THE EXPERT s YOICE® IN SEGUR

Foundation:

BEEE. _ B = . O R N TR

Foundations of Security: What Every Programmer Needs to Know
Copyright © 2007 by Neil Daswani, Christoph Kern, and Anita Kesavan

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-784-2
ISBN-10 (pbk): 1-59059-784-2
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jonathan Gennick

Technical Reviewer: Dan Pilone

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,
Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft,
Jim Sumser, Matt Wade

Project Manager: Kylie Johnston

Copy Edit Manager: Nicole Flores

Copy Editor: Damon Larson

Assistant Production Director: Kari Brooks-Copony

Production Editor: Ellie Fountain

Compositor: Dina Quan

Proofreader: Liz Welch

Indexer: Julie Grady

Artist: Kinetic Publishing Services, LLC

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indi-
rectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress. com in the Source Code/
Download section.

CHAPTER 1 © SECURITY GOALS

assume he is communicating with Alice. Passwords are so prevalently used that we dedicate
Chapter 9 to studying how to properly build a password management system.

There are advantages and disadvantages to using passwords. One advantage is that pass-
word schemes are simple to implement compared to other authentication mechanisms, such
as biometrics, which we will discuss later in this chapter. Another advantage of password
security systems is that they are simple for users to understand.

There are, however, disadvantages to using password security systems. First, most users
do not choose strong passwords, which are hard for attackers to guess. Users usually choose
passwords that are simple concatenations of common names, common dictionary words,
common street names, or other easy-to-guess terms or phrases. Attackers interested in hack-
ing into somebody’s account can use password-cracking programs to try many common login
names and concatenations of common words as passwords. Such password cracking programs
can easily determine 10 to 20 percent of the usernames and passwords in a system. Of course,
to gain access to a system, an attacker typically needs only one valid username and password.
Passwords are relatively easy to crack, unless users are somehow forced to choose passwords
that are hard for such password-cracking programs to guess. A second disadvantage of pass-
word security systems is that a user needs to reuse a password each time she logs into a
system—that gives an attacker numerous opportunities to “listen in” (see Section 1.4) on that
password. If the attacker can successfully listen in on a password just once, the attacker can
then log in as the user.

A one-time password (OTP) system, which forces the user to enter a new password each
time she logs in, eliminates the risks of using a password multiple times. With this system, the
user is given a list of passwords—the first time she logs in, she is asked for the first password;
the second time she logs in, she is asked the second password; and so on. The major problem
with this system is that no user will be able to remember all these passwords. However, a
device could be used that keeps track of all the different passwords the user would need to
use each time she logs in. This basic idea of such a device naturally leads us from the topic
of “something you know” to the topic of “something you have.”

1.2.2. Something You Have

A second general method of authenticating a user is based on something that the user has.

OTP Cards

OTP products generate a new password each time a user needs to log in. One such product,
offered by RSA Security, is the SecurID card (other companies have different names for such
cards). The SecurlD card is a device that flashes a new password to the user periodically (every
60 seconds or s0). When the user wants to log into a computer system, he enters the number
displayed on the card when prompted by the server. The server knows the algorithm that the
SecurlID card uses to generate passwords, and can verify the password that the user enters.
There are many other variations of OTP systems as well. For instance, some OTP systems gen-
erate passwords for their users only when a personal identification number (PIN) is entered.
Also, while OTP systems traditionally required users to carry additional devices, they are
sometimes now integrated into personal digital assistants (PDAs) and cell phones.

CHAPTER 1 © SECURITY GOALS

Smart Cards

Another mechanism that can authenticate users based on something that they have is a smart
card. A smart card is tamper-resistant, which means that if a bad guy tries to open the card or
gain access to the information stored on it, the card will self-destruct. The card will not self-
destruct in a manner similar to what comes to mind when you think of Mission Impossible.
Rather, the microprocessor, memory, and other components that make up the “smart” part of
the smart card are epoxied (or glued) together such that there is no easy way to take the card
apart. The only feasible way to communicate with the microprocessor is through its electronic
interface. Smart cards were designed with the idea that the information stored in the card’s
memory would only be accessible through the microprocessor. A smart card’s microprocessor
runs software that can authenticate a user while guarding any secret information stored on
the card. In a typical scenario, a user enters a smart card into a smart card reader, which con-
tains a numeric keypad. The smart card issues a “challenge” to the reader. The user is required
to enter a PIN into the reader, and the reader computes a response to the challenge. If the
smart card receives a correct response, the user is considered authenticated, and access to
use the secret information stored on the smart card is granted.

One problem with using smart cards for authentication is that the smart card reader (into
which the PIN is entered) must be trusted. A rogue smart card reader that is installed by a bad
guy can record a user's PIN, and if the bad guy can then gain possession of the smart card
itself, he can authenticate himself to the smart card as if he were the user. While such an attack
sounds as if it requires quite a bit of control on the part of the attacker, it is very feasible. For
example, an attacker could set up a kiosk that contains a rogue smart card reader in a public
location, such as a shopping mall. The kiosk could encourage users to enter their smart cards
and PINs by displaying an attractive message such as “Enter your smart card to receive a 50
percent discount on all products in this shopping mall!” Such types of attacks have occurred
in practice. Attacks against smart cards have also been engineered by experts such as Paul
Kocher, who runs a security company called Cryptography Research (www.cryptography.com).
By studying a smart card’s power consumption as it conducted various operations, Kocher
was able to determine the contents stored on the card. While such attacks are possible, they
require a reasonable amount of expertise on the part of the attacker. However, over time, such
attacks may become easier to carry out by an average attacker.

ATM Cards

The ATM (automatic teller machine) card is another example of a security mechanism based
on some secret the user has. On the back of an ATM card is a magnetic stripe that stores
data—namely the user’s account number. This data is used as part of the authentication
process when a user wants to use the ATM. However, ATM cards, unlike smart cards, are not
tamper-resistant—anyone who has a magnetic stripe reader can access the information
stored on the card, without any additional information, such as a PIN. In addition, it is not
very difficult to make a copy of an ATM card onto a blank magnetic stripe card. Since the
magnetic stripe on an ATM card is so easy to copy, credit card companies also sometimes
incorporate holograms or other hard-to-copy elements on the cards themselves. However, it's
unlikely that a cashier or point-of-sale device will actually check the authenticity of the holo-
gram or other elements of the card.

10

CHAPTER 1 © SECURITY GOALS

In general, the harder it is for an attacker to copy the artifact that the user has, the
stronger this type of authentication is. Magnetic stripe cards are fairly easy to copy. Smart
cards, however, are harder to copy because of their tamper-resistance features.

1.2.3. Something You Are

The third general method of authenticating a user is based on something that the user is. Most
of the authentication techniques that fall into this category are biometric techniques, in which
something about the user’s biology is measured. When considering a biometric authentication
technique as part of your system, it is important to consider its effectiveness and social
acceptability.

The first biometric authentication technique that we consider is a palm scan in which a
reader measures the size of a person’s hand and fingers, and the curves that exist on their
palm and fingers. It also incorporates fingerprint scans on each of the fingers. In this way, the
palm scan technique is much more effective than simply taking a single fingerprint of the
user.

A second technique used to biometrically authenticate someone is to scan their iris. In
this technique, a camera takes a picture of a person’s iris and stores certain features about it in
the system. Studies have been conducted to measure how comfortable people are with such
scans, and the iris scan appears to be more socially acceptable than the palm scan. In the
palm scan technique, the user is required to actually put her hand on the reader for a few sec-
onds, while in the iris scan, a camera just takes a quick picture of the user’s iris. The iris scan is
less intrusive since the user does not have to do anything except look in a particular direction.

Another biometric technique is a retinal scan, in which infrared light is shot into a user’s
eyes, and the pattern of retinal blood vessels is read to create a signature that is stored by a
computer system. In a retinal scan, the user puts his head in front of a device, and then the
device blows a puff of air and shoots a laser into the user’s eye. As you can imagine, a retinal
scan is more intrusive than an iris scan or a palm scan.

Another biometric authentication technique is fingerprinting. In fingerprinting, the user
places her finger onto a reader that scans the set of curves that makes up her fingerprint.
Fingerprinting is not as socially accepted as other biometric identification techniques since
people generally associate taking fingerprints with criminal activity. In addition, fingerprint-
ing provides less information than a palm scan.

Voice identification is a mechanism in which a computer asks a user to say a particular
phrase. The computer system then takes the electrically coded signals of the user’s voice, com-
pares them to a databank of previous signals, and determines whether there is close enough of
a match.

Facial recognition involves a camera taking a picture of a person’s face and a computer
system trying to recognize its features.

Another technique, signature dynamics, records not only a user’s signature, but also the
pressure and timing at which the user makes various curves and motions while writing. The
advantage of signature dynamics over simple signature matching is that it is far more difficult
to replicate.

The key disadvantages to these biometric authentication techniques are the number of
false positives and negatives generated, their varying social acceptance, and key management
issues.

CHAPTER 1 © SECURITY GOALS

A false positive occurs when a user is indeed an authentic user of the system, but the bio-
metric authentication device rejects the user. A false negative, on the other hand, occurs when
an impersonator successfully impersonates a user.

Social acceptance is another issue to take into account when considering biometric
authentication techniques. All the biometric authentication techniques discussed here are
less socially accepted than entering a password.

