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Foreword by Peter W. Jones, Yale University

IT 1S ONLY TWENTY-THREE YEARS SINCE BENOIT MANDELBROT
published his famous picture of what is now called the Mandelbrot set.
The graphics available at that time seem primitive today, and
Mandelbrot's working drafts were even harder to interpret. But how that
picture has changed our views of the mathematical and physical universe!
Fractals, a term coined by Mandelbrot, are now so ubiquitous in the scien-
tific consciousness that it is difficult to remember the psychological shock
of their arrival. A twenty-first-century researcher does not think twice
about using a computer simulation to begin the investigation of a
problem; indeed, it is now routine to use a desktop computer to search for
new phenomena or seek hints about research problems. In 1980 this was
very far from the case.

When a paradigm shift hits, it is rarely the old guard who ushers it in.
New methods are required, and accepted orthodoxy is often turned on its
head.

Thirty years ago, despite the appearance of an avant garde, there was
a general feeling in the mathematics community that one should distrust
pictures and any information they might carry. Computer experiments
had already appeared in the undergraduate physics curriculum, but were
almost nonexistent in mathematics. Perhaps this was due in part to the
relatively weak computers then available, but there were other aspects of
this attitude. Abstraction and generality were seen by many mathemati-
cians as the guiding principles. There were cracks in this intellectual foun-
dation, and the next twenty years were to see many of these prejudices
disappear.
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In my own field of analysis there had been overblown expectations in
the 1950s and 1960s that abstract methods could be developed to solve a
large range of very concrete problems. The correct axioms and clever the-
orems for abstract Banach spaces or algebras would conquer the day. By
the late 1960s, groups in France and Sweden, along with the Chicago
school in the U.S., had developed entirely new methods of a very concrete
nature to solve old conjectures and open new frontiers. The hope of
abstract salvation, at least in its most extreme forms, was revealed as
naive. Especially for problems of a statistical nature, hard tools needed to
be developed. (One should note that in other areas of mathematics,
abstract methods have had spectacular success in solving even very con-
crete problems. What this means for the future of those fields is now a
topic of broad speculation.)

How fascinating it is to look back on this period and observe Benoit
Mandelbrot. He was looking at pictures, drawing conclusions in many
fields, and being largely ignored by all. He was outside every orthodoxy
imaginable.

To understand Mandelbrot's contributions to science, one must first
give up the tendency to find a disciplinary pigeonhole for every scientist.
What should one call someone who works simultaneously in mathematics,
physics, economics, hydrology, geology, linguistics... ? And what should
one think of someone whose method of entry into a field was often to find
puzzling patterns, pictures, and statistics. The former could not be a sci-
entist, and the latter could not be science! But Benoit Mandelbrot was
really doing something very simple, at least at the entry point to a
problem: He was looking at the pictures and letting them tell their own
story.

In the mid 1500s, Galileo peered through telescopes to find astonishing
celestial features imperceptible to the human eye. In very much the same
spirit, Mandelbrot used the most modern computers available to investi-
gate phenomena not well studied by closed formulas, and out popped
strange and unexpected pictures. Furthermore, he worked with the idea
that a feature observed in a mathematics problem might be related to
"outliers" in financial data or the observed physics of some system.
Perhaps these rare events or outliers were not actually so rare at all;
perhaps they were even the main feature of the system!

After getting his foot in the mathematical door, Mandelbrot would
start the next phase of research, erecting a mathematical framework and
doing the hard estimates. Try today to explain to the scientifically literate
high-school student that the beautiful fractal pictures on a computer
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screen are not interesting, at least not to be trusted, and try asserting that
the fractals arising in wholly different problems are similar due just to
chance.

While the aversion to looking at pictures has faded, there is still con-
fusion as to why Mandelbrot's early works on fractals, e.g., his book The
Fractal Geometry of Nature, generated such wild popularity in the general
scientific community. One does not see on every page the "theorem-
proof" methodology of a mathematics textbook. Furthermore, though one
can easily find theorems and rigorous proofs in the book, the phenomena
and pictures discussed may seem to a mathematician to be unrelated,
because there is not necessarily an exact theorem to link any two of them.

What a poor world we would live in if this were the only permitted
method to study the universe! Consider the plight facing a working biol-
ogist, where all data sets are dirty and causality difficult to determine.
Should one demand a theorem in this situation? Should a geologist
looking at rock strata search first for a theorem, when the formalism of
multifractal measures might be more important? An old tradition in
science is to seek first a description of the system at hand; this apparently
simpler problem is usually much more difficult than is generally believed.
Few doubt that Kepler's laws would have been formulated without his
first seeking patterns by poring over reams of data.

Perhaps, however, the pictures studied by Mandelbrot arose ran-
domly, and any connection to interesting science is just a coincidence. The
Mandelbrot set M offers an instructive example. Despite twenty years of
intensive research by the world's best analysts, we still do not know
whether M is locally connected (the MLC conjecture), and progress on this
problem has rather ground to a halt. This is now seen as one of the most
central problems of complex dynamics, and the solution would have many
deep consequences. The geometry of M is known to be devilishly compli-
cated; M. Shishikura proved that the boundary has dimension equal to
two.

We know today that the "Sullivan dictionary” provides many ana-
logues between iteration of rational functions and the theory of Kleinian
groups, but there is very much that remains open. For example, we do
not know whether it is possible for either a Julia set or a limit set (of a
Kleinian group) to have positive area unless it is the full sphere. If all
Julia sets from quadratic polynomials have zero area, then the Fatou con-
jecture on density of hyperbolic systems would be proven for quadratics.
It is also known that MLC implies both the Fatou conjecture for quadratics
and the nonexistence of certain (but not all) Julia sets of positive area.
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Another example is furnished by the Brownian boundary that is the
subject of Plate 243 of The Fractal Geometry of Nature. Arguing by analogy
and examination of simulations, Mandelbrot proposed that the Brownian
boundary has dimension 4/3 and serves as a model for (continuous) self-
avoiding random walks (SARW). The 4/3 conjecture was only recently
solved by the spectacular work of G. Lawler, O. Schramm, and W.
Werner. Their proof relied heavily on the new processes called SLE that
Schramm invented. @We now know that SLE (8/3) represents the
Brownian boundary. This also proves another prediction of Mandelbrot
that the two sides of the Brownian boundary are "statistically similar and
independent.” One of the major challenges in probability theory is to
prove that SARW exists, and the new conjecture is that it can be identified
with SLE (8/3).

