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Authors’ Note

The separation of computer science from mathematics greatly impoverishes both.
The lectures that this book is based on were my attempt to show how these two
activities—an ancient one going back to the very beginnings of our civilization
and the most modern one—can be brought together.

I was very fortunate that my friend Dan Rose, under whose management our
team was applying principles of generic programming to search engine design,
agreed to convert my rather meandering lectures into a coherent book. Both of
us hope that our readers will enjoy the result of our collaboration.

—AAS.

Thebook you are about to read is based on notes from an “Algorithmic Journeys”
course taught by Alex Stepanov at A9.com during 2012. But as Alex and I worked
together to transform the material into book form, we realized that there was a
stronger story we could tell, one that centered on generic programming and its
mathematical foundations. This led to a major reorganization of the topics, and
removal of the entire section on set theory and logic, which did not seem to be
part of the same story. At the same time, we added and removed details to create
a more coherent reading experience and to make the material more accessible to
less mathematically advanced readers.
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we describe something in aslightly different way than a mathematician would, or
using slightly different terminology, or using more simple steps, the fault is mine.

—D.E.R.
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oOon e
What This Book Is About

It is impossible to know things of this world
unless you know mathematics.

Roger Bacon, Opus Majus

This book is about programming, but it is different from most programming
books. Along with algorithms and code, you'll find mathematical proofs and his-
torical notes about mathematical discoveries from ancient times to the
20th century.

More specifically, the book is about generic programming, an approach to
programming that was introduced in the 1980s and started to become popular
following the creation of the C++ Standard Template Library (STL) in the 1990s.
We might define it like this:

Definition 1.1. Generic programming is an approach to programming that fo-
cuses on designing algorithms and data structures so that they work in the most
general setting without loss of efficiency.

If you've used STL, at this point you may be thinking, “Wait a minute, thats all
there is to generic programming? What about all that stuff about templates and
iterator traits?” Those are tools that enable the language to support generic pro-
gramming, and it's important to know how to use them effectively. But generic
programming itself is more of an attifude toward programming than a particular
set of tools.

We believe that this attitude—trying to write code in this general way—is
one that all programmers should embrace. The components of a well-written
generic program are easier to use and modify than those of a program whose data
structures, algorithms, and interfaces hardcode unnecessary assumptions about

) |



2 Chapter 1: What This Book Is About

a specific application. Making a program more generic renders it simultaneously
both simpler and more powerful.

1.1 Programming and Mathematics

So where does this generic programming attitude come from, and how do you
learn it? It comes from mathematics, and especially from a branch of mathemat-
ics called abstract algebra. To help you understand the approach, this book will
introduce you to a little bit of abstract algebra, which focuses on how to reason
about objects in terms of abstract properties of operations on them. Its a topic
normally studied only by university students majoring in math, but we believe
it’s critical in understanding generic programming.

In fact, it turns out that many of the fundamental ideas in programming came
from mathematics. Learning how these ideas came into being and evolved over
time can help you think about software design. For example, Euclid’s Elements,
a book written more than 2000 years ago, is still one of the best examples of how
to build up a complex system from small, easily understood pieces.

Although the essence of generic programming is abstraction, abstractions
do not spring into existence fully formed. To see how to make something more
general, you need to start with something concrete. In particular, you need to
understand the specifics of a particular domain to discover the right abstractions.

The abstractions that appear in abstract algebra largely come from concrete
results in one of the oldest branches of mathematics, called number theory. For
this reason, we will also introduce some key ideas from number theory, which
deals with properties of integers, especially divisibility.

The thought process you'll go through in learning this math can improve
your programming skills. But we'll also show how some of the mathematical
results themselves turn out to be crucial to some modern software applications.
In particular, by the end of the book we'll show how some of these results are used
in cryptographic protocols underlying online privacy and online commerce.

The book will move back and forth between talking about math and talking
about programming. In particular, we'll interweave important ideas in mathe-
matics with a discussion of both specific algorithms and general programming
techniques. W¢'ll mention some algorithms only briefly, while others will be
refined and generalized throughout the book. A couple of chapters will con-
tain only mathematical material, and a couple will contain only programming
material, but most have a mixture of both.