The final disadvantage for biometric authentication techniques is the key management
issue. In each of these biometric authentication techniques, measurements of the user’s
biology are used to construct a key, a supposedly unique sequence of zeros and ones that
corresponds only to a particular user. If an attacker is able to obtain a user’s biological meas-
urements, however, the attacker will be able to impersonate the user. For example, a criminal
may able to “copy” a user’s fingerprint by re-creating it with a wax imprint that the criminal
puts on top of his finger. If you think of the user’s fingerprint as a “key,” then the key manage-
ment issue in this case is that we cannot revoke the user’s key because the user cannot get a
new fingerprint—even though her original fingerprint has been stolen. By contrast, the keys in
password systems are generated from passwords, and users can easily have their passwords
changed if they are ever stolen or compromised. Biometric authentication becomes ineffec-
tive once attackers are able to impersonate biometric measurements.

1.2.4. Final Notes on Authentication

Combining various authentication techniques can be more effective than using a single
authentication technique. For example, in the previous section, we discussed some of the dis-
advantages of using biometric authentication alone. However, if you combine biometric
authentication with another technique, such as a password or a token, then the authentica-
tion process becomes more effective.

The term fwo-factor authentication is used to describe the case in which a user is to be
authenticated based upon two methods. ATM cards are an example of two-factor authentica-
tion at work. ATM cards have magnetic stripes that have the user’s name and account number.
When the card is used, the user is required to enter not only the card into the teller machine,
but also a PIN, which can basically be thought of as a password. In such an example of fwo-
factor authentication, the bank requires the user to be authenticated based upon two
methods—in this case, something that the user has and something that the user knows.

There are other factors that can be taken into account when conducting authentication.
For instance, Alice’s location can be considered a factor. Alice may carry around a cell phone
that has a GPS (Global Positioning System) chip inside of it. When Alice is standing in front of
an ATM requesting to withdraw money, Alice’s bank could ask her cell phone company’s com-
puter system where she currently is. If the cell phone company’s computer responds with a
latitude and longitude that corresponds to the expected location of the ATM, the bank can
approve the withdrawal request. However, if Alice’s ATM card and PIN were stolen by a bad
guy who is trying to withdraw money, then taking Alice’s location (or specifically, the location
of her cell phone) into account could help thwart such a fraudulent withdrawal request. If
Alice’s cell phone is still in her possession, when an attacker attempts to use her card at an
ATM, the location of the ATM will not correspond to the location of Alice’s cell phone, and the
bank will deny the withdrawal request (unless, of course, Alice and her cell phone are being
held captive in front of the ATM). In this example, it is advantageous for Alice to keep her cell
phone and her ATM card in different places; she should not, say, keep both of them in her
purse.

1"

12

CHAPTER 1 © SECURITY GOALS

In all the examples discussed so far, we have talked about people authenticating people or
people authenticating themselves to computers. In a large distributed system, however, com-
puters are also interacting with other computers. The computers may have to authenticate
themselves to each other because all computers cannot be trusted equally. There are many
protocols that can be used to allow computer-to-computer authentication, and these proto-
cols will, in general, support three types of authentication: client authentication, server
authentication, and mutual authentication.

Client authentication involves the server verifying the client’s identity, server authentica-
tion involves the client verifying the server’s identity, and mutual authentication involves the
client and server verifying each other’s identity. When we discuss protocols, such as Secure
Sockets Layer (SSL) in Chapter 15, we will discuss the different modes they use to support
client, server, and mutual authentication.

Whether client, server, or mutual authentication is done often depends upon the nature
of the application and the expected threats. Many e-commerce web sites provide server
authentication once a user is ready to make a purchase because they do not want the client
to submit a credit card number to a spoofed or impostor web site. Spoofed web sites are a
significant security threat because they do not cost much to set up.

On the other hand, in older cell phone networks, only client authentication was required.
Cell phone towers (servers) would only check that a phone (client) that attempted to commu-
nicate with it was owned by an authentic customer. The phones did not authenticate the cell
phone towers because cell phone towers were costly to set up, and an attacker would require
significant capital to spoof a cell phone tower. On the other hand, the cell phones themselves
were much cheaper, and hence wireless carriers only required phones to be authenticated.
Today, the cost of cell phone base stations is significantly cheaper, and modern-day cell phone
networks use mutual authentication.

Now that we have completed our discussion of authentication, we are going to explore
our next security concept: authorization.

1.3. Authorization

Authorization is the act of checking whether a user has permission to conduct some action.
Whereas authentication is about verifying identity, authorization is about verifying a user’s
authority. To give a concrete example, let us examine the case in which Alice authenticates
herself at an ATM by putting in her ATM card and entering her PIN. Alice may want to deduct
$500, but may only be authorized to deduct a maximum of $300 per day. If Alice enters $500
as the amount that she is requesting to deduct, the system will not authorize her transaction
even if she successfully authenticates herself.

In the previous example, an authorization check questions whether Alice has the author-
ity to deduct a certain amount of money. Operating systems such as Windows and Linux do
authorization checks all the time. For example, when Alice attempts to delete a file, the oper-
ating system checks whether Alice is allowed to do so. A general mechanism called an access
control list (ACL) is used by many operating systems to determine whether users are author-
ized to conduct different actions.

CHAPTER 1 © SECURITY GOALS

1.3.1. Access Control Lists (ACLSs)

Minimally, an ACL is a set of users and a corresponding set of resources they are allowed to
access. For example, Alice may have access to all the files in her home directory,! but may not
have access to Bob’s files. Suppose Alice’s home directory is /home/Alice, and Bob’s home
directory is /home/Bob. An ACL that models this would list Alice as the principal,? and it would
also list the set of files in her home directory that she is allowed to access, as shown in Table 1-1.
In the table, an asterisk (*) is used as a wildcard to indicate all files and subdirectories within a
particular home directory. An ACL may optionally include privileges that are associated with
resources. The Privilege column indicates that Alice and Bob are allowed to read, write, and
execute files in their respective home directories.

Table 1-1. A Simple ACL

User Resource Privilege
Alice /home/Alice/* Read, write, execute
Bob /home/Bob/* Read, write, execute

In some more sophisticated ACL schemes, another piece of information called a role is
added, which enables a user or principal to access particular resources. Table 1-2 shows an
example mapping of users to roles, and Table 1-3 shows a role-based ACL. In Table 1-2, Alice
is both a programmer and an administrator, and Bob is both a programmer and a backup
operator.?

Table 1-2. A User-Role Mapping

User Role
Alice Administrator, Programmer
Bob Backup Operator, Programmer

Table 1-3. A Role-Based ACL

Role Resource Privilege
Backup Operator /home/* Read
Administrator /* Read, write, execute

1. Auser’s home directory is the location on a file system where her files are stored.
2. Anentity (or a process) that is capable of being authenticated is often referred to as a principal.

3. A backup operator is responsible for backing up all user files on a periodic basis.

13

14

CHAPTER 1 © SECURITY GOALS

1.3.2. Access Control Models

ACLs can be used to implement one of three access control models—the mandatory access
control (MAC) model, the discretionary access control (DAC) model, and the role-based
access control (RBAC) model—sometimes called the non-discretionary access model.

Mandatory Access Control (MAC)

In the MAC model, the computer system decides exactly who has access to which resources
in the system. In the MAC model, if Alice creates a new document, the system can decide that
no one but Alice is allowed to access that document. Alice herself does not have the right to
decide who else is allowed to access the file that she authored. Even if she wants to share the
document she authored with her friend Bob, she is not authorized to make that decision. For
instance, if Alice creates a file /home/Alice/product specs.txt in a system with a MAC model,
there would be no way for Alice to decide on her own to allow Bob to see that file. In a MAC
model, only the computer system determines who is authorized to access documents that
Alice creates.

Discretionary Access Control (DAC)

The DAC model is different from the MAC model in that users are authorized to determine
which other users can access files or other resources that they create, use, or own. In a discre-
tionary access system, Alice could let Bob access a file at her discretion by issuing a command
to the system, and then Bob would be given access to that file. For instance, in UNIX, which
uses a DAC model, Alice could issue the command chmod a+r /home/Alice/product specs.txt
to allow all users on the system to read the file. The ACL that results from such a command is
shown in Table 1-4, in which the third row specifies that every user (denoted by *) has read
privileges for the file /home/Alice/product specs.txt.

Table 1-4. The Resulting ACL

User Resource Privilege

Alice /home/Alice/* Read, write, execute
Bob /home/Bob/* Read, write, execute
* /home/Alice/product specs.txt Read

Role-Based Access Control (RBAC)

The third access control model is the RBAC model, which is similar to the MAC model in the
sense that the system decides exactly which users are allowed to access which resources—but
the system does this in a special way. A RBAC system will incorporate the user’s role into its
access decision. For instance, the system may know about the user’s position (or role) within a
company (e.g., administrative assistant, manager, or CEO) and give the user different privi-
leges based on that role. For instance, the CEO may be allowed to access salary information
about any employee in the company, whereas a manager may only be able to access salary
information about his or her subordinates.

CHAPTER 1 © SECURITY GOALS

As per the role-based ACL shown in Table 1-3, a backup operator is allowed to read data
from all user home directories (/home/*) so that the data can be archived. However, a principal
with an administrator role, such as Alice, may be able to read, write, and execute files any-
where on the file system. Users that have multiple roles would declare their role just prior to
conducting an action, such as doing a backup or modifying a file. While a user such as Bob
may have both read and write privileges to some files (such as those in his home directory),
the purpose of the role would be to ensure that he could not inadvertently modify a file while
doing a backup.