The study of multifractals is another area where Mandelbrot played a
leading role. Through multiplicative measures with singular support were
known in certain areas of Fourier analysis and conformal mappings, their
fine structure had not been examined, and they were virtually absent in
discussions of physical problems until the work of Mandelbrot. He was
also the first to write down fla) in the form of normalized logarithms of
large deviation probabilities.

The status of these problems may be open, but the beautiful pictures,
now easily reproduced by the aforementioned high-school student, con-
tinue to fascinate and amaze. What we see in this book is a glimpse of
how Mandelbrot helped change our way of looking at the world. It is not
just a book about a particular class of problems; it also contains a view on
how to approach the mathematical and physical universe. This view is
certain not to fade, but to be part of the working philosophy of the next
mathematical revolution, wherever it may take us.

Peter W. Jones, Professor of Mathematics, Yale University
New Haven, Connecticut, October 1, 2003
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Preface

TI—IE INTERCONNECTIONS BETWEEN FRACTALS AND CHAOTIC
dynamical systems are numerous and varied. But this is neither a
monograph on those interconnections, nor a textbook.

The core consists of reprints of the direct technical contributions I
made in the 1980s to four great and endurmg topics of mathematics: (A)
Fatou-Julia iteration of the quadratic map 7+ ¢, (B) Fatou-Julia iteration of
other rational maps, (C) Poincaré's "Kleinian" limit sets, and (D) related
singular measures. My contributions are not available at present in any
single library. They were few in number, but several became influential,
while others are perhaps more rarely quoted than they deserve.

To weave those topics together, new chapters were specially written,
and many reprints are clarified by new forewords and annotations. There
is a strange but widely held belief that science is a passionless and dull
enterprise. This belief is certainly contradicted by the historical and
biographical sketches in this book.

An eventful history and newly published pictures might well attract to
this book some readers not concerned with mathematics per se. To help
the pictures catch the interest of those readers, existing expository material
that is comparatively "light" has been scattered throughout, especially in
Chapters C23 and the first half of Chapter C17.

Sketches of the four main topics

Part 1. Quadratic iteration and its Mandelbrot set. In the case of Fatou-Julia
iteration, an object now denoted by M and called the "Mandelbrot set” has
opened wide new vistas. For the quadratic map, I defined M in the plane
of the complex variable ¢ by the condition that the sequence c, e,
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@+ +c, ... does not diverge. This definition, which may seem hap-
hazard, will be seen to be deeply motivated. In contrast to its extreme
simplicity, the complexity and beauty of M provoke wide fascination.

In 1980, paying close attention to computer-generated pictures led me
to a number of striking observations that — either immediately or after a
short delay — became mathematical conjectures concerning the quadratic
Mandelbrot set. Though very simple to state, those conjectures were hard
to prove. In fact, the most important of them—the Mandelbrot set is
locally connected— remains open and has become notorious under the
letters MLC.

My discovery of M consisted of those observations, and the deep con-
trast between merely seeing and discovering is discussed in Chapter C1.

Fractals and the Mandelbrot set in the classroom. A striking and impor-
tant broad feature, not only of the Mandelbrot set but of all of fractal
geometry, is that unknown territory lurks close to elementary consider-
ations now taught in many high schools. The fact that the boundary of
the unknown comes close to every known area has been of great help to
many teachers. The bibliography lists two "waves" of material on fractals
for the classroom. One was coauthored by Heinz-Otto Peitgen. Another
is coauthored by M.L. Frame and me and includes Frame's course notes
on the web and a DVD.

Part 1I: Nonquadratic iterations.  Preparing this book brought a
delightful surprise. Old archives preserved by my programming assistant
in 1977-1979, Mark R. Laff, included my never-before-published illus-
trations (each imprinted by a date) concerning nonquadratic rational maps.
Those pictures reveal that the discoveries I made in 1980 were preceded
by a rich and subtle early period of fumbling and bumbling. Until now it
could not be documented and therefore I mentioned it rarely. Today, with
hindsight, everyone will recognize in Chapter C14 the overall shape and
other features of the quadratic Julia and Mandelbrot sets studied in Part I.
However, the nonquadratic environment of those early pictures was so
complex that there was very little I could do with them in 1979.

The story of what happened in 1980 remains unaffected, but the
events of 1979 and 1980 combined into an interesting case of scientific
search and discovery that several of the chapters written especially for this
book will discuss.

Part III: Kleinian groups’ limit sets. I contributed a rapidly converging
algorithm that filled a longstanding gap in an old theory. More specif-
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ically, my algorithm constructs by successive approximations a set that is
self-inverse with respect to a given collection of circles.

Part IV: Exponentially vanishing multifractal measures. Chapter C20 arose
when my IBM colleague Martin Gutzwiller and I, coming from thoroughly
distinct areas of physics, realized that we were both investigating the same
strange singular measure. Our results were easily combined in one paper.
That measure then turned out to have been defined long ago by H.
Minkowski, but further study was well-deserved.

Motivation and tools of investigation

A strong long-term motivation. To a large extent — in fact, surprisingly so,
even to me — my thinking was triggered by being young and adven-
turous enough to become a master of the use of the computer and old
enough to have been immersed in some ancient mathematical traditions.
They had arisen in early twentieth-century but by the 1970s were
unfashionable and slumbering. Those traditions caused me to begin the
study of iteration with the complicated rational maps taken up in Part II.

My involvement with this book's topics was largely independent of
"chaos theory,” understood as the revival of nonlinearity in the 1970s.
While chaos theory favored the real map x*+¢, it was already said that
my move to its complex counterpart came late and reluctantly.