1.2 A Historical Perspective

We've always found that it’s easier and more interesting to learn something if it’s
part of a story. What was going on at the time? Who were the people involved,
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and how did they come to have these ideas? Was one person’s work an attempt to
build on another’s—or an attempt to reject what came before? So as we introduce
the mathematical ideas in this book, we'll try to tell you the story of those ideas
and of the people who came up with them. In many cases, we've provided short
biographical sketches of the mathematicians who are the main characters in our
story. These aren’t comprehensive encyclopedia entries, but rather an attempt to
give you some context for who these people were.

Although we take a historical perspective, that doesn’t mean that the book is
intended as a history of mathematics or even that all the ideas are presented in
the order in which they were discovered. We'll jump around in space and time
when necessary, but we'll try to give a historical context for each of the ideas.

1.3 Prerequisites

Sincealotofthebook is about mathematics, you may be concerned that you need
to have taken a lot of math classes to understand it. While youwll need to be able to
think logically (something you should already be good at as a programmer), we
don’t assume any specific mathematical knowledge beyond high school algebra
and geometry. In a couple of sections, we show some applications that use a little
linear algebra (vectors and matrices), but you can safely skip these if you haven’t
been exposed to the background material before. If youre unfamiliar with any
of the notation we use, it’s explained in Appendix A.

An important part of mathematics is being able to prove something formally.
This book contains quite a few proofs. You’ll find the book easier to understand
if you've done some proofs before, whether in high school geometry, in a com-
puter science class on automata theory, or in logic. We've described some of the
common proof techniques we use, along with examples, in Appendix B.

We assume that if you're reading this book, you’re already a programmer. In
particular, you should be reasonably proficient in a typical imperative program-
ming language like C, C++, or Java. Our examples will use C++, but we expect
you'll be able to understand them even if you've never programmed in that lan-
guage before. When we make use of a construct unique to C++, we explain it
in Appendix C. Irrespective of our use of C++, we believe that the principles
discussed in this book apply to programming in general.

Many of the programming topics in this book are also covered from a dif-
ferent perspective, and more formally, in Elements of Programining by Stepanov
and McJones. Readers interested in additional depth may find that book to be
a useful companion to this one. Throughout this book, we occasionally refer
interested readers to a relevant section of Elements of Programming.
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1.4 Roadmap

Before diving into the details, it’s useful to see a brief overview of where we're

headed:

e Chapter 2 tells the story of an ancient algorithm for multiplication, and how
to improve it.

e Chapter 3 looks at some early observations about properties of numbers, and
an efficient implementation of an algorithm for finding primes.

e Chapter 4 introduces an algorithm for finding the greatest common divisor
(GCD), which will be the basis for some of our abstractions and applications
later on.

e Chapter 5 focuses on mathematical results, introducing a couple of important
theorems that will play a critical role by the end of the book.

e Chapter 6 introduces the mathematical field of abstract algebra, which pro-
vides the core idea for generic programming.

o Chapter 7 shows how these mathematical ideas allow us to generalize our mul-
tiplication algorithm beyond simple arithmetic to a variety of practical pro-
gramming applications.

e Chapter 8 introduces new abstract mathematical structures, and shows some
new applications they enable.

e Chapter 9 talks about axiom systems, theories, and models, which are all
building blocks of generic programming.

e Chapter 10 introduces concepts in generic programming, and examines the

subtleties of some apparently simple programming tasks.

e Chapter 11 continues the exploration of some fundamental programming
tasks, examining how different practical implementations can exploit theo-
retical knowledge of the problem.

o Chapter 12 looks at how hardware constraints can lead to a new approach for
an old algorithm, and shows new applications of GCD.

e Chapter 13 puts the mathematical and algorithmic results together to build an
important cryptography application.
e Chapter 14 is a summary of some of the principal ideas in the book.
The strands of programming and mathematics are interwoven throughout,

though one or the other may lie hidden for a chapter or two. But every chapter
plays a part in the overall chain of reasoning that summarizes the entire book:



Roadmap

To be a good programmer, you need to understand the principles of
generic programming. To understand the principles of generic pro-
gramming, you need to understand abstraction. To understand ab-
straction, you need to understand the mathematics on which it’s based.

That’s the story were hoping to tell.
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The First Algorithm

Moses speedily learned arithmetic, and geometry.
...This knowledge he derived from the Egyptians,
who study mathematics above all things.

