Alessandra Di Pierro
Pasquale Malacaria
Rajagopal Nagarajan (Eds.)

Festschrift

LNCS 12065

Essays Dedicated to Chris Hankin
on the Occasion of His Retirement

\L~
i~
S

P

Pt
=ik
\h‘:

T/
>
—

S :
Ty
S -
=

e JC
~ .
7

@ Springer

Editors
Alessandra Di Pierro

University of Verona
Verona, Italy

Pasquale Malacaria
School of Electronic Engineering
and Computer Science

. . Queen Mary University of London
Rajagopal Nagarajan London, UK
Department of Computer Science
Middlesex University

London, UK

ISSN 0302-9743

Lecture Notes in Computer Science
ISBN 978-3-030-41102-2 ISBN 978-3-030-41103-9 (eBook)
https://doi.org/10.1007/978-3-030-41103-9

ISSN 1611-3349 (electronic)

LNCS Sublibrary: SL1 — Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Cover illustration: Chris Hankin

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

Preface ix

Fielder, A., Panaousis, E.A., Malacaria, P., Hankin, C., Smeraldi, F.: Decision support
approaches for cyber security investment. Decision Support Systems 86, 13-23 (2016)
Garasi, C.J., Drake, R.R., Collins, J., Picco, R., Hankin, B.E.: The MEDEA experiment - can
you accelerate simulation-based learning by combining information visualization and
interaction design principles? In: VISIGRAPP (3: IVAPP). pp. 299-304. SciTePress (2017)
Hankin, C.: An Introduction to Lambda Calculi for Computer Scientists. Texts in computing,
Kings College (2004), https://books.google.co.uk/books?id=kzdmQgAACAAJ

Hankin, C.: Abstract interpretation of term graph rewriting systems. In: Functional Pro-
gramming. pp. 54-65. Workshops in Computing, Springer (1990)

Hankin, C.: Lambda Calculi: A Guide, Handbook of Philosophical Logic. Handbook of
Philosophical Logic, vol. 15, pp. 1-66. Springer, Dordrecht (2011)

Hankin, C.: Game theory and industrial control systems. In: Semantics, Logics, and Calculi.
Lecture Notes in Computer Science, vol. 9560, pp. 178-190. Springer (2016)

Hankin, C., Burn, G.L., Peyton Jones, S.L.: A safe approach to parallel combinator reduction
(extended abstract). In: ESOP. Lecture Notes in Computer Science, vol. 213, pp. 99-110.
Springer (1986)

Hankin, C., Burn, G.L., Peyton Jones, S.L.: A safe approach to parallel combinator
reduction. Theor. Comput. Sci. 56, 17-36 (1988)

Hankin, C., Métayer, D.L.: Deriving algorithms from type inference systems: Application to
strictness analysis. In: POPL. pp. 202-212. ACM Press (1994)

Hankin, C., Métayer, D.L.: Lazy type inference for the strictness analysis of lists. In:
ESOP. Lecture Notes in Computer Science, vol. 788, pp. 257-271. Springer (1994)
Hankin, C., Métayer, D.L.: A type-based framework for program analysis. In: SAS. Lecture
Notes in Computer Science, vol. 864, pp. 380-394. Springer (1994)

Hunt, S., Hankin, C.: Fixed points and frontiers: A new perspective. J. Funct. Program. 1(1),
91-120 (1991)

Khouzani, M.H.R., Malacaria, P., Hankin, C., Fielder, A., Smeraldi, F.: Efficient numerical
frameworks for multi-objective cyber security planning. In: ESORICS (2). Lecture Notes in
Computer Science, vol. 9879, pp. 179-197. Springer (2016)

Li, T., Hankin, C.: Effective defence against zero-day exploits using bayesian networks. In:
CRITIS. Lecture Notes in Computer Science, vol. 10242, pp. 123-136. Springer (2016)
Malacaria, P., Hankin, C.: Generalised flowcharts and games. In: ICALP. Lecture Notes in
Computer Science, vol. 1443, pp. 363-374. Springer (1998)

Malacaria, P., Hankin, C.: A new approach to control flow analysis. In: CC. Lecture Notes in
Computer Science, vol. 1383, pp. 95-108. Springer (1998)

Martin, C., Hankin, C.: Finding fixed points in finite lattices. In: FPCA. Lecture Notes in
Computer Science, vol. 274, pp. 426-445. Springer (1987)

Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer-Verlag,
Berlin, Heidelberg (1999)

Simmie, D.S., Vigliotti, M.G., Hankin, C.: Ranking twitter influence by combining network
centrality and influence observables in an evolutionary model. J. Complex Networks 2(4),
495-517 (2014)

Thapen, N.A., Simmie, D.S., Hankin, C.: The early bird catches the term: combining twitter
and news data for event detection and situational awareness. J. Biomedical Semantics 7, 61
(2016)

Additional Reviewers

Martin Berger
Chiara Bodei
Marco Comini
Andrew Fielder
Simon Gay
Sebastian Hunt
Martin Lester
Andrea Masini
Flemming Nielson
Federica Paci
Helmut Seidl
David Sands
Nikos Tzevelekos
Herbert Wiklicki
Enea Zaffanella

Organization

University of Sussex, UK

Universita di Pisa, Italy

Universita di Udine, Italy

Imperial College, UK

University of Glasgow, UK

City University, UK

University of Reading, UK

Universita di Verona, Italy

Technical University of Denmark, Denmark
Univresita di Verona, Italy

Technische Universitit Miinchen, Germany
Chalmers University of Technology, Sweden
Queen Mary University of London, UK
Imperial College, UK

Universita di Parma, Italy

Contents

Logic

Cables, Trains and Types. e 3
Simon J. Gay

Cathoristic Logic: A Logic for Capturing Inferences Between
ALOMIC SENENCES ottt e 17
Richard Evans and Martin Berger

A Type Theory for Probabilistic A—calculus 86
Alessandra Di Pierro

Program Analysis

Galois Connections for Recursive Types 105
Ahmad Salim Al-Sibahi, Thomas Jensen, Rasmus Ejlers Magelberg,
and Andrzej Wasowski

Incremental Abstract Interpretation 132
Helmut Seidl, Julian Erhard, and Ralf Vogler