The relative roles of primitive or refined pictures, and of the eye. It was
near-universally believed among pure mathematicians around 1980 that a
picture can lead only to another, and never to fresh mathematical
thinking. A striking innovation that helped thoroughly destroy this belief
resided in my work's heavy reliance on detailed pictures, in contrast to
schematic diagrams. Incidentally, a picture is like a reading of a scientific
instrument. One reading is never enough. Neither is one picture.

More precisely, my discoveries of new mathematical conjectures relied
greatly on the quality of visual analysis and little on the quality of the pic-
tures. Indeed, Chapter C1 will establish that for discovering the
Mandelbrot set, high quality graphics was not necessary, while Chapter
C12 will establish that it was not sufficient, either.

Altogether, my lifetime scientific work rescued the verb "to see" from
the figurative meaning to which both common usage and hard quantita-
tive science had reduced it, and restored its concrete meaning, whose
instrument is the eye.

Some fractal pictures are realistic and proudly called "forgeries" of
mountains, clouds, trees, or galaxy clusters. Other pictures are totally
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abstract, like those of the Mandelbrot set. Moreover, some fractal pictures
are perceived as having high aesthetic quality. Enormous numbers of
persons have posted pictures of fractals on the Web. But the black-and-
white computer pictures in my old files continue to be very valuable. If a
suitable environment can be found, I would love to extend the small art
portfolio implicit in this book into a "permanent exhibit" on the Web.

Fractal geometry opens up a quantitative theory of roughness

Given the variety of its manifestations, fractal geometry continues to sur-
prise both the technical and the nontechnical audiences. It remains hard
to pigeonhole, to classify, and to compare with existing disciplines.

Mostly after the fact, I view fractal geometry as opening up a study of
roughness that is parallel to—but distinct from—the studies of
brightness/color, loudness/pitch, heaviness, and heat, each of which has
long since developed into a science. Compared to the studies of those
other basic sensations, the study of roughness came late because it is more
complex. Its quantitative measurement demands Holder exponents and
Hausdorff dimension—concepts that arose far later than, for example,
periodic oscillations; fractal geometry was first in recognizing that they
concern anything "real.”

While it is tightly bound by the tools it uses and the flavor of the
problems it faces, fractal geometry retains an intrinsic diversity that is rare,
amusing and—I think—important. It has survived the childhood diseases
and crises that strike intellectual initiatives involving an ambitious syn-
thesis has been described as having changed the view of nature held by
many mathematicians, scientists, engineers, artists, other professionals, and
even every man and woman.

Open and fortress mathematics. Starting at the latest in ancient Greece
with Archimedes and Plato, the views of the nature of mathematics has
ranged between two extremes. My self-explanatory words for them are
open and fortress mathematics. The former involves a lively sprawling col-
lection of buildings permanently under construction or reconstruction,
with many doors and windows revealing beautiful and varied landscapes.
The highest ambition of fortress mathematics, to the contrary, is to wall off
all openings but one. Its dwellers believe that their endeavors can evolve
on their own steady path and need not interact with society at large.

While mathematics and science are among the highest achievements of
humanity, all evidence shows that their history and the history of human
civilization have been indissolubly intertwined. The claim that fortress



CP ¢ ¢ PREFACE 5

mathematics has become independent is wishful thinking, and the notion
that it can become independent is gratuitous.

Other contributions of fractals to pure mathematics

Following The Fractal Geometry of Nature (M 1982F), a series of my
"Selecta”—selected papers— began with M1997E, M1999N, and M2002H,
and continues with this Volume C, M2004C. The style of the preceding
references is explained on the first page of the bibliography. Denoting
those Selecta by nonconsecutive mnemonic letters suggests that they can be
examined in any sequence.

The previous three volumes all concern a "state” of randomness and
variability that I call "wild." This volume C is unrelated to the previous
three, with the following important exception. Not only do Chapters C20
and C21 involve the topic of M1999N, which is multifractals, but those
chapters were motivated by statistical physics through diffusion-limited
aggregation. This is why M and Evertsz 1991 is reprinted as Chapter C22.

Early plans called for additional Selecta volumes. But, the Internet
having transformed our world, the further Selecta will be "Web books" on
my Web site. Each will reduce to a title page, a foreword, a table of con-
tents, and links to papers on my home site. Given the diversity of my
work, the web's flexibility is a great asset.

The "Overview" Chapter HO of M2002H presents a partial but nearly-
up-to-date status report on fractal geometry. More specifically, what has
been its overall impact on mathematics? While fractal geometry was
young, it was invidiously observed that it "has not solved any mathemat-
ical problems." This is no longer true and in any event was always irrel-
evant. Indeed, my role in mathematics has been to provide a mass of new
problems and conjectures. Each opened a new field that continues to
prosper as I move to other concerns. Most widely known are the exam-
ples discussed in this book, but a few other examples deserve brief
mention now.

M1982F (p. 243) introduces and M2002H (Chapter H3) investigates the
concepts of Brownian cluster and Brownian boundary, culminating with
the conjecture that this boundary's Hausdorff dimension is 4/3. Com-
bined with related conjectured dimensions for percolation and Ising clus-
ters, the diverse occurrences of 4/3 grew into sharp challenges to the
analysts and has led since 1998 to widely acclaimed proofs by Duplantier,
Lawler, Schramm, Werner, and Smirnov. Earlier, a dozen or so scattered
technical conjectures in analysis had been shown to be equivalent to that
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4/3. All have now been proven as corollaries and together provide math-
ematics with a new element of unity that continues to be explored.

M1999N collects many early papers in which I introduced and investi-
gated the random multiplicative singular measures, now called
"multifractal,” an example of which stars in Part IV. They were not
intended as new esoterica but as a model of turbulence and finance. My
conjectures created an active and prosperous subbranch of mathematics,
they served to organize some features of DLA (as already mentioned), and
they underlie the main current branch of statistical modeling of the vari-
ation of financial prices. Increasingly rich structures arose as I repeatedly
weakened the constraints on the multifractal multiplicands. The papers
collected in M1999N took the step from microcanonical to canonical multi-
plicands. Recent papers coauthored by ]. Barral moved on to products of
pulses and other functions.

