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The Equational Approach
to Contrary-to-duty Obligations

Dov M. Gabbay

Bar-Ilan University, Ramat-Gan, Israel
King’s College London, London, UK
University of Luxembourg, Luxembourg

Abstract. We apply the equational approach to logic to define numerical equa-
tional semantics and consequence relations for contrary to duty obligations, thus
avoiding some of the traditional known paradoxes in this area. We also discuss
the connection with abstract argumentation theory. Makinson and Torre’s input
output logic and Governatori and Rotolo’s logic of violation.

1 Methodological Orientation

This paper gives equational semantics to contrary to duty obligations (CTDs) and thus
avoids some of the known CTD paradoxes. The paper’s innovation is on three fronts.

1. Extend the equational approach from classical logic and from argumentation
to deontic modal logic and contrary to duty obligations [5].

2. Solve some of the known CTD paradoxes by providing numerical equational
semantics and consequence relation to CTD obligation sets.

3. Have a better understanding of argumentation semantics.

Our starting point in this section is classical propositional logic, a quite familiar logic
to all readers. We give it equational semantics and define equational consequence rela-
tion. This will explain the methodology and concepts behind our approach and prepare
us to address CTD obligations. We then, in Section 2, present some theory and problems
of CTD obligations and intuitively explain how we use equations to represent CTD sets.

Section 3 deals with technical definitions and discussions of the equational approach
to CTD obligations, Section 4 compares with input output logic, Section 5 compares
with the logic of violation and and we conclude in Section 6 with general discussion
and future research.

Let us begin,

1.1 Discussion and Examples

Definition 1. Classical propositional logic has the language of a set of atomic propo-
sitions Q (which we assume to be finite for our purposes) and the connectives — and .
A classical model is an assignment h : Q — {0, 1}. h can be extended to all wffs by the
Jollowing clauses:

C. Beierle and C. Meghini (Eds.): FoIKS 2014, LNCS 8367, pp. I—EQOM.
(©) Springer International Publishing Switzerland 2014



2 D.M. Gabbay

- h(AANB)=1iff h(A)=h(B)=1
- h(=A)=1-h(A)

The set of tautologies are all wifs A such that for all assignments h, h(A) = 1.
The other connectives can be defined as usual

a — b=def. ~(aN—b)
aVb=-a-—b=—=(-an-b)

Definition 2.

1. A numerical conjunction is a binary function u(z, y) from [0, 1] — [0, 1] satisfying
the following conditions
(a) p is associative and commutative
(@, pu(y, 2)) = p(plz,y), 2)
p(z,y) = ply, )
(b) plz,1) =
(¢c) < 1= plx,y) <1
(d) play) =1=2=y=1
(e) p(,0) =0
(f) plz,y) =0=2=00ry=10
2. We give two examples of a numerical conjunction

n(z,y) = min(z, y)
m(z,y) = 2y

For more such functions see the Wikipedia entry on t-norms [9]. However, not all
t-norms satisfy condition (f) above.

Definition 3.

1. Given a numerical conjunction pu, we can define the following numerical (fuzzy)
version of classical logic.
(a) An assignment is any function h from wiff into [0, 1].
(b) h can be extended to h,, defined for any formula by using p by the following
clauses:
= hu(AA B) = u(h,(A), h,(B))
~ hy(=A4) = 1 - h,(A)
2. We call p-tautologies all wifs A such that for allh, h,(A) = 1.

Remark 1. Note that on {0, 1}, h,, is the same as h. In other words, if we assign to the

atoms value in {0, 1}, then h,(A) € {0, 1} for any A. This is why we also refer to j as
“semantics”.

The difference in such cases is in solving equations, and the values they give to the
variables 0 < o < 1.
Consider the equation arising from (z — z) <+ —(z — ). We want

hm(z = 2) = hy(=(z — z))
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We get
(1 -m(z))m(z) = [ - m(z) - (1 - m(z))]

or equivalently
m(:z:)2 —m(x) + % = 0.
Which is the same as 1

(m(z) — %)2 + i= 0.

There is no real numbers solution to this equation.
However, if we use the n semantics we get

hy(z = 2) = hy(~(z = z))

or
min(n(z), (1 — n(z)) = 1 — min(n(z),1 — n(z))

n(z) = % is a solution.

Note that if we allow n to give values to the atoms in {0, 3, 1}, then all formulas A
will continue to get values in {0, 3, 1}. Le. {0, 3. 1} is closed under the function n, and
the function v(z) = 1 — x.

Also all equations with n can be solved in {0, 5, 1}.

This is not the case for m. Consider for the example the the equation corresponding
tox=axA... Nz, (n+1times).

The equation is 2 = 2"+, We have the solutions # = 0,2 = 1 and all roots of unity
of 2™ = 1.

Definition 4. Let I be a set of real numbers {0,1} C I C [0,1]. Let u be a semantics.
We say that T supports p iff the following holds:

1. Foranyz,y € I, p(x,y) and v(z) = 1 — x are also in I.

2. By a p expression we mean the following
(a) x is a u expression, for x atomic
(b) If X and Y are ;1 expressions then so are v(X) = (1 — X ) and p(X,Y)

3. We require that any equation of the form Fy = Es, where Iy and Fy are p expres-
sions has a solution in I, if it is at all solvable in the real numbers.

Remark 2. Note that it may look like we are doing fuzzy logic, with numerical conjunc-
tions instead of ¢-norms. It looks like we are taking the set of values {0,1} C I C [0, 1]
and allowing for assignments h from the atoms into / and assuming that I is closed
under the application of p and v(z). For ¢ = n, we do indeed get a three valued fuzzy
logic with the following truth table, Figure[T]

Note that we get the same system only because our requirement for solving equations
is also supported by {0, 3, 1} for n.

