Paul S. Wang

FROM
COMPUTING 10O
COMPUTATIONAL

THINKING

CRC Press

Taylor & Francis Group
A CHAPMAN & HALL BOOK

FROM
COMPUTING 10
COMPUTATIONAL
THINKING

Paul S. Wang

Kent State University
Ohio, USA

oooooooooooooooooooooo

Taylor & Francis Group, an informa business

A CHAPMAN & HALL BOOK

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20151204

International Standard Book Number-13: 978-1-4822-1766-7 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a photo-
copy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Contents

Preface

Introduction

1 Why Did the Chicken Cross the Road?

1.1
1.2

1.3
1.4
1.5
1.6

1.7

1.8

The Computer oo
Turing Machine L.
CT: ABSTRACT AWAY o i i i e e
A Brief History of Computers
Software
Programming o oL
Syntax and Semantics 0oL
CT: BEWARE OF SEMANTICS . . .« v« v v v v v oo
Flowcharts
CT: READY FOR ALL CONTINGENCIES
CT: FIRsT THINGS FIRST
CT: CHECK BEFORE PROCEEDING
Algorithms
CT: MAKE IT AN ALGORITHM
CT: CoONSIDER EXTREME CASES
Pseudo Code
CT: STEP BY STEP i it ittt .
The Euclidean GCD Algorithm
CT: AppLY DOMAIN KNOWLEDGE
Goals and How to Get There
CT: BREAK IT DOWN
Road Crossing,
Exercises e

2 Bits, Bytes, and Words

2.1
2.2

2.3

Digital Computers
Binary Numbers L.
CT: MEANING OF SYMBOLS . « « « « v v v oo v e e et

2.2.1 Numbers in Other Bases
CT: EVALUATE DIFFERENT OPTIONS
Positive and Negative Integers

e e e e e
O G0 00 =1 ~J U = b WNNNOO WO =] Ut Ut LW = =

R
N O

23
23
26
29
29
30
31

vi

24

2.5

2.6

2.7
2.8

Contents

Modular Arithmetic
CT: MIND RESOURCE LIMITATIONS
CT: SymBoLs CAN BE DECEIVING
Base Conversion
CT: START FROM THE END . . .
Characters

2.6.1 US-ASCIL.........

2.6.2 Unicode
CT: DATA CONTEXT
Editing Text
Data Output
CT: DELIVER THE MESSAGE . . .
Exercises

True or False

3.1

3.2

3.3

3.4

3.5

Digital Electronic Circuits
CT: NoticE THE Locic
CT: Borrom Up
CT: CrEATE A VIRTUOUS CYCLE
Boolean Algebra

3.2.1 Expressions and Laws . .

3.2.2 Universal Gates
Decision Making
CT: Locic CHECKS

3.3.1 Conditions and Implications

CT: FoLLow THE LogGic
Logic Applied to Bits
CT: CoMBINE BAasic COMPONENTS
Logic and Iteration
3.5.1 The while Loop
3.5.2 The for Loop

CT: PERFORM EVERYDAY PROGRAMMING

Exercises

‘Who Is the Master?

4.1
4.2

4.3
4.4

4.5

4.6

What Is an Operating System? . .
Operating System Kernel

4.2.1 System Programs
Open Source Software
CT: PROMOTE FREE AND OPEN .
Graphical User Interface
Desktop Overview

4.5.1 Desktop Components . .
CT: KNOW YOUR ARENA
Are You Talking to Me?

33
35
35
36
37
37
37
38
40
40
43
44
45

47
47
48
51
52
53
53
54
54
56
56
58
58
61
61
61
62
66
67

69
69
70
70
71
72
72
73
73
[p]
75

4.7

4.8

4.9

4.10
4.11

Hello
5.1
5.2
5.3
5.4

5.5
5.6
5.7
5.8
5.9

5.10
5.11

5.12

5.13

5.14

Contents vii

4.6.1 Input Focus., 75
CT: PAY ATTENTION TQ DETAILS 76

4.6.2 Event Handling. 76
Command-Line Interface 77
CT: MIND THE TRADE-OFF 80
Files 80

4.8.1 File Content Types 81

4.8.2 FileTree 81
CT: LEARN FROM TREES v v v .. 83

4.8.3 File Management and Access Control 83
Processes 84
CT: KEEP IT IN CONTEXT« v v v v v v e i oo 85
CT: CAPTURE THE STATE« v v v v ve oo 86