The telling pictures I drew of old standbys like the Koch and Peano
curves and the Cantor dust achieved a broader and deep change of per-
spective. Those sets used to be viewed as "pathological" or "monsters."
Quite to the contrary, I turned them around into unavoidable rough
models ("cartoons") of a reality that science had previously been powerless
to tackle, namely, the overwhelming fact that most of raw nature is not
smooth but very rough. For example, I reinterpreted Peano "curves" as
nothing but motions following a plane-filling network of rivers.

Norbert Wiener once described his key contributions to science as
bringing together — starting from widely opposite horizons — the fine
mathematical points of Lebesgue integration and the vigorous physics of
Gibbs and Perrin. Also (like Poincaré), Wiener was very committed (and
successful) in making frontier science known to a wide public. On both
counts, the theory of fractals is arguably a multiple second flowering of
Wiener's Brownian motion.

Overall acknowledgments

Let me now proceed beyond the acknowledgments printed after each
paper, which were preserved, and the further acknowledgments found in
several introductory chapters. Firstly, warm thanks go to the coauthors of
joint papers for permission to reprint them.

For over 35 years, the Thomas J. Watson Research Center of the Inter-
national Business Machines Corporation, in Yorktown Heights, N.Y., pro-
vided a unique haven for mavericks and for various investigations that
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science and society forcefully demanded, but academia and its funding
agencies neither welcomed nor rewarded.

The originals of the old texts reprinted in this book were written at
that haven. Invaluable programming and graphics support was provided
there by Mark R. Laff, V. Alan Norton, and J.A. Given, and at Harvard in
1980 by Peter Moldave. The preparation of the original texts and the
long-drawn-out preparation of this book were performed by several
long-term secretaries, H. Catherine Dietrich (1933-2003), Janis Riznychok,
Leslie Vasta, Premla Kumar, Kimberly Tetrault, Catherine McCarthy, and
Barbara White. After retiring from IBM, I continued at Yorktown part
time as IBM Fellow Emeritus, largely in order to prepare the Selecta books.
Short-term assistants far too numerous to list were of great help. The
clumsy English of some old papers was copy edited by Helen Muller-
Landau, Noah Eisenkraft, and others. Of course, extreme care was taken
never to modify the meaning. The originals are available in libraries and
are gradually being posted on my Web site.

Never was IBM's pioneering Script word-processing language under
VM expected to survive (unattended!) for ten years. But the clock is
ticking, and this may be the last major project served by Script.

I am deeply indebted to the Yorktown of its heyday as a scientific
powerhouse. Among long-term friends and colleagues, it will remain
most closely associated with Richard F. Voss, Martin Gutzwiller, Rolf
Landauer (1927-1999), and Philip E. Seiden (1934-2001). As to manage-
ment, at a time when the old papers in this book were being written and
were widely perceived as a wild gamble, my work received wholehearted
support from Ralph E. Gomory, to whom I reported in his successive
capacities as Group Manager, Department Director, and finally IBM
Director of Research and Senior Vice-President. Gomory reminisced on
the old times in a Foreword written for M 1997E.

As an adjunct in the Yale Mathematics Department before retiring
from IBM, then as a tenured professor, I had the renewed great fortune of
being invited, especially by R. R. Coifman and Peter W. Jones, to move on
to another haven that also provided my life with welcome balance
between industry and academia. The Yale postdocs I supervised include
Carl J.G. Evertsz, coauthor of a paper that became Chapter C22.

Last but not least, this book is not solely dedicated to my uncle. As
all my work, it is also dedicated to my wife, Aliette. The original papers
would not have been written, assembled, and added to without her con-
stant and extremely active participation and unfailingly enthusiastic
support.
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PART I: QUADRATIC JULIA AND MANDELBROT
SETS

&& & &&&&&&&&&&&&&&&&&&&&&&&&&E&

First publication Cl

Introduction to papers on quadratic dynamics:
a progression from seeing to discovering

T'HIS CHAPTER DESCRIBES THE CIRCUMSTANCES under which I had
the privilege of discovering in 1980 the set that is the main topic of this
book. As will be meticulously documented in Chapters C12 and C14, I
actually saw this set in 1979 but bumbled and fumbled for about a year.

M1980n{C3} ushered in the modern theory of complex dynamics, spe-
cifically of the quadratic dynamics of the maps Z+c and Az(1-2). The
Fractal Geometry of Nature, M 1982F, followed and was widely read. Very
rapidly, interest in the Mandelbrot set became broad and extraordinarily
intense. Many eminent mathematicians immediately took up its study and
achieved spectacular results that provoked a historically significant and
highly beneficial change in the mood of mathematics. Yesterday, "gener-
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ality at all cost” was in the saddle. Today, "special" problems are more
readily recognized as compelling,.

However, my own research moved on to different topics. Therefore
later developments of quadratic dynamics are little known to me, and few
will be quoted; Urbanski 2003 is a recent survey.

The broad "popular infatuation" with the Mandelbrot set must be men-
tioned. This social phenomenon continues, astonishes everyone, and of
course enchants me. It was largely spontaneous, no committee or organ-
ization being involved. It suggests that a strong interest for mathematics
is widespread among humans, but only if its links with nature and the eye
are not actively suppressed but, instead, brought out and celebrated.

This broad interest may bring to this book some readers from a
"general public.” For their sake, the introductory chapters interpret the
term “historical circumstances” rather broadly and include facts already
well known to many professional mathematicians. Earlier accounts such
as M 1986p were very incomplete.

Section 1 is a sketch, and Sections 2 and 3 provide fuller discussions.
Broader acknowledgments are postponed to the next chapter.

"Nice" illustrations are scattered throughout this book, but this chap-
ter's main point is strengthened by returning to the sources. Figures 1, 2,
3, 4, and 5 are a small sample of the crude illustrations, many of them
published for the first time, that led to the actual discovery of the
Mandelbrot set during the Harvard spring term of 1980. Their number
and variety, which I had forgotten, are significant. The computer did not
automatically imprint a date, but they might be roughly ordered in time.

To print those old pictures, it was necessary to enhance them by
repeated xeroxing. Since they are well-known today, and contain no fine
detail that risks being lost, many were made small.