The case for m is different. The values we need are all solutions of all possible
equations. It is not the case that we choose a set I of truth values and close under m,
and v.

It is the case of identifying the set of zeros of certain polynomials (the polynomials
arising from equations). This is an algebraic geometry exercise.
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AlB|-AlaABlAVB|A—= B
olof 1| o 0 1
ojzf 1| o i 1
oft{1| o 1 1
1 1 1 1
7|03 O 3 3
[ 1 1 1
2|2 2 2 2 2
1 1 1

A A 1 1
tlojof| o 1 0
1 1 1
NHEAE 1 3
11fo]| 1 1 1

Fig. 1

Remark 3. The equational approach allows us to model what is considered traditionally
inconsistent theories, if we are prepared to go beyond {0, 1} values. Consider the liar
paradox a <+ —a. The equation for this is (both for m forn) a = 1 — a (we are writing
‘a’ for ‘m(a) or ‘n(a)’ ). This solves to a = %.

1.2 Theories and Equations

The next series of definitions will introduce the methodology involved in the equational
point of view.

Definition 5
1. (a) A classical equational theory has the form
A={Ai<—)’Bi ‘L=1.2,}

where A;, B; are wifs.
(b) A theory is called a B-them‘ﬂ if it has the form

.2'3.,;<—)'A11

where x; are atomic, and for each atom y there exists at most one ¢ such that
Y = @i

2. (a) A function £: wff — [0, 1] is an p model of the theory if we have that £ is a
solution of the system of equations Eq(A).

h(A;) = h,(Bi),i =1,2,...

(b) Ais p consistent if it has an p model

! B for Brouwer, because we are going to use Brouwer’s fixed point theorem to show that
theories always have models.
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3. We say that a theory A p semantically (equationally) implies a theory I if every
solution of Eq(A) is also a solution of Eq(I").
We write
Ak, T

Let K be a family of functions from the set of wff to [0, 1]. We say that A ):(“_K) r
if every p solution f of Eq(A) such that £ € K is also an . solution of Eq(I").
4. We write
Ak, B
iff the theory T <+ A semantically (equationally) implies T <+ B.
Similarly we write A F (wK) B. In other words, if for all suitable solutions f,£(A) =
1 implies £(B) = 1.

Example 1.

1. Consider A A (A — B) does it m imply B? The answer is yes.
Assume m(A A (A — B)) = 1 then m(A)(1 — m(A)(1 — m(B))) = 1. Hence
m(A)=1landm(A)(1 - m(B)) =0.Som(B) = 1.
We now check whether we always have thatm(A A (A — B) — B) = 1.
We calculate m(AA (A— B) - B)=[1—-m(AA (A — B))(1 —m(B))].

=[1 = m(A)(1 - m(A)(1 —m(B))z(1 —m(B))]
Letm(A) = m(B) = 3. we get

13
16 16

[l
“—
\

I—
—_
—_
\
[
X
rof =

) h=1
Thus the deduction theorem does not hold. We have
AN(A— B)EB

but
FAAN(A— B)— B.

2. (a) Note that the theory —a <> aisnot ({0, 1}, m) consistent while itis ({0, 3, 1},

m) consistent,
(b) The theory (z — x) «» —(x — ) is not ([0,1],m) consistent but it is
({0, %,1},n) consistent, but not ({0, 1}, n) consistent.

Remark 4. We saw that the equation theory 2z A -2 < —(xz A —az) has no solutions
(no m-models) in [0, 1]. Is there a way to restrict m theories so that we are assured of
solutions? The answer is yes. We look at B-theories of the form x; <+ E; where x; is
atomic and for each x there exists at most one clause in the theory of the form z <+ F.
These we called B theories. Note that if z = T, we can have several clauses for it. The
reason is that we can combine

T & E1

T(—)EQ
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into
T+ F1 A Es.
The reason is that the first two equations require
m(E;) =m(T) =1
which is the same as
m(Fy A FEy) =m(FE)) -m(F>) = 1.
If = is atomic different from T, this will not work because
x4+ E;

requires m(z) = m(L;) while <+ E; A E; requires m(z) = m(E;)m(E,).

The above observation is important because logical axioms have the form T < A
and so we can take the conjunction of the axioms and that will be a theory in our new
sense.

In fact, as long as our y satisfies

WAANB) =1= pu(A)=pn(B) =1
we are OK.
Theorem 1. Let A be a B-theory of the form
x; +— FE;.
Then for any continuous p, A has a ([0, 1], ) model.

Proof. Follows from Brouwer’s fixed point theorem, because our equations have the
form
f(x) = f(E(x))

in [0,1]" where € = (21,...,2,) and E = (E1, ..., E,).

Remark 5. If we look at B-theories, then no matter what i we choose, such theories
have p-models in [0, 1]. We get that all theories are u-consistent. A logic where every-
thing is consistent is not that interesting.

It is interesting, therefore, to define classes of 1 models according to some mean-
ingful properties. For example the class of all {0, 1} models. There are other classes of
interest. The terminology we use is intended to parallel semantical concepts used and
from argumentation theory.

Definition 6. Let A be a B-theory. Let £ be a p-model of A. Let A be a wif.