Another example might use the concept of a group in the UNIX operating system to
implement RBAC. All users with a particular role would be placed in a group with the same
name as their role (e.g., Alice and Bob would be members of the group programmer). To make
the file /home/Alice/product_specs.txt available to all programmers, one could use the
command chgrp programmer /home/Alice/product specs.txt. Aslong as the file has group
read privileges, all users within the programmer group will have read privileges for the file. The
results of such a command are shown in Table 1-5, which contains a third row that specifies
that any user with the programmer role can read the file /home/Alice/product specs.txt.

Table 1-5. The ACL Based on the RBAC Model

Role Resource Privilege

Backup Operator /home/* Read

Administrator [* Read, write, execute
Programmer /home/Alice/product_specs.txt Read

Note Our illustrations of various types of access control models using UNIX have been shown for concep-
tual clarity only. Various implementations of UNIX may implement ACLs using different data structures than in
the tables we have used.

Now that we have summarized the three different types of access control models, we will
examine an access control model called the Bell-LaPadula model. The Bell-LaPadula model
can be used to implement either a mandatory or discretionary access model, depending upon
the particular details of the implementation.

1.3.3. The Bell-LaPadula Model

The Bell-LaPadula model is a popular access control model used by many government and
military organizations. In this model, all resources within the system are classified with a
certain level of access. The classifications are, in order of increasing privilege: unclassified,
confidential, secret, and top secret, as shown in Figure 1-2. In addition to associating a classifi-
cation with resources, all users are also given a classification (unclassified, confidential, secret,
or top secret).

15

16

CHAPTER 1 © SECURITY GOALS

The key innovation in the Bell-LaPadula model is not the idea of adding classifications
to users and resources, it is the use of various rules used to guide the decisions about who is
allowed to access the resources. There are three rules that guide the decisions about which
users are allowed to access which files: the simple property, the star property, and the tran-

quility property.

Read Write

Top Secret

Secret

Confidential

Unclassified

No Read Up No Write Down
Figure 1-2. The Bell-LaPadula model

The first rule, the simple property, states that if a user has a particular level of access, then
that user is not allowed to access any information resources that have a higher classification
than the user does. In essence, a user that has only unclassified access will only be able to
access unclassified files. A user with confidential access will be able to access confidential and
unclassified files, but not secret or top secret files. The simple property is an intuitive rule that
is very often called no read up.

The star property, also called the confinement property, is the second rule. If a user has
secret level access, then the user is not allowed to write any files or create any resources that
have a lower level of access. For example, if a user logs into a system and has secret level
access, that user is not allowed to write any files that would be accessible by someone with
only confidential or unclassified access. The idea behind this no write down strategy is that we
would not want any information to leak from a higher level to a lower level. With this strategy,
it would be impossible for someone with secret level access to write out any file in a system
that could be read by a user that has only unclassified or confidential access. The goal of the
star property is to restrict secret-level information only to the appropriate level of classifica-
tion or above.

The third property of the Bell-LaPadula model is the tranquility property. The tranquility
property states that the classification of a file cannot be changed while that file is in use by any
user of the system. (The file is not considered to be tranquil while it is being edited or written.)
For example, if the status of a confidential file is to be changed to unclassified, one has to wait

CHAPTER 1 © SECURITY GOALS

until all users currently using (and potentially writing to) that file to stop using it. The reason
to wait for tranquility is that it may be possible that some document could get declassified
while some user with confidential access is still writing confidential information into the doc-
ument. The tranquility property is a synchronization constraint placed upon all the resources
in the system that uses the Bell-LaPadula model.

1.4. Confidentiality

The goal of confidentiality is to keep the contents of a transient communication or data on
temporary or persistent storage secret.

If Alice and Bob want to exchange some information that they do not want Eve to see, the
challenge is to make sure that Eve is not able to understand that information, even if Eve can
see the bits that are being transferred over the network.

Suppose Eve is an eavesdropper who may be able to listen in on the contents of Alice and
Bob’s secret conversations. If Alice and Bob are communicating over a network, then Eve is
able to see the bits—the zeros and ones—that make up Alice and Bob's conversation go back
and forth over the wires (or over the air, in the case Alice and Bob are using a wireless network).

A real-world Eve might employ various existing software tools to eavesdrop. On an Ether-
net network that uses a hub (as opposed to a switch), for instance, each computer is capable
of actually seeing all the network traffic that is generated and received by any other computer.
A computer’s operating system is typically responsible for only allowing applications running
on that computer to access traffic that is directed to or from that computer, and filtering out
traffic that originates or is destined for other computers on the same network. However, if a
user has root or administrator privileges on a computer, that user can use a software package
such as Ethereal, tcpdump, or dsniff to access network traffic. These software packages are run
in a “promiscuous mode,” in which the operating system provides the software access to all
traffic on the network instead of providing filtered traffic that is just directed to or from the
computer on which it is running. While such packages exist to help network administrators
and engineers debug problems, they can be used for eavesdropping. Attackers may not have
administrator privileges, but can obtain them by first getting access to some account, and then
exploiting software vulnerabilities in the operating system to gain such privileges.

Usually, some kind of encryption technology is used to achieve confidentiality. Most
encryption technologies use a key to encrypt the communication between Alice and Bob. A
key is a secret sequence of bits that Alice and Bob know (or share) that is not known to poten-
tial attackers.* A key may be derived from a password that is known to both Alice and Bob. An
encryption algorithm will take the key as input, in addition to the message that Alice wants to
transfer to Bob, and will scramble the message in a way that is mathematically dependent on
the key. The message is scrambled such that when Eve sees the scrambled communication,
she will not be able to understand its contents. Bob can use the key to unscramble the mes-
sage by computing the mathematical inverse of the encryption algorithm. If Alice and Bob use
good encryption technology and keep the key secret, then Eve will not be able to understand
their communication.

4. In this chapter, we use the term key to refer to a secret key. In some encryption schemes (covered in
Chapter 13), some keys can be made public.

17

18

CHAPTER 1 © SECURITY GOALS

1.5. Message/Data Integrity

When Alice and Bob exchange messages, they do not want a third party such as Mallory to be
able to modify the contents of their messages.

Mallory has capabilities similar to Eve, but Eve is a passive eavesdropper while Mallory is
an active eavesdropper. Though Eve is able to see the zeros and ones go by, she is unable to
modify them. Eve therefore cannot modify any part of the conversation. On the other hand,
Mallory has the ability to modify, inject, or delete the zeros and ones, and thus change the
contents of the conversation—a potentially more significant kind of attack. Mallory is some-
times referred to as a man in the middle.

Alice and Bob can use an integrity check to detect if an active eavesdropper like Mallory
has modified the messages in an attempt to corrupt or disrupt their conversation. That is,
Alice and Bob want to protect the message integrity of their conversation. One approach that
they can take to ensure message integrity is to add redundancy to their messages.

Consider a hypothetical scenario in which Alice wants to send an “I owe you” (I0U) mes-
sage such as “I, Alice, owe you, Bob, $1.00,” and Mallory has the ability to change only one
character in the message. If Mallory wants Alice to be in more debt to Bob, she could change
the message to “I, Alice, owe you, Bob, $1000” by changing the dot to a zero. On the other
hand, if Mallory wants to cheat Bob out of his dollar, she could change the message to “I,
Alice, owe you, Bob, $0.00.” Assuming Mallory can only change a single character in a mes-
sage, Alice could add redundancy to her message by repeating the dollar amount twice so that
Bob could detect tampering. For example, if Alice sends the message “I, Alice, owe you,
Bob, $1.00. Confirm, $1.00,” then Mallory would not be able to change both of the dollar
values in the message, and Bob would be able to detect tampering by Mallory. If Mallory
changes one of the amounts in the message, Bob will see a mismatch between the two dollar
amounts and discard the message. In this manner, redundancy can be used to provide mes-
sage integrity.

While Mallory may not be able to tamper with Alice’s IOU if she uses redundancy, she
may still be able to conduct a denial-of-service attack. If Mallory changes one of the dollar
amounts in the IOU each time Alice tries to send it to Bob, and Bob is forced to discard the
message each time because of the mismatched dollar amounts, Bob will never receive the
I0U he rightly deserves! (Denial-of-service attacks are discussed further in Section 1.7.)

Unfortunately, a real-world active eavesdropper will typically have the power to change
much more than a single character in a message, and the simple approach of repeating the
dollar amount will not work. In addition, repeating information more than once requires extra
communications bandwidth and is not terribly efficient.

In networking communications protocols, approaches such as CRCs (cyclic redundancy
checks) can be used to achieve integrity and detect when bits in a message have been lost or
altered due to inadvertent communications failures. These techniques compute short codes
that are functions of the message being sent. Alice can attach a short code to the message
such that if the message or code are modified, Bob can determine whether they were tam-
pered with.

However, while CRCs are sufficient to detect inadvertent communications failures, they
are typically not good enough to deal with adversaries such as Mallory. If Mallory knows that
a CRC is being used, and she has no restrictions on how many bytes she can modify, she can
also change the short code to match her modified message.

