important
measures such as the Vapnik—Chervonenkis dimension; important algorithms such
as the Perceptron Algorithm, stochastic gradient descent, boosting, and deep learn-
ing; and important notions such as regularization and overfitting.

The field of algorithms has traditionally assumed that the input data to a problem
is presented in random access memory, which the algorithm can repeatedly access.
This is not feasible for problems involving enormous amounts of data. The streaming
model and other models have been formulated to reflect this. In this setting, sampling
plays a crucial role and, indeed, we have to sample on the fly. In Chapter 6 we study
how to draw good samples efficiently and how to estimate statistical and linear alge-
bra quantities with such samples.

While Chapter 5 focuses on supervised learning, where one learns from labeled
training data, the problem of unsupervised learning, or learning from unlabeled data,
is equally important. A central topic in unsupervised learning is clustering, discussed
in Chapter 7. Clustering refers to the problem of partitioning data into groups of
similar objects. After describing some of the basic methods for clustering, such as the
k-means algorithm, Chapter 7 focuses on modern developments in understanding
these, as well as newer algorithms and general frameworks for analyzing different
kinds of clustering problems.

Central to our understanding of large structures, like the web and social networks,
1s building models to capture essential properties of these structures. The simplest
model is that of a random graph formulated by Erdés and Renyi, which we study in
detail in Chapter 8, proving that certain global phenomena, like a giant connected
component, arise in such structures with only local choices. We also describe other
models of random graphs.

Chapter 9 focuses on linear-algebraic problems of making sense from data, in
particular topic modeling and nonnegative matrix factorization. In addition to dis-
cussing well-known models, we also describe some current research on models and
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probability that the difference will exceed € and hence € is in the denominator. Notice
that squaring € makes the fraction a dimensionless quantity.

We use two inequalities to prove the Law of Large Numbers. The first is Markov’s
inequality that states that the probability that a nonnegative random variable exceeds
@ 1s bounded by the expected value of the variable divided by a.

Theorem 2.1 (Markov’s inequality) Let x be a nonnegative random variable. Then
fora =0,
E(x
Prob(x > a) < Q
a
Proof For a continuous nonnegative random variable x with probability
density p,

E(x) = f xp(x)dx = f xp(x)dx + f xp(x)dx
0 0 a

o0

o0
> f xp(x)dx > a fp(x)dx = aProb(x > a).

a

Thus, Prob(x > a) < £ [ |

a

The same proof works for discrete random variables with sums instead of
integrals.

Corollary 2.2 Prob(x > bE(x)) < %

Markov’s inequality bounds the tail of a distribution using only information about
the mean. A tighter bound can be obtained by also using the variance of the random
variable.

Theorem 2.3 (Chebyshev’s inequality) Let x be a random variable. Then for
c >0,
Var(x)

(’2 '

Pmb(lx — E(x)| = c) <

|x — E (x)|2 is a nonnegative random variable and E(y) = Var(x), so Markov’s
inequality can be applied giving:

Proof Prob(|lx — E(x)| = ¢) = Prob(lx — E(x)]*> > ¢?). Note that y =

E(lx — E)]*) _ Var(x)

Prob(|x — E(x)| > ¢) = Prob (|x —EW]? > ('2) < . A
(& C

The Law of Large Numbers follows from Chebyshev’s inequality together with
facts about independent random variables. Recall that:

E(x+y)=EX)+ E(}),
Var(x — ¢) = Var(x),

Var(cx) = ¢ Var(x).

—_— 5 —_—
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Also, if x and y are independent, then E(xy) = E(x)E(y). These facts imply that if x
and y are independent, then Var(x + y) = Var(x) + Var(y), which is seen as follows:

Var(x +y) = E(x + )’ = E*(x +)
= E(P + 2xy + %) — (B2 () + 2E)EW) + EX(»))
= E(x?) — E*(x) + EG?) — EX(p) = Var(x) + Var(y),
where we used independence to replace £(2xy) with 2E(x)E(y).
Theorem 2.4 (Law of Large Numbers) Let x|,X2,....Xy be n independent
samples of a random variable x. Then

Xp+x2+--+xp Var(x)

2

Prub(’ - E(x)| > e) <

ne

Proof E(W) = E(x) and thus
X+ X2+ + Xp

Prob ( > e) = Prob (
n

_E (xl +xz+---+xn)| 26)
n
By Chebyshev’s inequality,
X1+ x2+ -+ X,

Prob(x1+x2+.“+x" >e)=Prob(
n

n
o (x1+x2+---+x,w)‘ 26)
n

Var (—\_] +x2++Xp )

n

€2

X+ X2+ 4+ X

— E(x)

— E(x)

IA

1
== Var(x; +x2 + -+ xp)
n-e

1
=53 (Var(x|) + Var(xa) + -+ + Va!‘(xn))

Var(x)
ne?

The Law of Large Numbers is quite general, applying to any random variable x
of finite variance. Later we will look at tighter concentration bounds for spherical
Gaussians and sums of 0-1 valued random variables.

One observation worth making about the Law of Large Numbers is that the size
of the universe does not enter into the bound. For instance, if you want to know what
fraction of the population of a country prefers tea to coffee, then the number n of
people you need to sample in order to have at most a § chance that your estimate is
off by more than € depends only on € and § and not on the population of the country.

As an application of the Law of Large Numbers, let z be a d-dimensional random
point whose coordinates are each selected from a zero mean, % variance Gaussian.

—_— 6 —_—
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Table 2.1: Table of tail bounds. The Higher Moments bound is obtained by applying Markov to x'.
The Chernoff, Gaussian Annulus, and Power Law bounds follow from Theorem 2.5 which is proved in
Chapter 12.

Condition Tail bound

Markov x=0 Prob(x > a) < EL‘"
Chebyshev Any x Prob(|lx — E(x)| = a) < VE:I;(.\‘)
Chernoff X=x1+x24+ - +x, Prob(|x — E(x)| = ¢E(x))

x; € [0, 1] i.i.d. Bernoulli; < 3e—CeTE()
Higher Moments r positive even integer Prob(|x| = @) < E(x")/d"
Gaussian X = \/)(:l} + X% 4+ 4 'Y?_r Prob(|x — \/ﬁl > f) < 367(-‘33
Annulus x;~ N(0,1); B < /nindep.
Power Law X=X1+X2+ 4 X Prob(|x — E(x)| > eE(x))
for x;; order k > 4 x;iidie < 1/k? < (4/ekn) k=12

We set the variance to ﬁ so the Gaussian probability density equals one at the origin
and is bounded below throughout the unit ball by a constant.! By the Law of Large
Numbers, the square of the distance of z to the origin will be ®(d) with high proba-
bility. In particular, there is vanishingly small probability that such a random point z
would lie in the unit ball. This implies that the integral of the probability density over
the unit ball must be vanishingly small. On the other hand, the probability density
in the unit ball is bounded below by a constant. We thus conclude that the unit ball
must have vanishingly small volume.

Similarly if we draw two points y and z from a d-dimensional Gaussian with unit
variance in each direction, then |y|2 ~ d and |z|> ~ d. Since for all i,

E(i —z:)* = EG) + E(z}) — 2E(yizi) = Var(y;) + Var(z)) — 2E() E(z) = 2,

ly — z|* = Zf‘f:l (vi — zi)* ~ 2d. Thus by the Pythagorean theorem, the random
d-dimensional y and z must be approximately orthogonal. This implies that if we
scale these random points to be unit length and call y the North Pole, much of the
surface area of the unit ball must lie near the equator. We will formalize these and
related arguments in subsequent sections.

We now state a general theorem on probability tail bounds for a sum of inde-
pendent random variables. Tail bounds for sums of Bernoulli, squared Gaussian,
and Power Law distributed random variables can all be derived from this. Table 2.1
summarizes some of the results.

11f we instead used variance 1, then the density at the origin would be a decreasing function of d, namely
(ﬁ )%/2 making this argument more complicated.
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Theorem 2.5 (Master Tail Bounds Theorem) Ler x = x; + x2 + -+ + X,
where x1, X3, ....X, are mutually independent random variables with zero mean
and variance at most 6% Let 0 < a < /2no?. Assume that |E (x| < os! for

s=3,4,...,1(a*/4nc?)]. Then,

2 2
Prob (|x| > a) < 3¢« /12107,

The proof of Theorem 2.5 is elementary. A slightly more general version, Theo-
rem 12.5, is given in Chapter 12. For a brief intuition of the proof, consider applying
Markov’s inequality to the random variable x" where r is a large even number. Since
r is even, x" is nonnegative, and thus Prob(|x| > a) = Prob(x" = a") < E(x")/d".
If E(x") is not too large, we will get a good bound. To compute E(x"), write E(x) as
E(x1 +---+ x,)" and expand the polynomial into a sum of terms. Use the fact that
by independence E(x’ x;.f )= E(XE (_x';:" ) to get a collection of simpler expectations
that can be bounded using our assumption that |[E(x})| < o2s!. For the full proof,
see Chapter 12,

2.3. The Geometry of High Dimensions

An important property of high-dimensional objects is that most of their volume is
near the surface. Consider any object 4 in RY. Now shrink A by a small amount ¢
to produce a new object (1 — €)4 = {(1 — €)x|x € A}. Then the following equality
holds:

Volume((l - E)A) = (1 — e)%volume(A4).

To see that this is true, partition 4 into infinitesimal cubes. Then, (1—¢&)A4 is the union
of a set of cubes obtained by shrinking the cubes in A4 by a factor of 1 — &. When we
shrink each of the 24 sides of a d-dimensional cube by a factor £, its volume shrinks
by a factor of f“. Using the fact that | — x < e, for any object A in R we have:
volume((1 — €)4)
volume(A4)

—(1— E)d < C_Ed.

Fixing € and letting 4 — oo, the above quantity rapidly approaches zero. This means
that nearly all of the volume of 4 must be in the portion of A4 that does not belong
to the region (1 — €)A.

Let S denote the unit ball in d-dimensions, that is, the set of points within distance
one of the origin. An immediate implication of the above observation is that at least
a 1 — e~ fraction of the volume of the unit ball is concentrated in S \ (1 — €)S.
namely in a small annulus of width € at the boundary. In particular, most of the
volume of the d-dimensional unit ball is contained in an annulus of width O(1/d)
near the boundary. This is illustrated in Figure 2.1. If the ball is of radius r, then the
annulus width is O ().

2.4. Properties of the Unit Ball

We now focus more specifically on properties of the unit ball in Z-dimensional space.
We just saw that most of its volume is concentrated in a small annulus of width
O(1/d) near the boundary. Next we will show that in the limit as d goes to infinity,

8 _—
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Annulus of

— width }

Figure 2.1: Most of the volume of the d-dimensional ball of radius r is contained in an annulus of width
O(r/d) near the boundary.

the volume of the ball goes to zero. This result can be proven in several ways. Here
we use integration.

2.4.1. Volume of the Unit Ball

To calculate the volume V(d) of the unit ball in R?, one can integrate in either
Cartesian or polar coordinates. In Cartesian coordinates the volume is given by

=1 2= 1- \'%

wl T

\|—*] N

1—\]

Since the limits of the integrals are complicated, it is easier to integrate using polar
coordinates. In polar coordinates, V'(d) is given by

V(d) = f f =1 drd 2.