1. We say £(A) is crisp (or decided) if £(A) is either 0 or 1. Otherwise we say £(A) is
fuzzy or undecided.
2. (a) fis said to be crisp if £(A) is crisp for all A.
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(b) We say that £ < g, if forall A, if f(A) = 1 then g(A) = 1, and if f(A) = 0
then g(A) = 0.
We say f < giff < g and for some A f(A) & {0,1} bur g(A) € {0,1}.
Note that the order relates to crisp values only.
3. Define the p-crisp (or p-stable) semantics for A to be the set of all crisp p-model
of A.
4. Define the p-grounded semantics for A to be the set of all u-models £ of A such
that there is no pi-model g of A such that g < f.
5. Define the u-preferred semantics of A to be the set of all -models f of A such that
there is no y-model g of Awithf < g.
6. If K is a set of . models, we therefore have the notion of A Fy I for two theories
Aand .

1.3 Generating B-theories

Definition 7. Let S be a finite set of atoms and let R, and R be two binary relations
on S. Weuse A = (S, Ry, Rs) to generate a B-theory which we call the argumentation
network theory generated on S from the attack relation R, and the support relation R,.

Forany x € S, let y1,....ym be all the elements y of S such that yR,x and let
Z1y...,2n be all the elements z of S such that xRsz (of course m,n depend on x).

Write the theory A 4.
{x<—>/\z]/\/\—|yi |z e S}

We understand the empty conjunction as T.
These generate equations

@ = min(z;, 1 — y;)

using the n function or
x = (Iljz;)(11:(1 = yi))

using the m function.
Remark 6.

1. If we look at a system with attacks only of the form A = (S, R,) and consider the
n(min) equational approach for [0, 1] then n models of the corresponding B-theory
A 4 correspond exactly to the complete extensions of (S, R, ). This was extensively
investigated in [1]2]. The semantics defined in Definition[6] the stable, grounded an
preferred n-semantics correspond to the same named semantics in argumentation,
when restricted to B-theories arising from argumentation.
If we look at p other than n, example we look at 4 = m, we get different semantics
and extensions for argumentation networks. For example the network of Figure[2]
has the n extensions {a = 1,b = 0} and {a = b = 3}
while it has the unique m extension {a = 1,b = 0}.
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Fig. 2.

2. This correspondence suggests new concepts in the theory of abstract argumentation
itself. Let A 4, Ag be two B-theories arising from two abstract argumentation sys-
tem A = (S, R4) and B = (5, Rg) based on the same set .S. Then the notion of
Aa Fg Ag as defined in Definition[3]suggest the following consequence relation
for abstract argumentation theory.

- A F B iff any K-extension (K=complete, grounded, stable, preferred) of .A
is also a K-extension of B.
So, for example, the network of Figure [3]a) semantically entails the network of

Figure[3]b).
Y Yy

(a) (b)

Fig. 3.

Remark 7. We can use the connection of equational B-theories with argumentation net-
works to export belief revision and belief merging from classical logic into argumen-
tation. There has been considerable research into merging of argumentation networks.
Classical belief merging offers a simple solution. We only hint here, the full study is
elsewhere [10].

Let A; = (S,R;),i = 1,...,n, be the argumentation networks to be merged based
on the same S. Let A; be the corresponding equational theories with the corresponding
semantics, based on n. Let f; be respective models of A; and let 1« be a merging function,
say (i = m.

Let f = u(fy,...,f£,). Then the set of all such fs is the semantics for the merge
result. Each such an f yields an extension.

Remark 8. The equational approach also allows us to generate more general abstract
argumentation networks, The set S in (S, R, ) need not be a set of atoms. It can be a set
of wifs.
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Thus following Definition[7]and remark[6] we get the equations (for each A, B; and
where B; are all the attackers of A:

£(A) = u(E(~By),....).

There may not be a solution.

2 Equational Modelling of Contrary to Duty Obligations

This section will use our p-equational logic to model contrary to duty (CTD) sets of
obligations. So far such modelling was done in deontic logic and there are difficulties
involved. Major among them is the modelling of the Chisholm set [11].

We are going to use our equational semantics and consequence of Section 1 and view
the set of contrary to duty obligations as a generator for an equational theory. This will
give an acceptable paradox free semantics for contrary to duty sets.

We shall introduce our semantics in stages. We start with the special case of the
generalised Chisholm set and motivate and offer a working semantical solution. Then
we show that this solution does not work intuitively well for more general sets where
there are loops. Then we indicate a slight mathematical improvement which does work.
Then we also discuss a conceptual improvement.

The reader might ask why not introduce the mathematical solution which works right
from the start? The answer is that we do not do this for reasons of conceptual motivation,
so we do not appear to be pulling a rabbit out of a hat!

We need first to introduce the contrary to duty language and its modelling problems.

2.1 Contrary to Duty Obligations

Consider a semi-formal language with atomic variables @ = {p, q,r,...} the connec-
tive — and the unary operator (). We can write statements like

1. (O— fence

You should not have a fence
2. fence — () whitefence

If you do have a fence it should be white.
3. Fact: fence

We consider a generalised Chisholm set of contrary to duty obligations (CTD) of the
form
OqD

and fori =0,.... n we have the CTD is

g; — Ogiq1
—q; = O=¢it1

and the facts ¢, for some j € J C {0,1,..., n + 1}. Note that for the case of n = 1

and fact ~go we have the Chisholm paradox.
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2.2 Standard Deontic Logic and Its Problems
A logic with modality [J is KD modality if we have the axioms

K0  All substitution instances of classical tautologies
K1 O(pAg)=(UpAleg)

K2 +FA=FOA

D 0L

It is complete for frames of the form (S, R,a) where S # @ is a set of possible
worlds, a € S, R C S x S and Va3y(xzRy).