CHAPTER 1 © SECURITY GOALS

Instead, message authentication codes (MACs) are typically used to achieve message
integrity in real-world security protocols. A MAC is not only a function of the message itself,
but is also a function of a key known only to Alice and Bob, such that even if Mallory is able to
modify the bytes of a message, she will not be able to appropriately modify the corresponding
MAC. (MACs are covered in more detail in Chapter 15.)

While the goal in confidentiality is to make sure that the contents of Alice and Bob’s
communication cannot be understood by a third party like Eve or Mallory, there is no such
requirement for message integrity. For message integrity to be achieved, it does not matter
whether the eavesdropper can see the data in the message so long as she is unable to change
it undetected. The goal of message integrity is to make sure that even if Mallory can “look,”
she cannot “touch” the contents of the message.

1.6. Accountability

While authentication and authorization are important, accountabilify is another key security
goal (especially for a company’s internal systems). The goal of accountability is to ensure that
you are able to determine who the attacker or principal is in the case that something goes
wrong or an erroneous transaction is identified. In the case of a malicious incident, you want
to be able to prosecute and prove that the attacker conducted illegitimate actions. In the case
of an erroneous transaction, you want to identify which principal made the mistake. Most
computer systems achieve accountability through authentication and the use of logging and
audit trails. To obtain accountability, you can have a system write log entries every time a user
authenticates, and use the log to keep a list of all the actions that the user conducted.

The chief financial officer (CFO) of a company may have the authority to transfer money
from the company’s bank account to any another, but you want to hold the CFO accountable
for any actions that could be carried out under her authority. The CFO should have the ability
to transfer money from the company account to other accounts because the company may
have certain financial commitments to creditors, vendors, or investors, and part of the CFO’s
job may involve satisfying those commitments. Yet, the CFO could abuse that capability.
Suppose the CFO, after logging into the system, decides to transfer some money from the
company’s bank account to her own personal account, and then leave the country. When the
missing funds are discovered, the system log can help you ascertain whether or not it was the
CFO who abused her privileges. Such a system log could even potentially be used as evidence
in a court of law.

It is also crucial to make sure that when the logging is done and audit trails are kept, the
logs cannot be deleted or modified after the fact. For example, you would not want the CFO to
be able to transfer money into her own personal account and then delete or change the audit
trail so that transaction no longer appears, or is covered up in any way to appear as if the
transaction had a different recipient. To prevent logs from being deleted or altered, they could
immediately be transferred to another system that hopefully an attacker would not be able to
access as easily. Also, Chapter 15 discusses how MACs (message authentication codes) can be
used to construct integrity check tokens that can either be added to each entry of a log or
associated with an entire log file to allow you to detect any potential modifications to the sys-
tem log. You can also use write once, read many (WORM) media to store system logs, since
once written, these logs may be hard (or even physically impossible) to modify—short of
destroying the media completely.

19

20

CHAPTER 1 © SECURITY GOALS

A good logging or audit trail facility also provides for accurate timestamping. When
actions are written to an entry in a log, the part of the entry that contains the time and date at
which the action occurred is called a timestamp. You need to ensure that no user can modify
timestamps recorded in the log. The operating system, together with all the other computers
on the network, must be in agreement on the current time. Otherwise, an attacker can log into
a computer whose clock is ahead or behind the real time to cause confusion about when cer-
tain actions actually occurred. A protocol such as Network Time Protocol (NTP) can be used to
keep the clocks of multiple computers synchronized.

One problem with many of today’s systems is that logging facilities do not have secure
timestamping and integrity checking facilities. As a result, after attackers hack into a system,
they can change the logs such that no one can detect that they hacked in. Therefore, it is espe-
cially important to think carefully about a secure audit trail facility when you design secure
systems. If existing or third-party software tools are used when constructing systems, they
may have to be instrumented or modified to satisfy accountability goals.

1.7. Availability

An available system is one that can respond to its users’ requests in a reasonable timeframe.
While availability is typically thought of as a performance goal, it can also be thought of as a
security goal. If an attacker is able to make a system unavailable, a company may lose its abil-
ity to earn revenue. For example, if an online bookstore’s web site is attacked, and legitimate
customers are unable to make purchases, the company will lose revenue. An attacker that is
interested in reducing the availability of a system typically launches a denial-of-service (DoS)
attack. If the online bookstore web site were run on a single web server, and an attacker trans-
mitted data to the web server to cause it to crash, it would result in a DoS attack in which
legitimate customers would be unable to make purchases until the web server was started
again. Most web sites are not run using just a single web server, but even multiple web servers
running a web site can be vulnerable to an attack against availability.

In a distributed denial-of-service (DDoS) attack, perpetrators commandeer weakly pro-
tected personal computers and install malicious software (malware) on them that sends
excessive amounts of network traffic to the victim web sites.® The servers running the victim
web sites are then overwhelmed with the large number of packets arriving from the comman-
deered computers, and are unable to respond to legitimate users.

In February 2000, the eBay, E*TRADE, Amazon, CNN, and Yahoo web sites were victims
of DDoS attacks, and some were disabled for almost an entire business day. This meant lost
revenues and interruption of service for legitimate users. One study by the Yankee Group esti-
mated the damage due to lost capitalization, lost revenues, and cost of security upgrades to be
$1.2 billion (Kovar 2000); this cost figure was also cited in a FBI congressional statement on
cybercrime (Gonzalez 2000).

We include availability as a security goal because it is sometimes difficult to provide a sys-
tem that is both highly secure and available all the time. There is sometimes an interesting
trade-off between availability and security. For example, if a computer is disconnected from

5. Such attacks are called network-layer denial-of-service attacks. Application-layer denial-of-service
attacks are also possible, in which vulnerabilities in applications are exploited to make systems
unavailable.

CHAPTER 1 © SECURITY GOALS

the Internet and stored in a physically secure location where no one is allowed to access it, the
computer will be very secure. The problem is that such a computer is not readily available to
anyone for use.

You want to design systems whose functionality is available to the largest possible
intended audience while being as secure as possible. A service like PayPal (www.paypal.com),
which supports person-to-person payments, is an example of a system that generates more
revenue the more users take advantage of it, and as such, its availability is critical—users may
get very upset if they cannot access their funds at a moment’s notice.

How does one achieve availability in a system? One method is to add redundancy to
eliminate any single point of failure. For example, consider a telephone network. In such a
network, phones connect to a switch (central office) that directs calls. If someone wants to
attack your ability to place phone calls, he might cut the telephone line that connects to that
particular central office, and as a result you would not be able to make calls. Attackers some-
times cut off a victim’s ability to communicate prior to launching an attack.

One potential way to avoid single points of failure is to add redundancy. (Note that we are
referring to a different type of redundancy than the redundancy we referred to in our discus-
sion of message integrity.) A second switch can be added to the network so that if an attacker
disables the first switch, the system will automatically connect you to the second.

Another potential DoS attack can be conducted by filling up a system’s disk. Suppose
users are sharing a disk on a server that is used to store their photos. That server may be run-
ning critical processes that need some disk space themselves. If an attacker can sign up as a
user (or compromise an existing account) and fill up the shared disk with his own photos (or
garbage data), then the critical processes may not be able to properly function, and system
failure may ensue.

If you impose limits on the amount of disk space that each user can use, then even if the
attacker is able to compromise one user’s account, he will only be able to use up a certain
amount of disk space. The attacker would need to compromise additional accounts to use up
more disk space. In such a system, even if a user is a legitimate, paying customer, that user
should not be trusted with more than her fair share of disk space because her account could
be compromised.

Now that we have covered availability, let us move on to the last key security goal we con-
sider in this chapter: non-repudiation.

1.8. Non-repudiation

The goal of non-repudiation is to ensure undeniability of a transaction by any of the parties
involved. A trusted third party, such as Trent, can be used to accomplish this.

For example, let us say Alice interacted with Bob at some point, and she does not want
Bob to deny that she interacted with him. Alice wants to prove to some trusted third party (i.e.,
Trent) that she did communicate with Bob. If, for instance, Alice sent a payment for a bill to
Bob over the Web, she may want her payment to be non-repudiable. That is, she does not want
Bob to be able to deny that he received the payment at some later point for any reason.

Alice, for example, may feel comfortable sending money to Trent, but not directly to Bob.
Bob also trusts Trent. Trent may say to Bob, “Yes, Alice gave me the $500, so you can ship her
the goods, and then I will pay you.” In such an example, Trent is playing the role of an escrow
agent, but trusted third parties may be able to serve in many other types of trusted roles

2

22

CHAPTER 1 © SECURITY GOALS

beyond being escrow agents. Because Alice and Bob trust Trent, they may be able to conduct
certain types of transactions that they could not have accomplished otherwise.

To illustrate another example in which Alice and Bob use the help of Trent, consider that
Alice might want to sign a contract to be employed by Bob. Alice might want Trent to serve as a
judge so that if Bob ever tries to pay her less than the salary specified by the contract, she can
call on Trent to help enforce the contract. At the same time, Bob might not want Alice to show
the employment contract to another potential employer to try to get a higher offer.