4.9.1 Process Lifecycle 86

4.9.2 Process Address Space L. 87

4.9.3 Virtual Address Space Layout 88

4.9.4 Address Mapping 89
CT: TIMESHARING .+ . v v v v v v e e e e e e e e e e e e s 90
Managing Tasks L. 90
Upand Running, . 92
CT: BETTER CONTROL BETTER SYSTEM 92
Exercises e 94
There! 95
What Is a Network? 95
The Internet 96
Local and Wide Area Networks 98
Internet Architecture 100
CT: REDUNDANCY FOR SAFETY 100
CT: ONE AND ALL v i e i e i e e e e e 101
Wireless Networking 102
Networking Protocols 103
CT: FOLLOW PROTOCOL 104
IP Addresses e 105
Domain Names 105
Client and Server, 106
CT: INTEROPERATE« v v it et e e e e e o 107
Peerto Peer 108
DNS Service 109
CT: INDIRECTION ADDS FLEXIBILITY 110
DNS Servers and Resolvers 111
CT: DECENTRALIZE v . v v v v i e e e e 112
Domain Registration 113

5.13.1 Accessing Domain Registration Data 113

Packet Switching oL 114

viii Contents
515 Cloud Computing 115
CT: BACKUP IN THE CLOUD 117
Exercises 119
6 Home Sweet Homepage :-) 121
6.1 What Is a Web Server? 121
6.2 Web Browsers 122
6.3 A Brief History of the Web 123
6.4 URLS e e 124
CT: BE AWARE OF THE IMpPLICIT CONTEXT 126
6.4.1 URL Encoding 126
CT: WEAR DIFFERENT HATS 127
6.5 HTML and HTML5 128
CT: MARK ITUP 130
6.6 Webpage Styling L. 130
6.7 Web Hosting 130
CT: REALLY USE YOUR WEBSITE 131
CT: BE CAREFUL WITH ONLINE INFORMATION 131
6.8 Dynamic Generation of Webpages 132
6.8.1 Active Server Pages 133
6.8.2 Database Access 134
6.9 Client-Side Scripting 134
6.10 Hypertext Transfer Protocol 135
6.10.1 HTTP Caching 137
CT: CACHE FOR SPEED v v v v ivi e 138
6.11 Website Development 138
CT: DEVELOP FOR USERS 139
6.12 Web Search Engines 139
CT: GOOGLE IT 140
CT: BELIEVE ITORNOT 140
6.13 Web Services e 141
6.14 Standard Web Technologies 142
Exercises e 144
7 Keeping It Safe 147
7.1 Login e 148
7.1.1 Website Login 148
CT: SAFEGUARD SECURITY REALMS 149
CT: PREVENT ILLICIT LOGIN 151
7.2 HTTPS and SSL/TLS 152
7.3 What Is a Digital Certificate? 153
7.4 Cryptography L . 155
7.4.1 Symmetric Cryptosystems 157
CT: SECURE SENSITIVE FILES 159

CT: ADD SECURITY LAYERS 159

7.5

7.6

7.7

7.8

7.9

7.10

Solve
8.1

8.2

8.3

8.4
8.5
8.6
8.7
8.8
8.9

8.10

Contents ix

Public-Key Cryptography 160
CT: BREAKTHROUGH v i v it et e oo 160
CT: BEWARE OF BuGgs 162
RSA Public-Key Algorithm 162
Digital Signature 164
CT: SIGN DIGITALLY v v it e e 164
Message Digests oL 164
Secure Email o L oo 167

7.9.1 Secure Email with Thunderbird 167
CT: FREE FROM SURVEILLANCE 169
Security Attacks and Defenses 170
CT: ALL FOR ONE AND ONE FOR ALL 171
Exercises 174
That Problem 175
Solving Puzzles L 175

811 EggFrying 175

8.1.2 Liquid Measuring 176

8.1.3 A Magic Tray 177
Sortingo 178

8.21 BubbleSort. 178

8.2.2 Improved Bubble Sort 180
CT: Cur IT DOWN e 180
CT:Buib ITUP o o 181
CT: STEPWISE REFINEMENT « . v v v v v v v vt 181
CT: VERSION 2.0 it 182
Recursion, 182
CT: REMEMBER RECURSION 183