Standard Deontic Logic SDL is a KD modality O. We read v E Op as saying p holds
in all ideal worlds relative to u, i.e. Vt(uRt = t F p). So the set of ideal worlds relative
to w is the set I(u) = {t | uRt}.

The D condition says [(z) # @ forxz € S.

Following [8], let us quickly review some of the difficulties facing SDL in formaliz-
ing the Chisholm paradox.

The Chisholm Paradox

A. Consider the following statements:
1. It ought to be that a certain man go to the assistance of his neighbour.
2. It ought to be that if he does go he tell them he is coming.
3. If he does not go then he ought not to tell them he is coming.
4. He does not go.
It is agreed that intuitively (1)—(4) of Chisholm set A are consistent and totally
independent of each other. Therefore it is expected that their formal translation into
logic SDL should retain these properties.
B. Let us semantically write the Chisholm set in semiformal English, where p and g
as follows, p means HELP and ¢ means TELL.
1. Obligatory p.
2. p — Obligatory q.
3. =p — Obligatory —g.
4. —p.
Consider also the following:
5. p.
6. Obligatory q.
7. Obligatory —q.

We intuitively accept that (1)—(4) of B are consistent and logically independent of each-
other. Also we accept that (3) and (4) imply (7), and that (2) and (5) imply (6). Note
that some authors would also intuitively expect to conclude (6) from (1) and (2).

Now suppose we offer a logical system L and a translation 7 of (1), (2), (3), (4) of
Chisholm into L.

For example L could be Standard Deontic Logic or L could be a modal logic with
a dyadic modality O(X/Y) (X is obligatory in the context of ¥). We expect some
coherence conditions to hold for the translation, as listed in Definition[8]



The Equational Approach to Contrary-to-duty Obligations 11

Definition 8. (Coherence conditions for representing contrary to duty obligations
set in any logic)
We now list coherence conditions for the translation T and for L.

(a)
(b)

(c)

(d)

(e)

0

We expect the following to hold.

“Obligatory X ” is translated the same way in (1), (2) and (3).

Say T(Obligatory X )=¢(X ).

(2) and (3) are translated the same way, i.e., we translate the form:

(23): X — ObligatoryY

to be (X,Y) and the translation does not depend on the fact that we have
(4) —p as opposed to (5) p.

Furthermore, we might, but not necessarily, expect (X/T) = p(X).

if X is translated as 7(X) then (4) is translated as —7(X), the form (23) is
translated as 1 (7(X), 7(Y")) and (1) is translated as o(7(X)).

the translations of (1)—(4) remain independent in L and retain the connec-
tions that the translations of (2) and (5) imply the translation of (6), and the
translations of (3) and (4) imply the translation of (7).

the translated system maintains its properties under reasonable substitution
in L.

The notion of reasonable substitution is a tricky one. Let us say for the time
being that if we offer a solution for one paradox, say I, (p,q,r,...) and by
substitution for p,q,r, ... we can get another well known paradox Ils, then
we would like to have a solution for I1. This is a reasonable expectation from
mathematical reasoning. We give a general solution to a general problem
which yields specific solutions to specific problems which can be obtained
[from the general problem.

the translation is essentially linguistically uniform and can be done item
by item in a uniform way depending on parameters derived from the entire
database. To explain what we mean consider in classical logic the set

(1) p

(2) p—q.

To translate it into disjunctive normal form we need to know the number of
atoms to be used. Item (1) is already in normal form in the language of {p}
but in the language of {p. q} its normal form is (p A q) V (p A —q). If we had
another item

(3)r

then the normal form of p in the language of {p, q, r} would be
(pAgAT)V (pAgA-T)V(pA=gAT)V (pA g ).

The moral of the story is that although the translation of (1) is uniform algo-
rithmically, we need to know what other items are in the database to set some
parameters for the algorithm.

Jones and Porn, for example, examine in possible translations of the Chisholm
(1)—(4) into SDL. They make the following points:

(1) If we translate according to, what they call, option a:

(la) Op
(2a) O(p — q)
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(3a) =p =+ O—gq
(4a) —p
then we do not have consistency, although we do have independence
(2) If we translate the Chisholm item (2) according to what they call option b:
(2b) p — Oq
then we have consistency but not independence, since (4a) implies logically (2b).
(3) If (3a) is replaced by
(3b) O(=p — —q)
then we get back consistency but lose independence, since (1a) implies (3b).
(4) Further, if we want (2) and (5) to imply (6), and (3) and (4) to imply (7) then we
cannot use (3b) and (2a).

The translation of the Chisholm set is a “paradox” because known translations into
Standard Deontic Logic (the logic with O only) are either inconsistent or dependent.

All the above statements together are logically independent and are consistent. Each
statement is independent of all the others. If we want to embed the (model them) in
some logic, we must preserve these properties and correctly get all intuitive inferences
from them.

Remark 9. We remark here that the Chisholm paradox has a temporal dimension to it.
The £tell comes before the -go. In symbols, the +¢ is temporally before the £=p. This
is not addressed in the above discussion.

Consider a slight variation:

1. It ought to be that a certain man go to the assistance of his neighbour.

2. It ought to be that if he does not go he should write a letter of explanation and
apology.

3. If he does go, then he ought not write a letter of explanation and apology.

4. He does not go.

Here p = he does go and ¢ = he does not write a letter. Here ¢ comes after p.
It therefore makes sense to supplement the Chisholm paradox set with a temporal
clause as follows:

1. p comes temporally before ¢.
In the original Chisholm paradox the supplement would be:

1. Tell comes temporally before go.

2.3 The Equational Approach to CTD

We are now ready to offer equational semantics for CTD. Let us summarise the tools
we have so far.