S"’ r=
Since the variables € and r do not interact,
|

_ | A(d)
— e O —
V(d)—[dﬂjr dr_dfdQ_ y

Sc.’ r=0 Sd
where A(d) is the surface area of the d- dimensional unit ball. For instance, for d = 3
the surface area is 47 and the volume is qJ'r The question remains how to determine
the surface area A(d) = f ca dS2 for general d.
Consider a different integral,

Id) = ff fe (g )d\:d ~dxadxy.

—00 —0O0

Including the exponential allows integration to infinity rather than stopping at the
surface of the sphere. Thus, /(d) can be computed by integrating in both Cartesian

9
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C xiVd—1 _a-12
volume(4) < [ Yo TNIp(d = 1ydy,
1 €
Vd—1 [ d—1.2
=Vd-1 : f . X|e_%":dx1
¢ l;—l
Now
o0 o0 2
=1, 1 _d=1,2 1 2
e~ 2 Ndxy = — 271 = 2
.o X1 d—le . a’—le
d—1 (d-1)
; o V(d=1) *é
Thus, an upper bound on volume(4) is i1 e 7.

The volume of the hemisphere below the plane x| = is a lower bound

1
d—1
on the entire volume of the upper hemisphere, and this volume is at least that

of a cylinder of height J;.'lTl and radius /1 — lel The volume of the cylinder

is V(id— 1)1 — ﬁ)% L Using the fact that (1 — x)¢ > | —axfora > 1,

Jd-1" ;
. . Vid-1) -~
the volume of the cylinder is at least Nz ford = 3.
Thus,
Vid-1) —
tio < upper bound above plane v/ i 2.2
ratio ' = = 7T,
~ lower bound total hemisphere f(f’;ll) ¢
=y ad—

One might ask why we computed a lower bound on the total hemisphere, since it is
one-half of the volume of the unit ball, which we already know. The reason is that
the volume of the upper hemisphere is %V(d), and we need a formula with V' (d — 1)
in it to cancel the ¥ (d — 1) in the numerator.

Near Orthogonality

One immediate implication of the above analysis is that if we draw two points at
random from the unit ball, with high probability their vectors will be nearly orthog-
onal to each other. Specifically, from our previous analysis in Section 2.3, with high
probability both will be close to the surface and will have length 1 — O(1/d). From our
analysis earlier, if we define the vector in the direction of the first point as “north,”
with high probability the second will have a projection of only +0(1/+/d) in this
direction, and thus their dot product will be +0(1/+/d). This implies that with high
probability the angle between the two vectors will be 7/2 + O(1/+/d). In particular,
we have the following theorem that states that if we draw n points at random in the
unit ball, with high probability all points will be close to unit length and each pair of
points will be almost orthogonal.

Theorem 2.8 Consider drawing n points X1,Xs, ....Xy at random from the unit
ball. With probability 1 — O(1/n)

x| = 1— %for all i, and

2% -x5 < ‘:/?;T“;‘foralii-—,éj.




2.5. GENERATING POINTS UNIFORMLY AT RANDOM FROM A BALL

Proof For the first part, for any fixed 7 by the analysis of Section 2.3, the
probability that |x;| < 1 — € is less than e=<?. Thus

21 2lnn
Prob (|xi| <1 - :;n) < e M _ 1/n%.

By the union bound, the probability there exists an i such that |x;| < 1 — 21%

is at most 1/n.
For the second part, Theorem 2.7 states that for a component of a Gaussian

2
g ) ¢ . g ,— [l " . . .
vector the probability |x;| > T s atmost e~ 7. There are (2) pairs i and J,

and for each such pair, if we define x; as “north,” the probability that the projec-

. " e i _6l
tion of xj onto the “north” direction is more than VoInn i at most O(e _im) =

Vd—1
O(n™?). Thus, the dot product condition is violated with probability at most
O(('Z')n_3) = O(1/n) as well. [ |

Alternative Proof That Volume Goes to Zero
Another immediate implication of Theorem 2.7 is that as d — oo, the volume of
the ball approaches zero. Specifically, consider a small box centered at the origin of

side length J(Z;Tl Using Theorem 2.7, we show that for ¢ = 2+/In d, this box contains

over half of the volume of the ball. On the other hand, the volume of this box clearly
goes to zero as d goes to infinity, since its volume is O( (%)‘f /2y, Thus the volume of
the ball goes to zero as well.

By Theorem 2.7, with ¢ = ZW, the fraction of the volume of the ball with

4

|x1] = 7T is at most:

2,5 I 2ma 1 I
- I = = < —.
¢ Vind d2/Ind ~ d*

1

Since this is true for each of the d dimensions, by a union bound, at most a 0(%) <3

fraction of the volume of the ball lies outside the cube, completing the proof.

Discussion

One might wonder how it can be that nearly all the points in the unit ball are very
close to the surface and yet at the same time nearly all points are in a box of side-
length O(124). The answer is to remember that points on the surface of the ball
satisfy xf + x% + -4+ xf-, = 1, so for each coordinate i, a typical value will be

iO(ﬁ). In fact, it is often helpful to think of picking a random point on the sphere
as very similar to picking a random point of the form ( + ﬁ, :I:ﬁ, :I:ﬁ, - ﬁ)
A schematic illustration of the relationship between the unit-radius sphere and unit-
volume cube is given in Figure 2.3.

2.5. Generating Points Uniformly at Random from a Ball

Consider generating points uniformly at random on the surface of the unit ball. For
the two-dimensional version of generating points on the circumference of a unit-
radius circle, independently generate each coordinate uniformly at random from the
interval [—1, 1]. This produces points distributed over a square that is large enough

13
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<— Unit radius sphere

Nearly all the volume

\ <— Vertex of hypercube

Figure 2.3: lllustration of the relationship between the sphere and the cube in 2, 4, and d-dimensions.

to completely contain the unit circle. Project each point onto the unit circle. The
distribution is not uniform, since more points fall on a line from the origin to a vertex
of the square than fall on a line from the origin to the midpoint of an edge of the
square due to the difference in length. To solve this problem, discard all points outside
the unit circle and project the remaining points onto the circle.

In higher dimensions, this method does not work, since the fraction of points that
fall inside the ball drops to zero and all of the points would be thrown away. The
solution is to generate a point each of whose coordinates is an independent Gaussian
variable. Generate xy, x2, ..., X4, using a zero mean, unit variance Gaussian, namely

\/L—]r exp(—x2/2) on the real line.? Thus, the probability density of x is

.\'2+.\'2+---+.r2
1 ié‘_l z_ d
[
(2m)2

and is spherically symmetric. Normalizing the vector x = (x|, x3,...,xy) to a unit
vector, namely ﬁ, gives a distribution that is uniform over the surface of the sphere.
Note that once the vector is normalized, its coordinates are no longer statistically
independent.

To generate a point y uniformly over the ball (surface and interior), scale the point
Ii_l generated on the surface by a scalar p € [0, 1]. What should the distribution of
p be as a function of r? It is certainly not uniform, even in two dimensions. Indeed,
the density of p at r is proportional to r for d = 2. For d = 3, it is proportional
to r2. By similar reasoning, the density of p at distance r is proportional to #*~! in
d dimensions. Solving ﬂ:ol crVdr = 1 (the integral of density must equal 1), one
should set ¢ = d. Another way to see this formally is that the volume of the radius r
ball in d dimensions is ¥/ ¥ (d). The density at radius r is exactly %_(rd V) =dri=yy,.
So, pick p(r) with density equal to dr?=1 for r over [0, 1].

px) =

20ne might naturally ask: “How do you generate a random number from a 1-dimensional Gaussian?” To
generate a number from any distribution given its cumulative distribution function P, first select a uniform
random number u € [0,1] and then choose x = P~ !(u). For any a < b, the probability that x is between a
and b is equal to the probability that u is between P(a) and P(b), which equals P(b) — P(a) as desired. For the
two-dimensional Gaussian, one can generate a point in polar coordinates by choosing angle 6 uniformin [0, 2]
and radius r = +/—2In(x) where « is uniform random in [0, 1]. This is called the Box-Muller transform.

14



2.6. GAUSSIANS IN HIGH DIMENSION

We have succeeded in generating a point

X
Yy=p_-
x|
uniformly at random from the unit ball by using the convenient spherical Gaussian
distribution. In the next sections, we will analyze the spherical Gaussian in more
detail.

2.6. Gaussians in High Dimension

A one-dimensional Gaussian has its mass close to the origin. However, as the
dimension is increased, something different happens. The d-dimensional spherical
Gaussian with zero mean and variance o in each coordinate has density function

. 1 x|
PR = (2m)d/2gd xp 202"

The value of the density is maximum at the origin, but there is very little volume there.
When o2 = 1, integrating the probability density over a unit ball centered at the ori-
gin yields almost zero mass, since the volume of such a ball is negligible. In fact, one
needs to increase the radius of the ball to nearly +/d before there is a significant
volume and hence significant probability mass. If one increases the radius much
beyond +/d, the integral barely increases even though the volume increases, since
the probability density is dropping off at a much higher rate. The following theorem
formally states that nearly all the probability is concentrated in a thin annulus of
width O(1) at radius /d.

Theorem 2.9 (Gaussian Annulus Theorem) For a d-dimensional spherical
Gaussian with unit variance in each direction, for any g < d. all but ar most
3¢ <h’ of the probability mass lies within the annulus v'd — B < |x| < v/d + B,
where c is a fixed positive constant.

For a high-level intuition, note that E(|x|?) = Zle E(x;?) = dE(x%) = d, so
the mean squared distance of a point from the center is d. The Gaussian Annulus
Theorem says that the points are tightly concentrated. We call the square root of the
mean squared distance, namely Vd, the radius of the Gaussian.

To prove the Gaussian Annulus Theorem, we make use of a tail inequality for
sums of independent random variables of bounded moments (Theorem 12.5).

Proof (Gaussian Annulus Theorem) Let x = (x1, x2, ..., X4) be a point selected
from a unit variance Gaussian centered at the origin, and let r = |x|. Jd — B =<
|x| < +/d + B is equivalent to |r — v/d| > B. If |r — +/d| > B, then multiplying
both sides by r+ /d gives |r> —d| > B(r++/d) > B~/d. So, it suffices to bound
the probability that |2 — d| > B/d.

Rewrite 12 — d = (x% + ---+x5) —d = (x% - D4+ + (xf, — 1) and
perform a change of variables: y; = xf — 1. We want to bound the probability
that |y + --- + y4| > Bv/d. Notice that E(y;) = E(x?) — 1 = 0. To apply
Theorem 12.5, we need to bound the s” moments of y;.

15
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For |x;| < 1, |y < 1 and for |x;| = 1, |y;]® < |x,—|2“. Thus,

IEGH| = E(yil®) < EQ + x3) = 1 + E(x¥

—1+[[ Ae'/gdA

Using the substitution 2z = x2

1> .
EODl=1+— | 22271/2e4;
| Uz)l +ﬁ[{) e

< 2%!.

The last inequality is from the Gamma integral.