8.3.1 Quicksort 184
Recursive Solution Formula 186
CT: APPLY THE RECURSION MAGIC 186
Tower of Hanoi 187
Eight Queens 190
General Backtracking 193
Tree Traversals 194
CT: FORM TREE STRUCTURES 195
Complexity L 195
CT: WEIGH SPEED vs. COMPLEXITY 196
Heuristics e 197
CT: DEVISE HEURISTICS 197

Exercises e e 200

X Contents
9 Data Everywhere 201
CT: GARBAGE IN, GARBAGE QUT 201
9.1 Digital Images 202
9.1.1 Representing Color 202
9.2 Raster Image Encoding 204
9.2.1 Raster Image Formats 204
CT: SMALL Is BEAUTIFUL 205
9.2.2 Vector Graphics 205
9.2.3 Scalable Vector Graphics 205
9.3 Audio and Video 206
9.3.1 Digital Audioo 206
9.3.2 Audio Encoding Formats 207
9.4 Digital Video o 208
9.4.1 Video Containers 208
9.4.2 VideoCodecs, 209
9.5 Format of Data and Files 210
CT: INTERPRETING DATA 210
CT: DATA Is APPLICATION DEPENDENT 211
CT: SAVE TREES WITH PDF 211
9.6 Data Sharing 212
9.7 Document Markup Lo oo, 212
9.71 What Is XML? 213
9.7.2 XML Document Format 214
9.7.3 XML for News Syndication 214
CT: MARKUP FOR INTEROPERABILITY 215
9.8 Data Compression 216
CT: COMPRESSION Is NOT ENCRYPTION 217
9.8.1 LZ Deflation 217
9.8.2 Huffman Code 218
CT: CUSTOMIZE FOR EFFICIENCY 220
9.9 Data Structures 220
CT: SYNTHESIZE AND SIMPLIFY v v v v v v v v v 222
9.10 What Is a Database? 222
9.10.1 Relational Databases 222
9.10.2 SQL: Structured Query Language 223
CT: CoMBINE WEB AND DATABASE 224
9.10.3 BigData oo, 225
CT: DATA TO INSIGHT v i it e . 225
9.11 Protecting Personal Data 225
CT: GUARD PERSONAL DATA 226

Exercises e e 227

Contents

10 Get That App
10.1 Key Programs
CT: REMIND YOURSELF . . .
CT: INSTALL THAT APP . . .
10.2 Knowing Your Apps
CT: LEARN THAT App
CT: No App, NO WAy

10.3 Program Configuration and Customization

CT: CONFIGURE AND ENJOY .

10.4 Process Cooperation

CT: COORDINATE OR ELSE . .

10.5 Machine Language Programs .
10.6 Assembly Language Programs

10.7 High-Level Programs

10.8 Compilers

CT: BOOTSTRAPPING

10.9 Software Development
10.10 Object-Oriented Programming

CT: COMPARTMENTALIZE . . .

10.10.1 OOP Advantages . .

10.10.2 OOP Concepts . . .

CT: EXxpostE ONLY THE INTERFACE

10.11 Object-Oriented Design
Exercises

Epilogue
CT: REPROGRAM YOUR BRAIN

Website and Interactive Demos

Bibliography

xi

229
230
231
231
232
233
233
234
234
234
235
236
237
238
240
241
242
242
242
243
244
244
246
247

249
249

251

253

Copyrighted material

Preface

It has been widely recognized that concepts, techniques, and analytical abil-
ities from the field of computing can be powerful mental tools in general for
solving problems, performing tasks, planning, working with others, anticipat-
ing problems, troubleshooting, and more. We refer to this mental tool set as
computational thinking (CT).

This textbook will help readers acquire computational thinking through an
understanding of modern computer technologies. Neither programming back-
ground nor learning how to program is required. Students just need to bring
their curiosity and an open mind to class.

Reading this book can be an excellent way to prepare someone to pursue
a rewarding career in computing or information technology. The materials are
as much about computing as about sharpening the mind.

Topics and Presentation

The book has an end-user viewpoint. Topics are presented in an interesting
and thought-provoking way, keeping the reader engaged and motivated to
continue.