Philo of Alexandria, Life of Moses

An algorithm is a terminating sequence of steps for accomplishing a computa-
tional task. Algorithms are so closely associated with the notion of computer
programming that most people who know the term probably assume that the
idea of algorithms comes from computer science. But algorithms have been
around for literally thousands of years. Mathematics is full of algorithms, some
of which we use every day. Even the method schoolchildren learn for long ad-
dition is an algorithm.

Despite its long history, the notion of an algorithm didn’t always exist; it had
to be invented. While we don’t know when algorithms were first invented, we do
know that some algorithms existed in Egypt at least as far back as 4000 years ago.

* * *

Ancient Egyptian civilization was centered on the Nile River, and its agricul-
ture depended on the river’s floods to enrich the soil. The problem was that
every time the Nile flooded, all the markers showing the boundaries of prop-
erty were washed away. The Egyptians used ropes to measure distances, and
developed procedures so they could go back to their written records and re-
construct the property boundaries. A select group of priests who had stud-
ied these mathematical techniques were responsible for this task; they became
known as “rope-stretchers” The Greeks would later call them geometers, mean-
ing “Earth-measurers.”



8 Chapter 2: The First Algorithm

Unfortunately, we have little written record of the Egyptians’ mathematical
knowledge. Only two mathematical documents survived from this period. The
one we are concerned with is called the Rhind Mathematical Papyrus, named
after the 19th-century Scottish collector who bought it in Egypt. It is a docu-
ment from about 1650 BC written by a scribe named Ahmes, which contains a
series of arithmetic and geometry problems, together with some tables for com-
putation. This scroll contains the first recorded algorithm, a technique for fast
multiplication, along with a second one for fast division. Let’s begin by looking
at the fast multiplication algorithm, which (as we shall see later in the book) is
still an important computational technique today.

2.1 Egyptian Multiplication

The Egyptians’ number system, like that of all ancient civilizations, did not use
positional notation and had no way to represent zero. As a result, multiplica-
tion was extremely difficult, and only a few trained experts knew how to do it.
(Imagine doing multiplication on large numbers if you could only manipulate
something like Roman numerals.)

How do we define multiplication? Informally, it’s “adding something to itself
a number of times” Formally, we can define multiplication by breaking it into
two cases: multiplying by 1, and multiplying by a number larger than 1.

We define multiplication by 1 like this:

la=a (2.1)

Next we have the case where we want to compute a product of one more thing
than we already computed. Some readers may recognize this as the process of
induction; we'll use that technique more formally later on.

(n+la=na+ta (2.2)

One way to multiply n by a is to add instances of a together n times. How-
ever, this could be extremely tedious for large numbers, since n — 1 additions are
required. In C++, the algorithm looks like this:

int multiplye(int n, int a) {
if (n == 1) return a;
return multiply®(n - 1, a) + a;

The two lines of code correspond to equations 2.1 and 2.2. Both g and #n must
be positive, as they were for the ancient Egyptians.
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The algorithm described by Ahmes—which the ancient Greeks knew as “Egyp-
tian multiplication” and which many modern authors refer to as the “Russian
Peasant Algorithm”l—relies on the following insight:

4a=((a+a)+a)+a
=(a+a)+(a+a)

This optimization depends on the law of associativity of addition:
a+(b+c)=(a+b)+c

It allows us to compute a + a only once and reduce the number of additions.
The idea is to keep halving n and doubling a, constructing a sum of power-
of-2 multiples. At the time, algorithms were not described in terms of variables
such as g and n; instead, the author would give an example and then say, “Now do
the same thing for other numbers” Ahmes was no exception; he demonstrated
the algorithm by showing the following table for multiplying n = 41 by a = 59:

1 v 59
2 118
4 236
8 v 472
16 944
32 v 1888

Each entry on the left is a power of 2; each entry on the right is the result of
doubling the previous entry (since adding something to itself is relatively easy).
The checked values correspond to the 1-bits in the binary representation of 41.
The table basically says that

41 x 59 = (1 x 59) + (8 x 59) + (32 x 59)

where each of the products on the right can be computed by doubling 59 the
correct number of times.

