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Preface

It has been widely recognized that concepts, techniques, and analytical abil-
ities from the field of computing can be powerful mental tools in general for
solving problems, performing tasks, planning, working with others, anticipat-
ing problems, troubleshooting, and more. We refer to this mental tool set as
computational thinking (CT).

This textbook will help readers acquire computational thinking through an
understanding of modern computer technologies. Neither programming back-
ground nor learning how to program is required. Students just need to bring
their curiosity and an open mind to class.

Reading this book can be an excellent way to prepare someone to pursue
a rewarding career in computing or information technology. The materials are
as much about computing as about sharpening the mind.

Topics and Presentation

The book has an end-user viewpoint. Topics are presented in an interesting
and thought-provoking way, keeping the reader engaged and motivated to
continue.

Unconventional chapter titles, CT callout boxes, relation to daily living,
and connection to well-known events combine to encourage computational
thinking and instill agile mental skills. In addition, we introduce a new verb
in English, computize. To computize is to apply CT. With a little bit of help,
everyone can do it.

The CT callout boxes highlight nuggets of computational thinking wisdom
worth revisiting from time to time. They can be found easily in the Table of
Contents and in the Index.

The user is guided through a well-selected set of topics covering the type
of material appropriate for a one-semester course at the college freshman level
for students from all different majors. Advanced programs in high schools, and
the public in general, may find this book useful and rewarding as well.

Computing and CT

Understanding computing and acquiring CT are two sides of the same coin. By
learning about hardware, software, networking, the operating system, security

xiii



Xiv Preface

measures, the Web, digital data, apps, and programming paradigms, we gain
valuable knowledge to better take advantage of information technologies.

At the same time, concepts and methods from computing form elements
of CT that are applicable outside of computing. CT can make us wiser and
more effective in countless ways. CT can help us avoid accidents and mishaps.
It can even be life saving.

Chapter-end exercises reinforce topics in each chapter and challenge stu-
dents to apply CT (to computize) in various situations. Group discussions are
encouraged as well.

The CT Website

Throughout the book, concepts, techniques, and technologies are explained
with many interesting examples. Hands-on demos for experimentation are
online at the book’s companion website http://computize.org

[=] 4= [m]

The site is mobile-enabled and works on both regular and mobile devices. In
the text, we refer to it as the C'T' website. The live demos are cross-referenced to
in-text descriptions with a notation such as Ex:UpCounter that also appears
in the book’s index.

The CT website offers additional resources, allows you and others to share
insights on CT, and provides information updates.

Acknowledgments
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Introduction

Digital computers brought us the information revolution. Citizens in the in-
formation age must deal with computers, smartphones, and the Internet. In
addition, they also need to gain computational thinking.

Computational thinking (CT) is the mental skill to apply fundamental con-
cepts and reasoning, derived from modern digital computers and computer
science, in all areas, including day-to-day activities. CT is thinking inspired
by an understanding of computers and information technologies, and the ad-
vantages, limitations, and problems they bring. CT also encourages us to keep
asking questions such as “ What if we automate this?” “ What instructions and
precautions would we need if we were asking young children to do this?” “ How
efficient is this?” and “ What can go wrong with this?”

CT can expand your mind, help you solve problems, increase efficiency,
avoid mistakes, and anticipate pitfalls, as well as interact and communicate
hetter with others, people or machines. CT can make you more successful and
even save lives!

It is not necessary to become a computer scientist or engineer for you to
acquire CT. From a user point of view, we present a well-organized sequence
of topics to introduce computers and computing in simple and easy ways,
assuming little prior knowledge of computer science or programming. While
presenting the hardware, software, data representation, algorithm, systems,
security, networking, the Web, and other aspects of computing, we will high-
light widely applicable concepts and mental skills in CT call-out bozres and
explain how/where they can be applied in real life.