Unconventional chapter titles, CT callout boxes, relation to daily living,
and connection to well-known events combine to encourage computational
thinking and instill agile mental skills. In addition, we introduce a new verb
in English, computize. To computize is to apply CT. With a little bit of help,
everyone can do it.

The CT callout boxes highlight nuggets of computational thinking wisdom
worth revisiting from time to time. They can be found easily in the Table of
Contents and in the Index.

The user is guided through a well-selected set of topics covering the type
of material appropriate for a one-semester course at the college freshman level
for students from all different majors. Advanced programs in high schools, and
the public in general, may find this book useful and rewarding as well.

Computing and CT

Understanding computing and acquiring CT are two sides of the same coin. By
learning about hardware, software, networking, the operating system, security

xiii

Xiv Preface

measures, the Web, digital data, apps, and programming paradigms, we gain
valuable knowledge to better take advantage of information technologies.

At the same time, concepts and methods from computing form elements
of CT that are applicable outside of computing. CT can make us wiser and
more effective in countless ways. CT can help us avoid accidents and mishaps.
It can even be life saving.

Chapter-end exercises reinforce topics in each chapter and challenge stu-
dents to apply CT (to computize) in various situations. Group discussions are
encouraged as well.

The CT Website

Throughout the book, concepts, techniques, and technologies are explained
with many interesting examples. Hands-on demos for experimentation are
online at the book’s companion website http://computize.org

[=] 4= [m]

The site is mobile-enabled and works on both regular and mobile devices. In
the text, we refer to it as the C'T' website. The live demos are cross-referenced to
in-text descriptions with a notation such as Ex:UpCounter that also appears
in the book’s index.

The CT website offers additional resources, allows you and others to share
insights on CT, and provides information updates.

Acknowledgments

I thank my dear wife, Jennifer Wang (&2£7%), who encouraged me to embark
on this project, read all drafts, and provided great feedback, sometimes with
specific ideas and wording changes. I am very grateful to her.

In fact, she was the one who asked me to listen to a broadcast of the Kojo
Nnamdi Show (WAMU/NPR) on November 18, 2008. The show started with
an interview of Dr. Jeannette Wing on the topic

“Thinking like a computer scientist.”

Jennifer was so excited and told me over the phone, “You need to listen
to this right now, it is what you always talked about.”

Encouraged by Dr. Wing’s advocacy, 1 soon contacted her at the National
Science Foundation and invited her to visit our Computer Science Department

Preface XV

at Kent State University to give a talk on CT. The face-to-face interactions
with Dr. Wing further convinced me to make a contribution in this important
direction. The influence of NPR and Dr. Wing on me cannot be overstated.

Thanks must also go to my children Laura, Deborah, and David, who took
an active interest in this book; especially David who read first chapters of an
early draft and made comments that influenced the choice of the book title.

I also thank Randi Cohen, editor at CRC Press, who supported this project
with energy and enthusiasm from the very beginning. She also helped to choose
the book title.

Deep thanks also go to production coordinaters, Kathryn Everett and Am-
ber Donley as well as project editor Robin Lloyd-Starkes, and others at CRC
Press for their professionalism and dedication.

During the planning and writing of this book, several reviews have been
conducted. Much appreciated are the input and suggestions from the review-
ers:

e Iyad A. Ajwa, Ashland University, Ohio, USA

o Lian Li (Z25##04%) and his team, HeFei University of Technology, Anhui,
China

o Alex Melton, Benjamin Logan High School, Ohio, USA

« Anonymous reviewers

Paul S. Wang

£ + 34

Kent, Ohio
pvang@cs.kent.edu

Copyrighted material

Introduction

Digital computers brought us the information revolution. Citizens in the in-
formation age must deal with computers, smartphones, and the Internet. In
addition, they also need to gain computational thinking.

Computational thinking (CT) is the mental skill to apply fundamental con-
cepts and reasoning, derived from modern digital computers and computer
science, in all areas, including day-to-day activities. CT is thinking inspired
by an understanding of computers and information technologies, and the ad-
vantages, limitations, and problems they bring. CT also encourages us to keep
asking questions such as “ What if we automate this?” “ What instructions and
precautions would we need if we were asking young children to do this?” “ How
efficient is this?” and “ What can go wrong with this?”