The algorithm needs to check whether # is even and 0dd, so we can infer that
the Egyptians knew of this distinction, although we do not have direct proof.
But ancient Greeks, who claimed that they learned their mathematics from the

! Many computer scientists learned this name from Knuth’s The Art of Computer Programming,
which says that travelers in 19th-century Russia observed peasants using the algorithm. However,
the first reference to this story comes from a 1911 book by Sir Thomas Heath, which actually says,
“I have been told that there is a method in use today (some say in Russia, but I have not been able to
verify this), .7
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Egyptians, certainly did. Heres how they defined? even and odd, expressed in
modern notation:®

n_n—1+n—1
- 2 2

+1 = odd(n)

We will also rely on this requirement:
odd(n) == half(n) = half(n — 1)
This is how we express the Egyptian multiplication algorithm in C++:

int multiplyl(int n, int a) {
if (n == 1) return a;
int result = multiplyl(half(n), a + a);
if (odd(n)) result = result + aj;
return result;

}

We can easily implement odd(x) by testing the least significant bit of x, and
half(x) by a single right shift of x:

bool odd(int n) { return n & Ox1; }
int half(int n) { return n >> 1; }

How many additions is multiplyl going to do? Every time we call the func-
tion, we'll need to do the addition indicated by the +in a + a. Since we are halv-
ing the value as we recurse, we'll invoke the function log n times.* And some of
the time, we'll need to do another addition indicated by the + in result + a. So
the total number of additions will be

#+(n) = [logn]| + (v(n) — 1)

where v(n) is the number of 1s in the binary representation of n (the popula-
tion count or pop count). So we have reduced an O(n) algorithm to one that is
O(logn).

2The definition appears in the 1st-century work Introduction to Arithmetic, Book I, Chapter VII,
by Nicomachus of Gerasa. He writes, “The even is that which can be divided into two equal parts
without a unit intervening in the middle; and the odd is that which cannot be divided into two equal
parts because of the aforesaid intervention of a unit”

3The arrow symbol “ = ”is read “implies” See Appendix A for a summary of the mathematical
notation used in this book.

*Throughout this book, when we write “log,” we mean the base 2 logarithm, unless specified
otherwise.
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Is this algorithm optimal? Not always. For example, if we want to multiply
by 15, the preceding formula would give this result:

#,(15)=3+4—-1=6

But we can actually multiply by 15 with only 5 additions, using the following
procedure:

int multiply_by_15(int a) {

int b = (a + a) + a; // b == 3*a
int ¢ = b + b; // C == 6*a
return (c + c) + by // 12%a + 3%*a

}

Such a sequence of additions is called an addition chain. Here we have discov-
ered an optimal addition chain for 15. Nevertheless, Ahmes’s algorithm is good
enough for most purposes.

Exercise 2.1. Find optimal addition chains for n < 100.

Atsome point the reader may have observed that some of these computations
would be even faster if we first reversed the order of the arguments when the first
is greater than the second (for example, we could compute 3 x 15 more easily
than 15 x 3). That’s true, and the Egyptians knew this. But we're not going to add
that optimization here, because as we'll see in Chapter 7, were eventually going
to want to generalize our algorithm to cases where the arguments have different
types and the order of the arguments matters.

2.2 Improving the Algorithm

Our multiplyl function works well as far as the number of additions is con-
cerned, butit also does |log n] recursive calls. Since function calls are expensive,
we want to transform the program to avoid this expense.

One principle were going to take advantage of is this: It is often easier to do
more work rather than less. Specifically, were going to compute

r+na

where r is a running result that accumulates the partial products na. In other
words, were going to perform multiply-accumulate rather than just multiply.
This principle turns out to be true not only in programming but also in hard-
ware design and in mathematics, where it’s often easier to prove a general result
than a specific one.
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Here’s our multiply-accumulate function:

int mult_accO(int r, int n, int a) {
if (n == 1) return r + aj;
if (odd(n)) {
return mult_acc@(r + a, half(n), a + a);
} else {
return mult_acco(r, half(n), a + a);

}

It obeys the invariant: r + na = ry + nedg, where ro, 1y and a, are the initial
values of those variables.

We can improve this further by simplifying the recursion. Notice that the two
recursive calls differ only in their first argument. Instead of having two recursive
calls for the odd and even cases, we'll just modify the value of r before we recurse,
like this:

int mult_accl(int r, int n, int a) {
if (n == 1) return r + aj;
if (odd(n)) r = r + a;
return mult_accl(r, half(n), a + a);

}

Now our function is fail-recursive—that is, the recursion occurs only in the re-
turn value. We'll take advantage of this fact shortly.
We make two observations:

e nis rarely 1.
e If n is even, there’s no point checking to see if it’s 1.