Background

Back in March 2006, Dr. Jeannette M. Wing published an article on compu-
tational thinking in The Communications of ACM and boldly advocated it as
a skill for everyone:

“Computational thinking builds on the power and limits of com-
puting processes, whether they are executed by a human or by a
machine. Computational methods and models give us the courage
to solve problems and design systems that no one of us would be ca-
pable of tackling alone. ... Computational thinking is a fundamen-
tal skill for everyone, not just for computer scientists. To reading,

xvii



xviii Introduction

writing, and arithmetic, we should add computational thinking to
every child’s analytical ability. Just as the printing press facili-
tated the spread of the three Rs, what is appropriately incestuous
about this vision is that computing and computers facilitate the
spread of computational thinking.”

Within the academic research community, there have been significant dis-
cussions on computational thinking, what it encompasses, and its role inside
the education system.

In educational circles, there is an increasing realization of the potential
importance of learning to think computationally. According to a recent report
on computational thinking by the National Research Council of The National
Academies (NRC):

“.. Computational thinking is a fundamental analytical skill that
everyone, not just computer scientists, can use to help solve prob-
lems, design systems, and understand human behavior. ... Compu-
tational thinking is likely to benefit not only other scientists but
also everyone else. ...”

The ACM/IEEE-CS Joint Task Force on Curriculum recently (2013) stated

“Computational Thinking—While there has been a great deal of
discussion in regard to computational thinking, its direct impact
on curriculum is still unclear. While we believe there is no ‘right
answer’ here, CS 2013 seeks to gain more clarity regarding models
by which CS curricula can promote computational thinking for
broader audiences.”

Discovering the Secrets of CT

Computers are dumb. They deal only with bits. Each bit represents either a
zero or a one. They blindly follow program instructions and operate on data,
both being represented by sequences of 0s and 1s. Yet, they are universal ma-
chines that can perform any tasks when given instructions. The ways they are
programmed, controlled, and made to work are fascinating to learn by them-
selves. But such understanding has more to give us, namely, computational
thinking.

Important aspects of CT include

« Simplification through abstraction—Abstraction is a technique to re-
duce complexity by ignoring unimportant details and focusing on what
matters. For example, a driver views a car in terms of how to drive it and
ignores how it works or is built. A user cares only about which mouse
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button to click and keys to press and generally overlooks how computers
work internally.

« Power of automation—Arranging matters so they become routine and
easy to automate. Working out a systematic procedure, an algorithm,
for carrying out recurring tasks can significantly increase efficiency and
productivity.

o Iteration and recursion—Ingeniously reapplying the same successful
techniques and repeatedly executing the same set of steps to solve prob-
lems.

¢ An eye and a mind for details—Changing a 0 to a 1, or an upper-case
0, can mess up the whole program. You need eyes of an eagle, mind of a
detective, and a careful and meticulous approach. Overlooking anything
can and will lead to failure.

« Precision in communication—Try telling the computer to do what you
mean and not what you say ;-). You need to spell it out precisely and
completely. Don’t spare any details. Vagueness is not tolerated. And
contexts must be made explicit.

« Logical deductions—“Cold logic” rules. Causes will result in conse-
quences, whether you like it or not. There is no room for wishful or
emotional thinking.

¢ Breaking out of the box—A computer program executes code to achieve
any task. Unlike humans, especially experts, it does not bring experience
or expertise to bear. Coding a solution forces us to think at a dumb
computer’s level (as if talking to a one-year-old) and get down to basics.
This way, we will naturally need to think outside any “boxes.”

« Anticipating problems—Automation relies on preset conditions. All pos-
sible exceptions must be met with prearranged contingencies. Ever said
“I'll take care of that later”? Because there is a chance you might forget,
according to CT, you should have a contingency plan ready in case you
do forget. Otherwise, you have set a trap for yourself.

These are just some of the main ideas. CT offers you many more concepts
and ways to think that can be just as, if not more, important. With increasing
understanding of computing, one begins a process of gaining CT insights from
many angles and viewpoints. Such CT takeaways can vary from person to
person, in terms of what they are and their significance.