1. We have p semantics for the language of classical logic.
2. Theories are sets of equivalences of the form E; < FEs.
3. We associate equations with such equivalences.

4. Models are solutions to the equations.
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5. Using models, we define consequence between theories.

6. Axioms have the for T <+ E

7. B-theories have the form z ++ FE, where 2 is atomic and E is unique to z.
8. We always have solutions for equations corresponding to B-theories.

Our strategy is therefore to associate a B-theory A(C) with any contrary to duty set
C and examine the associated p-equations for a suitable g. This will provide semantics
and consequence for the CTD sets and we will discuss how good this representation is.

The perceptive reader might ask, if Obligatory ¢ is a modality, how come we hope
to successfully model it in p classical logic? Don’t we need modal logic of it? This is
a good question and we shall address it later. Of course modal logic can be translated
into classical logic, so maybe the difficulties and paradoxes are “lost in translation”. See

Remark[135]

Definition 9. [. Consider a language with atoms, the semi-formal — and — and a
semi-formal connective O.
A contrary to duty expression has the form x — Oy where x and y are literals,
i.e. either atoms g or negations of atoms —q, and where we also allow for x not to
appear. We might write T — Oy in this case, if it is convenient.
2. Given a literal x and a set C of CTD expressions, then the immediate neighbour-
hood of x in C. is the set N, of all expressions from C of the form

z— Oz

or the form
xr — Oy.

3. A set F of facts is just a set of literals.
4. A general CTD system is a pair (C,F)
5. A Chisholm CTD set CH has the form

T —r OLL‘H_;L
X — Oﬁ.:EH_l
O.I,'l

where 1 < i < m and x; are literals (we understand that ——x is x).
Example 2. Figure[4]shows a general CTD set

C={a— Obb— O-a}

Figure[5]shows a general Chisholm set. We added an auxiliary node xq as a starting
point.

Figure[6]shows a general neighbourhood of a node x.

We employed in the figures the device of showing, whenever x — Oy is given, two
arrows, * — y and # — —y. The single arrow  — y means “from x go to ¥ and the
double arrow z — —y means “from z do not go to —y”.
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Fig. 4.

Zo To

starting point

Fig. 5.

Remark 10. In Figures[#H6] we understand that an agent is at the starting point 2o and
he has to go along the arrows — to follow his obligations. He should not go along any
double arrow, but if he does, new obligations (contrary to duty) appear.

This is a mathematical view of the CTD. The obligations have no temporal aspect to
them but mathematically there is an obligation progression (+aq, 21, £2,...).
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In the Chisholm example, the obligation progression is (+ go, ttell), while the prac-
tical temporal real life progression is (Ltell, +go). We are modelling the obligation
progression.

To be absolutely clear about this we give another example where there is similar pro-
gression. Take any Hilbert axiom system for classical logic. The consequence relation
A+ B is timeless. It is a mathematical relation. But in practice to show A - B from
the axioms, there is a progression of substitutions and uses of modus ponens. This is a
mathematical progression of how we generate the consequence relations.

Remark 11. We want to associate equations with a given CTD set. This is essentially
giving semantics to the set. To explain the methodology of what we are doing, let us
take an example from the modal logic S4. This modal logic has wffs of the form [Cg.
To give semantics for [lg we need to agree on a story for “[]” which respects the log-
ical theorems which “[J” satisfies (completeness theorem). The following are possible
successful stories about “[J” for which there is completeness.

Interpret (] to mean provability in Peano arithmetic.
[Ogq means that ¢ holds in all possible accessible situations (Kripke models).

[J means topological interior in a topological space.

Rl

[J means the English progressive tense:
[J eat = “is eating”

5. [0 means constructive provability.

For the case of CTD we need to adopt a story respecting the requirement we have
on CTD.

Standard deontic logic SDL corresponds to the story that the meaning of OA in a
world is that A holds in all accessible relative ideal worlds. It is a good story correspond-
ing to the intuition that our obligations should take us to a better worlds. Unfortunately,
there are difficulties with this story, as we have seen.

Our story is different. We imagine we are in states and our obligations tell us where
we can and where we cannot go from our state. This is also intuitive. It is not descriptive
as the ideal world story is, but it is operational , as real life is.

Thus in Figure[6lan agent at node = wants to say that he is a “good boy”. So at x
he says that he intends to go to one of y,. ..,y and that he did not come to x from
v1,..., Vg, where the obligation was not to go to x.

Therefore the theory we suggest for node « is

x4 (/\yi/\/\ﬁ'uj)
i i

We thus motivated the following intuitive, but not final, definition.
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Let C be a CTD set and for each 2 let N, be its neighbourhood as in Figure[6]
We define the theory A(C) to be

{z e (N\wviA/\-v))| forall No}. (*1)
; ;

This definition is not final for technical reasons. We have literals “—¢”and we do not
want equivalences of the form —¢ <+ E. So we introduce a new atom ¢ to represent —g
with the theory ¢ <+ —q.

So we take the next more convenient definition.

Definition 10.