Correctly Slicing Extended Finite State Machines 149
Torben Amtoft, Kelly Androutsopoulos, and David Clark

Security

Secure Guarded Commands 201
Flemming Nielson and Hanne Riis Nielson

Modelling the Impact of Threat Intelligence on Advanced Persistent Threat
Using Gameso e 216
Andrew Fielder

Security Metrics at Work on the Things in IoT Systems 233
Chiara Bodei, Pierpaolo Degano, Gian-Luigi Ferrari,
and Letterio Galletta

New Program Abstractions for Privacy 256
Sebastian Hunt and David Sands

Xiv Contents

Optimizing Investments in Cyber Hygiene for Protecting Healthcare Users. . . 268
Sakshyam Panda, Emmanouil Panaousis, George Loukas,
and Christos Laoudias

Author Index 203

Logic

®

Check for
updates

Cables, Trains and Types

Simon J. Gay®)

School of Computing Science, University of Glasgow, Glasgow, UK
Simon.Gay@glasgow.ac.uk

Abstract. Many concepts of computing science can be illustrated in
ways that do not require programming. CS Unplugged is a well-known
resource for that purpose. However, the examples in CS Unplugged and
elsewhere focus on topics such as algorithmics, cryptography, logic and
data representation, to the neglect of topics in programming language
foundations, such as semantics and type theory.

This paper begins to redress the balance by illustrating the principles
of static type systems in two non-programming scenarios where there are
physical constraints on forming connections between components. The
first scenario involves serial cables and the ways in which they can be
connected. The second example involves model railway layouts and the
ways in which they can be constructed from individual pieces of track.
In both cases, the physical constraints can be viewed as a type system,
such that typable systems satisfy desirable semantic properties.

1 Introduction

There is increasing interest in introducing key concepts of computing science in
a way that does not require writing programs. A good example is CS Unplugged
[2], which provides resources for paper-based classroom activities that illustrate
topics such as algorithmics, eryptography, digital logic and data representation.
However, most initiatives of this kind focus on “Theoretical Computer Science
Track A” [4] topics (algorithms and complexity), rather than “Track B” top-
ics (logic, semantics and theory of programming). To the extend that logic is
covered, the focus is on gates and circuits rather than deduction and proof.

In the present paper, we tackle Track B by describing two non-programming
scenarios illustrating the principles of static type systems. The first scenario
involves serial cables, and defines a type system in which the type of a cable
corresponds to the nature of its connectors. The physical design of the connec-
tors enforces the type system, and this guarantees that the semantics (electrical
connectivity) of a composite cable is determined by its type.

The second scenario is based on model railway layouts, where there is a desir-
able runtime safety property that if trains start running in the same direction,
there can never be a head-on collision. Again, the physical design of the pieces

Supported by the UK EPSRC grant EP/K034413/1, “From Data Types to Session
Types: A Basis for Concurrency and Distribution (ABCD)”.
© Springer Nature Switzerland AG 2020

A. Di Pierro et al. (Eds.): Festschrift Hankin, LNCS 12065, pp. 3-16, 2020.
https://doi.org/10.1007/978-3-030-41103-9_1

4 S. J. Gay

of track enforces a type system that guarantees runtime safety. The situation
here is more complicated than for serial cables, and we can also discuss the way
in which typability is only an approximation of runtime safety.

We partially formalise the cables example, in order to define a denotational
semantics of cables and prove a theorem about the correspondence between types
and semantics. A fully formal treatment would require more machinery, of the
kind that is familiar from the literature on semantics and type systems, but
including it all here would distract from the key ideas. We treat the railway
example even less formally; again, it would be possible to develop a more formal
account.

I am only aware of one other non-technical illustration of concepts from
programming language foundations, which is Victor's Alligator Eggs [12] pre-
sentation of untyped A-calculus. When I have presented the cables and trains
material in seminars, audiences have found it novel and enjoyable. I hope that
these examples might encourage other such scenarios to be observed—and there
may be a possibility of developing them into activities along the lines of CS
Unplugged.

Fig. 1. A serial cable with 25-pin female (left) and male (right) connectors.

2 Cables and Types

The first example involves serial cables. These were widely used to connect com-
puters to peripherals or other computers, typically using the RS-232 protocol,
until the emergence of the USB standard in the late 1990s. Figure 1 shows a serial
cable with 25-pin connectors, and illustrates the key point that there are two
polarities of connector, conventionally called male and female. Figure 2 shows
a serial cable with 9-pin connectors, both female. The physical design is such

Cables, Trains and Types 5

that two connectors can be plugged together if and only if they are of different
male/female polarity and have the same number of pins. From now on we will
ignore the distinction between 9-pin and 25-pin connectors, and assume that we
are working with a particular choice of size of connector.

For our purposes, the interesting aspect of a serial cable is that it contains
two wires for data transmission. These run between the send (SND) and receive
(RCYV) pins of the connectors. There are other wires for various power and control
signals, but we will ignore them.

There are two ways of connecting the send /receive wires. If SND is connected
to SND and RCV is connected to RCV, then the cable is called a straight through
cable (Fig. 3). This is just an extension cable. Alternatively, if SND is connected
to RCV and RCV is connected to SND, then the cable enables two devices to
communicate because the SND of one is connected to the RCV of the other.
This is called a null modem cable (Fig.4).

[

Fig. 2. A serial cable with 9-pin female connectors.

SND SND

RCV RCV

Fig. 3. A straight through cable.

RCV e "I RCV
Fig. 4. A null modem cable.

With two ways of wiring SND/RCV, and three possible pairs of polarities
for the connectors, there are six possible structures for a serial cable. They have

6 S. J. Gay

different properties in terms of their electrical connectivity and their physical
pluggability. When choosing a cable with which to connect two devices, clearly
it is important to have the correct connectors and the correct wiring. Because
the wiring of a cable is invisible, there is a conventional correspondence between
the choice of connectors and the choice of wiring.

— A straight through cable has different connectors at its two ends: one male,
one female.
A null modem cable has the same connectors at its two ends: both male, or
both female.

It is easy to convince oneself that this convention is preserved when cables are
plugged together to form longer cables. By thinking of the electrical connectivity
of a cable as its semantics, and the nature of its connectors as its type, we can
see the wiring convention as an example of a type system that guarantees a
semantic property. In the rest of this section, we will sketch a formalisation of
this observation.