CT can expand your mind, help you solve problems, increase efficiency,
avoid mistakes, and anticipate pitfalls, as well as interact and communicate
hetter with others, people or machines. CT can make you more successful and
even save lives!

It is not necessary to become a computer scientist or engineer for you to
acquire CT. From a user point of view, we present a well-organized sequence
of topics to introduce computers and computing in simple and easy ways,
assuming little prior knowledge of computer science or programming. While
presenting the hardware, software, data representation, algorithm, systems,
security, networking, the Web, and other aspects of computing, we will high-
light widely applicable concepts and mental skills in CT call-out bozres and
explain how/where they can be applied in real life.

Background

Back in March 2006, Dr. Jeannette M. Wing published an article on compu-
tational thinking in The Communications of ACM and boldly advocated it as
a skill for everyone:

“Computational thinking builds on the power and limits of com-
puting processes, whether they are executed by a human or by a
machine. Computational methods and models give us the courage
to solve problems and design systems that no one of us would be ca-
pable of tackling alone. ... Computational thinking is a fundamen-
tal skill for everyone, not just for computer scientists. To reading,

xvii

xviii Introduction

writing, and arithmetic, we should add computational thinking to
every child’s analytical ability. Just as the printing press facili-
tated the spread of the three Rs, what is appropriately incestuous
about this vision is that computing and computers facilitate the
spread of computational thinking.”

Within the academic research community, there have been significant dis-
cussions on computational thinking, what it encompasses, and its role inside
the education system.

In educational circles, there is an increasing realization of the potential
importance of learning to think computationally. According to a recent report
on computational thinking by the National Research Council of The National
Academies (NRC):

“.. Computational thinking is a fundamental analytical skill that
everyone, not just computer scientists, can use to help solve prob-
lems, design systems, and understand human behavior. ... Compu-
tational thinking is likely to benefit not only other scientists but
also everyone else. ...”

The ACM/IEEE-CS Joint Task Force on Curriculum recently (2013) stated

“Computational Thinking—While there has been a great deal of
discussion in regard to computational thinking, its direct impact
on curriculum is still unclear. While we believe there is no ‘right
answer’ here, CS 2013 seeks to gain more clarity regarding models
by which CS curricula can promote computational thinking for
broader audiences.”

Discovering the Secrets of CT

Computers are dumb. They deal only with bits. Each bit represents either a
zero or a one. They blindly follow program instructions and operate on data,
both being represented by sequences of 0s and 1s. Yet, they are universal ma-
chines that can perform any tasks when given instructions. The ways they are
programmed, controlled, and made to work are fascinating to learn by them-
selves. But such understanding has more to give us, namely, computational
thinking.

Important aspects of CT include

« Simplification through abstraction—Abstraction is a technique to re-
duce complexity by ignoring unimportant details and focusing on what
matters. For example, a driver views a car in terms of how to drive it and
ignores how it works or is built. A user cares only about which mouse

Introduction xix

button to click and keys to press and generally overlooks how computers
work internally.

« Power of automation—Arranging matters so they become routine and
easy to automate. Working out a systematic procedure, an algorithm,
for carrying out recurring tasks can significantly increase efficiency and
productivity.

o Iteration and recursion—Ingeniously reapplying the same successful
techniques and repeatedly executing the same set of steps to solve prob-
lems.

¢ An eye and a mind for details—Changing a 0 to a 1, or an upper-case
0, can mess up the whole program. You need eyes of an eagle, mind of a
detective, and a careful and meticulous approach. Overlooking anything
can and will lead to failure.

« Precision in communication—Try telling the computer to do what you
mean and not what you say ;-). You need to spell it out precisely and
completely. Don’t spare any details. Vagueness is not tolerated. And
contexts must be made explicit.

« Logical deductions—“Cold logic” rules. Causes will result in conse-
quences, whether you like it or not. There is no room for wishful or
emotional thinking.

¢ Breaking out of the box—A computer program executes code to achieve
any task. Unlike humans, especially experts, it does not bring experience
or expertise to bear. Coding a solution forces us to think at a dumb
computer’s level (as if talking to a one-year-old) and get down to basics.
This way, we will naturally need to think outside any “boxes.”