Alice and Bob can accomplish both of their goals by using Trent’s help. Bob can give Trent
the employment contract. Trent tells Alice the amount of the offer, and agrees not to show the
employment contract to other employers. Then, Alice can decide whether to accept the con-
tract, but will not be able to use it to negotiate higher offers with other employers. Also, if Bob
ever tries to cheat Alice by not issuing payment, Trent can intervene. Note that we assume that
Trent is trusted to be impartial and will not collude with either Alice or Bob. To summarize,
trusted third parties can help conduct non-repudiable transactions.

In general, non-repudiation protocols in the world of security are used to ensure that two
parties cannot deny that they interacted with each other. In most non-repudiation protocols,
as Alice and Bob interact, various sets of evidence, such as receipts, are generated. The
receipts can be digitally signed statements that can be shown to Trent to prove that a trans-
action took place.

Unfortunately, while non-repudiation protocols sound desirable in theory, they end up
being very expensive to implement, and are not used often in practice.

1.9. Concepts at Work

Now that we have covered a number of key security concepts, let us examine how those
concepts work together in a typical web client/web server interaction. Suppose Alice is an
employee of a company called PCs-R-Us, and her job responsibility is to order DVD drives for
the company’s PCs from a company called DVD-Factory. DVD-Factory has a web site that
Alice uses to procure DVDs for her company. The following points examine why DVD-Factory
might want to care about the security goals discussed in this chapter when implementing its
web site.

e Authentication: If a malicious competitor is trying to steal business from DVD-Factory,
the competitor could create a web site that looks exactly like the DVD-Factory web site,
but at a different web address. To combat that tactic, DVD-Factory needs to make sure
that the web server can be authenticated so that when Alice goes to the DVD-Factory
web site, she knows she is dealing with DVD-Factory and not DVD-Factory’s look-alike
competitor.

The SSL protocol is used between web clients and web servers to do secure transac-
tions. When Alice enters the web address https://www.dvd-factory.biz, Alice’s browser
will invoke the SSL protocol to make sure that the web site authenticates itself to her
browser. (We will talk more about how the SSL protocol accomplishes this later in the
book, but at this point, it is important to note that the web browser authenticates the
web site to make sure that it is dealing with DVD-Factory’s web site and not another
web site that is trying to spoof or imitate it.)

CHAPTER 1 © SECURITY GOALS

Alice then has to log into DVD-Factory and give that web site her username and
password so that DVD-Factory knows that it is Alice, an authenticated principal
at PCs-R-Us, who is attempting to buy DVDs from them.

e Authorization: While Alice is the trusted PCs-R-Us employee to order DVDs, Bob,
another employee at PCs-R-Us, might be responsible for accounting and auditing. He
might also have a login and password to the DVD-Factory web site because he needs to
see prices and orders placed, but he may not be allowed to place orders for DVDs him-
self. Before accepting an order, the DVD-Factory web site conducts an authorization
check to make sure that the logged-in user is allowed to place an order. If Alice tries to
order DVDs from PCs-R-Us, the web site will allow it, but if Bob attempts to order
DVDs, the order will be rejected.

e Confidentiality: DVD-Factory doesn't want competitors to be able to see exactly how
many or which DVDs Alice happens to be ordering from DVD-Factory, because that
may give them competitive information. The SSL protocol encrypts all of the communi-
cation between Alice and the DVD-Factory web site with an algorithm such as Triple
DES. (We cover SSL in more detail in Chapter 15, and we cover Triple DES and other
encryption algorithms in Chapters 12 and 13.)

* Message Integrity: Suppose that Alice wants to order ten DVDs from DVD-Factory, but
an attacker wants to alter her order to zero DVDs. If the attacker succeeds and DVD-
Factory gets a message saying that Alice has ordered zero DVDs, her job may be
affected, since no DVDs are actually going to be shipped. Alice may eventually get frus-
trated with DVD-Factory and might decide to go to a competitor (who may be behind
this mischief). Message and data integrity are very important to prevent such mischief.
The SSL protocol uses message authentication codes in the messages that are sent
between Alice and the web site to make sure that no competitor or other malicious
party can tamper with the data.

e Availability: DVD-Factory may have a competitor that launches a DoS attack against
the site in order that Alice will stop buying from DVD-Factory and instead come to their
competing site. As part of DVD-Factory’s security strategy, its web site needs to be kept
running and available 24 hours a day, 7 days a week. One simple (but potentially expen-
sive) approach that DVD-Factory might use to mitigate a DoS attack against it would be
to overprovision their bandwidth to handle the increased traffic load caused by illegiti-
mate clients. You can read more about overprovisioning and other approaches to
mitigating DoS attacks in Internet Denial of Service Attack and Defense Mechanisms,
by Jelena Mirkovic et al.

» Accountability: To ensure accountability, every time Alice places an order from the
DVD-Factory web site, it produces a log entry so that Alice cannot later claim to have
not ordered the DVDs. This may sound a bit like non-repudiation, but it is actually
accountability, since the goal is to simply keep a log of what Alice has and has not done.

* Non-repudiation: It is possible for DVD-Factory to cheat and report that Alice ordered
more DVDs than she actually did. If the web browser and web site run a non-repudiation
protocol, it is then possible for Alice to prove to a third party that she only ordered, say,
10 DVDs, and not the 12 that DVD-Factory may claim she ordered.

24

CHAPTER 1 © SECURITY GOALS

Unfortunately, true non-repudiation is not provided by SSL, and is not implemented on
most web sites, partially due to the absence of a practical protocol for non-repudiation,
and partially because there are no organizations to serve as the trusted third parties.

In practice, when customers pay for services with credit cards on web sites, Visa and
Mastercard take on the role of trusted third parties, but they usually end up trusting
their users much more than the merchant web sites from which their users buy prod-
ucts. If a user claims that he or she did not place an order with a merchant, then the
credit card company favors the user and issues a chargeback. In the physical world,
merchants can fight the chargeback if they can produce a receipt that the user signed.
Of course, in the context of a web transaction, there is no good proxy or replacement
for a receipt signed by the user!

While we unfortunately do not see true non-repudiation on the Web today, it is possible
that the Web of the future will provide better non-repudiation capabilities.

CHAPTER 2

Secure Systems Design

This chapter examines how to architect and design systems that accomplish the security
goals covered in Chapter 1. We first spend some time discussing prototypical threats to soft-
ware, and then discuss how to design security into applications from the beginning. We focus
on a number of high-level approaches and trade-offs, and discuss how security is sometimes
perceived to be at odds with factors such as convenience and usability. We also discuss the
concept of “security by obscurity” and why it is usually not sufficient. We look at security as a
game of economics and risk management. Some of the approaches and design principles

we cover in this chapter and the next were for the first time described in Jerome Saltzer and
Michael Schroeder’s paper, “The Protection of Information in Computer Systems”—we bring
them to life and illustrate them with many real-world examples.

We also illustrate the approaches, trade-offs, and security design principles using a con-
crete, running code example throughout this chapter and the next. While most security books
only talk about these principles in the abstract, we present actual code examples for a simple,
small web server, and show specifically how it can be exploited by an attacker if security
design principles are not followed. The code is written in the Java programming language,
but we explain each line of code such that programmers of any language should be able to
understand how the principles apply in their favorite programming language. The code
examples can be downloaded from www.learnsecurity.com/ntk.

2.1. Understanding Threats

As new businesses take shape, new threats need to be identified and mitigated to allow for the
continued success of those businesses. Over time, new businesses can use additional security
technology to mitigate such threats. As your organization enters new businesses, it may be
worthwhile to consider developing, buying, and deploying new technological solutions that
help mitigate threats that did not exist prior to the organization’s entry into that new business.

Different types of businesses will be more sensitive to different threats, and will have
different security goals to mitigate those threats. Understanding threats is important in deter-
mining a system’s security goals.

In the following section, we describe some sample threats and types of attacks to give you
a flavor of some prototypical applications and threats they may face. Of course, keep in mind
that there are many more types of computer security threats and attack types than those we
list here.

25

26

CHAPTER 2 = SECURE SYSTEMS DESIGN

2.1.1. Defacement

Consider what might be the most significant types of threats to a civil liberties web site or the
White House web site. Since these web sites are created by organizations that advocate a par-
ticular political stance, an attacker is probably interested in making some kind of political
statement against these organizations. Therefore, the most significant threat against such sites
may be defacement.

Defacement is a form of online vandalism in which attackers replace legitimate pages of
an organization’s web site with illegitimate ones. In the years 1999 and 2001, for example, the
White House web site was defaced by supposed anti-NATO activists (Dennis and Gold 1999)
and Chinese hackers (Anderson 2001). In such defacement attacks, the attackers usually
replace the front page of a web site with one of their own choice.

Defacement is a very different type of threat than what other web sites, such as financial
institutions or e-commerce vendors, might face. The attackers of these web sites may be most
interested in compromising bank accounts or conducting credit card fraud. Therefore, how we
design systems to be secure against attacks is dependent on the type of threats that we expect
them to face.

In the case of a politically oriented web site, say, www.whitehouse.gov, there may be a data-
base where all of the content for that web site is stored. The owner of the web site may not care
if an attacker gains read-only access to the information in that database—however, they do
not want the attacker changing the information in that database. On the other hand, a finan-
cial institution or e-commerce web site does not want the attacker to be able to even read the
information in the back-end database. If this happened, the credit card or account numbers
of clients might be compromised.

2.1.2. Infiltration

In general, infiltration is an attack in which an unauthorized party gains full access to the
resources of a computer system (including, but not limited to, use of the CPUs, disks, and net-
work bandwidth). In later chapters, we study how buffer overflow, command injection, and
other software vulnerabilities can be used by attackers to infiltrate and “own” computers.