Since E(y;) = 0, Var(y;) = E(yf) < 222 = 8. Unfortunately, we do not have
|E(y;)| =< 8s!as required in Theorem 12.5. To fix this problem, perform one
more change of variables, using w; = y;/2. Then, Var(w;) < 2and |E(w])| < 25!,

and our goal is now to bound the probability that |wy; + --- + wy| > %E .
Applying Theorem 12.5 where o> = 2 and n = d, this occurs with probability

B
less than or equal to 3¢~ % [

In the next sections we will see several uses of the Gaussian Annulus Theorem.

2.7. Random Projection and Johnson-Lindenstrauss Lemma

One of the most frequently used subroutines in tasks involving high-dimensional
data is nearest neighbor search. In nearest neighbor search we are given a database
of n points in R? where n and d are usually large. The database can be preprocessed
and stored in an efficient data structure. Thereafter, we are presented “query” points
in R? and are asked to find the nearest or approximately nearest database point
to the query point. Since the number of queries is often large, the time to answer
each query should be very small, ideally a small function of log n and log d, whereas
preprocessing time could be larger, namely a polynomial function of n and d. For this
and other problems, dimension reduction, where one projects the database points to
a k-dimensional space with k <« d (usually dependent on log d), can be very useful
so long as the relative distances between points are approximately preserved. We will
see, using the Gaussian Annulus Theorem, that such a projection indeed exists and
is simple.

The projection f : R? — RF that we will examine (many related projections are
known to work as well) is the following. Pick k Gaussian vectors ug, ua, ..., uy in R?
with unit-variance coordinates. For any vector v, define the projection f(v) by:

f(v)y=(-v,uz-v,...,ux- V).

The projection f(v) is the vector of dot products of v with the u;. We will show that
with high probability, |f(v)| = Vk|v|. For any two vectors vy and va, f(v] — v3) =
f(v1) — f(v3). Thus, to estimate the distance |vq; — vg| between two vectors vy and
vo in R¥, it suffices to compute |f(v1) — f(vy)| = |f(v1 — v9)| in the k-dimensional
space, since the factor of +/k is known and one can divide by it. The reason distances
increase when we project to a lower-dimensional space is that the vectors u; are not
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X A Z ‘Zﬁ
}J

/i VA2 +24 /

p A q

(a) (b)

Figure 2.4: (a) indicates that two randomly chosen points in high dimension are surely almost nearly
orthogonal. (b) indicates the distance between a pair of random points from two different unit balls
approximating the annuli of two Gaussians.

at radius v/d. Also e~ /2 = [1; ¢=*1/2 and almost all of the mass is within the slab
{x| —¢ < x; <c¢), forc e O(1). Pick a point x from this Gaussian. After picking x,
rotate the coordinate system to make the first axis align with x. Independently pick a
second point y from this Gaussian. The fact that almost all of the probability mass
of the Gaussian is within the slab {x| — ¢ < x] < ¢, ¢ € O(1)} at the equator implies
that y’s component along x’s direction is O(1) with high probability. Thus, y is nearly
perpendicular to x. So, |x — y| &~ /|x|2 + |y|%. See Figure 2.4(a). More precisely,
since the coordinate system has been rotated so that x is at the North Pole, x =
(\/E + O(1),0,...,0). Since y is almost on the equator, further rotate the coordinate
system so that the component of y that is perpendicular to the axis of the North Pole
is in the second coordinate. Then y = (O(1), Vd+ 0,0, ...,0). Thus,

x—y) =d+0Wd) +d+ 0Wd) =2d + OWd)

and [x —y| = V2d + 0(1) with high probability.

Consider two spherical unit variance Gaussians with centers p and q separated
by a distance A. The distance between a randomly chosen point x from the first
Gaussian and a randomly chosen point y from the second is close to v A2 + 2d,
since x — p, p — q, and q — y are nearly mutually perpendicular. Pick x and rotate the
coordinate system so that x is at the North Pole. Let z be the North Pole of the ball
approximating the second Gaussian. Now pick y. Most of the mass of the second
Gaussian is within O(1) of the equator perpendicular to z—q. Also, most of the mass
of each Gaussian is within distance O(1) of the respective equators perpendicular to
the line q — p. See Figure 2.4 (b). Thus,

x—y’=A?+|z—q’+|q-y
= A% +2d + 0(Vd).

Ensuring that two points picked from the same Gaussian are closer to each other
than two points picked from different Gaussians requires that the upper limit of the
distance between a pair of points from the same Gaussian is at most the lower limit of
distance between points from different Gaussians. This requires that v/2d + O(1) <

V2d + A2 — 0(1) or 2d + O(/d) < 2d + A%, which holds when A € w(d'/*). Thus,
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mixtures of spherical Gaussians can be separated in this way, provided their centers
are separated by w(d'/%). If we have n points and want to correctly separate all of
them with high probability, we need our individual high-probability statements to
hold with probability 1 — 1/poly(n),? which means our O(1) terms from Theorem 2.9
become O(4/logn). So we need to include an extra O(/logn) term in the separation
distance.

Algorithm for Separating Points from Two Gaussians Calculate all pairwise distances
between points. The cluster of smallest pairwise distances must come from a single
Gaussian. Remove these points. The remaining points come from the second Gaussian.

One can actually separate Gaussians where the centers are much closer. In the next
chapter we will use singular value decomposition to separate points from a mixture
of two Gaussians when their centers are separated by a distance O(1).

2.9. Fitting a Spherical Gaussian to Data

Given a set of sample points, X1, X2, . . ., Xy, in a d-dimensional space, we wish to find
the spherical Gaussian that best fits the points. Let /" be the unknown Gaussian with
mean p and variance o2 in each direction. The probability density for picking these
points when sampling according to f is given by

(X1 — w2+ (X2 — )+ + (xp — p)?
cexp|— 2

X—, |-
where the normalizing constant c is the reciprocal of [ e 27 dx] In integrating
Ix

_ —n
from —oo to 0o, one can shift the origin to g and thus ¢ is [fe B_nfdx] = ﬁ
(2m)2

and is independent of s.
The Maximum Likelihood Estimator (MLE) of f, given the samples x;1,X2, ..., Xy,
is the f that maximizes the above probability density.

Lemma 2.12 Letr {X1,X2,....X,} be a set of n d-dimensional points. Then
(x] — )2+ X2 — p)* + - -+ + (X0 — p)? is minimized when . is the centroid of
the points x|, X3, ..., X,, namely p = %()q + x4 X))

Proof Setting the gradient of (x; — ;1,)2 + (x7 — u)z + o+ (%, — p)z with
respect to g to zero yields
=2 —p)-2x2—p) — - —2(x,—p) =0.
Solving for p gives p = %(:n +x24 -+ Xxp). [ |
To determine the maximum likelihood estimate of o2 for f, set u to the true
centroid Next, show that a is set to the standard deviation of the sample. Substitute

Vo= = (X1 — )+ (X2 — p)> + - + (x, — p)? into the formula for the
prObdglllty of picking the points x1, X2, ..., X,. This gives

3poly(n) means bounded by a polynomial in n.
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Now, a is fixed and v is to be determined. Taking logs, the expression to maximize is

2
—av —nln [e”" dx

X
To find the maximum, differentiate with respect to v, set the derivative to zero, and
solve for o. The derivative is
Ii Ix|2e— % dx

X
—a—+n

f eV dx

X

Setting y = ‘ﬁx| in the derivative, yields

Since the ratio of the two integrals is the expected distance squared of a d-dimensional

spherical Gaussian of standard deviation - to its center, and this is known to be

V2
%, we get —a + %‘1{ Substituting o2 for % gives —a + ndo?. Setting —a + nda? = 0
shows that the maximum occurs when o = J‘{% Note that this quantity is the square

root of the average coordinate distance squared of the samples to their mean, which
is the standard deviation of the sample. Thus, we get the following lemma.

Lemma 2.13 The maximum likelihood spherical Gaussian for a set of samples is
the Gaussian with center equal to the sample mean and standard deviation equal
to the standard deviation of the sample from the true mean.

Let x1.x2,....X, be a sample of points generated by a Gaussian probability dis-
tribution. Then g = %(x1 + x5 + -+ + x,;) is an unbiased estimator of the expected
value of the distribution. However, if in estimating the variance from the sample
set we use the estimate of the expected value rather than the true expected value,
we will not get an unbiased estimate of the variance, since the sample mean is not
independent of the sample set. One should use gt = ﬁ(xl + x2 + -+ - + x) when
estimating the variance. See Section 12.4.10 in Chapter 12.

2.10. Bibliographic Notes

The vector space model was introduced by Salton [SWY75]. There is vast literature
on the Gaussian distribution, its properties, drawing samples according to it, etc. The
reader can choose the level and depth according to his/her background. The Master
Tail Bounds theorem and the derivation of Chernoff and other inequalities from it
are from [Kan09]. The original proof of the Random Projection Theorem by Johnson
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and Lindenstrauss was complicated. Several authors used Gaussians to simplify the
proof. The proof here is due to Dasgupta and Gupta [DG99]. See [Vem04] for details
and applications of the theorem. [MUO05] and [MR95b] are textbooks covering much
of the material touched upon here.

2.11. Exercises
Exercise 2.1

1. Let x and y be independent random variables with uniform distribution in [0, 1].
What is the expected value E(x), E (x2), E(x — ), E(xy), and E(x — y)z?
2. Let x and y be independent random variables with uniform distribution in
[—3, 3]. What s the expected value E(x), E(x?), E(x—y), E(xy), and E(x—y)*?
3. What is the expected squared distance between two points generated at random
inside a unit d-dimensional cube?
Exercise 2.2 Randomly generate 30 points inside the cube [—%, %]100 and plot dis-
tance between points and the angle between the vectors from the origin to the
points for all pairs of points.

Exercise 2.3 Show that for any ¢ > 1 there exist distributions for which Markov’s
inequality is tight by showing the following:

1. For each @ = 2,3, and 4 give a probability distribution p(x) for a nonnegative
random variable x where Prob(x > a) = £

2. For arbitrary ¢ > 1 give a probability distribution for a nonnegative random
variable x where Prob(x > a) = @

Exercise 2.4 Show that for any ¢ > 1 there exist distributions for which Chebyshev’s
inequality is tight, in other words, Prob(|x — E(x)| = ¢) = Var(x) /cz.

Exercise 2.5 Let x be a random variable with probability density % for0 < x <4and
zero elsewhere.

1. Use Markov’s inequality to bound the probability that x > 3.
2. Make use of Prob(|x| > a) = Prob(x? > &) to get a tighter bound.
3. What is the bound using Prob(|x| > a) = Prob(x" > a")?

Exercise 2.6 Consider the probability distribution p(x =0) =1 — % and p(x =a) =
%. Plot the probability that x is greater than or equal to a as a function of «a for
the bound given by Markov’s inequality and by Markov’s inequality applied to x?
and x*.

Exercise 2.7 Consider the probability density function p(x) = 0 for x < 1 and p(x) =
L forx > 1
e forx > 1.

1. What should ¢ be to make p a legal probability density function?
2. Generate 100 random samples from this distribution. How close is the average
of the samples to the expected value of x?