« Anticipating problems—Automation relies on preset conditions. All pos-
sible exceptions must be met with prearranged contingencies. Ever said
“I'll take care of that later”? Because there is a chance you might forget,
according to CT, you should have a contingency plan ready in case you
do forget. Otherwise, you have set a trap for yourself.

These are just some of the main ideas. CT offers you many more concepts
and ways to think that can be just as, if not more, important. With increasing
understanding of computing, one begins a process of gaining CT insights from
many angles and viewpoints. Such CT takeaways can vary from person to
person, in terms of what they are and their significance.

Here is a chicken and egg question. Which comes first, computing or com-
putational thinking? Surely, ideas and techniques, from other disciplines as
well as the long history of human civilization, have contributed to the devel-
opment, breakthroughs, and refinements in computing. Yet, computer science
has also generated many unique concepts, techniques, and problem-solving

XX Introduction

ideas. Computing has given rise to a digital ecosystem, called cyberspace, that
includes us all.

Understanding the digital computer and computation is beneficial in itself.
Plus, it gives us a very efficient way to discover/rediscover a set of powerful
ideas, collectively known as CT, that can be applied widely. As we gain more
understanding of computing and its various aspects, we will raise CT ideas
along the way. Repeat visits of CT concepts from different aspects and contexts
of computing provide different viewpoints and help instill the concepts, their
usefulness and generality, in our minds.

This textbook provides an interesting and thought-provoking way to gain
general knowledge about modern computing. You’ll be exposed to new notions
and perspectives that not only enrich your thinking but also make you more
successful. For example, without the notion of germs, people won’t achieve
proper hygiene practices or effectively prevent disease transmission. Similarly,
without a general understanding of computing concepts, it is hard to become
a full-fledged citizen of the digital age.

Taking ideas from one field and applying them in another is not new.
In fact, many breakthroughs came from such interdisciplinary endeavors. For
example, the new biomimicry science studies nature’s models and then applies
these designs, processes, and inspirations to solve our own problems.

Readers are encouraged to share their own views, insights, and inspirations
on the CT website. How wonderful that we can use computing technology to
join forces and help advance CT.

Computize

Definition: computize, verb. To apply computational thinking. To view, con-
sider, analyze, design, plan, work, and solve problems from a computational
perspective.

When considering, analyzing, designing, formulating, or devising a solu-
tion/answer to some specific problem, computizing becomes an important
additional dimension of deliberation.

w CT

‘l

People say “hindsight is 20/20.” But, since computer automation must deal
with all possible applications in the future, we must ask “what if” questions

Why Did the Chicken Cross the Road? 11

sequences of steps, to refine the solution logic, and to indicate how to handle
different possibilities. Figure 1.9 shows a simple flowchart for the task of “get-
ting up in the morning.” We begin at the Start and follow the arrows to each

Ready t M Hil SNooze

Button

FIGURE 1.9 A Simple Flow Chart

next step. In programming, the flow from step to step is called the control
flow. A diamond shape is used to indicate a fork in the path. Which way to
turn depends on the conditions indicated. Obviously, we use diamond shapes
to anticipate possibilities. The snooze option leads to a branch that repeats
some steps. In programming, such a group of repeating steps is called a loop.
The procedure ends when the person finally climbs out of bed.

As another example, let’s look at a flowchart for troubleshooting a lamp
(Figure 1.10). The very first step after start is significant. Although the

Reset
breaker

FIGURE 1.10 Lamp Fixing

purpose of the procedure is to troubleshoot a lamp, we, nonetheless, make
no implicit assumption that the lamp is not working. Without this step at

12 From Computing to Computational Thinking

the beginning, the procedure would potentially troubleshoot a perfectly good
lamp, and, worse yet, would decide to replace it with a new lamp!

CT: READY FOR ALL CONTINGENCIES

When executing a task, be prepared
for all contingencies every step of the

way.

Each of the next three steps tests for a particular problem and makes a fix.
Then the same procedure is reiterated by going back to step one to determine
if the lamp is now working. This further demonstrates the importance of step
one.

Steps 2, 3, and 4 are ordered according to their probabilities. That is, we
check the most common problem first. It makes the procedure more efficient.
For this procedure, it still works if we take these three steps in a different
order. However, in general, step sequencing is important, and changing the
order may break the procedure.

CT: FIrsT THINGS FIRST

Perform tasks in the correct order.
Avoid putting the cart in front of the
horse.