Figureb gives the definitions that we need. Syntactically, a Cable is either
one of the fundamental cables or is formed by plugging two cables together via
the - operator. The fundamental cables are the straight through cable, straight,
and two forms of null modem cable, null; and null;. Recalling that a null modem
cable has the same type of connector at both ends, the forms null; and null;
represent cables with two male connectors and two female connectors. It doesn’t
matter which cable is male-male and which one is female-female.

To define the type system, we use the notation of classical linear logic [8].
Specifically, we use linear negation (7)l to represent complementarity of connec-
tors, and we use par (’®) as the connective that combines the types of connectors
into a type for a cable. This is a special case of a more general approach to using
classical linear logic to specify typed connections between components [6]. We
use B to represent one type of connector, and then B+ represents the other type.
As usual, negation is involutive, so that (B+)% = B. The notation B is natural
because we will use boolean values as the corresponding semantic domain. It
doesn’t matter whether B is male or female, as long as we treat it consistently
with our interpretation of null; and nully. The typing rule PLUG, which is a spe-
cial case of the cut rule from classical linear logic, specifies that cables can be
plugged together on complementary connectors. In this rule, A, B and C can
each be either B or B+,

Ezxample 1. The cable straight - straight represents two straight through cables
connected together. It is typable by

straight : B s Bt straight : B B+
straight - straight : B e B+

PLuc

This composite cable has the same type as a single straight through cable, and
we will see that it also has the same semantics.

Cables, Trains and Types 7

Syntax
Cable ::= straight | nully | nully | Cable - Cable cables
A B, C:=B|B" types
Type equivalence
(BY)" =B
Typing rules
straight : B9 B+ null, :B9B nully : Bt 9 B+

c:A%B d:B'wC
c-d: A C

PLuc

Semantics

Writing B to represent either B or B, the denotational semantics of ¢ : BBl
is
[c] C {true, false} x {true,false}

defined inductively on the syntactic construction of ¢ by:

[straight] = {(false, false), (true,true)} identity, id

[nulli] = {(false,true),(true,false)} inversion, inv
[nulls] = {(false, true), (true,false)} inversion, inv
[e-d] = [c] e [d] relational composition

Fig. 5. Formalisation of cables.

Ezample 2. The cable nully - nully is two null modem cables connected together,
which will also be semantically equivalent to a straight through cable. It is
typable by

null, : BB nully : B- 9 B+

PLuc
nully - nully : B B

Ezample 3. The cable straight - null; is a null modem cable extended by plugging
it into a straight through cable. Semantically it is still a null modem cable. It is
typable by

straight : B 5 B+ null, : Bo B

straight - null; : B2 B

PLuac

To complete the formalisation of the syntax and type system, we would need
some additional assumptions, at least including commutativity of @ so that we

8 S. J. Gay

can flip a straight through cable end-to-end to give straight : B 2 B. However,
the present level of detail is enough for our current purposes.

We define a denotational semantics of cables, to capture the electrical con-
nectivity. We interpret both B and B+ as {true, false} so that we can interpret
a straight through cable as the identity function and a null modem cable as
logical inversion. Following the framework of classical linear logic, we work with
relations rather than functions. Plugging cables corresponds to relational com-
position.

Ezxample 4. Calculating the semantics of the cables in Examples 1-3 (for clarity,
including the type within [—]) gives

[straight - straight : B B] =idoid =id = [straight]
[nully - nully : B BY] = invoinv =id = [straight]
[straight - null; : B® B] =idoinv = inv = [null]
This illustrates the correspondence between the type of a cable and its semantics.
The following result is straightforward to prove.

Theorem 1. Let A be either B or BL and let ¢ be a cable.

1. If c: A A then] = inv.
2. Ifc: A AL then [c] =id.

Proof. By induction on the typing derivation, using the fact that inv o
inv = id. O

This analysis of cables and their connectors has several features of the use of
static type systems in programming languages. The semantics of a cable is its
electrical connectivity, which determines how it behaves when used to connect
devices. The type of a cable is a combination of the polarities of its connectors.
There are some basic cables, which are assigned types in a way that establishes
a relationship between typing and semantics. The physical properties of con-
nectors enforce a simple local rule for plugging cables together. The result of
obeying this rule is a global correctness property: for every cable, the semantics
is characterised by the type.

It is possible, physically, to construct a cable that doesn’t obey the typing
rules, by removing a connector and soldering on a complementary one. For exam-
ple, connecting straight : B2 B and straight : B 2 B, by illegally joining B+
to Bt, gives a straight through cable with connectors B 2 B. Such cables are
available as manufactured components, called gender changers. Usually they are
very short straight through cables, essentially two connectors directly connected
back to back, with male-male or female-female connections. They are like type
casts: sometimes useful, but dangerous in general. If we have a cable that has
been constructed from fundamental cables and gender changers, and if we can’t

Cables, Trains and Types 9

see exactly which components have been used, then the only way to verify that
its connectors match its semantics is to do an electrical connectivity test—i.e. a
runtime type check.

Typically, a programming language type system gives a safe approrimation
to correctness. Every typable program should be safe, but usually the converse
is not true: there are safe but untypable programs. Cable gender changers are
not typable, so the following typing derivation is not valid.

untypable untypable
changer, : B2 B changer, : B+ 2 B+
changer, - changer, : B9 B+

PrLuc

However, the semantics is defined independently of typing, and
[changer, - changer,] = [changer,] o [changer,]
=idoid
=id

so that the typing changer; - changer, : B2 B is consistent with Theorem 1.

3 Trains and Types

The second example of a static type system is based on model railway layouts.
Specifically, the simple kind that are aimed at young children [1,5], rather than
the elaborate kind for railway enthusiasts [3]. The examples in this paper were
constructed using a “Thomas the Tank Engine” (7] set.

Fig. 6. A figure eight layout. (Color figure online)

10 S. J. Gay

Figure 6 shows a simple figure eight layout consisting of two circles linked by
a crossover piece. The blue lines (coloured in the electronic version of the paper)
show the guides for the train wheels—in these simple sets, they are grooves
rather than raised rails. Notice that there are multiple pathways through the
crossover piece. It would be possible for a train to run continuously around one
of the circles, but in practice the tendency to follow a straight path means that
it always transfers through the crossover piece to the other circle.