Exercise 2.8 Let U be a set of integers and X and Y be subsets of U whose symmetric
difference XA Y is 1/10 of U. Prove that the probability that none of the elements
selected at random from U will be in X AY is less than ¢~ 017,
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Exercise 2.9 Let G be a d-dimensional spherical Gaussian with variance % in each
direction, centered at the origin. Derive the expected squared distance to the origin.

Exercise 2.10 Consider drawing a random point x on the surface of the unit sphere
in R?. What is the variance of x; (the first coordinate of x)? See if you can give an
argument without doing any integrals.

Exercise 2.11 How large must ¢ be for 99% of the volume of a 1000-dimensional
unit-radius ball to lie in the shell of e-thickness at the surface of the ball?

Exercise 2.12 Prove that 1 + x < ¢* for all real x. For what values of x is the
approximation 1 + x &~ ¢* within 0.01?

Exercise 2.13 For what value of d does the volume, V(d), of a d-dimensional unit

ball take on its maximum? Hint: Consider the ratio V:/ﬁ)l).

Exercise 2.14 A three-dimensional cube has vertices, edges, and faces. In a
d-dimensional cube, these components are called faces. A vertex is a zero-
dimensional face, an edge a one-dimensional face, etc.

1. For0 < k < d, how many k-dimensional faces does a d-dimensional cube have?

2. What is the total number of faces of all dimensions? The d-dimensional face is
the cube itself, which you can include in your count.

3. What is the surface area of a unit cube in d-dimensions (a unit cube has a side-
length of 1 in each dimension)?

4. What is the surface area of the cube if the length of each side is 2?

5. Prove that the volume of a unit cube is close to its surface.

Exercise 2.15 Consider the portion of the surface area of a unit radius, three-
dimensional ball with center at the origin that lies within a circular cone whose
vertex is at the origin. What is the formula for the incremental unit of area when
using polar coordinates to integrate the portion of the surface area of the ball
that is lying inside the circular cone? What is the formula for the integral? What is
the value of the integral if the angle of the cone is 36°? The angle of the cone is
measured from the axis of the cone to a ray on the surface of the cone.

Exercise 2.16 Consider a unit radius, circular cylinder in three-dimensions of
height 1. The top of the cylinder could be a horizontal plane or half of a circular
ball. Consider these two possibilities for a unit radius, circular cylinder in four
dimensions. In four dimensions the horizontal plane is three-dimensional and
the half circular ball is four-dimensional. In each of the two cases, what is the
surface area of the top face of the cylinder? You can use V(d) for the volume of
a unit radius, d-dimension ball, and A(d) for the surface area of a unit radius, d-
dimensional ball. An infinite-length, unit radius, circular cylinder in 4-dimensions
would be the set {(x7, x2, X3, x4)|x§ + x% + xi < 1} where the coordinate x| is the
axis.

Exercise 2.17 Given a d-dimensional circular cylinder of radius r and height A,

1. What is the surface area in terms of V(d) and A(d)?
2. What is the volume?

Exercise 2.18 How does the volume of a ball of radius 2 behave as the dimension of
the space increases? What if the radius was larger than 2 but a constant indepen-
dent of ¢? What function of d would the radius need to be for a ball of radius r to
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2. Is the volume of a unit cube concentrated close to the equator?
3. Is the surface area of a unit cube concentrated close to the equator?

Exercise 2.37 Consider a non-orthogonal basis e, es,...,eq. The e; are a set of
linearly independent unit vectors that span the space.

1. Prove that the representation of any vector in this basis is unique.

2. Calculate the squared length of z = (? l)c where z is expressed in the basis

er = (1, 0).:mde2_(—£ £)
3.Ify = Zla,e, and z = ) _; bje;, with 0 < a; < b;, is it necessarily true that the
length of z is greater than the length of y? Why or why not?

4. Consider the basis e; = (1,0) and ez = ( — % V2 %)
(a) What is the representation of the vector ((] 1) in the basis (e, e2)?

(b) What is the representation of the vector (%2, %2)?
(c) What is the representation of the vector (1, 2)?

€2 €2 €2

Exercise 2.38 Generate 20 points uniformly at random on a 900-dimensional sphere
of radius 30. Calculate the distance between each pair of points. Then, select a
method of projection and project the data onto subspaces of dimension k = 100,
50, 10, 5, 4, 3, 2, 1 and calculate the difference between +/k times the original
distances and the new pairwise distances. For each value of k£ what is the maximum
difference as a percent of +/k?

Exercise 2.39 What happens in high dimension to a lower-dimensional manifold? To
see what happens, consider a sphere of dimension 100 in a 1,000-dimensional space
when the 1,000-dimensional space is projected to a random 500-dimensional space.
Will the sphere remain essentially spherical? Given an intuitive argument justifying
your answer.

Exercise 2,40 In d-dimensions there are exactly d-unit vectors that are pairwise
orthogonal. However, if you wanted a set of vectors that were almost orthogonal,
you might squeeze in a few more. For example, in two dimensions, if almost
orthogonal meant at least 45 degrees apart, you could fit in three almost orthogonal
vectors. Suppose you wanted to find 1,000 almost orthogonal vectors in 100
dimensions. Here are two ways you could do it:

1. Begin with 1,000 orthonormal 1,000-dimensional vectors, and then project
them to a random 100-dimensional space.
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2. Generate 1,000 100-dimensional random Gaussian vectors.
Implement both ideas and compare them to see which does a better job.

Exercise 2.41 Suppose there is an object moving at constant velocity along a straight
line. You receive the GPS coordinates corrupted by Gaussian noise every minute.
How do you estimate the current position?

Exercise 2.42

1. What is the maximume-size rectangle that can be fitted under a unit-variance
Gaussian?

2. What unit area rectangle best approximates a unit-variance Gaussian if one
measures goodness of fit by the symmetric difference of the Gaussian and the
rectangle?

Exercise 2.43 Let x;. X3, ..., X, be independent samples of a random variable x with
mean p and variance o%. Let mg = % 3" x; be the sample mean. Suppose one
estimates the variance using the sample mean rather than the true mean, that is,

1 n
2
oy = — E (X — mg)?.
n e
=

Prove that E(cr_f) — =152 and thus one should have divided by n — 1 rather

n
than n.

Hint. First calculate the variance of the sample mean and show that var(mg) =
,'—fvar(x). Then calculate E(c2) = E[% Yo — m;)?] by replacing x; — mg with
(xj —m) — (mg — m).

Exercise 2.44 Generate 10 values by a Gaussian probability distribution with zero
mean and variance 1. What is the center determined by averaging the points? What
is the variance? In estimating the variance, use both the real center and the esti-
mated center. When using the estimated center to estimate the variance, use both
n =10 and n = 9. How do the three estimates compare?

Exercise 2.45 Suppose you want to estimate the unknown center of a Gaussian in
d-space that has variance 1 in each direction. Show that O(log d/¢?) random sam-
ples from the Gaussian are sufficient to get an estimate my of the true center g, so
that with probability at least 99%,

e —mylloo < €.
How many samples are sufficient to ensure that with probability at least 99%
lp —myllz < e?

. .. e 1 (x=5)2 )
Exercise 2.46 Use the probability distribution ﬁe*? T to generate 10 points.

(a) From the 10 points estimate ;. How close is the estimate of u to the true mean
of 57

(b) Using the true mean of 5, estimate a2 by the formula o2 = S = 5%
How close is the estimate of o2 to the true variance of 97
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(c) Using your estimate m of the mean, estimate o by the formula o> = % > }21
(x; — m)?. How close is the estimate of o2 to the true variance of 9?

(d) Using your estimate m of the mean, estimate o> by the formula 0% = % Z}QI
(x; — m)>. How close is the estimate of o2 to the true variance of 9?

Exercise 2.47 Create a list of the five most important things that you learned about
high dimensions.

Exercise 2.48 Write a short essay whose purpose is to excite a college freshman to
learn about high dimensions.

28



CHAPTER THREE

Best-Fit Subspaces and Singular Value
Decomposition (SVD)

3.1. Introduction

In this chapter, we examine the singular value decomposition (SVD) of a matrix.
Consider each row of an n x d matrix 4 as a point in d-dimensional space. The
singular value decomposition finds the best-fitting k-dimensional subspace for
k=1,2,3,..., for the set of n data points. Here, “best” means minimizing the
sum of the squares of the perpendicular distances of the points to the subspace,
or equivalently, maximizing the sum of squares of the lengths of the projections
of the points onto this subspace.! We begin with a special case where the subspace
is one-dimensional, namely a line through the origin. We then show that the best-
fitting k-dimensional subspace can be found by k applications of the best-fitting line
algorithm, where on the i iteration we find the best-fit line perpendicular to the
previous i — | lines. When k reaches the rank of the matrix, from these operations
we get an exact decomposition of the matrix called the singular value decomposition.

In matrix notation, the singular value decomposition of a matrix 4 with real
entries (we assume all our matrices have real entries) is the factorization of 4 into the
product of three matrices, 4 = UDVT, where the columns of U and V are orthonor-
mal® and the matrix D is diagonal with positive real entries. The columns of V are
the unit length vectors defining the best-fitting lines described above (the i column
being the unit length vector in the direction of the i’ line). The coordinates of a row
of U will be the fractions of the corresponding row of A along the direction of each
of the lines.

The SVD is useful in many tasks. Often a data matrix A4 is close to a low-rank
matrix, and it is useful to find a good low-rank approximation to 4. For any k, the
singular value decomposition of A gives the best rank-k approximation to 4 in a
well-defined sense.

I This equivalence is due to the Pythagorean Theorem. For each point. its squared length (its distance to
the origin squared) is exactly equal to the squared length of its projection onto the subspace plus the squared
distance of the point to its projection; therefore, maximizing the sum of the former is equivalent to minimizing
the sum of the latter. For further discussion, see Section 3.2.

2 A set of vectors is orthonormal if each is of length one and they are pairwise orthogonal.
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If u; and vj are columns of U and V, respectively, then the matrix equation
A = UDVT can be rewritten as

A= Z d,',"l.liVi T.
i

Since vy is a n x 1 matrix and v is a d x | matrix, ujv;? is an n x d matrix with the
same dimensions as 4. The i term in the above sum can be viewed as giving the
components of the rows of A along direction vi. When the terms are summed, they
reconstruct 4.

This decomposition of A4 can be viewed as analogous to writing a vector x in some
orthonormal basis v, vs, ..., vq. The coordinates of X = (x-v1,X-Vy...,X-Vq) are
the projections of x onto the vi’s. For SVD, this basis has the property that for any k,
the first k vectors of this basis produce the least possible total sum of squares error
for that value of £.

In addition to the singular value decomposition, there is an eigenvalue decomposi-
tion. Let 4 be a square matrix. A vector v such that Av = Av is called an eigenvector
and X the eigenvalue. When A is symmetric, the eigenvectors are orthogonal and 4
can be expressed as 4 = VDV where the eigenvectors are the columns of ¥ and
D is a diagonal matrix with the corresponding eigenvalues on its diagonal. For a
symmetric matrix A, the singular values are the absolute values of the eigenvalues.
Some eigenvalues may be negative, but all singular values are positive by definition.
If the singular values are distinct, then A’s right singular vectors and eigenvectors are
identical up to scalar multiplication. The left singular vectors of A4 are identical with
the right singular vectors of 4 when the corresponding eigenvalues are positive and
are the negative of the right singular vectors when the corresponding eigenvalues are
negative. If a singular value has multiplicity d greater than one, the corresponding
singular vectors span a subspace of dimension d, and any orthogonal basis of the
subspace can be used as the eigenvectors or singular vectors.?