In some defacement attacks, an attacker may have to infiltrate a web server to conduct
the defacement. But the threat from infiltration can be quite different than that of deface-
ment, depending on the type of web site. Consider the threat from an infiltration in which an
attacker is able to write to a database running behind, say, a financial web site, but not be able
to read its contents. If the attacker is able to write information to the database without reading
it, the situation might not be as bad as you might think. So long as you can detect that the
attacker’s write took place, the situation can be mitigated. You can always restore the correct
account numbers and balances from a backup database, and redo all transactions that occurred
after the unauthorized writes to prevent your users from being affected. (For the purposes of
this example, we assume that even if an attacker is able to write the database content, the
attacker would not be able to rewrite logs. In the real world, attackers can sometimes also
rewrite logs, which presents greater problems.) So, in the case of the political web site, you
most importantly need to defend against an attacker who attempts to gain write capability,
while in the case of a financial web site, it is most important to defend against an attacker
who attempts to gain read capability.

CHAPTER 2 = SECURE SYSTEMS DESIGN 27

The preceding example illustrates that different types of web sites are going to have differ-
ent security goals. In the case of a political web site, the integrity of the web site content is the
most significant concern, while in the case of a financial web site, integrity and confidentiality
of customer data are both of high importance.

Military web sites have still different security sensitivities. If a military web site is defaced,
it might simply be embarrassing for them. Infiltration of a military web site, in which confi-
dential or classified data is acquired by the attacker, however, could be a threat to national
security.

2.1.3. Phishing

Phishingis an attack in which an attacker (in this case, a phisher) sets up a spoofed web site
that looks similar to a legitimate web site. The attacker then attempts to lure victims to the
spoofed web site and enter their login credentials, such as their usernames and passwords.

In a phishing attack, attackers typically lure users to the spoofed web site by sending them
e-mails suggesting that there is some problem with their account, and that the user should
click a link within the e-mail to “verify” their account information. The link included in the
e-mail, of course, is to the attacker’s web site, not the legitimate site. When unsuspecting users
click the link, they arrive at the spoofed site and enter their login credentials. The site simply
logs the credentials, and either reports an error to the user or redirects the user to the legiti-
mate site (or both). The attacker later uses the logged credentials to log into the user’s account
and transfer money from the user’s account to their own.

Why do users fall for clicking such links in e-mails sent by phishers? Phishers use various
techniques to hide the fact that the link is to their illegitimate, spoofed site. Following is an
example.

First, in HTML documents, a link is constructed as follows:

Click here

When the e-mail is rendered by a browser, the link will look like this: Click here, and the
destination address will not be apparent to an unsuspecting user.
An attacker can use code such as the following in an HTML e-mail sent to the victim:

http://www.legitimate-site.com/

The browser displays http://www.legitimate-site.com/, but when the user clicks the
link, the browser loads the front page of waw.evil-site.com since that is what is specified by
the hyperlink reference (HREF) in the anchor (A) tag in the HTML e-mail. In real phishing
attacks, the phisher might have the browser display www.paypal.com or www.google.com, and
have the hyperlink reference point to www.paypal.com (with a “1” instead of a “1”) or
www. gogole.com (“google” misspelled), respectively.

Slightly more sophisticated users may position their mouse over the link prior to clicking
it. Many browsers will display the address of the destination site at the bottom of the browser
window or in a pop-up tool tip. Such users may decide not to click the link if the actual desti-
nation site does not match their expectation.

28

CHAPTER 2 = SECURE SYSTEMS DESIGN

2.1.4. Pharming

Pharming is another attack in which a user can be fooled into entering sensitive data into a
spoofed web site. It is different than phishing in that the attacker does not have to rely on
the user clicking a link in an e-mail. With pharming, even if the user correctly enters a URL
(uniform resource locator)—or web address—into a browser’s address bar, the attacker can
still redirect the user to a malicious web site.

When a user enters a URL—say, www.google.com/index.html—the browser needs to first
figure out the IP address of the machine to which to connect. It extracts the domain name,
www.google.com, from the URL, and sends the domain name to a domain name server (DNS).
The DNS is responsible for translating the domain name to an IP address. The browser then
connects to the [P address returned by the DNS and issues an HTTP request for index.html.

In a pharming attack, an attacker interferes with the machine name-to-IP address trans-
lation for which the DNS is responsible. The attacker can do so by, for instance, compromising
the DNS server, and coaxing it into returning the attacker’s IP address instead of the legitimate
one. If the user is browsing via HT'TP, the attack can be unnoticeable to the user. However, if a
user connects to a site using SSL, a pharming attack (in most cases) will result in a dialog box
from the browser complaining that it was not able to authenticate the server due to a “certifi-
cate mismatch.” (We discuss certificates in Section 15.3.)

PHARMING (A.K.A. DNS CACHE POISONING)

While the term pharming was coined in March 2005 shortly after a significant attack, this type of attack has
been known for years prior under the name DNS cache poisoning. However, due to the increasing use of
the Internet to conduct financial transactions, DNS cache poisoning is no longer just a matter of academic
interest—criminals have turned to it for financial gain.

2.1.5. Insider Threats

A surprisingly large percentage of attacks take place with the cooperation of insiders. Insiders
could be, for instance, employees at a corporation who abuse their privileges to carry out
malicious deeds. Employees are sometimes trusted with access to databases with customer
information and employee records, copies of financial reports, or confidential information
concerning product launches. Such information can be abused in the obvious ways: employee
data could be sold to headhunters, customer credit card numbers could be sold on the black
market, financial reports could facilitate insider trading, and product launches could be
leaked to the press.

As such, it is sometimes important to defend a system against the very people that are
responsible for using it on a daily basis. Database administrators, for example, have tradition-
ally been given the “keys to the entire kingdom,” and have complete access to all employee
and customer data stored in a database. System administrators similarly are given “superuser”
access to all resources and data under the control of an operating system. Additional features
are needed in both database and operating systems to provide for separation of privilege, the
concept that an individual should only be given the privileges that he needs, without also
being given unrestricted access to all data and resources in the system.

CHAPTER 2 = SECURE SYSTEMS DESIGN 3

2.2.1.Windows 98

Problems occasionally arose in Windows 98 in which a diagnostic mode is needed to deal with
the issue. For example, if some device driver locks up while the computer is booting up,' the
Windows 98 diagnostic mode can be used to help determine which device drivers may be
causing the problem. The Windows 98 diagnostic mode does not load up all device drivers at
boot time.

You can access the diagnostic mode in Windows 98 by pressing the F8 key while the oper-
ating system is booting up. Even if a computer is password protected, anyone can hit the F8 key
at boot time, and the computer will jump into its diagnostic mode, giving the user the ability to
access the hard disk and any sensitive data on it without entering a username or password.

In Windows 98, the security feature of entering a username and password was added into
the operating system as an afterthought, as opposed to being part of the initial design of the
operating system. If instead the operating system was designed with security in mind, then it
might ask a user to enter a username and password to even enter the diagnostic mode. The
design of the Windows 98 password mechanism is an example of how adding security as an
afterthought does not work.

2.2.2.The Internet

Another example of how it is very difficult to add security as an afterthought is the design of
the Internet itself. When the Internet was designed, all of the hosts (computers) on the net-
work were effectively trusted because they were owned by universities or military installations
that trusted each other and wanted to collaborate with one another. (The Internet grew out of
a government project funded by DARPA, the Defense Advanced Research Project Agency.) In
the mid-1990s, due to the mass commercialization of the Internet, just about everyone started
connecting their computers to the Internet. New hosts were allowed to connect to the existing
hosts regardless of whether the existing parties on the network trusted the newly connected
hosts. To protect themselves, some hosts started deploying firewalls.

Firewalls and Their Limitations

A firewall allows hosts to specify that they trust some hosts to connect to them on some ports
while they do not trust other hosts or accept traffic on other ports. However, due to the way
that the Internet was designed, firewalls are not always necessarily able to enforce the trust
relationships their users would like, since hosts can lie about IP addresses or communicate
over ports that have been cleared to go through the firewall.

Consider two hosts, Alice (A) and Bob (B). For A to send a message to B, A needs to con-
struct an Internet Protocol (IP) packet. You can think of an IP packet as a letter that one might
send in the mail, except that it is transmitted over a wire instead of dropped into a mailbox.
The data packet has two parts: an “envelope,” sometimes referred to as the IP header, and the
message itself. The [P header contains host B's IP address (the destination address). The mes-
sage contains the data that A would like to send to B.

1. Adevice driver is a piece of software that allows a computer to use a hardware device that is attached
to it. Device drivers are responsible for communicating between the operating system running on a
computer and the hardware device that is attached to it. Device drivers are notorious for bugs that can
cause an operating system to malfunction or crash altogether.

32

CHAPTER 2 = SECURE SYSTEMS DESIGN

Internet ports are used to route messages to applications on hosts, using, for instance,
Transmission Control Protocol (TCP). By convention, applications of different types commu-
nicate over different ports. For instance, web browsers typically communicate with web
servers over port 80, and mail clients send outbound e-mails to mail servers on port 25. (A list-
ing of standard port assignments can be found at www.iana.org/assignments/port-numbers.)