1. THE PROGRESSION FROM SEEING TO DISCOVERING
1.1 Definition and a key quotation from Adrien Douady

Everyone knows, or so it seems, that the set M is defined in the comzplex
plane of the variable ¢ by the condition that the sequence c,c”+¢,
(®+c)+c, ... does not diverge. It is Adrien Douady who proposed the
term "Mandelbrot set M because Benoit Mandelbrot was the first one to
produce pictures of it, using a computer, and to start giving a description
of it."



C1 ¢ ¢ QUADRATIC DYNAMICS FROM SEEING TO DISCOVERING 11

Verba volant, scripta manent. The words quoted above are found on the
third and second lines from the bottom of page 161 of Douady 1986,
which this chapter will quote again.

Those words and their date are important. Despite its brevity,
Douady's statement subdivides into two clearly separate issues, one
inconsequential, and the other broad and historically important. The fact
that I was the first to produce pictures of the Mandelbrot set, in 1979, is
nice. But in the context of mathematics, this is not much to be praised for.
Section 2 will argue that the issue of the "first picture" is, by itself, unim-
portant. Section 3 will argue that the actual discovery occurred later in
1980, and consisted in my early description of many fundamental features
of M. This discovery mattered a great deal, because it soon triggered
important developments.

Between the unbeatable simplicity of the definition of M and its visual
and mathematical complexity there is a profound contrast that marks an
important discovery of the late twentieth century.

This book's core consists of reprints of papers in which my main
observations were first presented in the form of mathematical
challenges/conjectures.

1.2 Motivation for investigating the Mandelbrot set and a sketch of key
observations

1.2.1 Orbits, their limit points or cycles, and the "filled-in" Julia sets. A
rational function of a complex variable z is the ratio of two polynomials in
z. Let fiz,c) denote a rational function of z depending on a complex
parameter ¢ that can be onedimensional or multidimensional. For fixed c,
the orbit of a starting point z, is defined as the infinite sequence z,
z,(zy, ©) =flzy, ©), 2,(2y, ) =fiz;, ¢), and generally z(z, ¢) =f [z, _,(2, 0), cl.

In the late nineteenth century, the notation arose that such sequences
provide idealized versions of dynamical systems of a discrete time k.
Within that perspective, it is important to classify the points z, and ¢
according to the limit behavior of the corresponding orbit. Where does it
fail to converge and can be called "chaotic"? Where does it converge to
one of several fixed points or finite cycles and can be called "orde:ly"?

Quadratic dynamics corresponds to the case where f i is a second-order
polynomial. Changing the variable z reduces f to either 22 +cor Az(1-2).
In either case, there is one complex parameter, ¢ or A. For every c, there is
a fixed point at infinity to which an orbit converges if its starting point z,
is far enough from the origin. But there also exist points z; such that the
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orbit starting at z, fails to converge to infinity. Those points taken
together define the "filled-in Julia set" corresponding to c.

1.2.2 M® versus M. For some values of c, the orbits of some points z, con-
verge not to infinity but to a finite stable cycle of size N>1. In this
dynamlcal-systems perspective, I became interested in 1979 in identifying
the set M of those values of ¢ and classifying them according to N.

In all interesting cases, an analytic study of M is impossible. There-
fore, I attempted to study it numerically. But the task proved to be
extremely hard computationally and the approximate M’ it yielded was
very blotchy. Making the task even harder was the fact that in 1979, I
opted to start not with quadratic dynamics but with the far more compli-
cated f{z, ¢) to be discussed in Chapter C14 This part picks up the story at
the point where I turned back to f(z) =2° +c.

It occurred to me that the existence of limit sets implied domains of
convergence separated by curves. Hence the set M° I was seeking had to
be a subset of the set of ¢'s for which the Julia set is not a dust but con-
nected. Fatou and Julia had given a criterion that is straightforward and
particularly easy to program for the quadratic map: c belongs to the set M
if and only if the orbit with the starting point z,=0 (called “critical point”)
fuils to converge to infinity. This set of values of ¢ is identical to the set M
as defined above.

I conjectured that M was the closure of M° but that in any event, M
was relatively easy to investigate, hence well worth exploring. My conjec-
ture is most often restated today as asserting that the Mandelbrot set is
locally connected (MLC). Despite heroic efforts it has not yet been proven
true or false. How fortunate that I did not try to settle this issue!

1.2.3 A structure made of "atoms" combined in a big "molecule.” Douady
1986 continues (p. 162) his description of my key early observations on M
as follows: "When you look at the Mandelbrot set, the first thing you see
is a region limited by a cardioid, with a cusp at the point .25, and its
round top at the point —.75. Then there is a disk centered at the point — 1
with a radius .25, tangent to the cardioid. Then you see an infinity of
smaller disk-like components, tangent to the cardioid, most of which are
very small. Attached to each of those components, there is again an
infinity of smaller disk-like components, and on each of these there is
attached an infinity of smaller disk-like components, and so on."

Let me interrupt Douady to describe the circumstances of my dis-
covery of those disc-like components for the quadratic map in the alterna-
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tive form z — Az(1 — z). After a few iteration stages on a rough grid, we
saw that the set M includes very crude outline of the disks [A| <1 and
|A —=2| <1. Two lines of algebra confirmed that these disks were to be

_ -

FIGURE C1-1. [Harvard, early 1980] My first picture of the whole M set
is—unfortunately— either misfiled or lost. The first picture made at IBM in
1980 is reproduced in later chapters. The top panel here is a blow-up of the
most conspicuously "messy" corner of M, near the bifurcation of order 3. The
middle and bottom panels show the oldest preserved blow-ups of the two
largest islands, one already seen in the top panel and the other intersected by
the real axis (for reasons of economy, only half was computed).
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Discovering such "pearls” in a pigsty motivated a passionate investi-
gation that led to the first paper on the Mandelbrot set, M1980n{C3}; some
of its pictures were prepared after I returned from Harvard to IBM. This
text appeared very quickly in the Annals of the New York Academy of Sci-
ences, in the widely read proceedings of a major meeting on nonlinearity.
The title, "Fractal aspects of the iteration of z— Az(1—2z) for complex A
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FIGURE C1-3. [Harvard, early 1980] Miscellaneous Julia sets for complex param-
eter values in the main continental molecule of the Mandelbrot set.
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and z, " suffices to show that my goal was to revive experimental math-
ematics by reporting observations triggering new mathematics.