Our third example flowchart (Figure 1.11) outlines a plan for a computer
program that receives a series of words on a line and echos back the given words
in reverse order. The word count n is a variable that is set to the number
of words given. If no words are given, a contingency not to be ignored, or
remain (i.e., n is zero), the program ends by displaying a NEWLINE character.
Otherwise, it displays the nth word, sets the new word count to n-1, and loops
back to test the value of n. Because n is reduced by 1 with each iteration, the
procedure eventually will end.

CT: CHECK BEFORE PROCEEDING

Always check before proceeding or re-
peating a task or a sequence of steps.

Flowcharting is very useful in activity planing and working out systematic
procedures for tasks. Try it yourself at the CT site (Demo: DoFlowchart).

Why Did the Chicken Cross the Road? 13

| Get input words

+

| n = word count ‘

Display nth word

Display
newline

and a space

FIGURE 1.11 Reverse Echo

1.8 Algorithms

The origin of the word “algorithm” traces back to the surname Al-Khwarizmi
of a Persian mathematician (780-850 CE), who was well-known for his work on
algebra and arithmetic with Indian numbers (now known as Arabic numbers).
The modern-day meaning of algorithm in mathematics and computer science
relates to an effective step-by-step procedure to solve a given class of problems
or to perform certain tasks or computations.

It is generally agreed that a procedure is an algorithm if it can be carried
out successfully by a Turing machine (Section 1.2). Specifically, a procedure
becomes an algorithm if it satisfies all of the following criteria3:

o Finiteness: The procedure consists of a finite number of steps and will
always terminate in finite time.

o Definiteness: Each step is precisely, rigorously, and unambiguously spec-
ified.

o Input: The procedure receives a set of data, possibly empty, provided
to the procedure before it starts. Possible values for the data may vary
within limitations.

e Output: The procedure produces a nonempty set of results.

+ Effectiveness: Each operation in the procedure is basic and clearly
doable.

3Following criteria given by D. Knuth in his book, The Art of Computer Programming,
Vol. 1.

218 From Computing to Computational Thinking
9.8.2 Huffman Code

In a particular message or type of messages, the frequencies of different sym-
bols are certainly not equal. Some symbols happen more often than others and
certain symbols hardly at all. For example, in a textual document, you would
expect the letters r, s, t, as well as the vowels, to be more frequent than, say,
x, v, and z; and characters such as ~ hardly at all. We can take advantage of
such frequency differences to save space in representing characters. The basic
idea of Huffman code is simple. Instead of using the same number of bits to
represent each character (as in ASCII and UNICODE), we can use fewer bits
for frequent characters and more bits for other characters.

The same goes for numbers. Instead of using, say, a 32-bit integer repre-
sentation, we can use just a few bits for high-frequency numbers. In practice,
you'll find small numbers much more often.

To Huffman encode a message, we first find the frequencies of symbols
to be encoded. Based on the frequencies, we can build a Huffman binary
tree (CT: FOrRM TREE STRUCTURES, Section 8.8), which defines how these
symbols will be encoded into bit strings of various lengths. The Huffman tree
is stored as part of the deflated message because it is needed for inflation.

As an example, let’s apply Huffman coding to deflate a love poem by Nima
Akbari (Demo: Huf fCode), which begins

You're my man, my mighty king,
And I'm the jewel in your crown,
You're the sun so hot and bright,
I'm your light-rays shining down,

The plaintext file for the whole poem contains 545 bytes, including spaces and
line breaks. The character frequencies are shown here in increasing frequency.

N1 -1 1 W1 pl j2
v 3 AS £f5 k5 c 6 b7
Y7 I8 w 8 111 g 15 ' 15
s 15 d 17 y 17 , 17 m 18 t 20
u 20 CR 21 a 22 h 24 i 26 o 30
r 30 n 38 e 39 SP 89

Note characters include uppercase and lowercase letters and punctuation
marks, including SPACE (SP), and RETURN (CR).

A list, £q, of character-frequency pairs, ordered in increasing frequency,
such as the above, is used in a simple recursive algorithm to build a Huffman
tree. Basically, the algorithm builds a binary tree from the bottom up, by
creating tree nodes with characters having the least frequencies first. Each
recursive call huffmanTree (fq) passes a list £q that is smaller in size.