It’s clear from the diagram that when a train runs on this layout, it runs
along each section of track in a consistent direction. If it runs clockwise in the
left circle, then it runs anticlockwise in the right circle, and this never changes.
Consequently, if two trains run simultaneously on the track, both of them in the
correct consistent direction, there can never be a head-on collision. For example,
if one train starts clockwise in the left circle, and the other train starts anticlock-
wise in the right circle, they can never move in opposite directions within the
same circle. They might side-swipe each other by entering the crossover section
with bad timing, or a faster train might rear-end a slower train, but we will
ignore these possibilities and focus on the absence of head-on collisions as the
safety property that we want to guarantee.

5 : Ryt

straight curve

crossover

ol Ul

T SR,

merge/split merge/split

Fig. 7. Basic track pieces.

Figure 7 shows a collection of basic track pieces. They can be rotated and
reflected (the pieces are double-sided, with grooves on the top and bottom),
which equivalently means that the merge/split pieces (bottom row) can be used
with inverted connectors. When a merge/split piece is used as a split (i.e. a
train enters at the single endpoint and can take either the straight or curved
branch), there is a lever that can be set to determine the choice of branch. We
will ignore this feature, because we are interested in the safety of layouts under
the assumption that any physically possible route can be taken.

Cables, Trains and Types 11

The pieces in Fig. 7 can be used to construct the figure eight layout (Fig.6)
as well as more elaborate layouts such as the one in Fig. 8. It is easy to see that
the layout of Fig. 8 has the same “no head-on collisions” property as the figure
eight layout.

Fig. 8. A layout with multiple paths.

Each track piece has a number of endpoints, where it can be connected to
other pieces. We will refer to each endpoint as either positive (the protrud-
ing connector) or negative (the hole). The pieces in Fig.7 have the property
that if a train enters from a negative endpoint, it must leave from a positive
endpoint. This property is preserved inductively when track pieces are joined
together, and also when a closed (no unconnected endpoints) layout is formed.
This inductively-preserved invariant is the essence of reasoning with a type sys-
tem, if we consider the type of a track piece or layout to be the collection of
polarities of its endpoints. If we imagine an arrow from negative to positive end-
points in each piece, the whole layout is oriented so that there are never two
arrowheads pointing towards each other. This is exactly the “no head-on colli-
sions” property. It is possible to use the same argument in the opposite direction,
with trains running from positive to negative endpoints, to safely orient the lay-
out in the opposite sense.

Fig. 9. The Y pieces.

12 S. J. Gay

This argument could be formalised by defining a syntax for track layouts in
the language of traced monoidal categories [9,11] or compact closed categories
[6,10] and associating a directed graph with every track piece and layout.

The track pieces in Fig. 7 are not the only ones. Figure 9 shows the Y pieces,
which violate the property that trains run consistently from negative to positive
endpoints or vice versa. They can be used to construct layouts in which head-on
collisions are possible. In the layout in Fig. 10, a train can run in either direction
around either loop, and independently of that choice, it traverses the central
straight section in both directions.

Fig. 10. An unsafe layout using Y pieces.

It is possible to build safe layouts that contain Y pieces. Joining two Y pieces
as in Fig. 11 gives a structure that is similar to the crossover piece (Fig. 7) except
that the polarities of the endpoints are different. This “Y crossover” can be used
as the basis for a safe figure eight (Fig. 12). However, safety of this layout cannot
be proved by using the type system. If a train runs clockwise in the circle on
the right, following the direction from negative to positive endpoints, then its
anticlockwise journey around the circle on the left goes against the polarities.
To prove safety of this layout, we can introduce the concept of logical polarities,
which can be different from the physical polarities. In the circle on the left, assign
logical polarities so that the protruding connectors are negative and the holes
are positive, and then the original proof works.

Fig. 11. Joining Y pieces to form a crossover.

Cables, Trains and Types 13

Fig. 12. A safe figure eight using Y pieces. In the circle on the right, the direction of
travel follows the physical polarity, but in the circle on the left, the direction of travel
is against the physical polarity. To prove safety, assign logical polarities in the circle
on the left, which are opposite to the physical polarities.

Fig. 13. A layout using Y pieces that is safe in one direction (solid arrows) but not
the other (dashed arrows).

14 S. J. Gay

Fig. 14. This layout is safe for travel in the direction of the arrows, because the dashed
section of track is unreachable. However, the divergent arrows in the dashed section
mean that logical polarities cannot be used to prove safety.

A more exotic layout is shown in Fig. 13. This layout is safe for one direction
of travel (anticlockwise around the perimeter and the upper right loop) but
unsafe in the other direction. More precisely, if a train starts moving clockwise
around the perimeter, there is a path that takes it away from the perimeter and
then back to the perimeter but moving anticlockwise, so that it could collide
with another clockwise train.

Cables, Trains and Types 15

%fN

T

7 |

WA

/

N 1

Fig. 15. The layout of Fig.13 with the problematic section of track removed. This
layout is safe in both directions. For clockwise travel around the perimeter, following
the physical polarities, logical polarities are assigned to the inner loop.

= E

Safety of the anticlockwise direction cannot be proved by physical polarities,
because of the Y pieces. Figure 14 shows that it cannot be proved even by using
logical polarities. This is because the section with dashed lines, where the arrows
diverge, would require a connection between two logically negative endpoints. To
prove safety we can observe that for the safe direction of travel, the section with
dashed lines is unreachable. Therefore we can remove it (Fig.15) to give an
equivalent layout in which safety can be proved by logical polarities. In fact the
layout of Fig. 15 is safe in both directions.

4 Conclusion

I have illustrated the ideas of static type systems in two non-programming
domains: serial cables, and model railways. The examples demonstrate the fol-
lowing concepts.

— Typing rules impose local constraints on how components can be connected.

16 S. J. Gay

— Following the local typing rules guarantees a global semantic property.

— Typability is an approximation of semantic safety, and there are semantically
safe systems whose safety can only be proved by reasoning outside the type
system.

— If a type system doesn’t type all of the configurations that we know to be
safe, then a refined type system can be introduced in order to type more
configurations (this is the step from physical to logical polarities in the railway
example).