1.2.5 The web-like structures linking the islands to create a connected set
M. The quotation from Douady 1986 continues as follows: "This is not all
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FIGURE C1-4. [Harvard, early 1980). Miscellaneous Julia sets for parameter
values in the “island molecules” of the Mandelbrot set. By a theorem Julia and
Fatou, those Julia sets are connected. Therefore the broken-up appearances is
necessarily due to the discrete variables used in computation. These graphs
were important to my thinking because they sufficed to show that the
broken-up early M set pictures were compatible with connectedness.
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All of these cardioid-like components are linked to the main cardioid
by filaments, charged with small cardioid-like components, each of which
is accompanied by its family of satellites. These filaments are branched
according to a very sophisticated pattern.”

Wha

“‘J WV t'l-i l‘J

FIGURE C1-5. [Harvard, early 1980] Early on, I imagined the surface that is
defined, for each A, by the function " H(A) = the number of iterations needed
to first achieve the inequality |f,(1/2)| >2. " The M set is defined by H = co.
Plate 189 of M1982F (reproduced in Chapter C4) includes level surfaces of
H(A) represented in shades of grey. Peitgen & Richter 1986 taught everybody
how to represent isolines or perspective views of H(A) in bright colors. But in
early 1980, all I could do is to examine vertical cuts of that surface along lines
in the A plane. The abscissa being denoted by t, this figure combines the
(non-overlapping original) records of cuts truncated to H <300. corresponding
to the lines A =t +0.00001i, A =¢+0.0001, and A =¢t+0.001i. The range of ¢
(not recorded on the originals) clearly corresponds to small islands along the
real axis of A. To make the overlap legible, the first and second cuts are
moved up, respectively, by 100 and 50 iteration stages. The result confirmed
what one could expect on the basis of real, as opposed to complex, iteration.
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Again, let me elaborate. In parallel with blowups of the set M, we
were also running pictures of the Julia sets for values of ¢ that lie within
the island molecules. They are exemplified by Figure 4. This was the
"Eureka moment" for which decades of work seemed to have prepared
me. The shapes we saw also appeared to split into many islands, each of
these a reduced-scale version of the Julia set corresponding to a matching
value of ¢ in the continental molecule of the set M. However, we knew
from old mathematics that this appearance had to be misleading. While
island interiors cannot overlap, Julia's criterion implied—and closeups
confirmed—that the gaps between islands had to be partly spanned by a
peculiar geometry best illustrated by the following analogy. Imagine a
stream so wide that only large beasts can jump from one side to the other.
To accommodate smaller beasts, smaller stones are added half way
through each gap. And to accommodate devilishly small beasts, the
process must continue ad infinitum. Ultimately, the islands connect by
their coastlines, adding up to “devil's” polymer, whose “strands” were
invisible because actual computation is necessarily limited to a lattice.

Returning to the set M, it became very important that Myrberg had
developed a theory of the iteration of the real map x*+c. That theory
implies that the real axis pierces a string of islands of the set M, and con-
nects them in devil's fashion by their coastlines. This suggested the con-
jecture that the whole set M is a connected devil polymer.

However, I faced this issue with a degree of caution that was out of
character and perhaps brought about by living during that year among
pure mathematicians. I presented the connectedness of the set M as a
question to be answered, not a conjecture to be verified. This was a dis-
tinction without a difference but it led me in M 1980n{C3} to define an
awkward surrogate to M, whose properties could be described in math-
ematically more “firm” fashion. M 1982F snapped back into proper
assertiveness. The issue soon became moot: also in 1982, A. Douady and
J.H. Hubbard gave a proof of the connectedness of M and went on to
study it in admirable detail.

1.2.6 "Stellate structures” and uncanny resemblances between Julia sets
and the "corresponding” corners of the Mandelbrot set. Continual flipping
between the set M and selected Julia sets led to another exciting discovery.
I saw that the set M goes beyond being a numerical record of numbers of
points in limit cycles. It also has an uncanny “hieroglyphic” character: It
includes within itself a whole deformed collection of miniature versions of
all the Julia sets.
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My other early observations included "stellate structures" that are
common to the Julia set of parameter ¢ and the neighborhood of c in the
Mandelbrot set.

1.2.7 The conjecture that the Hausdorff~Besicovitch dimension of the
boundary of M is 2. This conjecture was gradually refined and is dis-
cussed in Chapter C8.

2. AN INCONSEQUENTIAL ISSUE EXAMINED CLOSELY: WHICH
WERE THE "FIRST PICTURES" OF THE MANDELBROT SET?

Once again, Douady's statement in Section 1.1, despite its brevity, touched
upon two clearly separate issues that this and the next section will
examine separately and closely.

2.1 In mathematics, a picture cannot be interesting in itself, but only for
the descriptions and investigations that it triggers

Douady calls me the "first to produce pictures" of M. This is indeed the
case. Moreover, his use of the plural "pictures” is accurate and important,
but the statement demands careful elaboration. Suppose a future historian
finds that Julia and/or Fatou observed the following somewhere, in
passing: for |cl > 2, the quadratic Julia set is totally disconnected. Such a
hypothetical but conceivable finding would imply an "approximate
picture” of M as a circle. No conclusion can be drawn from this approxi-
mation, hence no one would claim it as a first.

Instead of a hypothetical event, consider two well-documented ones
concerning a different object, namely, the diffusion-limited aggregates,
which will be the topic of Chapter C22. After "DLA" was discovered in
Witten & Sander 1981, a search through the literature revealed many old
pictures of DLA-like natural phenomena. But those pictures had led to no
insight, because suitable tools became available only after the development
of fractal geometry. Fractals were a prerequisite for the brilliant and very
influential description provided by Witten and Sander. Those authors are
the discoverers of DLA, and the early pictures deserve neglect.