The singular value decomposition is defined for all matrices, whereas the more
familiar eigenvector decomposition requires that the matrix 4 be square and certain
other conditions on the matrix to ensure orthogonality of the eigenvectors. In con-
trast, the columns of V in the singular value decomposition, called the right-singular
vectors of A, always form an orthogonal set with no assumptions on 4. The columns
of U are called the left-singular vectors and they also form an orthogonal set (see
Section 3.6). A simple consequence of the orthonormality is that for a square and
invertible matrix A, the inverse of A is VD 1UT.

Eigenvalues and eignevectors satisfy Av = Av. We will show that singular values
and vectors satisfy a somewhat analogous relationship. Since Av; is a n x 1 matrix
(vector), the matrix 4 cannot act on it from the left. But 47, which is a d x n matrix,
can act on this vector. Indeed, we will show that

Avi =d;n; and ATui = d;v;.

In words, A acting on v; produces a scalar multiple of u; and A7 acting on u; produces
the same scalar multiple of v;. Note that A7 Av; = a’%vi. The i singular vector of A

is the i eigenvector of the square symmetric matrix A7 4.

3When d = 1, there are actually two possible singular vectors, one the negative of the other. The subspace
spanned is unique.
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and so on. The process stops when we have found singular vectors vq,vs, ..., Vv,
singular values o7, 0, ...,0,, and

max |Av| = 0.

vivyve....vyp
[v|=1
The greedy algorithm found the v; that maximized | Av| and then the best-fit two-

dimensional subspace containing v;. Is this necessarily the best-fit two-dimensional
subspace overall? The following theorem establishes that the greedy algorithm finds
the best subspaces of every dimension.

Theorem 3.1 (The Greedy Algorithm Works) Let A be an n x d matrix with
singular vectors vi,va, ..., vy For | <k <, let V) be the subspace spanned by
V1,Va,..., Vi Foreach k, Vi is the best-fit k-dimensional subspace for A.

Proof The statement is obviously true for k = 1. For k = 2, let W be a
best-fit two-dimensional subspace for 4. For any orthonormal basis (w1, wa)
of W,|Aw1|> + |Awz|? is the sum of squared lengths of the projections of the
rows of 4 onto W. Choose an orthonormal basis (w;, wg) of W so that wy is
perpendicular to vy. If vy is perpendicular to W, any unit vector in W will do as
wa. If not, choose wq to be the unit vector in W perpendicular to the projection
of v; onto W. This makes wy perpendicular to vy.> Since vy maximizes |Av|2, it
follows that | Awy|?> < |Avy|2. Since vo maximizes |Av|? over all v perpendicular
to vi, |[Awa|? < |Ava|?. Thus,

|Aw1|? + [Awa|* < [Avi]? + [Avy .

Hence, V3 is at least as good as W and so is a best-fit two-dimensional subspace.

For general k, proceed by induction. By the induction hypothesis, V;_; is a
best-fit k-1-dimensional subspace. Suppose W is a best-fit k-dimensional sub-
space. Choose an orthonormal basis wy, ws, ..., wy of W so that wy is perpen-
dicular to vy, vy, ..., vig_y. Then

|AW1[> + [AWa|> + - 4 AW |? < [AV1]? + A2 )P + - + [Avi g |

since Vj;_ is an optimal X — 1 dimensional subspace. Since wy is perpendicular
to vi,Vva, ..., Vk_1, by the definition of vy, |Awk|2 < |Avk|2. Thus,

| w1+ |Awal” + - + | AW [? + [Aw |
< [Av1? + [Ava? + -+ AV + A,
proving that V7 is at least as good as W and hence is optimal. |
Note that the n-dimensional vector Av; is a list of lengths (with signs) of the
projections of the rows of A4 onto v;. Think of |Av;| = 6;(A4) as the component of
the matrix 4 along v;. For this interpretation to make sense, it should be true that
adding up the squares of the components of A along each of the v; gives the square

of the “whole content of 4”. This is indeed the case and is the matrix analogy of
decomposing a vector into its components along orthogonal directions.

3This can be seen by noting that vq is the sum of two vectors that each are individually perpendicular to
wa, namely the projection of v1 to W and the portion of v orthogonal to W.
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Consider one row, say aj, of A. Since vy, va, ..., Vv, span the space of all rows of
“ 2 . . . r .
A, aj-v = 0 for all v perpendicular to vy, v, ..., v;. Thus, for each row aj, > ., (a; -
i)t = |aj|2. Summing over all rows j,
n r n

DlalF =" @ v =) (@ -v) =) [Avi[* =) ol (A).
=1 1 i=1 i=1

j=1 i=1 i=1 j=

But 377, |aj|? = PR i aﬁ,, the sum of squares of all the entries of A. Thus,
the sum of squares of the singular values of A4 is indeed the square of the “whole
content of 4,”i.e., the sum of squares of all the entries. There is an important norm
associated with this quantity, the Frobenius norm of A4, denoted ||4||r defined as

— 2
lAllr = [3ay.
jik

Lemma 3.2 For any matrix A, the sum of squares of the singular values equals
the square of the Frobenius norm. That is, > o*f(A) = ||A| |%_~.

Proof By the preceding discussion. |

The vectors vy, va, ..., vy are called the right-singular vectors. The vectors Av;
form a fundamental set of vectors, and we normalize them to length 1 by

1

wy=—-—41
ai(A4)

vi.
Later we will show that u; similarly maximizes [u” 4| over all u perpendicular to
uy,...,u;_1. These u; are called the left-singular vectors. Clearly, the right-singular
vectors are orthogonal by definition. We will show later that the left-singular vectors
are also orthogonal.

3.4. Singular Value Decomposition (SVD)

Let 4 be an n x d matrix with singular vectors vy, vs, ..., v, and corresponding
singular values o1, 03, ...,0,. The left-singular vectors of 4 are u; = U%_Avi where
oy Is a vector whose coordinates correspond to the projections of the rows of A
onto v;. Each (r;uiv;r is a rank one matrix whose rows are the “v; components” of the
rows of A4, i.e., the projections of the rows of A in the v; direction. We will prove that
A can be decomposed into a sum of rank one matrices as

r
A= Zafujvir.
i=1

Geometrically, each point is decomposed in A4 into its components along each of the
r orthogonal directions given by the v;. We will also prove this algebraically. We begin
with a simple lemma that two matrices 4 and B are identical if Av = Bv for all v.

Lemma 3.3 Matrices A and B are identical if and only if for all vectors v,
Av = Bv.
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3.4. SINGULAR VALUE DECOMPOSITION (SVD)

Proof Clearly, if A = B, then Av = Bv for all v. For the converse, suppose
that Av = Bv for all v. Let e; be the vector that is all zeros except for the i
component, which has value 1. Now Ae; is the i column of A4, and thus 4 = B

if for each i, Ae; = Be;. [ |

Theorem 3.4 Let A be an n x d matrix with right-singular vectors vi,va, ..., Vy,
left-singular vectorsuy, g, ..., Uy, and corresponding singular values oy, o2, . . ., 0.
Then

;
A= Z cr,-uiviT.
i=1

Proof We first show that multiplying both 4 and }"}_; oyu;v by vj results in
equality.

r
E O'flliViTVj = O‘jllj = AVj.
i=l

Since any vector v can be expressed as a linear combination of the singular

vectors plus a vector perpendicular to the v;, Av = >_7_, cr,-uiviT v for all v and
. N T

by Lemma 3.3, 4 =), oiuV; [ ]

The decomposition 4 = ), o*r-uiv;r is called the singular value decomposition,
SVD, of A. We can rewrite this equation in matrix notation as A = UDV T where u; is

the i column of U, viT is the i’ row of V7, and Dis a diagonal matrix with o; as the

ith entry on its diagonal (see Figure 3.2). For any matrix A4, the sequence of singular
values is unique, and if the singular values are all distinct, then the sequence of singu-
lar vectors is unique up to signs. However, when some set of singular values are equal,
the corresponding singular vectors span some subspace. Any set of orthonormal
vectors spanning this subspace can be used as the singular vectors.

D yT
rxXr rxd

nxd nxr

Figure 3.2: The SVD decomposition of an n x d matrix.

35



BEST-FIT SUBSPACES AND SINGULAR VALUE DECOMPOSITION (SVD)

3.5. Best Rank-k Approximations

Let A be an n x d matrix and think of the rows of A as n points in d-dimensional
space. Let

,
A= Z cr,-uiviT
i=1

be the SVD of A. Fork € {1,2,...,r}, let

k
T
Ak = Z oV
i=1

be the sum truncated after k terms. It is clear that 4; has rank k. We show that 4. is
the best rank-k approximation to A, where error is measured in the Frobenius norm.
Geometrically, this says that vq, ..., vy define the k-dimensional space minimizing
the sum of squared distances of the points to the space. To see why, we need the
following lemma.

Lemma 3.5 The rows of Ay are the projections of the rows of A onto the subspace
Vi spanned by the first k singular vectors of A.

Proof Let a be an arbitrary row vector. Since the vj are orthonormal, the pro-
jection of the vector a onto V} is given by Z‘f:l (a-vi)vi!. Thus, the matrix

whose rows are the projections of the rows of 4 onto V7, is given by Zf:, AviviT.
This last expression simplifies to

k k
ZAViViT = ZO’,‘uiViT = Ak.
i=1 i=1

Theorem 3.6 For any matrix B of rank at most k

4 — Akllp < 14— Bllp

Proof Let B minimize |4 — BH% among all rank & or less matrices. Let V' be
the space spanned by the rows of B. The dimension of V' is at most k. Since B
minimizes |4 — BII%, it must be that each row of B is the projection of the
corresponding row of A4 onto V: Otherwise, replace the row of B with the
projection of the corresponding row of A4 onto V. This still keeps the row space
of B contained in V', and hence the rank of B is still at most k. But it reduces
|4 — B||%, contradicting the minimality of ||4 — B]|F.

Since each row of B is the projection of the corresponding row of A, it
follows that |4 — B||% is the sum of squared distances of rows of A to V. Since
Aj. minimizes the sum of squared distance of rows of A4 to any k-dimensional
subspace, from Theorem 3.1, it follows that |4 — Ag|lr < |4 — Bl . [ |

In addition to the Frobenius norm, there is another matrix norm of interest.
Consider an n x d matrix 4 and a large number of vectors where for each vector
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x we wish to compute Ax. It takes time O(nd) to compute each product 4x, but if
we approximate 4 by A; = Zf?:l oyvi! and approximate Ax by A;x, it requires
only &k dot products of d-dimensional vectors, followed by a sum of k n-dimensional
vectors, and takes time O(kd + kn), which is a win provided & « min(d, n). How
is the error measured? Since x is unknown, the approximation needs to be good
for every x. So we take the maximum over all x of |(A; — 4)x|. Since this would
be infinite if |x| could grow without bound, we restrict the maximum to |x| < 1.
Formally, we define a new norm of a matrix 4 by

[|A|[> = max |Ax|.
[x|<I1

This is called the 2-norm or the spectral norm. Note that it equals o1(A).