As far as 1 know, the use of a non-programming scenario to illustrate these
concepts is new, or at least unusual, although I have not systematically searched
for other examples.

There are several possible directions for future work. One is to increase the
level of formality in the analysis of railway layouts, so that the absence of head-
on collisions can be stated precisely as a theorem, and proved. Another is to
elaborate on the step from physical to logical polarities, again in the railway sce-
nario. Finally, it would be interesting to develop teaching and activity materials
based on either or both examples, at a similar level to CS Unplugged.

Acknowledgements. I am grateful to Ornela Dardha, Conor McBride and Phil
Wadler for comments on this paper and the seminar on which it is based; to Joao
Seco for telling me about the Alligator Eggs presentation of untyped A-calculus; and
to an anonymous reviewer for noticing a small error.

References

. Brio. www.brio.uk
. CS Unplugged. csunplugged.org
. Hornby. www.hornby.com
. Theoretical Computer Science. www.journals.elsevier.com/theoretical-computer-
science
. Thomas & Friends. www.thomasandfriends.com
6. Abramsky, S., Gay, S.J., Nagarajan, R.: Interaction categories and the foundations
of typed concurrent programming. In: Broy, M. (ed.) Proceedings of the NATO
Advanced Study Institute on Deductive Program Design, pp. 35-113 (1996)
. Awdrey, W.: Thomas the tank engine (1946)
. Girard, J.-Y.: Linear logic. Theoret. Comput. Sci. 50, 1-102 (1987)
9. Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Math. Proc. Cam-
bridge Philos. Soc. 119(3), 447-468 (1996)
10. Kelly, G.M., Laplaza, M.L.: Coherence for compact closed categories. J. Pure Appl.
Algebra 19, 193-213 (1980)
11. Stefdnescu, G.: Network Algebra. Springer, Heidelberg (2000). https://doi.org/10.
1007/978-1-4471-0479-7
12. Victor, B.: Alligator eggs. worrydream.com/AlligatorEggs

ot I R

o -1

®

Check for
updates

Cathoristic Logic

A Logic for Capturing Inferences Between
Atomic Sentences

Richard Evans'®™) and Martin Berger?

! Imperial College, London, UK
richardevans@google.com
2 University of Sussex, Brighton, UK
M.F.Berger@sussex.ac.uk

Abstract. Cathoristic logic is a multi-modal logic where negation is
replaced by a novel operator allowing the expression of incompatible
sentences. We present the syntax and semantics of the logic including
complete proof rules, and establish a number of results such as compact-
ness, a semantic characterisation of elementary equivalence, the existence
of a quadratic-time decision procedure, and Brandom’s incompatibility
semantics property. We demonstrate the usefulness of the logic as a lan-
guage for knowledge representation.

Keywords: Modal logic -+ Hennessy-Milner logic + Transition systems -
Negation - Exclusion + Elementary equivalence - Incompatibility
semantics + Knowledge representation + Philosophy of language

1 Introduction

Natural language is full of incompatible alternatives. If Pierre is the current king
of France, then nobody else can simultaneously fill that role. A traffic light can
be green, amber or red - but it cannot be more than one colour at a time. Mutual
exclusion is a natural and ubiquitous concept.

First-order logic can represent mutually exclusive alternatives, of course. To
say that Pierre is the only king of France, we can write, following Russell:

king(france, pierre) AVx.(king(france, x) — x = pierre).

To say that a particular traffic light, ¢/, is red - and red is its only colour - we
could write:
colour(tl, red) A Vx.colour(tl,z) — = = red.

In this approach, incompatibility is a derived concept, reduced to a combination
of universal quantification and identity. First-order logic, in other words, uses
relatively complex machinery to express a simple concept:

© Springer Nature Switzerland AG 2020
A. Di Pierro et al. (Eds.): Festschrift Hankin, LNCS 12065, pp. 17-85, 2020.
https://doi.org,/10.1007/978-3-030-41103-9_2

18 R. Evans and M. Berger

— Quantification’s complexity comes from the rules governing the distinction
between free and bound variables!.

— Identity’s complexity comes from the infinite collection of axioms required to
formalise the indiscernibility of identicals.

The costs of quantification and identity, such as a larger proof search space,
have to be borne every time one expresses a sentence that excludes others - even
though incompatibility does not, prima facie, appear to have anything to do
with the free/bound variable distinction, or require the full power of the identity
relation.

This paper introduces an alternative approach, where exclusion is expressed
directly, as a first-class concept. Cathoristic logic? is the simplest logic we could
find in which incompatible statements can be expressed. It is a multi-modal
logic, a variant of Hennessy-Milner logic, that replaces negation with a new
logical primitive

1A

pronounced tantum® A. Here A is a finite set of alternatives, and !A says that
the alternatives in A exhaust all possibilities. For example:

Ygreen, amber, red}

states that nothing but green, amber or red is possible. Our logic uses modalities
to state facts, for example (amber) expresses that amber is currently the case.
The power of the logic comes from the conjunction of modalities and tantum.
For example

(amber) A {green, amber, red}

expresses that amber is currently the case and red as well as green are the only
two possible alternatives to amber. Any statement that exceeds what tantum A
allows, like

(blue) A ! green, amber, red},

is necessarily false. When the only options are green, amber, or red, then blue is
not permissible. Now to say that Pierre is the only king of France, we write:

{king){france) ({pierre) \!{pierre}).

Crucially, cathoristic logic’s representation involves no universal quantifier and
no identity relation. It is a purely propositional formulation. To say that the
traffic light is currently red, and red is its only colour, we write:

(tl) (colour)({red)A!{red}).

! Efficient handling of free/bound variables is an active field of research, e.g. nominal
approaches to logic [23]. The problem was put in focus in recent years with the rising
interest in the computational cost of syntax manipulation in languages with binders.

2 “Cathoristic” comes from the Greek raflopiCeiv: to impose narrow boundaries. We
are grateful to Tim Whitmarsh for suggesting this word.

% “Tantum” is Latin for “only”.

Cathoristic Logic 19

This is simpler, both in terms of representation length and computational com-
plexity, than the formulation in first-order logic given on the previous page.
Properties changing over time can be expressed by adding extra modalities that
can be understood as time-stamps. To say that the traffic light was red at time
t1 and amber at time t2, we can write:

(tl) (colour)({t1) ({red)AY{red}) A (t2)({amber)\!{amber}))

Change over time can be expressed in first-order logic with bounded quantifica-
tion - but modalities are succinct and avoid introducing bound variables.