So we can reduce the number of times we have to compare with 1 by a factor of
2, simply by checking for oddness first:

int mult_acc2(int r, int n, int a) {
if (odd(n)) {
r=r + aj;
if (n == 1) return r;
}
return mult_acc2(r, half(n), a + a);

}

Some programmers think that compiler optimizations will do these kinds of
transformations for us, but thats rarely true; they do not transform one algo-
rithm into another.
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What we have so far is pretty good, but were eventually going to want to
eliminate the recursion to avoid the function call overhead. This is easier if the
function is strictly tail-recursive.

Definition 2.1. A strictly tail-recursive procedure is one in which all the tail-
recursive calls are done with the formal parameters of the procedure being the
corresponding arguments.

Again, we can achieve this simply by assigning the desired values to the vari-
ables we'll be passing before we do the recursion:

int mult_acc3(int r, int n, int a) {
if (odd(n)) {

r=r + aj

if (n == 1) return r;
}
n = half(n);
a=a+ a;

return mult_acc3(r, n, a);

}

Now it is easy to convert this to an iterative program by replacing the tail recur-
sion with a while(true) construct:

int mult_acc4(int r, int n, int a) {
while (true) {
if (odd(n)) {

r=r + a;

if (n == 1) return r;
}
n = half(n);
a=a+ aj;

With our newly optimized multiply-accumulate function, we can write a new
version of multiply. Our new version will invoke our multiply-accumulate helper
function:

int multiply2(int n, int a) {
if (n == 1) return a;
return mult_acc4(a, n - 1, a);

}

Notice that we skip one iteration of mult_acc4 by calling it with result already
set to a.
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This is pretty good, except when n is a power of 2. The first thing we do is
subtract 1, which means that mult_acc4 will be called with a number whose bi-
nary representation is all 1s, the worst case for our algorithm. So we'll avoid this
by doing some of the work in advance when n is even, halving it (and doubling a)
until #n becomes odd:

int multiply3(int n, int a) {
while (!odd(n)) {
a = a+ aj;
n = half(n);
}
if (n == 1) return a;
return mult_acc4(a, n - 1, a);

}

But now we notice that were making mult_acc4 do one unnecessary test for
n = 1, because we're calling it with an even number. So we'll do one halving and
doubling on the arguments before we call it, giving us our final version:

int multiply4(int n, int a) {
while (!'odd(n)) {

a = a+ aj;
n = half(n);
}
if (n == 1) return a;

// even(n—1) —= n—-1+#1
return mult_acc4(a, half(n - 1), a + a);

Rewriting Code

As we have seen with our transformations of the multiply algorithm, rewriting
code is important. No one writes good code the first time; it takes many itera-
tions to find the most efficient or general way to do something. No programmer
should have a single-pass mindset.

At some point during the process you may have been thinking, “One more
operation isn’t going to make a big difference.” But it may turn out that your code
will be reused many times for many years. (In fact, a temporary hack often be-
comes the code that lives the longest.) Furthermore, that inexpensive operation
you’re saving now may be replaced by a very costly one in some future version
of the code.
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Another benefit of striving for efficiency is that the process forces you to un-
derstand the problem in more depth. At the same time, this increased depth of
understanding leads to more efficient implementations; it's a virtuous circle.

2.3 Thoughts on the Chapter

Students of elementary algebra learn how to keep transforming expressions until
they can be simplified. In our successive implementations of the Egyptian mul-
tiplication algorithm, we've gone through an analogous process, rearranging the
code to make it clearer and more efficient. Every programmer needs to get in
the habit of trying code transformations until the final form is obtained.

We've seen how mathematics emerged in ancient Egypt, and how it gave us
the first known algorithm. We're going to return to that algorithm and expand
on it quite a bit later in the book, But for now we're going to move ahead more
than a thousand years and take a look at some mathematical discoveries from
ancient Greece.
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Ancient Greek Number Theory

Pythagoreans applied themselves to the study of mathematics....
They thought that its principles must be the principles of all existing things.

Aristotle, Metaphysics

In this chapter, were going to look at some of the problems studied by ancient
Greek mathematicians. Their work on patterns and “shapes” of numbers led to
the discovery of prime numbers and the beginnings of a field of mathematics
called number theory. They also discovered paradoxes that ultimately produced
some mathematical breakthroughs. Along the way, we'll examine an ancient
algorithm for finding primes, and see how to optimize it.