1. Let C be a CTD set using the atoms Q. Let Q* = QU {q | q € Q}, where q are
new atoms.

Consider C* gained from C by replacing any occurrence of —q by q, for ¢ € Q.
Using this new convention Figure[3becomes Figure|[7]

Tin+1 57m+].
T4 T4
x3 Z3

T

T2 T2

€ €T

Zo o

starting point

Fig.7.
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2. The theory for the CTD set represented by Figure[7lis therefore

€T T, To < L
Xo & XT1,Tp & T
i @i AL
Ti 4> Tig1 N T
XTi g

Tm41 < Tm
Tm+1 € T
for1 <i<m

The above is not a B-theory. The variable x; has two clauses associated with it.
(2o is OK because the second equation is T ). So is Z.
It is convenient for us to view clause x; = —x; as an integrity constraint. So we
have a B-theory with some additional integrity constraints.
Note also that we regard all x; and T; as different atomic letters. If some of them
are the same letter, i.e. x; = x; then we regard that as having further integrity
constraints of the form x; ++ x;.

3. The equations corresponding to this theory are

o= 1,20 =0

To = X1, %o = 1

x; = min(w;4q, 1 — 2-1)
z; = min(Tiyq, 1 — ai-1)
z,=1—u

Tpp1 =1 —Tm

Tmi1 =1—am
Jor1<i<m

Remember we regard the additional equation
T =1—x;

as an integrity constraint.
Note also that we regard all x; and x; as different atomic letters. If some of them
are the same letter, i.e. x; = x; then we regard that as having further integrity
constraints of the form x; <> x;. The rest of the equations have a solution by
Brouwer’s theorem. We look at these solutions and take only those which satisfy
the integrity constraints. There may be none which satisfy the constraints, in which
case the system overall has no solution!

4. The dependency of variables in the equations of Figure[7lis described by the rela-
tion x = y reading (x depends on y), where

x=y=def (x = y)V(y > ).
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integrity constraints = 1 — z into the graph. Thus Figure[7lwould become Figure
and the equations for the figure would become

w; = min(zi, 1 — 25,1 — ;1)
T; = min(i‘i_H, 1—a;,1- 33?1*1)
29 =1,Z0=0

g1 = min(l — Ty, 1 — 2,)

f"m—}-l = mm(l — Tm+1, 1— a':m)

forl <i<m.
-y T
mzrrH»l mrrH»L
T4 574
x3 T3

|

Zro xro

T Ty

o ]

starting point
Fig. 11.

For the Chisholm set, we still get the same solution for these new equations, namely

Top =& = ...Tm41 — 1
To=F1=...=Tpe1 =0

The discussion that follows in Definition[I1]onwards applies equally to both graphs.

We shall discuss this option in detail in Subsection 2.4.

The reader should note that we used here a mathematical trick. In Figure[11] there
are two conceptually different double arrows. The double arrow 2; — 2,4, comes from
an obligation x; — (Oa; 41, while the double arrows # — Z and Z — « come from
logic (because # = —a). We are just arbitratily mixing them in the graph!
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Definition 11. Consider Figure[7] Call this graph by G(m + 1). We give some defini-
tions which analyse this figure.
First note that this figure can be defined analytically as a sequence of pairs

((x(}’jo)! (.51)1, ‘/El)v ey (mm+1=jm+l))'

The relation — can be defined between nodes as the set of pairs {(x;, xiy1) and
(Ziy Tig1) for i = 0,1,...,m}. The relation — can be defined between nodes as the
set of pairs {(x;, T;+1) and (T;,x;+1) for i = 0,1,...,m}. The starting point is a

member of the first pair, in this case it is xo, the left hand element of the first pair in the
sequence, but we could have chosen X as the starting point.

1. Let xRy be defined as (x — y)V (v — y) and let R* be the transitive and reflexive
closure of R.

2. Let z be either x; or &;. The truncation of G(m + 1) at z is the subgraph of all
points above z including z and z and all the arrow connections between them.

G, = {y|zR"y} U{z}

We take = as the starting point of G(m + 1).. Note that G(m + 1) is isomorphic
to G(m + 1 — 1). It is the same type of graph as G(m + 1), only it starts at z.
The corresponding equations for G, will require z = 1,

3. A path in the graph is a full sequence of points (o, z1, .., zm+1) Where z; is T;
orx;

4. A set of “facts” F in the graph is a set of nodes choosing at most exactly one of
each pair {z;, z;}.

5. A ser of facts F restricts the possible paths by stipulating that the paths contain the
nodes in the facts.

Example 3. Consider Figure[7] The following is a path 7 in the graph
I = (wo, @1, 22,23, ..., Trmy1)

If we think in terms of an agent going along this path, then this agent committed two
violations. Having gone to Z; instead of to 27, he committed the first violation. From
21, the CTD says he should have gone to 2, but he went to x5 instead. This is his
second violation. After that he was OK.

Now look at the set of facts = {#y,22}. This allows for all paths starting with
(zo, 21,2, ...). So our agent can still commit violations after 2o. We need more facts
about his path.

2 Note that the facts are sets of actual nodes. We can take the conjunction of the actual nodes
as a formula faithfully representing the set of facts. Later on in this paper we will look at an
arbitrary formula ¢ as generating the set of facts {y|y is either z; or —x;, unique for each i,
such that ¢| — y}.

According to this definition, ¢ = ;1 V x2, generates no facts. We will, however, find
it convenient later in the paper, (in connection with solving the Miner’s Paradox, Remark [20]
below) to regard a disjunction as generating several possible sets of facts, one for each disjunct.
See also Remark[19]below.
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Suppose we add the fact 24.So0 our set is now F = {z1, 2o, 24}

We know now that the agent went from x5 onto Z4. The question is, did he pass
through Z3? If he goes to a3, there is no violation and from there he goes to Z4, and
now there is violation.

If he goes to x3, then the violation is immediate but when he goes from T3 to Z4,
there is no violation.

The above discussion is a story. We have to present it in terms of equations, if we
want to give semantics to the facts.