Having claimed that incompatibility is a natural logical concept, not easily
expressed in first-order logic?, we will now argue the following:

— Incompatibility is conceptually prior to negation.
— Negation arises as the weakest form of incompatibility.

1.1 Material Incompatibility and Negation
Every English speaker knows that

“Jack is male” is incompatible with “Jack is female”

But why are these sentences incompatible? The orthodox position is that these
sentences are incompatible because of the following general law:

If someone is male, then it is not the case that they are female
Recast in first-order logic:
V.(male(x) — —female(z)).

In other words, according to the orthodox position, the incompatibility between
the two particular sentences depends on a general law involving universal quan-
tification, implication and negation.

Brandom [7] follows Sellars in proposing an alternative explanation: “Jack is
male” is incompatible with “Jack is female” because “is male” and “is female” are
materially incompatible predicates. They claim we can understand incompatible
predicates even if we do not understand universal quantification or negation.
Material incompatibility is conceptually prior to logical negation.

Imagine, to make this vivid, a primitive people speaking a primordial lan-
guage of atomic sentences. These people can express sentences that are incompat-
ible. But they cannot express that they are incompatible. They recognise when
atomic sentences are incompatible, and see that one sentence entails another -
but their behaviour outreaches their ability to articulate it.

Over time, these people may advance to a more sophisticated language where
incompatibilities are made explicit, using a negation operator - but this is a later
(and optional) development:

1 We will precisify this claim in later sections; (1) first-order logic’s representation
of incompatibility is longer in terms of formula length than cathoristic logic’s (see
Sect. 4.2); and (2) logic programs in cathoristic logic can be optimised to run signif-
icantly faster than their equivalent in first-order logic (see Sect. 5.3).

20 R. Evans and M. Berger

[If negation is added to the language], it lets one say that two claims are
materially incompatible: “If a monochromatic patch is red, then it is not
blue.” That is, negation lets one make explicit in the form of claims -
something that can be said and (so) thought - a relation that otherwise
remained implicit in what one practically did, namely treat two claims as
materially incompatible®.

But before making this optional explicating step, our primitive people under-
stand incompatibility without understanding negation. If this picture of our
primordial language is coherent, then material incompatibility is conceptually
independent of logical negation.

Now imagine a modification of our primitive linguistic practice in which no
sentences are ever treated as incompatible. If one person says “Jack is male”
and another says “Jack is female”, nobody counts these claims as conflicting.
The native speakers never disagree, back down, retract their claims, or justify
them. They just say things. Without an understanding of incompatibility, and
the variety of behaviour that it engenders, we submit (following Brandom) that
there is insufficient richness in the linguistic practice for their sounds to count
as assertions. Without material incompatibility, their sounds are just barks.

Suppose the reporter’s differential responsive dispositions to call things red
are matched by those of a parrot trained to utter the same noises under the
same stimulation. What practical capacities of the human distinguish the
reporter from the parrot? What, besides the exercise of regular differential
responsive dispositions, must one be able to do, in order to count as having
or grasping concepts? ... To grasp or understand a concept is, according to
Sellars, to have practical mastery over the inferences it is involved in... The
parrot does not treat “That’s red” as incompatible with “That’s green”".

If this claim is also accepted, then material incompatibility is not just concep-
tually independent of logical negation, but conceptually prior.

1.2 Negation as the Minimal Incompatible

In [7] and [8], Brandom describes logical negation as a limiting form of material
incompatibility:

Incompatible sentences are Aristotelian coniraries. A sentence and its
negation are contradictories. What is the relation between these? Well, the
contradictory is a contrary: any sentence is incompatible with its negation.
What distinguishes the contradictory of a sentence from all the rest of its
contraries? The contradictory is the minimal contrary: the one that is
entailed by all the rest. Thus every contrary of “Plane figure f is a circle”
- for instance “f is a triangle”, “f is an octagon”, and so on - entails “f
is not a circle”.

® [8] pp. 47-48.
6 [7] pp. 88-89, our emphasis.

22 R. Evans and M. Berger

Here, “Jack loves Jill” is not a syntactic constituent®.
There are many types of inferential relations between atomic sentences of a
natural language. For example:

— “Jack is male” is incompatible with “Jack is female”
— “Jack loves Jill” implies “Jack loves”

— “Jack walks slowly” implies “Jack walks”

— “Jack loves Jill and Joan” implies “Jack loves Jill”
— “Jack is wet and cold” implies “Jack is cold”

The first of these examples involves an incompatibility relation, while the others
involve entailment relations. A key question this paper seeks to answer is: what
is the simplest logic that can capture these inferential relations between atomic
sentences?

1.4 Wittgenstein’s Vision of a Logic of Elementary Propositions

In the Tractatus [34], Wittgenstein claims that the world is a set of atomic sen-
tences in an idealised logical language. Each atomic sentence was supposed to be
logically independent of every other, so that they could be combined together in
every possible permutation, without worrying about their mutual compatibility.
But already there were doubts and problem cases. He was aware that certain
statements seemed atomic, but did not seem logically independent:

For two colours, e.g., to be at one place in the visual field is impossible,
and indeed logically impossible, for it is excluded by the logical structure
of colour. (6.3751)

At the time of writing the Tractatus, he hoped that further analysis would reveal
that these statements were not really atomic.

Later, in the Philosophical Remarks [33], he renounced the thesis of the logical
independence of atomic propositions. In §76, talking about incompatible colour
predicates, he writes:

That makes it look as if a construction might be possible within the ele-
mentary proposition. That is to say, as if there were a construction in logic
which didn’t work by means of truth functions. What’s more, it also seems
that these constructions have an effect on one proposition’s following log-
ically from another. For, if different degrees exclude one another it follows
from the presence of one that the other is not present. In that case, two
elementary propositions can contradict one another.

Here, he is clearly imagining a logical language in which there are incompatibil-
ities between atomic propositions. In §82:

8 To see that “Jack loves Jill” is not a constituent of “Jack loves Jill and Joan”, observe
that “and” conjoins constituents of the same syntactic type. But “Jack loves Jill” is
a sentence, while “Joan” is a noun. Hence the correct parsing is “Jack (loves (Jill
and Joan))”, rather than “(Jack loves Jill) and Joan”.