Here is a chicken and egg question. Which comes first, computing or com-
putational thinking? Surely, ideas and techniques, from other disciplines as
well as the long history of human civilization, have contributed to the devel-
opment, breakthroughs, and refinements in computing. Yet, computer science
has also generated many unique concepts, techniques, and problem-solving
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ideas. Computing has given rise to a digital ecosystem, called cyberspace, that
includes us all.

Understanding the digital computer and computation is beneficial in itself.
Plus, it gives us a very efficient way to discover/rediscover a set of powerful
ideas, collectively known as CT, that can be applied widely. As we gain more
understanding of computing and its various aspects, we will raise CT ideas
along the way. Repeat visits of CT concepts from different aspects and contexts
of computing provide different viewpoints and help instill the concepts, their
usefulness and generality, in our minds.

This textbook provides an interesting and thought-provoking way to gain
general knowledge about modern computing. You’ll be exposed to new notions
and perspectives that not only enrich your thinking but also make you more
successful. For example, without the notion of germs, people won’t achieve
proper hygiene practices or effectively prevent disease transmission. Similarly,
without a general understanding of computing concepts, it is hard to become
a full-fledged citizen of the digital age.

Taking ideas from one field and applying them in another is not new.
In fact, many breakthroughs came from such interdisciplinary endeavors. For
example, the new biomimicry science studies nature’s models and then applies
these designs, processes, and inspirations to solve our own problems.

Readers are encouraged to share their own views, insights, and inspirations
on the CT website. How wonderful that we can use computing technology to
join forces and help advance CT.

Computize

Definition: computize, verb. To apply computational thinking. To view, con-
sider, analyze, design, plan, work, and solve problems from a computational
perspective.

When considering, analyzing, designing, formulating, or devising a solu-
tion/answer to some specific problem, computizing becomes an important
additional dimension of deliberation.

w CT

‘l

People say “hindsight is 20/20.” But, since computer automation must deal
with all possible applications in the future, we must ask “what if” questions
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sequences of steps, to refine the solution logic, and to indicate how to handle
different possibilities. Figure 1.9 shows a simple flowchart for the task of “get-
ting up in the morning.” We begin at the Start and follow the arrows to each

Ready t M Hil SNooze

Button

FIGURE 1.9 A Simple Flow Chart

next step. In programming, the flow from step to step is called the control
flow. A diamond shape is used to indicate a fork in the path. Which way to
turn depends on the conditions indicated. Obviously, we use diamond shapes
to anticipate possibilities. The snooze option leads to a branch that repeats
some steps. In programming, such a group of repeating steps is called a loop.
The procedure ends when the person finally climbs out of bed.

As another example, let’s look at a flowchart for troubleshooting a lamp
(Figure 1.10). The very first step after start is significant. Although the

Reset
breaker

FIGURE 1.10 Lamp Fixing

purpose of the procedure is to troubleshoot a lamp, we, nonetheless, make
no implicit assumption that the lamp is not working. Without this step at
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the beginning, the procedure would potentially troubleshoot a perfectly good
lamp, and, worse yet, would decide to replace it with a new lamp!

CT: READY FOR ALL CONTINGENCIES

When executing a task, be prepared
for all contingencies every step of the

way.

Each of the next three steps tests for a particular problem and makes a fix.
Then the same procedure is reiterated by going back to step one to determine
if the lamp is now working. This further demonstrates the importance of step
one.

Steps 2, 3, and 4 are ordered according to their probabilities. That is, we
check the most common problem first. It makes the procedure more efficient.
For this procedure, it still works if we take these three steps in a different
order. However, in general, step sequencing is important, and changing the
order may break the procedure.

CT: FIrsT THINGS FIRST

Perform tasks in the correct order.
Avoid putting the cart in front of the
horse.