As an application consider a large database of documents that form rows of an
n x d matrix A. There are d terms, and each document is a d-dimensional vector with
one component for each term, which is the number of occurrences of the term in
the document. We are allowed to “preprocess™ 4. After the preprocessing, we receive
queries. Each query x is an d-dimensional vector that specifies how important each
term is to the query. The desired answer is an n-dimensional vector that gives the
similarity (dot product) of the query to each document in the database, namely Ax,
the “matrix-vector” product. Query time is to be much less than preprocessing time,
since the idea is that we need to answer many queries for the same database. There
are many other applications where one performs many matrix vector products with
the same matrix. This technique is applicable to these situations as well.

3.6. Left Singular Vectors

The left singular vectors are also pairwise orthogonal. Intuitively if w; and uj,7 < j.
were not orthogonal, one would suspect that the right singular vector vj had a com-
ponent of vj, which would contradict that v; and v; were orthogonal. Let i be the
smallest integer such that u; is not orthogonal to all other u;. Then to prove that u;
and u; are orthogonal, we add a small component of vj to vj, normalize the result to
be a unit vector
Vg _ Vi+ € vj
Vi + €vj|

and show that |4v]| > |4vj|, a contradiction.
Theorem 3.7 The left singular vectors are pairwise orthogonal.

Proof Let i be the smallest integer such that wu; is not orthogonal to some
other u;. Without loss of generality, assume that uiT uj =46 > 0.If uiTuj <0,
then just replace u; with —u;. Clearly j > i, since / was selected to be the smallest
such index. For ¢ > 0, let
v = Vi + €Vj
Vvt evs|

Notice that v; is a unit length vector.

o5 + 04

’

v,
l V142
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Now consider computing B.

2 2 T 2 T 2 2 T T
B = (Z o ViV; ) z oivivi | = erf o vi(vi vj)vy©.
i j i

When i # j, the dot product v; TVj is zero by orthogonality.® Thus, B> = Y afviviT.
In computing the & power of B, all the cross-product terms are zero and

;
B = Z szkViViT.
i=1

If 01 > 0, then the first term in the summation dominates, so B — o?vyv,T. This
means a close estimate to vy can be computed by simply taking the first column of
B and normalizing it to a unit vector.

3.7.1. A Faster Method

A problem with the above method is that 4 may be a very large, sparse matrix, say a
108 x 10® matrix with 10? non-zero entries. Sparse matrices are often represented by
just a list of non-zero entries, say a list of triples of the form (i,/, a;;). Though A4 1s
sparse, B need not be and in the worse case may have all 10'° entries non-zero’ and
it is then impossible to even write down B, let alone compute the product B2. Even
if 4 is moderate in size, computing matrix products is costly in time. Thus, a more
efficient method is needed.

Instead of computing B, select a random vector x and compute the product B*x.
The vector x can be expressed in terms of the singular vectors of B augmented to a
full orthonormal basis as x = Zf’zl ¢;vi. Then

d
B!‘x ~ (aly‘vlvlT) ( Zf’i"i ) = alzkclvl.
i=1
Normalizing the resulting vector yields v;. the first singular vector of 4. The way
BFx is computed is by a series of matrix vector products, instead of matrix products.
Bfx = ATA... AT Ax, which can be computed right-to-left. This consists of 2k
vector times sparse matrix multiplications.

To compute k singular vectors, one selects a random vector r and finds an
orthonormal basis for the space spanned by r, Ar, ..., A<~ 'r. Then compute 4 times
each of the basis vectors, and find an orthonormal basis for the space spanned by
the resulting vectors. Intuitively, one has applied A4 to a subspace rather than a single
vector. One repeatedly applies 4 to the subspace, calculating an orthonormal basis
after each application to prevent the subspace collapsing to the one-dimensional
subspace spanned by the first singular vector. The process quickly converges to the
first k singular vectors.

An issue occurs if there is no significant gap between the first and second singular
values of a matrix. Take for example the case when there is a tie for the first singular
vector and o = o7. Then, the above argument fails. We will overcome this hurdle.

The “outer product™ vivJ-T is a matrix and is not zero even for i # j.
E.g., suppose each entry in the first row of A is non-zero and the rest of A is zero.
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Theorem 3.11 below states that even with ties, the power method converges to some
vector in the span of those singular vectors corresponding to the “nearly highest”
singular values. The theorem assumes it is given a vector x, which has a component
of magnitude at least § along the first right singular vector v of 4. We will see in
Lemma 3.12 that a random vector satisfies this condition with fairly high probability.

Theorem 3.11 Let A be an n x d matrix and X a unit length vector in R? with
|xTvq| = 8, where § > 0. Let V be the space spanned by the right singular vectors
of A corresponding to singular values greater than (1 — €) o1. Let w be the unit

vector after k = ln(l/sg} iterations of the power method, namely
(AT 4)" x
W = 7]{.
(AT 4)" x|

Then w has a component of at most € perpendicular to V.

Proof Let

r
A= ZﬂiuiViT
i=1

be the SVD of A. If the rank of A is less than d, then for convenience complete
{v1,Vg,...v,} Into an orthonormal basis {vy,vs,...v,} of d-space. Write x in
the basis of the v;’s as

d
X = E CiVj.

Since (47 A% = YO, cr:”‘v1 , it follows that (A7 A)kx = Zr_l ofevi. By
hypothesis, |¢;| = 5

Suppose that o1, 02, .. ., gy, are the singular values of A4 that are greater than
or equal to (1 — &) o1 and that 0,11, . . . , 64 are the singular values that are less
than (1 — &) o1. Now,

d
T 1ko12 2k 4k 2 4k 2 2
(A" A)x|- = Zcr[ Civ; ZU i =o' = (71 kg2,

The component of (4T A)*x|? perpendicu]ar to the space V' is

Z 0,4;"6 < (1= )4A 0,14!( Z < (1- )4!( O,i’-lk,
i=m+1 i=m+1
since fo:l cf' = |x| = 1 Thus the component of w perpendicular to ¥ has

)41’(

squared length at most dnd so its length is at most

?L57
(1— E)zkcr]y‘ (11— )2k - o 2ke
Solzk B b) -6

since k = ln(lzf‘” ) ]

:S,
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Lemma 3.12 Lety € R" be a random vector with the unit-variance spherical
Gaussian as its probability density. Normalize y to be a unit length vector by setting
x = y/|yl|. Let v be any unit length vector. Then

1 1
Prob \xTvl < ) < — 4+ 3¢~ 4/%,
( 20/d 10

Proof Proving for the unit length vector x that Prob(\xTvl < ﬁ) < % +
3e~4/% is equivalent to proving for the unnormalized vector y that Prob(|y| >
2Vd) < 3¢79/% and Prob(lyTv| < {5) < 1/10. That Prob(ly| > 2+/d) is at
most 3¢9 follows from Theorem 2.9 with +/d substituted for B. The

probability that [y”v| < £ is at most 1/10 because y”v is a random, zero

mean, unit-variance Gaussian with density at most 1/+/27 < 1/2 in the
interval [—1/10,1/10], so the integral of the Gaussian over the interval is at
most 1/10. [ |

3.8. Singular Vectors and Eigenvectors

For a square matrix B, if Bx = Ax, then x is an eigenvector of B and A is the
corresponding eigenvalue. We saw in Section 3.7, if B = A7 A, then the right singular
vectors vj of A are eigenvectors of B with eigenvalues crf. The same argument shows

that the left singular vectors u; of A4 are eigenvectors of AAT with eigenvalues sz_

The matrix B = A7 A has the property that for any vector x,x’ Bx > 0. This
i1s because B = Zjar.zviviT and for any x, x'v;v;Tx = (x’v;))? = 0. A matrix
B with the property that x” Bx > 0 for all x is called positive semi-definite. Every
matrix of the form A7 4 is positive semi-definite. In the other direction, any positive
semi-definite matrix B can be decomposed into a product A7 4, and so its eigenvalue
decomposition can be obtained from the singular value decomposition of 4. The

interested reader should consult a linear algebra book.

3.9. Applications of Singular Value Decomposition
3.9.1. Centering Data

Singular value decomposition is used in many applications, and for some of these
applications it is essential to first center the data by subtracting the centroid of the
data from each data point.® If you are interested in the statistics of the data and how
it varies in relationship to its mean, then you would center the data. On the other
hand, if you are interested in finding the best low-rank approximation to a matrix,
then you do not center the data. The issue is whether you are finding the best-fitting
subspace or the best-fitting affine space. In the latter case you first center the data
and then find the best-fitting subspace. See Figure 3.3.

We first show that the line minimizing the sum of squared distances to a set of
points, if not restricted to go through the origin, must pass through the centroid of
the points. This implies that if the centroid is subtracted from each data point, such a

8 The centroid of a set of points is the coordinate-wise average of the points.
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NS

Figure 3.3: If one wants statistical information relative to the mean of the data, one needs to center the
data. If one wants the best low-rank approximation, one would not center the data.

line will pass through the origin. The best-fit line can be generalized to k& dimensional
“planes.” The operation of subtracting the centroid from all data points is useful in
other contexts as well. We give it the name centering data.

Lemma 3.13 The best-fit line ( minimizing the sum of perpendicular distances
squared) of a set of data points must pass through the centroid of the points.

Proof Subtract the centroid from each data point so that the centroid is 0. After
centering the data, let £ be the best-fit line and assume for contradiction that ¢
does not pass through the origin. The line £ can be written as {a + Av|A € R},
where a is the closest point to 0 on £ and v is a unit length vector in the direction
of ¢, which is perpendicular to a. For a data point a;, let dist(a;, £) denote its
perpendicular distance to £. By the Pythagorean theorem, we have |a; — a|> =
dist(a;, £)*> + (v-a;)?, or equivalently, dist(a;, £)> = |a;—a|*> — (v-a;)%. Summing
over all data points:
n n

S distcar, = > (1a —al— v-a)?) =3 (il + [a~ 2852 — (v a0)?)

i=1 i=1 i=1

n n
= Z |ai|2 + J=1\a|2 —2a- (Z ai) - Z(v . ai)2
i=l1 i i=1
=Y lail’ +nfal® =) (v-a)’,
p

i
where we used the fact that since the centroid is 0, ), a; = 0. The above expres-

sion is minimized when a = 0, so the line £’ = {Av : A € R} through the origin
is a better fit than £, contradicting £ being the best-fit line. |

A statement analogous to Lemma 3.13 holds for higher-dimensional objects.
Define an affine space as a subspace translated by a vector. So an affine space is a set
of the form

k
v0+ZCgvi|c1,cz,...,ck cR

i=1
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Here, vg is the translation and vj,vs,..., vy form an orthonormal basis for the
subspace.

Lemma 3.14 The k-dimensional affine space that minimizes the sum of squared
perpendicular distances to the data points must pass through the centroid of the
points.