28 R. Evans and M. Berger

@ o
:

Fig. 1. Example model.

Here we assume, as we do with all subsequent figures, that the top state is the
start state. The same model does not satisfy any of the following formulae.

() Ha} Haeb (@b} (a)(e) (a)(B){c}

Figure 2 shows various models of (a)(b) and Fig.3 shows one model that does,
and one that does not, satisfy the formula !{a, b}. Both models validate !{a, b, c}.

Cathoristic logic does not have the operators —,V, or —. This has the fol-
lowing two significant consequences. First, every satisfiable formula has a unique
(up to isomorphism) simplest model. In Fig. 2, the left model is the unique sim-
plest model satisfying (a)(b). We will clarify below that model simplicity is closely
related to the process theoretic concept of similarity, and use the existence of
unique simplest models in our quadratic-time decision procedure.

@

b

&

Fig. 2. Three models of (a){(b)T

Secondly, cathoristic logic is different from other logics in that there is an
asymmetry between tautologies and contradictories: logics with conventional
negation have an infinite number of non-trivial tautologies, as well as an infinite
number of contradictories. In contrast, because cathoristic logic has no nega-
tion or disjunction operator, it is expressively limited in the tautologies it can
express: | and conjunctions of T are its sole tautologies. On the other hand, the
tantum operator enables an infinite number of contradictories to be expressed.
For example:

{a)y A0 (a) A Wb} {a) A Wb, c} by A0

82 R. Evans and M. Berger

o a
% @?S ¢ ®

Fig. 16. Worked example of neg. Note that the transition system on the left is non-
deterministic.

Now:

neg(y, (@) ((H)T A (c)T))
= N (a)neg(z, (0)T A () T)
= (a)neg(z1, ()T A () T) A (a)neg(z2, ()T A () T)
= (a)((b) T A neg(z1, () T)) A {a)neg(z2, (b) T A (c) T)
= (@)((0) T A neg(z1,(c) T)) A {a)(neg(z2, (B) T) A () T)
= (a)((5) TAH{D}) A (a)(neg(z2, (B) T) A (c) T)
= (@) ((0) TAH{D}) A {a)(He} Ay T)

The resulting formula is true in y but not in y’.

B Omitted Proofs

B.1 Proof of Lemma 5
If M = ¢ then M < simpl(p).

Proof. We shall show Th(simpl(¢)) € Th(9). The desired result will then follow
by applying Theorem 1. We shall show that

If M |= ¢ then Th(simpl(¢)) € Th(M)

by induction on ¢. In all the cases below, let simpl(¢) = (£, w) and let 9 =
(L',w"). The case where ¢ = T is trivial. Next, assume ¢ = (a)1p. We know
M = (a)yp and need to show that Th(simpl({a)y)) C Th(M). Since (L' w') |
(a)y), there is an ' such that w’ = 2’ and (£’,2") |= 1. Now from the definition
of simpl(), simpl((a)?) is a model combining simpl(¢)) with a new state w not
appearing in simpl(1)) with an arrow w — z (where z is the start state in
simpl(7))), and A(w) = X. Consider any sentence £ such that simpl({a)1)) |
£. Given the construction of simpl({a)y), & must be a conjunction of T and

Cathoristic Logic 83

formulae of the form (a)7. In the first case, (L', 2’) satisfies T; in the second
case, (L', 2') = 7 by the induction hypothesis and hence (L', w’) = {(a)7.

Next, consider the case where ¢ =!A, for some finite set A C X. From the
definition of simpl(), simpl(!A4) is a model with one state s, no transitions, with
A(s) = A. Now the only formulae that are true in simpl(!4) are conjunctions of
T and !B, for supersets B 2 A. If 9 [=!A then by the semantic clause for !,
N(w'") C A, hence 9 models all the formulae that are true in simpl(1A).

Finally, consider the case where ¢ = 1)1 A 1by. Assume I = ¢y and M | 5.
We assume, by the induction hypothesis that Th(simpl(1)) € Th(9M) and
Th(simpl(12)) € Th(9). We need to show that Th(simpl(¥; A t22)) C Th(9N).
By the definition of simpl(), simpl(A) = simpl(e1) M simpl(¢s2). If simpl(¢y)
and simpl(¢2) are inconsistent (see the definition of inconsistent in Sect.6.4)
then 9 = L. In this case, Th(simpl(11) A simpl(x2)) C Th(Ll). If, on the
other hand, simpl(1’;) and simpl(1)2) are not inconsistent, we shall show that
Th(simpl(1p1 A 12)) € Th(M) by reductio. Assume a formula ¢ such that
simpl(10; Abg) = &€ but MM €. Now & # T because all models satisfy T. £ cannot
be of the form (a)7 because, by the construction of merge (see Sect. 6.4), all tran-
sitions in simpl(tn A1b2) are transitions from simpl(4);) or simpl(v2) and we know
from the inductive hypothesis that Th(simpl(¢7)) € Th(91) and Th(simpl(¢2)) C
Th(9M). £ cannot be ! A for some A C X, because, from the construction of merge,
all state-labellings in simpl(t; A 402) are no more specific than the correspond-
ing state-labellings in simpl(1);) and simpl(?), and we know from the inductive
hypothesis that Th(simpl()1)) € Th(9t) and Th(simpl(2)) € Th(9). Finally, £
cannot be & A ziy because the same argument applies to xi; and ziy individ-
ually. We have exhausted the possible forms of £, so conclude that there is no
formula £ such that simpl(¥; A ¢2) = & but 9 ¥ £ Hence Th(simpl(y1 A12)) C
Th(9m). O

B.2 Proof of Lemma 6

If ¢ |= 4 then simpl(¢) < simpl(¢)

Proof. By Theorem 1, simpl(¢) =< simpl(y)) iff Th(simpl(y)) € Th(simpl(¢)).
Assume ¢ = v, and assume £ € Th(simpl(¢)). We must show & € Th(simpl(¢)).
Now simpl() is constructed so that:

simpl(v) = |_[{™ [M = ¢}

So & € Th(simpl()) iff for all models M, M |= ¢ implies M |= £. We must
show that 9 |= ¢ implies M |= £ for all models M. Assume M |= ¢. Then since
¢ =1, M = 1. But since & € Th(simpl(¢)), M = £ also. 0
B.3 Proof of Lemma 7