Example 4. Let us examine what is the semantic meaning of facts. We have given se-
mantic meaning to a Chisholm set C of contrary to duties; we constructed the graph, as
in Figure[7]and from the graph we constructed the equations and we thus have equa-
tional semantics for C.

We now ask what does a fact do semantically?

We know what it does in terms of our story about the agent. We described it in
Example [3] What does a fact do to the graph? Let us take as an example the fact z3
added to the CTD set of Figure[7] What does it do? The answer is that it splits the figure
into two figures, as shown in Figures[12]and[13]

T2 T2
X1 .CE']
Zq o

starting point

Fig. 12.

Note that Figure[T3]is the truncation of Figure[7]at Z3, and Figure[I2]is the comple-
ment of this truncation.

Thus the semantical graphs and equations associated with (C, {x3}) are the two
figures, Figure[12]and Figure[13]and the equations they generate.

The “facts™ operation is associative. Given another fact, say z it will be in one of the
figures and so that figure will further split into two.

Definition 12. Given a Chisholm system (C,F) as in Definition [9 we define its se-
mantics in terms of graphs and equations. We associate with it with following system of



The Equational Approach to Contrary-to-duty Obligations 23

Tm+1 Tm+1
Ty Ty
'/_i.
xr3 8

starting point

Fig. 13.

graphs (of the form of Figure[7) and these graphs will determine the equations, as in
Definition[I0]
The set C has a graph G(C). The set F can be ordered according to the relation R
in the graph G(C) as defined in Definition[L1] Let (z1, . .., z;) be the ordering of F.
We define by induction the following graphs:

1. (a) Let G} be G(C).,, (the truncation of G(C) at ). item Let G,, be G(C)— G}
(the remainder graph after deleting from it the top part GI ).
(b) The point z_ is in the graph G .

2. Assume that for z;,1 < i < k we have defined G} and G; and that G} is the
truncation of G, at point z;, and that G; = G, — G. We also assume that
Zi—1 is in G;

Let Gl | = (G ). ,, (i.e. the truncation of G; at point z;_1).
Let G, , =G — G .

3. The sequence of graphs G, G, G{", G;", Cey G,': is the semantical object for (C, F).

They generate equations which are the equational semantics for (C,F).

Example 5. Consider a system (C,F) where F is a maximal path, i.e. F is the sequence
(#1,...,@my1). The graph system for it will be as in Figure[T4]

starting point zm+1 Zm+1 graph G;H

starting point  z; 1 egraph G

z
starting point  x¢ Zo  graph G

Fig. 14.

Remark 13. The nature of the set of facts [F is best understood when the set C of
Chisholm CTDs is represented as a sequence. Compare with Definition[12]
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C has the graph G(C). The graph can be represented as a sequence

E = ((530: '/EO)! (371;51)1 ceey ($7n+]ajf'1n+l))

together with the starting point (zq).
When we get a set of facts F and arrange it as a sequence (z1,. . ., 2;) in accordance
with the obligation progression, we can add xy to the sequence and look at IF as

F = (w[lyzl'l"'*,zk‘)‘

We also consider (E,F) as a pair, one the sequence E and the other as a multiple
sequence of starting points. The graph G; is no more and no less than the subse-
quence E;, beginning from the pair (z;, z;) up to the pair (z;+1, Z;+1) but not including
(Zit1, Zit1).

This way it is easy to see how G is the sum of all the G;, strung together in the
current progression order. Furthermore, we can define the concept of “the fact z; is in
violation of the CTD of z;”, for i < j. To find out if there was such a violation, we
solve the equations for

E1 = ((z‘iv E:’?)u ERE] (mm+1:im,+1))
and if the equation solves with z; = 0 then putting z; = 1 is a violation.

Remark 14. Let us check whether our equational modelling of the Chisholm CTD set
satisfies the conditions set out in Definition[8]
Consider Figure[15](a) and (b):

(a) Obligatory x must be translated the same way throughout.
This holds because we use a variable x in a neighbourhood generated equation.
(b) The form X — OY must be translated uniformly no matter whether X = q or
X =—q.
This is is true of our model.
(c) This holds because “X " is translated as itself.
(d) The translation of the clauses must be all independent.
Indeed this holds by Lemmal[l]
It is also true that (see Figure[I5[a))
2. p— Ogq
and
5.p
imply
6. Oq
This holds because (5) p is a fact. So this means that Figure[T3lb) truncated at the
point p.
The truncated figure is indeed what we would construct for Ogq.
A symmetrical argument shows that (4) and (3) imply (7).
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However, we wrote a — —b because of the CTD a — Ob, which required us to go
from a to b (i.e @ — b) and in this case we put in the graph a — —b to stress “do not go
to —b”.

However, if a = 0, why say anything? We do not care in this case whether the agent
goes from a to b!

Let us look again at Figure[6] We wrote the following equation for the node z

x = min(u;, 1 — vy).

The rationale behind it was that we follow the rules, so we are going to u; as our
obligations say, and we came to « correctly, not from v;, because v; — O—ux is required.
Now if v; = 1 (in the final solution) then the equation is correct. But if v; = 0, then we
do not care if we come to « from v;, because v; — O-x is not activated. So somehow
we need to put into the equation that we care about v; only when v; = 1.

Remark 16. Let us develop the new approach mentioned in Example[6land call it the
soft approach. We shall compare it with the mathematical approach of Remark[12]
First we need a § function as follows:

d(w)= Lifw= 1
and
d(w)=Tifw# L.

d(w) = w, if we are working in two valued {0, 1} logic. Otherwise it is a projective
function
4(0) =0and §{w) =1 forw > 0.