Similarly, Figure 2 of Chapter C19 served in M and Evertsz 1991 to
report some very peculiar properties of the Laplacian potential around
DLA. A scientist then pointed out a related figure that was older. But
that figure had appeared without comment, for the sole purpose of illus-
trating a computing technique. Maybe it was "first" but it was forgotten,
as it deserved.
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3. THE DISCOVERY OF THE MANDELBROT SET CONTRIBUTED TO
THE REBIRTH OF EXPERIMENTAL MATHEMATICS

The demise of the presumed “beautiful IBM graphics” leads one to
wonder why the Mandelbrot set was not discovered by someone with
access to graphics better than what I had in 1980. The answer is part of
the mystery of scientific discovery. A discovery is made when the
tools—both intellectual and physical—are available to an individual with
the motivation, acuity, and inspiration to use them, and I was motivated
to sniff out the ramifications of those specks of dirt.

Later conversions to a belief in the power of observations were trig-
gered by the inspiration that my conjectures about those dust spots awak-
ened among many mathematicians—not by a discontinuity in the
availability of computers. To quote from John F. Kennedy's 1962 Yale
commencement address, "The great enemy of truth is very often not the
lie— deliberate, contrived, and dishonest, but the myth—persistent, per-
suasive, and realistic." It was a myth—one all too persistent, persuasive,
and long realistic—that experiment in mathematics had become useless.

3.1 A key fact that is perennially misunderstood and misinterpreted:
many sciences, especially early on, encounter periods during which
a well-trained and skillful eye is essential

It is worth recalling at this point some notable examples of the role played
by properly interpreted messages from the eye. The telescope was
invented, built, and marketed in Holland, as a toy. At least one person,
Thomas Harriott (1560-1621), well regarded in his day as an astronomer
and mathematician, had the idea of pointing it towards the Moon and
making a drawing of what he saw. His drawing was preserved but shows
nothing but blobs with no structure.

Galileo Galilei (1564-1642) was not the first to handle the telescope,
but the first to change it from a toy to a vital tool. He was a trained
painter, a negligibly minor one, to be sure, against stiff competition in
Renaissance Tuscany, but equal to the new task of taming the telescope.
Once directed to structures he had not discovered, Harriott instantly con-
firmed their existence. He might have uttered T.H. Huxley's exclamation
upon reading Darwin's The Origin of Species: "How extremely stupid not
to have thought of that."

There is a strong reason why Galileo performed (immensely) better
than his contemporaries, invented physics, and became the first physicist.
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Modern science arose in his hands from the notion that truth did not
reside in ancient books written by men but in the "great book of Nature"
opened in front of Man's eyes. In effect, Galileo argued against the New
Testament assertion that “in the beginning was the word.” Had he dared
counter the Scriptures (unlikely, since he did not seek a conflict with the
Church), Galileo might have proclaimed (as I do not fear to do) that “in
the beginning were the picture and the eye.” Even better, “In the begin-
ning, the word joined the picture and the eye.”

Let us move on. The microscope and the photographic camera were
ancient tools in the time of Santiago Ramon y Cajal (1852-1934) but their
availability did not suffice to resolve the complexity—nay, the utter
messiness— of the human nervous system. Once again, the reason why
“fate” chose Ramon y Cajal for this task is because the task was not
"normal," and he—perhaps he alone in his day—was well prepared. Being
a trained and infinitely patient artist, he overwhelmed the inadequacies of
his miserably outdated microscope. He saw—and revealed through classic
pictures—marvels that long remained unsurpassed. Around 1950, my
neurologist friends were still relying on pictures first published in near-
medieval Spain in the 1890s. That Cajal did not achieve and hold true
fame is a disgrace.

A third notable "seer" worth mentioning was the meteorologist and
geophysicist Alfred Wegener (1880-1930). The near match between the
southwest coast of Africa and northeast coast of South America must have
been noticed early. Wegener dared take the next step, from seeing to dis-
covering. He compared fossils separated by the Atlantic and imagined a
primordial continent that broke into parts that drifted away.

Galileo and Cajal loom high in my personal Pantheon. In kind, and
without any claim concerning relative importance, my experience was like
theirs. Quite explicitly, I thought of Cajal while discovering the M set and
of Galileo while discovering the Brownian boundary dimension 4/3.

Major differences are obvious: Galileo's story marked a nearly abso-
lute beginning, Ramon y Cajal's marked a deepening, and mine marked a
renewal after a long lapse. The “fate” that drove me to revive the theory
of iteration, first chose me to reinvent the role of the eye in a field, math-
ematics, where it and explicit computation had become anathema, about
as unwelcome as they could possibly be.
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3.2 The culture of mathematics during the 1960s and 1970s

Within that culture the Mandelbrot set could not have been discovered.
Hence its discovery marked a historical departure. Today—but not
yesterday— only a minority among mathematicians would agree with the
opinion due to someone who did not discover that set, that the study of M
reflects “a rather infantile and somewhat dull mathematical sensibility”
(Brooks 1989).

The attitudes in which all mathematicians were trained not so long
ago is witnessed by Stanislas Ulam (1909-1984). He might have been
expected to speak to the power and utility of the pictures produced by his
associates. Instead, Ulam 1974 (pages 378 and 490) informs us that “Math-
ematics is not really an observational science and not even an exper-
imental one. Nevertheless ... computations... were useful in establishing
some curious facts ... Fermi expressed ... a belief that it would be useful to
attempt practice in the mathematics... of nonlinear systems. The results
[described in a famous report by Fermi, Pasta, and Ulam reproduced in
Ulam 1974] ... were interesting and quite surprising to Fermi.”

Among pure mathematicians, Ulam's lukewarm advocacy of the com-
puter strengthened an antagonism that was obvious well before 1979. For
example, a sustained effort brought prominent youngish mathematicians
to visit the IBM Research Center to lecture on diverse topics. The unex-
pressed hope was that the computer's promise would impress some of
them. The failure was complete, and (much later) certain communities
accepted my “anomalous” manners grudgingly.