If Z(¢) € Z(¢) then J(simpl()) C J (simpl(¢))

84 R. Evans and M. Berger

Proof. Assume Z(v) C Z(¢) and M M simpl(¢) = L. We need to show
MMsimpl(¢) = L. If Z(¢)) € Z(¢) then for all formulae &, if simpl(£)Msimpl(1)) =
L then simpl(£) Msimpl(¢) = L. Let & be char(9M). Given that 2t simpl())

L and simpl(char(91)) =< M, simpl(char(M)) M simpl(¢») = L. Then as
Z(¢p) € Z(¢p), simpl(char(M)) M simpl(¢) = L. Now as MM =< simpl(char(9M)),
M M simpl(¢) = L. o
References

1. Haskell implementation of cathoristic logic. Submitted with the paper (2014)

2. Abramsky, S.: Computational interpretations of linear logic. TCS 111, 3-57 (1993)

3. Allan, K. (ed.): Concise Encyclopedia of Semantics. Elsevier, Boston (2009)

4. Aronoff, M., Rees-Miller, J. (eds.): The Handbook of Linguistics. Wiley-Blackwell,

Hoboken (2003)
5. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
Cambridge (2001)
6. Brachman, R., Levesque, H.: Knowledge Representation and Reasoning. Morgan
Kaufmann, Burlington (2004)
7. Brandom, R.: Making It Explicit. Harvard University Press, Cambridge (1998)
Brandom, R.: Between Saying and Doing. Oxford University Press, Oxford (2008)
9. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge Uni-
versity Press, Cambridge (1990)
10. Davidson, D.: Essays on Actions and Events. Oxford University Press, Oxford
(1980)
11. Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press, Cam-
bridge (2001)
12. Evans, R., Short, E.: Versu. http://www.versu.com. https://itunes.apple.com/us/
app/blood-laurels,/id8825056 767 mt=8
13. Evans, R., Short, E.: Versu - a simulationist storytelling system. IEEE Trans.
Comput. Intell. Al Games 6(2), 113-130 (2014)
14. Fikes, R., Nilsson, N.: Strips: a new approach to the application of theorem proving
to problem solving. Artif. Intell. 2, 189-208 (1971)
15. Girard, J.-Y.: Linear logic. TCS 50, 1-101 (1987)
16. Hennessy, M.: Algebraic Theory of Processes. MIT Press Series in the Foundations
of Computing. MIT Press, Cambridge (1988)
17. Hennessy, M., Milner, R.: Algebraic laws for non-determinism and concurrency.
JACM 32(1), 137-161 (1985)
18. Honda, K.: A Theory of Types for the m-Calculus, March 2001. http://www.dcs.
qmul.ac.uk/~kohei/logics
19. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122-138. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0053567
20. Honda, K., Yoshida, N.: A uniform type structure for secure information flow.
SIGPLAN Not. 37, 81-92 (2002)
21. O’Keeffe, A., McCarthy, M. (eds.): The Routledge Handbook of Corpus Linguistics.
Routledge, Abingdon (2010)
22. Peregrin, J.: Logic as based on incompatibility (2010). http://philpapers.org/rec/
PERLAB-2

o

266

S. Hunt and D. Sands

Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
4th Annual ACM Symposium on Principles of Programming Languages, pp. 238—
252 (1977)

Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages. POPL 1979, pp. 269-282. ACM, New York (1979). https://
doi.org/10.1145/567752.567778

Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Local privacy and statistical mini-
max rates. In: 2013 51st Annual Allerton Conference on Communication, Control,
and Computing (Allerton), pp. 1592-1592, October 2013. https://doi.org/10.1109/
Allerton.2013.6736718

Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1-12. Springer, Heidelberg (2006).
Https://(loi.org/l(]. 1007/11787006-1

Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265-284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14
Dwork, C., Roth, A.: The algorithmic foundations of differential privacy.
Found. Trends Theoret. Comput. Sci. 9, 211-407 (2014). https://dol.org/10.1561
0400000042

8. Ebadi, H.: Dynamic Enforcement of Differential Privacy. Ph.D. thesis, Chalmers

=

2

K

University of Technology, March 2018

Ebadi, H.: The PreTPost Framework (2018). https://github.com/ebadi/preTpost
Ebadi, H., Sands, D.: PreTPost: a transparent, user verifiable, local differential
privacy framework (2018). https://github.com/ebadi/preTpost. Also appears in
8

JEll)adi, H., Sands, D., Schneider, G.: Differential privacy: now it’s getting personal.
In: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages. POPL 2015, pp. 69-81. ACM (2015). https://
doi.org/10.1145/2676726.2677005

Erlingsson, U., Pihur, V., Korolova, A.: RAPPOR: randomized aggregatable
privacy-preserving ordinal response. In: CCS. ACM (2014)

Gaboardi, M., Haeberlen, A., Hsu, J., Narayan, A., Pierce, B.C.: Linear dependent
types for differential privacy. In: Proceedings of the 40th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL 2013, pp.
357-370. ACM, New York (2013). https://doi.org/10.1145/2429069.2429113
Giacobazzi, R., Ranzato, F.. Optimal domains for disjunctive abstract inter-
pretation. Sci. Comput. Program. 32(1), 177-210 (1998). https://doi.org/10.
1016/S0167-6423(97)00034-8,http: / /www.sciencedirect.com/science/article/pii/
S0167642397000348. 6th European Symposium on Programming

Haeberlen, A., Pierce, B.C., Narayan, A.: Differential privacy under fire. In:
Proceedings of the 20th USENIX Conference on Security. SEC 2011, pp.
33-33. USENIX Association, Berkeley (2011). http://dl.acm.org/citation.cfm?
id=2028067.2028100

Hunt, S.: Abstract interpretation of functional languages: from theory to practice.
Ph.D. thesis, Imperial College London, UK (1991)

Hunt, S., Sands, D.: Binding time analysis: a new perspective. In: Proceedings of
the ACM Symposium on Partial Evaluation and Semantics-Based Program Manip-
ulation (PEPM 1991), pp. 154-164. ACM Press (1991)