Proof We only give a brief idea of the proof, which is similar to the previous
lemma. Instead of (v - a;)%, we will now have ZJ’:‘:] (vj- a;)%, where the vi,j =1,
2,...,k are an orthonormal basis of the subspace through the origin parallel
to the affine space. [

3.9.2. Principal Component Analysis

The traditional use of SVD is in principal component analysis (PCA). PCA is illus-
trated by a movie recommendation setting where there are n customers and ¢ movies.
Let matrix 4 with elements g;; represent the amount that customer 7 likes movie j.
One hypothesizes that there are only & underlying basic factors that determine how
much a given customer will like a given movie, where & is much smaller than » or d.
For example, these could be the amount of comedy, drama, and action, the novelty
of the story, etc. Each movic can be described as a k-dimensional vector indicating
how much of these basic factors the movie has, and each customer can be described
as a k-dimensional vector indicating how important each of these basic factors is
to that customer. The dot product of these two vectors is hypothesized to deter-
mine how much that customer will like that movie. In particular, this means that the
n x d matrix A can be expressed as the product of an n x k& matrix U describing
the customers and a k x d matrix V" describing the movies (see Figure 3.4). Finding
the best rank-k approximation 4y by SVD gives such a U and V. One twist is that 4
may not be exactly equal to UV, in which case 4 — UV is treated as noise. Another
issue is that SVD gives a factorization with negative entries. Nonnegative matrix
factorization (NMF) is more appropriate in some contexts where we want to keep
entries nonnegative. NMF is discussed in Chapter 9.

In the above setting, 4 was available fully, and we wished to find U and V' to
identify the basic factors. However, in a case such as movie recommendations, each

factors

movies

customers A = U V

Figure 3.4: Customer-movie data
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for k <« d. Interestingly, we will see that the subspace spanned by the k-centers is
essentially the best-fit k-dimensional subspace that can be found by singular value
decomposition.

Lemma 3.15 Suppose p is a d-dimensional spherical Gaussian with center p and
standard deviation o. The density of p projected onto a k-dimensional subspace V
is a spherical Gaussian with the same standard deviation.

Proof Rotate the coordinate system so ¥ is spanned by the first k coordinate
vectors. The Gaussian remains spherical with standard deviation o, although
the coordinates of its center have changed. For a point x = (x1, x2,..., Xg), we
will use the notation X' = (x1,x2,...x) and X" = (Xgy1,X%42,...,xp). The
density of the projected Gaussian at the point (x, x2,...,Xg) is

"2

ST S S B
ce 20’ e 2 dx"=ce 207

x"

This implies the lemma. |

We now show that the top k singular vectors produced by the SVD span the space
of the k centers. First, we extend the notion of best fit to probability distributions.
Then we show that for a single spherical Gaussian whose center is not the origin,
the best-fit one-dimensional subspace is the line though the center of the Gaussian
and the origin. Next, we show that the best-fit k-dimensional subspace for a single
Gaussian whose center is not the origin is any k-dimensional subspace containing the
line through the Gaussian’s center and the origin. Finally, for k& spherical Gaussians,
the best-fit k-dimensional subspace is the subspace containing their centers. Thus,
the SVD finds the subspace that contains the centers (see Figure 3.5).

Recall that for a set of points, the best-fit line is the line passing through the origin
that maximizes the sum of squared lengths of the projections of the points onto the
line. We extend this definition to probability densities instead of a set of points.

1. The best fit I-dimension subspace to a spher-
ical Gaussian is the line through its center
and the origin.

2. Any k-dimensional subspace containing the
line is a best fit k-dimensional subspace for
the Gaussian.

3. The best fit k-dimensional subspace for k
spherical Gaussians is the subspace contain-
ing their centers.

Figure 3.5: Best fit subspace to a spherical Gaussian.
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Definition 3.1 If p is a probability density in d space, the best-fit line for p is the
line in the vy direction where

= E
vy =arg ‘mla)% me[(v x)* ]

For a spherical Gaussian centered at the origin, it is easy to see that any line passing
through the origin is a best-fit line. Our next lemma shows that the best-fit line for a
spherical Gaussian centered at g # 0 is the line passing through g and the origin.

Lemma 3.16 Let the probability density p be a spherical Gaussian with center
i # 0. The unique best-fit one-dimensional subspace is the line passing through p
and the origin. If p = 0, then any line through the origin is a best-fit line.

Proof For a randomly chosen x (according to p) and a fixed unit length
vector v,

Xﬁfﬂ[(VTX)z] =E, wl (x — ) + v p)’]

x~p

|
= [0 ) 426 ) (6 x ) + (v )]
[ v (x—p) 2] vT,u)E[vT (x— [L)] + (VT;L)Z
- xé,,[(vf x—w)’]+ (vTn)?

=02+ (vIp)’

where the fourth line follows from the fact that E[v’ (x — p)] = 0, and the fifth
line follows from the fact that E[(v! (x — ,u,))z] 1s the variance in the direction v.
The best-fit line v maximizes Exup[(vTx)EJ and therefore maximizes (va,)z.
This is maximized when v is aligned with the center p. To see uniqueness, just
note that if p # 0, then v’ u is strictly less when v is not aligned with the
center. |

We now extend Definition 3.1 to k-dimensional subspaces.
Definition 3.2 [If p is a probability density in d-space then the best-fit
k-dimensional subspace Vi, is
Vi = argmax FE (Iproj(x, V)IZ),
|
dim(V)=k
where proj(x, V') is the orthogonal projection of X onto V.

Lemma 3.17 For a spherical Gaussian with center i, a k-dimensional subspace
is a best-fit subspace if and only if it contains \.

Proof If p = 0, then by symmetry any k-dimensional subspace is a best-fit
subspace. If u # 0, then the best-fit line must pass through g by Lemma 3.16.
Now, as in the greedy algorithm for finding subsequent singular vectors, we
would project perpendicular to the first singular vector. But after the projection,
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the mean of the Gaussian becomes 0, and any vectors will do as subsequent
best-fit directions. |

This leads to the following theorem.

Theorem 3.18 If p is a mixture of k spherical Gaussians, then the best-fit k-
dimensional subspace contains the centers. In particular, if the means of the Gaus-
sians are linearly independent, the space spanned by them is the unique best-fit
k-dimensional subspace.

Proof Let p be the mixture wyp| + wapr + - - + wipi. Let V7 be any subspace
of dimension k or less. Then,

. 2y _ N o 2
E (Iprojx, 11%) = Zl wi £ (Iprojx, 1I7).
1=
If V contains the centers of the densities p;, by Lemma 3.17, each term in the
summation is individually maximized, which implies the entire summation is

maximized, proving the theorem. |

For an infinite set of points drawn according to the mixture, the k-dimensional
SVD subspace gives exactly the space of the centers. In reality, we have only a large
number of samples drawn according to the mixture. However, it is intuitively clear
that as the number of samples increases, the set of sample points will approximate
the probability density, and so the SVD subspace of the sample will be close to the
space spanned by the centers. The details of how close it gets as a function of the
number of samples are technical, and we do not carry this out here.

3.9.4. Ranking Documents and Web Pages

An important task for a document collection is to rank the documents according to
their intrinsic relevance to the collection. A good candidate definition of “intrinsic
relevance” is a document’s projection onto the best-fit direction for that collection,
namely the top left-singular vector of the term-document matrix. An intuitive rea-
son for this is that this direction has the maximum sum of squared projections of
the collection and so can be thought of as a synthetic term-document vector best
representing the document collection.

Ranking in order of the projection of each document’s term vector along the
best-fit direction has a nice interpretation in terms of the power method. For this,
we consider a different example, that of the web with hypertext links. The World
Wide Web can be represented by a directed graph whose nodes correspond to web
pages and directed edges to hypertext links between pages. Some web pages, called
authorities, are the most prominent sources for information on a given topic. Other
pages, called /ubs, are ones that identify the authorities on a topic. Authority pages
are pointed to by many hub pages and hub pages point to many authorities. One
is led to what seems like a circular definition: a hub is a page that points to many
authorities and an authority is a page that is pointed to by many hubs.

One would like to assign hub weights and authority weights to each node of the
web. If there are n nodes, the hub weights form an n-dimensional vector u and the
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authority weights form an n-dimensional vector v. Suppose A is the adjacency matrix
representing the directed graph. Here a;; is 1 if there is a hypertext link from page i to
page j and 0 otherwise. Given hub vector u, the authority vector v could be computed
by the formula

d
v o< ) uidy,
i=1

since the right hand side is the sum of the hub weights of all the nodes that point to
node j. In matrix terms,

v=A"u/|ATul.

Similarly, given an authority vector v, the hub vector u could be computed by
u = Av/|Av|. Of course, at the start, we have neither vector. But the above discus-
sion suggests a power iteration. Start with any v. Set u = Av, then set v = A7 u,
then renormalize and repeat the process. We know from the power method that this
converges to the left-singular and right-singular vectors. So after sufficiently many
iterations, we may use the left vector u as the hub weights vector and project each
column of 4 onto this direction and rank columns (authorities) in order of this
projection. But the projections just form the vector 47 u that equals a multiple of
v. So we can just rank by order of the v;. This is the basis of an algorithm called the
HITS algorithm, which was one of the early proposals for ranking web pages.

A different ranking called pagerank is widely used. It is based on a random walk
on the graph described above. We will study random walks in detail in Chapter 4.

3.9.5. An Illustrative Application of SVD

A deep neural network in which inputs images are classified by category such as cat,
dog, or car maps an image to an activation space. The dimension of the activation
space might be 4,000, but the set of cat images might be mapped to a much lower-
dimensional manifold. To determine the dimension of the cat manifold, we could
construct a tangent subspace at an activation vector for a cat image. However, we
only have 1,000 cat images and they are spread far apart in the activation space. We
need a large number of cat activation vectors close to each original cat activation
vector to determine the dimension of the tangent subspace. To do this we want to
slightly modify each cat image to get many images that are close to the original. One
way to do this is to do a singular value decomposition of an image and zero out a few
very small singular values. If the image is 1,000 by 1,000, there will be 1,000 singular
values. The smallest 100 will be essentially zero, and zeroing out a subset of them
should not change the image much and produce images whose activation vectors
are very close. Since there are (1]0(?) subsets of 10 singular values, we can generate,
say, 10,000 such images by zeroing out 10 singular values. Given the corresponding
activation vectors, we can form a matrix of activation vectors and determine the rank
of the matrix, which should give the dimension of the tangent subspace to the original
cat activation vector.

To determine the rank of the matrix of 10,000 activation vectors, we again do a
singular value decomposition. To determine the actual rank, we need to determine
a cutoft point below which we conclude the remaining singular values are noise.
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We might consider a sufficient number of the largest singular values so that their
sum of squares is 95% of the square of the Frobenius norm of the matrix or look to
see where there is a sharp drop in the singular values.

3.9.6. An Application of SVD to a Discrete Optimization Problem

In clustering a mixture of Gaussians, SVD was used as a dimension reduction tech-
nique. It found a k-dimensional subspace (the space of centers) of a d-dimensional
space and made the Gaussian clustering problem easier by projecting the data to
the subspace. Here, instead of fitting a model to data, we consider an optimization
problem where applying dimension reduction makes the problem easier. The use of
SVD to solve discrete optimization problems is a relatively new subject with many
applications. We start with an important NP-hard problem, the maximum cut prob-
lem for a directed graph G(V, E).