How to respond to serious thinkers who do not wish to distinguish
between seeing and discovering? Some still seek "pictures of M" earlier
than either the trove of mine, or the single one found in Brooks &
Metelski 1981 and often mentioned after 1988. That single picture is so
indistinct that it could not—and did not—lead to any discovery.

To show how counterproductive such a search for "first sighting" can
become, let me broaden it from iteration to all fractals. Who provided the
first massive collection of many pictures clearly recognizable as fractal?
Could it be the marvelous Hokusai Katsushika (1760-1849), to whom I pay
homage in Plate C16 of M1982F and again in Chapter C13. His unforget-
table pen drawings of One hundred views of Mt. Fuji depict clouds and trees
admirably, and all those who can see and are familiar with fractal geom-
etry recognize that Hokusai had a perfect "eye for fractals."

But neither he nor earlier or later landscape painters have any claim
for fractals as a topic for either mathematics or science. Those credits
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belong, respectively, to contemporaries of Cantor and Peano, and to me.
Yet, Hokusai holds a central role in my current view of fractals as a notion
familiar to Man, in one form or another, since time immemorial.

The fractals' prehistory is a long story that must be reserved for a dif-
ferent forum, but it raises a question I commend to the specialists. The
time when Cantor, Peano, et al. flourished was the heyday of Japanism,
when Hokusai's direct influence on Western European art was widely
acknowledged. Did this influence extend—with no acknowledgment —
from the artists to the mathematicians?

3.3 A changed mood in mathematics?

An entirely different world is called for in Bourguignon 1999. Here is a
free translation. "I think one must distinguish the future of mathematics
from the future of those who claim to be mathematicians. The future of
mathematics overflows with challenges and promise. But I fear that math-
ematicians may spoil it by failing to open up and dare, and by exhibiting
a high propensity to exclude (I should say "excommunicate” because of
religious overtones) from their community whole domains of knowledge.
Without fear of fresh air, mathematicians must open up without shiv-
ering." I read this text with equal pleasure and surprise.

4 SUMMARY

One must heed the wise words of Whitehead 1974 (p. 127) that "To come
very near a true theory and to grasp its precise application are two very
different things, as the history of science teaches us. Everything of impor-
tance has been said before by somebody who did not discover it." The
thought also applies when the word "said" is replaced by "seen."

A contribution to mathematics and/or science does not consist of a
picture, but rather of a picture combined with a description. Without
words and formulas, a picture can, at best, be praised for artistic quality.
Without an interest in pictures and other aspects of "reality," pictures can
play no role whatsoever.

This comment will be amplified in the next chapter by a discussion of
several individuals and institutions. All affected my life when I was
seeking my way.
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THIS CHAPTER BEGAN AS A SINGLE PAGE TO ACKNOWLEDGE my
indebtedness to three individuals: Mandelbrojt, Douady, and Hubbard.
But it grew and — unavoidably — became increasingly autobiographical.
It even extended the scope of the word "acknowledgment” by commenting
about Bourbaki, my Nemesis.

When first mentioned, key names are set in bold, roman or italics.
Some background is provided for those unfamiliar with the history of
mathematics, especially in France in the middle of the twentieth century.
A more extensive background is found in Chapter 25.

1. Szolem Mandelbrojt (1899-1983)

Above all, to amplify this book's dedication, I am endlessly indebted to
my uncle Szolem, a noted mathematician who reached the College de
France, the top of French academia, when he was thirty-eight and I was
thirteen. So I always knew that science was not just recorded in dusty
tomes but was a flourishing enterprise, and the option of becoming a sci-
entist was familiar to me as long as I can remember.

Brilliant, bold, and ambitious, he left his native Poland for France at
age twenty, as an “ideological” refugee repelled by the excessively abstract
“Polish mathematics” then being invented by Waclaw Sierpiriski
(1882-1969). He was, to the contrary, attracted to the mathematical school
that ruled Paris in the 1920s, one linked with Henri Poincaré (1854-1912).
He became close to Jacques Hadamard (1865-1963) and Vito Volterra
(1860-1940), the period's most influential mathematicians in Paris and
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with the perception and analysis of broad mathematical patterns. Indeed,
upon close examination we see that this new orientation, made possible
only by the divorce of mathematics from its applications, has been the true
source of its tremendous vitality and growth during the present century."

Once again, mentioning those persons and opinions gives the word
"acknowledgment" an unusually broad meaning. Their influence on me
has been enormous, since keeping away from them, and later assisting in
their ideological demise, became an important aspect of my life and in
particular of the work described in this book.

3. Two days at Normale and the continuing fallout

The quotation from M. Stone in Section 2 reminds me of an attractive and
revealing autobiographical essay. In Hewitt 1990 we read that "From
Stone and his fellow mathematicians at Harvard, I learned vital lessons
about our wonderful subject: e Rule #1. Respect the profession. e Rule
#2. In case of doubt, see Rule #1."

My uncle also had a deep respect toward his profession. His private
reservations about Bourbaki did not in the least extend to Ecole Normale.
He passionately wanted me to go there. I did, but the next day walked
out. He was bitterly disappointed, constantly worried about my future,
and only when close to death did he stop asking me, “But why?”

Because, giddy as I was with surviving the war and passing those
exams, prestige and authority did not affect me sufficiently. That
strong-willed institution was absolutely the wrong place for a
strong-willed person who dreamt of helping unscramble the messiness of
nature. To me, the eye and geometry were not mere keys to acrobatic
exam scores. I worshipped them, therefore turned down a golden oppor-
tunity to "outgrow" them so as to become a "true mathematician.” Instead
— or so it seems — [ went on to prepare myself to sniff specks of dust on
bad quality computer pictures.

In Paris, my leaving Ecole Normale for Ecole Polytechnique created a
durable scandal. Had I never registered, my life might have been easier.
On the other hand, the Directeur and another alumnus of Ecole Normale
attended my seventieth birthday celebration in Curagao. As a joke, they
"appointed” me as an "honorary freshman for life."

What I wanted to do in life was incomprehensible to others but sur-
prisingly clear to me in 1945. Thus, as I near eighty, it is a deep privilege
to observe the following. Having failed to prove any difficult theorems is
not for me a source of any regret, and whatever I accomplished is roughly