However, port assignments are by convention only, and there is no fundamental reason
that a web client couldn’t connect to a web server listening on port 25, or that a mail server
couldn’t be run on port 80. Hence, firewalls sometimes cannot effectively control or restrict
traffic successfully by just imposing rules on what port numbers applications can use to
communicate.

Malicious hosts can easily “lie” about source addresses in IP packets. By taking advantage
of low-level networking routines, an attacker can write code that fills in the source IP address
field in outgoing IP packets instead of letting the operating system do it. Let Mallory (M) be a
malicious host. Host M could, for instance, put host A's IP address on the data packet that it
sends to B. When host B looks at the data packet, it will look like it came from A.

One can imagine that this capability can be used for nefarious purposes. Consider a sce-
nario in which host B is storing all of Alice’s files on its hard disk, and Alice issues commands
to add, remove, and delete files every now and then from host A. Host B might even be config-
ured to only process commands in data packets that have A’s address as the source address.
The practice of deciding to accept communications from another host based on the host’s IP
address is often called IP whitelisting.? Host B is said to store a whitelist, which is simply a list
of IP addresses from which it will accept data packets.

Unfortunately, our malicious host M may be able to coerce host B into executing com-
mands of its choice simply by putting host A’s address on the envelope. When an Internet host
intentionally mislabels the source address on data packets that it sends out, it is said to be
conducting an IP spoofing attack. IP whitelisting, as a security mechanism, is potentially sus-
ceptible to TP spoofing attacks, especially when non-connection-oriented protocols such as
UDP are used.

Host B will send the results of the commands it executes to the host specified as the
source address. In our example, host B sends its response to host A, not host M. However, if
the command is “delete all files on the hard disk,” an attacker such as M does not need to
receive the results of the command in order to cause damage.

IP spoofing is possible for an attacker even if more than one round of communication is
necessary. Consider a scenario in which host B from the previous example sends a message
that says “Are you sure you want to delete all files?” in response to receiving the “delete all files
on the hard disk” command, and waits for a response prior to actually issuing the command.
Now, one might hope that since host B would require an answer back from host A confirming
the deletion, the attack could be foiled.

However, our attacker on host M will still be able to delete all the files on B’s hard disk.
One problem the attacker would need to solve is that when host A receives the “Are you sure
you want to delete all files?” message, Alice may say “"No” because she never sent the delete
command to begin with (and she probably does not want all her files to be deleted). Indeed,
if host A receives the “Are you sure you want to delete all files?” message, it might be an

2. Similarly, the practice of denying communications from another host based on the host’s IP address is
called blacklisting.

CHAPTER 2 = SECURE SYSTEMS DESIGN

indication that there is an attack taking place. Alternatively, host A simply might not respond
to the “Are you sure?” message at all.

If host A does not respond to the “Are you sure?” message, then host M could send a sec-
ond spoofed packet sometime later with the answer “Yes.” Since the source IP address would
be A's address, host B would allow the command because host A's address is on its whitelist,
and host B would proceed to delete all files on its hard disk.

So it is actually quite critical that host M makes sure that host A does not respond to the
“Are you sure?” message. To ensure that host A does not respond, host M can start a DoS attack
against host A prior to sending its “delete all files” message to host B. Hence, even though host
B sends an “Are you sure?” message back to the source address to confirm the “delete” com-
mand, an IP spoofing attack is still possible.

To make the attack harder, host B can include a nonce, a pseudo-random number intended
for one-time use, in the “Are you sure?” message. When host B receives the request to delete
files, it responds to host A with a confirmation request of the form “Are you sure? Please echo
the random number 3957264392047453759 back if you are sure.” If host A indeed wanted to
delete all files, it would respond with “Confirm delete all files—confirmation number
3957264392047453759.” The point of the nonce is that since host M does not know it (M does
not receive the confirmation request), our adversary would not be able to issue a successful
confirmation to delete the files.

IP spoofing is much easier for non-connection-oriented protocols such as UDP than for
connection-oriented protocols like TCP. TCP includes a sequence number in packets that is
typically used to reorder packets if they arrive from the network out of order. However, if an
attacker can successfully guess TCP sequence numbers, the attacker may be able to insert
packets into a TCP conversation. When a TCP connection is established, the operating system
chooses a TCP sequence number for the first packet in the conversation. If it does not do a
good job choosing such a number at random, an attacker may be able to predict the next
sequence number that will be used, and can use that information to set up a spoofed TCP
connection.

If you have further interest in IP spoofing, you can read more about it in Robert Morris's
paper, “A Weakness in the 4.2BSD UNIX TCP/IP Software” (Morris 1985) or the more recent
article from Phrack magazine entitled “IP Spoofing Demystified” (daemon9, route, and
infinity 1996).

The Adoption of IP

There is sometimes a natural trade-off between security and convenience. We discuss this
trade-off more in Section 2.3, but we'll briefly point out that the adoption of IP is an example
of it here. [P was very convenient to deploy, and, partially as a resuly, it received wide adop-
tion. On the other hand, if it were more secure but less convenient to deploy, it may not have
been adopted as quickly or as widely.

A protocol called IPsec was developed to require hosts to authenticate each other so that
they cannot lie about their IP address or identity. Unfortunately, IPsec is not widely deployed
on the public Internet.?

3. While [Psec is not used to establish connections between two arbitrary computers on the Internet, it
is used to construct virtual private networks (VPNs). A corporate VPN may use IPsec to route encrypted
and integrity-protected traffic over the public Internet between two authenticated hosts on its intranet.

33

CHAPTER 2 = SECURE SYSTEMS DESIGN

If IP had been first designed to have authentication built in as part of the protocol (as in
IPsec), the world might be very different today. It is possible that attackers would not have
as much flexibility as they do today. At the same time, if IP had been more like IPsec, and
required as much overhead to deploy, it is possible that it would not have had as wide an
adoption as it did.

How do you achieve both security and adoption? The challenge is to design and use secu-
rity mechanisms that are not too inconvenient, and that may even help serve as a reason for
increased adoption.

2.2.3. Turtle Shell Architectures

When systems are not designed with security in mind, sometimes attempts are made to
secure them with turtle shell architectures after the fact. A turtle shell architecture is one in
which an inherently insecure system is “protected” by another system that attempts to medi-
ate accesses to the insecure system.

Firewalls are such an example. Many corporations and organizations interested in secur-
ing their systems on the Internet deploy a firewall in front of their systems. The firewall creates
a turtle shell architecture that attempts to guard soft, vulnerable software inside the corpora-
tion’s network perimeter.

While it is, in general, useful to construct a hard outer shell, that outer shell should not be
relied upon completely for defense. If there is a way to get through that shell or “turn the turtle
over,” the software running on hosts underneath the shell would be very susceptible to attack.

THE DEATH STAR’S FIREWALL

If you remember the first Star Wars movie, A New Hope, originally released in 1977, you may now realize that
the Death Star had a turtle shell architecture. The Death Star was a moon-sized space battlestation that went
around the galaxy destroying planets with good, happy people on them. The technical specifications of the
Death Star that were stored by the droid R2-D2 revealed that it had “a strong outer defense” consisting of a
magnetic shield and large, powerful turbo lasers mounted on the surface of the battlestation. The Death
Star's defenses were geared at mitigating the threat posed to it by large space cruisers. However, the good
guys in the movie—the rebels—were able to destroy the Death Star by piloting small, one-manned stunt
fighters through the magnetic shield, evading the large, relatively slow-moving turbo lasers, and exploiting its
weakness—a small, thermal exhaust port connected to the battlestation’s power-generation system.

Think of a firewall as the Death Star's magnetic shield. It may help mitigate large, outright, blatant
attacks. However, it is fairly useless against more stealthy attacks. A firewall can prevent incoming connec-
tions from particular hosts or IP addresses based on the information in packets. Of course, if an attacker can
successfully spoof IP addresses, then a firewall may not be able to tell the difference between a packet that
was sent from a legitimate host and one that was not.

To summarize, when the Internet was designed, security was not one of the design
parameters. The same was true when Windows 98 was designed. When you design new soft-
ware features, you should think about security up front—don't add it on as an afterthought.

CHAPTER 2 = SECURE SYSTEMS DESIGN

2.3. Convenience and Security

Security comes at a price not only to the company that is developing an information system,
but to the users of that system. The system may become less convenient for the users as more
security technology is deployed. For example, if you allow your users to choose whatever
password they like, this may lead to security vulnerabilities since some users may choose
passwords that are easy for attackers to guess. On the other hand, if you deploy a security
technology that assigns complicated passwords to users, your system may seem more secure,
but it will be less convenient to your users, since they may forget the passwords if they're too
complicated. We say “seem” more secure because if the passwords are so hard to remember
that users start writing them down, this introduces another vulnerability that may end up
actually decreasing the security of the overall system. If those written-down passwords are
stored in a user’s wallet with all of his other credentials, that would involve some risk; but if
they're on a Post-it note stuck to the side of a monitor in a public office space, that would
involve significantly more risk!

A good security technology can increase both convenience and security—although that
may not always be possible. For example, if you allow users to choose their own passwords,
but make them choose sufficiently complicated ones (e.g., require that users enter one digit
or special character into a password that’s between eight and ten characters), this might sig-
nificantly increase security at the cost of only a little bit of inconvenience. A good security
technology will provide a relative security benefit at only a slight inconvenience to users.