We can now modify the equivalences (*1) (based on ﬁgure@ as follows:
Lety,...,vs beasin Figure@ Let J, K C{1,...,s} besuchthat JN K = @ and
JUK ={1,...,s}.Consider the expression

YLK = /\ d(vy) A /\ =6 (vg).

J€J keK

This expression is different from O (or _L), exactly when K is the set of all indices & for
which v; = L.
Replace (*1) by the following group of axioms for each pair .J, K and for each x

ﬂ’,’/\(,.QJ.KH(PJ‘KA/\U»T-/\A_‘Uj. {*2)
T jeJ

Basically what (*2) says is that the value of 2 should be equal to

min{u,, 1 — v; for those j whose value is # 0}.
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Note that this is an implicit definition for the solution of the equations. It is clear

when said in words but looks more complicated when written mathematically. Solutions
may not exist.

Example 7. Let us now look again at Figure[4]
The soft equations discussed in Remark[T6]are

d(a)Ab=4d(a)(1—a)

§(b) Aa = 6(b) min(b, 1 — b)
b=a
b=1-b
a=1-—a

For these equations @ = 1,b = a = 0,b = 1 is a solution.

Note thata = b = 1 and @ = b = 0 is not a solution!

Let us now examine and discuss the mathematical approach alternative, the one men-
tioned in Remark [T2] The first step we take is to convert Figure [ into the right form
for this alternative approach by adding double arrows between all 2 and . We get

Figure

Fig. 16.

The equations are the following:

@ =min(b,1 —a,1 —b)
a=1—a

b= min(a, 1 —b)
b=min(l —a,1—b).

Let us check whether a = b = 0 and b = @ = 1 is a solution. We get respectively by
substitution

0 = min(1,0,0)
1=1-0

1 =min(1,1—0)
0=min(l—0,1—1).
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Indeed, we have a solution. Let us try the solution b = @ = 1 and a = b = 0. Substitute
in the equations and get

0 = min(0,0,1)

1=1-0

0=min(1,1-1)

1 =min(1-0,1-0).
Again we have a solution,

This solution also makes sense. Note that this is not a solution of the previous soft
approach!

We need to look at more examples to decide what approach to take, and which final
formal definition to give.

Example 8. Consider the following two CTD sets, put forward by two separate security
advisors D and F.

DI: you should have a dog

Od

D2: If you do not have a dog, you should have a fence
—-d— Of

D3: If you have a dog you should not have a fence
d— O-f

Fl: You should have a fence
of

F2: If you do not have a fence you should have a dog
-f = Od

F3: If you do have a fence you should not have a dog.
f—= O-d

If we put both sets together we have a problem. They do not agree, i.e. {D1, D2, D3,
F1, F2, F3}. However, we can put together both D1, D2 and F1, F2. They do agree, and
we can have both a dog and a fence.

The mathematical equational modelling of D1 and D2 also models D3,i.e. D1, D2 F
D3 and similarly F1, F2 E F3. So according to this modelling {D1, D2, F1, F2} cannot
be consistently together. Let us check this point. Consider Figure[17]

The equations for Figure[17]are:

l’g:l
LU():d

ff‘(_]:l—a',‘o

d=1-d

d = min(1 — d, 1 — a)
d=f

f=1-1

f= min(l — f,1— J)



30 D.M. Gabbay

Zo o

The only solution is

=
=)
Il
=9
Il
Il
—_

81
=)
Il
Sy
[l
N
Il
o

The important point is that f = 1, i.e. no fence.

Thus D1,D2 + f.

By complete symmetry beget that F1,F2 |- d. Thus we cannot have according to the
mathematical approach that having both a dog and a fence is consistent with {D1,D2,
F1.F2}.

Let us look now at the soft approach. Consider Figure[18]

‘-n
|

=8
=

Fig. 18.
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The soft equations for Figure[18]are:

$0=1
T[]:d

min(xg,d) = min(xg, 1 — )

min(d, f) = min(d, 1 — d)

There are two solutions

and
zo=1,d=1,d=0,f=0,f=1.

The conceptual point is that since d = 0, we say nothing about f.

Now similar symmetrical solution is available for {F1,F2} Since DI1,D2 allow for
f = 1and F1,F2 allow for d = 1, they are consistent together. In view of this example
we should adopt the soft approach.

Remark 17. Continuing with the previous Example[§] let us see what happens if we put
together in the same CTD set the clauses {D1,D2,E1,E2} and draw the graph for them
all together, in contrast to what we did before, where we were looking at two separate
theories and seeking a joint solution. If we do put them together, we get the graph in

Figure[19]

e

d f
d f
T Zo
Fig. 19.

If we use the mathematical equations, there will be no solution. If we use the soft
approach equations, we get a unique solution

d=f=1,d=f=0
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2

-‘—ﬂ—d

starting point
Fig. 22.

We can explain and say that since the fact d violates O—d then a new situation has
arisen and O—d is not “inherited” across a CTD. In fact, in the case of a dog it even
makes sense. We should not have a dog but if we violate the obligation and get it, then
we must be responsible for it and keep it.

The next example is more awkward to explain.

Example 10. This example is slightly more problematic. Consider the following.

1. You should not have a dog
O-d

2. you should not have a fence
O-f

3. If you do have a dog you should have a fence
d— Of

The graph for (1)—(_3) is_Figure
The solutionisd = f =1,d = f = 1.
Let us add the new fact

4. d: You have a dog

d > f

d f

iy .i’o
Fig. 23.

The graph of Figure[23]splits into two graphs, Figure[24]and[25]
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