Our third example flowchart (Figure 1.11) outlines a plan for a computer
program that receives a series of words on a line and echos back the given words
in reverse order. The word count n is a variable that is set to the number
of words given. If no words are given, a contingency not to be ignored, or
remain (i.e., n is zero), the program ends by displaying a NEWLINE character.
Otherwise, it displays the nth word, sets the new word count to n-1, and loops
back to test the value of n. Because n is reduced by 1 with each iteration, the
procedure eventually will end.

CT: CHECK BEFORE PROCEEDING

Always check before proceeding or re-
peating a task or a sequence of steps.

Flowcharting is very useful in activity planing and working out systematic
procedures for tasks. Try it yourself at the CT site (Demo: DoFlowchart).
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| Get input words

+

| n = word count ‘

Display nth word

Display
newline

and a space

FIGURE 1.11 Reverse Echo

1.8 Algorithms

The origin of the word “algorithm” traces back to the surname Al-Khwarizmi
of a Persian mathematician (780-850 CE), who was well-known for his work on
algebra and arithmetic with Indian numbers (now known as Arabic numbers).
The modern-day meaning of algorithm in mathematics and computer science
relates to an effective step-by-step procedure to solve a given class of problems
or to perform certain tasks or computations.

It is generally agreed that a procedure is an algorithm if it can be carried
out successfully by a Turing machine (Section 1.2). Specifically, a procedure
becomes an algorithm if it satisfies all of the following criteria3:

o Finiteness: The procedure consists of a finite number of steps and will
always terminate in finite time.

o Definiteness: Each step is precisely, rigorously, and unambiguously spec-
ified.

o Input: The procedure receives a set of data, possibly empty, provided
to the procedure before it starts. Possible values for the data may vary
within limitations.

e Output: The procedure produces a nonempty set of results.

+ Effectiveness: Each operation in the procedure is basic and clearly
doable.

3Following criteria given by D. Knuth in his book, The Art of Computer Programming,
Vol. 1.
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9.8.2 Huffman Code

In a particular message or type of messages, the frequencies of different sym-
bols are certainly not equal. Some symbols happen more often than others and
certain symbols hardly at all. For example, in a textual document, you would
expect the letters r, s, t, as well as the vowels, to be more frequent than, say,
x, v, and z; and characters such as ~ hardly at all. We can take advantage of
such frequency differences to save space in representing characters. The basic
idea of Huffman code is simple. Instead of using the same number of bits to
represent each character (as in ASCII and UNICODE), we can use fewer bits
for frequent characters and more bits for other characters.

The same goes for numbers. Instead of using, say, a 32-bit integer repre-
sentation, we can use just a few bits for high-frequency numbers. In practice,
you'll find small numbers much more often.

To Huffman encode a message, we first find the frequencies of symbols
to be encoded. Based on the frequencies, we can build a Huffman binary
tree (CT: FOrRM TREE STRUCTURES, Section 8.8), which defines how these
symbols will be encoded into bit strings of various lengths. The Huffman tree
is stored as part of the deflated message because it is needed for inflation.

As an example, let’s apply Huffman coding to deflate a love poem by Nima
Akbari (Demo: Huf fCode), which begins

You're my man, my mighty king,
And I'm the jewel in your crown,
You're the sun so hot and bright,
I'm your light-rays shining down,

The plaintext file for the whole poem contains 545 bytes, including spaces and
line breaks. The character frequencies are shown here in increasing frequency.

N1 -1 1 W1 pl j2
v 3 AS £f5 k5 c 6 b7
Y7 I8 w 8 111 g 15 ' 15
s 15 d 17 y 17 , 17 m 18 t 20
u 20 CR 21 a 22 h 24 i 26 o 30
r 30 n 38 e 39 SP 89

Note characters include uppercase and lowercase letters and punctuation
marks, including SPACE (SP), and RETURN (CR).

A list, £q, of character-frequency pairs, ordered in increasing frequency,
such as the above, is used in a simple recursive algorithm to build a Huffman
tree. Basically, the algorithm builds a binary tree from the bottom up, by
creating tree nodes with characters having the least frequencies first. Each
recursive call huffmanTree (fq) passes a list £q that is smaller in size.