The maximum cut problem is to partition the nodes of an n-node directed graph
into two subsets S and S so that the number of edges from S to S is maximized. Let
A be the adjacency matrix of the graph. With each vertex i, associate an indicator
variable x;. The variable x; will be set to 1 for i € § and 0 for i € S. The vector
X = (x1,X32,...,X,) 1s unknown, and we are trying to find it or, equivalently, the cut,
so as to maximize the number of edges across the cut. The number of edges across

the cut is precisely
Zx,-(l — Xj)ﬂ,’j.
i
Thus, the maximum cut problem can be posed as the optimization problem:
Maximize ) x;(1 — x;)a; subject to x; € {0, 1}.
i
In matrix notation,
Z xi(1 = xpa; = x" A1 — x),
Lf

where 1 denotes the vector of all 1's. So, the problem can be restated as

Maximize x A(1 —x) subject to x; € {0, 1}. (3.1)

This problem is NP-hard. However we will see that for dense graphs — that is,

graphs with € (n?) edges and therefore whose optimal solution has size Q (#*)!" — we
can use the SVD to find a near-optimal solution in polynomial time. To do so we will
begin by computing the SVD of A4 and replacing 4 by 4; = Z:(:l oiuyvi! in (3.1)
to get

Maximize xTA;\.(l —x) subject to x; € {0, 1}. (3.2)

Note that the matrix Ay is no longer a 0-1 adjacency matrix.
We will show that:

T _ T _ . n’
1. For each 0-1 vector x,x! A;(1 — x) and x* A(1 — x) differ by at most 7T

Thus, the maxima in (3.1) and (3.2) differ by at most this amount.

10 A ny graph of m edges has a cut of size at least m/2. This can be seen by noting that the expected size of
the cut for a random x € {0, 1}" is exactly m/2.
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3.11. Exercises

Exercise 3.1 (Least squares vertical error) In many experiments one collects the value
of a parameter at various instances of time. Let y; be the value of the parameter
y at time x;. Suppose we wish to construct the best linear approximation to the
data in the sense that we wish to minimize the mean square error. Here error is
measured vertically rather than perpendicular to the line. Develop formulas for m
and b to minimize the mean square error of the points {(x;, v;) |1 <i < n} to the
line y = mx + b.

Exercise 3.2 Given five observed variables — height, weight, age, income, and blood
pressure of n people — how would one find the best least squares fit affine subspace
of the form

ay (height) + a> (weight) + a3 (age) + a4 (income) + as (blood pressure) = ag?

Here ay,as, ..., as are the unknown parameters. If there is a good best-fit four-
dimensional affine subspace, then one can think of the points as lying close to
a four-dimensional sheet rather than points lying in five dimensions. Why might
it be better to use the perpendicular distance to the affine subspace rather than
vertical distance where vertical distance is measured along the coordinate axis
corresponding to one of the variables?

Exercise 3.3 Manually find the best-fit lines (not subspaces, which must contain the
origin) through the points in the sets below. Best fit means minimize the perpen-
dicular distance. Subtract the center of gravity of the points in the set from each
of the points in the set and find the best-fit line for the resulting points. Does the
best-fit line for the original data go through the origin?

1. (4,4)(6,2)
2.(4,2)(4.4)(6,2) (6,4)
3.(3,2.5) (3,5 (5,1) (5,3.5)

Exercise 3.4 Manually determine the best-fit line through the origin for each of the
following sets of points. Is the best-fit line unique? Justify your answer for each of
the subproblems.

1. {(0, 1), (1,0)}
2.{(0,1), (2,0}

Exercise 3.5 Manually find the left-singular and right-singular vectors, the singular
values, and the SVD decomposition of the matrices in Figure 3.6.

Exercise 3.6 Let 4 be a square n x n matrix whose rows are orthonormal. Prove that
the columns of A4 are orthonormal.

Exercise 3.7 Suppose A is a n x n matrix with block diagonal structure with k equal
size blocks where all entries of the i block are a; witha; > a3 > --- > a; > 0.
Show that A4 has exactly & non-zero singular vectors v, va, ..., vy where v; has the
value (f{)l/2 in the coordinates corresponding to the i’ block and 0 elsewhere. In
other words, the singular vectors exactly identify the blocks of the diagonal. What
happens if a; = a» = -+ = a,? In the case where the a; are equal, what is the
structure of the set of all possible singular vectors?
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(1,3)

(0,3) . 0 2
11 s 0

M=| 0 3 (0,2) ¢ M=
(1.1) 30 (3.1) L3
L] . 3 1

(3,0)
. (2,0)_
Figure 3.6 a Figure 3.6 b

Figure 3.6: SVD problem

Hint. By symmetry, the top singular vector’s components must be constant in

each block.

Exercise 3.8 Interpret the first right and left-singular vectors for the document term
matrix.

Exercise 3.9 Verify that the sum of r-rank one matrices } |_, cixiy;! can be written
as XCYT, where the x; are the columns of X, the y; are the columns of Y, and C
is a diagonal matrix with the constants ¢; on the diagonal.

Exercise 3.10 Let _/_, o/u;v;’ be the SVD of 4. Show that |[u] 4| = oy and that
}qu| = ma;& |uTA|.
[u|=

Exercise 3.11 If a1, 09,..., 0, are the singular values of 4 and vy, v»,..., v, are the
corresponding right-singular vectors, show that

1. ATA=Y"_, arfzviviT

2. V1, Vv2,... Vv, are eigenvectors of AT A.

3. Assuming that the eigenvectors of A7 A are unique up to multiplicative con-
stants, conclude that the singular vectors of A (which by definition must be
unit length) are unique up to sign.

Exercise 3.12 Let ) ; U,-u,-vf be the singular value decomposition of a rank r matrix

A. Let Ay = Zf."zl ou;v] be a rank k approximation to A for some k < r. Express
the following quantities in terms of the singular values {o;.1 < i < r}.

L || 4gl1%
2. |4kl
3. (14 — 4gl|:
4. 1|14 — 43

Exercise 3.13 If A is a symmetric matrix with distinct singular values, show that the
left and right singular vectors are the same and that 4 = VDV,

Exercise 3.14 Use the power method to compute the singular value decomposition

of the matrix
1 2
a=(5 1)
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Exercise 3.15 Consider the matrix

1 2
-1 2
A= 1 =2
-1 =2

1. Run the power method starting from x = ({) for k = 3 steps. What does this

give as an estimate of v?

2. What actually are the v;’s, o;’s, and u;’s? It may be easiest to do this by computing

the eigenvectors of B = A7 4.

3. Suppose matrix A is a database of restaurant ratings: each row is a person, each

column is a restaurant, and a;; represents how much person i likes restaurant j.
What might v represent? What about #;? How about the gap o1 — 027

Exercise 3.16

I.

Write a program to implement the power method for computing the first singu-
lar vector of a matrix. Apply your program to the matrix

1 2 3 - 9 10
2 3 4 ... 10 0
A=| : & :
9 10 0 --- 0 O
0 0 0 --- 0 0

2. Modify the power method to find the first four singular vectors of a matrix 4

as follows. Randomly select four vectors and find an orthonormal basis for the
space spanned by the four vectors. Then multiply each of the basis vectors times
A and find a new orthonormal basis for the space spanned by the resulting four
vectors. Apply your method to find the first four singular vectors of matrix 4
from part 1. In Matlab the command orth finds an orthonormal basis for the
space spanned by a set of vectors.

Exercise 3.17

I.

For n = 5,10,...,25 create random graphs by generating random vectors

X =(x1,X2,...,X) and y = (y1,¥2,...,yn). Create edges (xi, yi) — (Xi+1, Vi+1)
fori =1 :nand anedge (x,, yu) — (x1,¥1).

. For each graph create a new graph by selecting the midpoint of each edge for

the coordinates of the vertices and add edges between vertices corresponding
to the midpoints of two adjacent edges of the original graph. What happens
when you iterate this process? It is best to draw the graphs.

. Repeat the above step but normalize the vectors x and y to have unit length

after cach iteration. What happens?

. One could implement the process by matrix multiplication where x(7)

and y(f) are the vectors at the ¢ iteration. What is the matrix 4 such that
x(t+1) = Ax()?

. What is the first singular vector of 4 and the first two singular values of 4?

Does this explain what happens and how long the process takes to converge?

. If A is invertible, what happens when you run the process backwards?
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Exercise 3.18 A matrix A is positive semi-definite if for all x, x ' Ax > 0.

1. Let A be a real valued matrix. Prove that B = AA” is positive semi-definite.

2. Let A be the adjacency matrix of a graph. The Laplacian of AisL =D — 4
where D is a diagonal matrix whose diagonal entries are the row sums of A.
Prove that L is positive semi-definite by showing that L = B” B where B is an
m-by-n matrix with a row for each edge in the graph, a column for each vertex,
and we define

—1 if 7is the endpoint of e with lesser index
bei = I if i is the endpoint of e with greater index
0 if i is not an endpoint of e

Exercise 3.19 Prove that the eigenvalues of a symmetric real valued matrix are real.

Exercise 3.20 Suppose A is a square invertible matrix and the SVD of A is 4 =
> U,-u,-vrr. Prove that the inverse of Ais ) _; Lyul

T P-

Exercise 3.21 Suppose A is square but not necessarily invertible and has SVD 4 =
Yoyl Let B=Y"_, Jil_v,-u;. Show that BAx = x for all x in the span of
the right-singular vectors of A. For this reason B is sometimes called the pseudo-

inverse of A and can play the role of 4~! in many applications.

Exercise 3.22
1. For any matrix A, show that o, < %

2. Prove that there exists a matrix B of rank at most k such that ||4 — B||> < %

3. Can the 2-norm on the left-hand side in (2) be replaced by Frobenius norm?

Exercise 3.23 Suppose an n x d matrix A is given and you are allowed to preprocess A.
Then you are given a number of d-dimensional vectors X1, X2, . .., Xm and for each
of these vectors you must find the vector 4x; approximately, in the sense that you
must find a vector yj satisfying  |y;—Ax;| < e[| 4||r|x;|. Here ¢ >01is a given error

bound. Describe an algorithm that accomplishes this in time O (“;#) per X; not
counting the preprocessing time. Hint: use Exercise 3.22.

Exercise 3.24 Find the values of ¢; to maximize }|_, ¢?0? where o}

2 _
iz =1

Exercise 3.25 (Document-Term Matrices) Suppose we have an m x n document-term
matrix 4 where each row corresponds to a document and has been normalized to
length 1. Define the “similarity” between two such documents by their dot product.

> 03 >...and

1. Consider a “synthetic” document whose sum of squared similarities with all
documents in the matrix is as high as possible. What is this synthetic document
and how would you find it?

2. How does the synthetic document in (1) differ from the center of gravity?

3. Building on (1), given a positive integer k, find a set of k synthetic documents
such that the sum of squares of the mk similarities between each document
in the matrix and each synthetic document is maximized. To avoid the trivial
solution of selecting & copies of the document in (1), require the k synthetic
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