A good technology will increase both convenience and security, because even if it introduces
a slight inconvenience, it can reduce or eliminate more significant inconveniences (and
damages) that may occur as the result of a successful attack.

2.4. SimpleWebServer Code Example

Now that we have covered some basics of how the Internet works, we will introduce our code
example, a simple web server that we will be using to illustrate various security design con-
cepts later in this chapter and the next.

Before we present the code for the simple web server, we'll briefly review the basics of
how web servers work. We have intentionally simplified our explanation so that we can focus
on only the essential details, so if you're a web veteran, please don’t be alarmed at how many
details we've omitted!

2.4.1. Hypertext Transfer Protocol (HTTP)

The World Wide Web (WWW), or Web for short, is made up of a network of Internet servers
(“web servers”) that serve Hypertext Markup Language (HTML) documents to web browser
client applications. Web servers typically listen for connections coming from web browsers on
port 80. After a web browser connects to a web server on port 80, it communicates with the
web server using the Hypertext Transfer Protocol (HTTP). The first HI'TP message that the
browser sends to a server after connecting is typically of the following form:

GET <filename> <http-version>

35

CHAPTER 2 = SECURE SYSTEMS DESIGN

62 StringTokenizer st =

63 new StringTokenizer (request, " ");
64

65 command = st.nextToken();

66 pathname = st.nextToken();

67

68 if (command.equals("GET")) {

69 /* If the request is a GET,

70 try to respond with the file

71 the user is requesting. */

72 serveFile (osw,pathname);

73 }

74 else {

75 /* If the request is a NOT a GET,

76 return an error saying this server
77 does not implement the requested command. */
78 osw.write ("HTTP/1.0 501 Not Implemented\n\n");
79 }

80

81 /* Close the connection to the client. */

82 osw.close();

83 }

84

85 public void serveFile (OutputStreamWriter osw,

86 String pathname) throws Exception {
87 FileReader fr = null;

88 int ¢ = -1;

89 StringBuffer sb = new StringBuffer();

90

91 /* Remove the initial slash at the beginning
92 of the pathname in the request. */

93 if (pathname.charAt(o) == "/")

94 pathname = pathname.substring(1);

95

96 /* If there was no filename specified by the
97 client, serve the "index.html" file. */

98 if (pathname.equals(""))

99 pathname = "index.html";

100

101 /* Try to open file specified by pathname. */
102 try {

103 fr = new FileReader (pathname);

104 c = fr.read();

105 }

106 catch (Exception e) {

107 /* If the file is not found, return the

108 appropriate HTTP response code. */

CHAPTER 2 = SECURE SYSTEMS DESIGN 39

109 osw.write ("HTTP/1.0 404 Not Found\n\n");
110 return;

111 }

112

113 /* If the requested file can be successfully opened
114 and read, then return an OK response code and
115 send the contents of the file. */

116 osw.write ("HTTP/1.0 200 OK\n\n");

117 while (¢ != -1) {

118 sb.append((char)c);

119 ¢ = fr.read();

120 }

121 osw.write (sb.toString());

122 }

123

124 /* This method is called when the program is run from

125 the command line. */

126 public static void main (String argv[]) throws Exception {
127

128 /* Create a SimpleWebServer object and run it. */
129 SimpleWebServer sws = new SimpleWebServer();

130 sws.Tun();

131 }

132 }

Main Program

For those readers who are familiar with Java, the preceding program should seem very
straightforward. We now provide a brief explanation of how the program works for the benefit
of programmers who are not familiar with Java (or object-oriented programming or network-
ing, for that matter).* In our explanation, we repeat relevant parts of the code so that you do
not have to keep flipping pages. We start with the program’s main() method:

124 /* This method is called when the program is run from

125 the command line. */

126 public static void main (String argv[]) throws Exception {
127

128 /* Create a SimpleWebServer object and run it. */
129 SimpleWebServer sws = new SimpleWebServer();

130 sws.run();

131 }

132 }

4. Ifyou are not so familiar with object-oriented programming, the term method used in the following
discussion is almost equivalent to function.

CHAPTER 2 = SECURE SYSTEMS DESIGN

When a Java program starts running, the code in its main() method is executed first.
Themain() method in the program creates a new SimpleWebServer object and calls its run()
method. The SimplellebServer object is a data structure that contains both the code and data
that make up the web server. When the line containing “new SimpleWebServer()” executes,
it invokes the constructor method. The constructor is simply a method that creates the
SimplelebServer object—it allocates memory for it and initializes the data used by the object.

Once the SimpleWebServer object is constructed and initialized, the main() method calls
the run() method, which handles all the real work done by the server. The run() method con-
sists of an infinite loop—while (true)—that waits for a connection from a client, and then
attempts to process the client’s request. The call to the ServerSocket accept() method returns
a socket object that corresponds to a unique socket on the server and allows the server to
communicate with the client.

Important Data Members

The SimpleWebServer object has two important pieces of data (also called data members), as
shown here:

21 /* Run the HTTP server on this TCP port. */

22 private static final int PORT = 8080;

23

24 /* The socket used to process incoming connections
25 from web clients. */

26 private static ServerSocket dServerSocket;

The first is the port number that the web server should listen to for connections from
clients. The PORT variable is simply a constant that is initialized to 8080. (Typically, only system
administrators are allowed to run programs that use ports less than 1024.) Usually, clients
would be able to connect to the simple web server using a URL, or web address, such as
http://machinename.yourdomain.com/. The browser automatically assumes port 80, but you
can specify a different port, such as 8080, by appending a colon followed by the desired port
number in the URL, http://machinename.yourdomain.com:8080.

The second important data member is dServerSocket. The dServerSocket data member
is a socket to which clients can connect. Think of it as being like an electrical socket. Both
web browser clients and web servers have a “virtual” power strip with many sockets on them.
A client can talk to a server by selecting one of its own sockets, selecting one of the server’s
sockets, and establishing a connection between the two by plugging a virtual wire into each
end. However, since we would not want each client to have to worry about choosing a unique
port number on the server so that they don'’t interfere with each other, the ServerSocket object
will take connections from many clients connecting to the same port number—in our case,
8080. When a client expresses its desire to connect to the port number, the ServerSocket
object manages assigning each client some unique port from the server’s frame of reference.

Processing Requests

We now describe the processRequest () method that is called once the client connects:

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
12
73
74
75
76
77
78
79
80
81
82
83

CHAPTER 2 = SECURE SYSTEMS DESIGN

/* Reads the HTTP request from the client and
responds with the file the user requested or
an HTTP error code. */
public void processRequest(Socket s) throws Exception {
/* Used to read data from the client. */
BufferedReader br =
new BufferedReader (

new InputStreamReader (s.getInputStream()));

/* Used to write data to the client. */
OutputStreamWriter osw =

new QutputStreamWriter (s.getOutputStream());

/* Read the HTTP request from the client. */
String request = br.readline();

String command = null;
String pathname = null;

/* Parse the HTTP request. */
StringTokenizer st =
new StringTokenizer (request, " ");

command = st.nextToken();
pathname = st.nextToken();

if (command.equals("GET")) {
/* If the request is a GET,
try to respond with the file
the user is requesting. */
serveFile (osw,pathname);

}
else {
/* If the request is a NOT a GET,
return an error saying this server
does not implement the requested command. */
osw.write ("HTTP/1.0 501 Not Implemented\n\n");
}

/* Close the connection to the client. */
osw.close();

}

The processRequest() method takes the client socket as input. It uses the client socket
to create the BufferedReader and OutputStreamiriter objects that allow it to read data from
and send data to the client, respectively. Once these communication objects have been

4

42

CHAPTER 2 = SECURE SYSTEMS DESIGN

created, the processRequest () method attempts to read a line of input from the client using
the BufferedReader. We expect that the first line of data that the client sends the server is an
HTTP GET request, as described previously. The StringTokenizer object, st, is used to break
up the request into its constituent parts: the command (i.e., GET) and the pathname to the

file that the client would like to download. If the command is a GET request, as expected, the
serveFile() method is called to load the file into the server's memory and send it to the client.
If the command is not a GET request, an appropriate HTTP error response is sent to the client.

Serving Files

Once the GET request is parsed for the filename, the serveFile() method is used to retrieve the
file from disk, and serve it to the client.

85 public void servefFile (OutputStreamWriter osw,

86 String pathname) throws Exception {
87 FileReader fr = null;

88 int ¢ = -1;

89 StringBuffer sb = new StringBuffer();

90

91 /* Remove the initial slash at the beginning

92 of the pathname in the request. */

93 if (pathname.charAt(o) == "/")

94 pathname = pathname.substring(1);

95

96 /* If there was no filename specified by the

97 client, serve the "index.html" file. */

98 if (pathname.equals(""))

99 pathname = "index.html";

100

101 /* Try to open file specified by pathname. */
102 try {

103 fr = new FileReader (pathname);

104 c = fr.read();

105 }

106 catch (Exception e) {

107 /* If the file is not found, return the
108 appropriate HTTP response code. */
109 osw.write ("HTTP/1.0 404 Not Found\n\n");
110 return;

111 }

112

113 /* If the requested file can be successfully opened
114 and read, then return an OK response code and
115 send the contents of the file. */

116 osw.write ("HTTP/1.0 200 OK\n\n");

117 while (c != -1) {