3.1 Geometric Properties of Integers

Pythagoras, the Greek mathematician and philosopher who most of us know
only for his theorem, was actually the person who came up with the idea that
understanding mathematics is necessary to understand the world. He also dis-
covered many interesting properties of numbers; he considered this understand-
ing to be of great value in its own right, independent of any practical application.
According to Aristotle’s pupil Aristoxenus, “He attached supreme importance to
the study of arithmetic, which he advanced and took out of the region of com-
mercial utility”

17
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Pythagoras (ca. 570 BC—ca. 490 BC)

Pythagoras was born on the Greek is-
land of Samos, which was a major
naval power at the time. He came
from a prominent family, but chose
to pursue wisdom rather than wealth.
At some point in his youth he trav-
eled to Miletus to study with Thales,
the founder of philosophy (see Sec-
tion 9.2), who advised him to go to
Egypt and learn the Egyptians’ math-
ematical secrets.

During the time Pythagoras was
studying abroad, the Persian empire
conquered Egypt. Pythagoras fol-
lowed the Persian army eastward to Babylon (in what is now Iraq), where he
learned Babylonian mathematics and astronomy. While there, he may have
met travelers from India; what we know is that he was exposed to and began
espousing ideas we typically associate with Indian religions, including the
transmigration of souls, vegetarianism, and asceticism. Prior to Pythago-
ras, these ideas were completely unknown to the Greeks.

After returning to Greece, Pythagoras started a settlement in Croton,
a Greek colony in southern Italy, where he gathered followers—both men
and women—who shared his ideas and followed his ascetic lifestyle. Their
lives were centered on the study of four things: astronomy, geometry, num-
ber theory, and music. These four subjects, later known as the quadrivium,
remained a focus of European education for 2000 years. Each of these disci-
plines was related: the motion of the stars could be mapped geometrically,
geometry could be grounded in numbers, and numbers generated music. In
fact, Pythagoras was the first to discover the numerical structure of frequen-
cies in musical octaves. His followers said that he could “hear the music of
the celestial spheres”

After the death of Pythagoras, the Pythagoreans spread to several other
Greek colonies in the area and developed alarge body of mathematics. How-
ever, they kept their teachings secret, so many of their results may have been
lost. They also eliminated competition within their ranks by crediting all
discoveries to Pythagoras himself, so we don’t actually know which indi-
viduals did what.

Chapter 3: Ancient Greek Number Theory
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Although the Pythagorean communities were gone after a couple of hun-
dred years, their work remains influential. Aslate as the 17th century, Leib-
niz (one of the inventors of calculus) described himself as a Pythagorean.

Unfortunately, Pythagoras and his followers kept their work secret, so none
of their writings survive. However, we know from contemporaries what some
of his discoveries were. Some of these come from a first-century book called
Introduction to Arithmetic by Nicomachus of Gerasa. These included obser-
vations about geometric properties of numbers; they associated numbers with
particular shapes.

Triangular numbers, for example, which are formed by stacking rows repre-
senting the first n integers, are those that formed the following geometric pattern:

a

a aa

a aa aaa

a aa aaa aaaa

a aQa aaa aaaa qaaaaa

a aa aaa aaaa aaaaa daaaaaa
1 3 6 10 15 21

Oblong numbers are those that look like this:

a

a aa

o d aa aaa

a aa aaa aaaa

a aa aaa aaaa aaaaa

a aa aaa aaaa aaaaa aaaaaa
2 6 12 20 30 42

It is easy to see that the nth oblong number is represented by an n x (n + 1)
rectangle:

Ly = n(n =7 1)
It’s also clear geometrically that each oblong number is twice its corresponding
triangular number. Since we already know that triangular numbers are the sum
of the first n integers, we have

DnZZAn:221-:ﬂ(n+1)

i=1
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So the geometric representation gives us the formula for the sum of the first n

integers:
. a(n+1)
A = = —_—
, ;1 >

Another geometric observation is that the sequence of odd numbers forms
the shape of what the Greeks called gnomons (the Greek word for a carpenter’s
square; a gnomon is also the part of a sundial that casts the shadow):

Combining the first # gnomons creates a familiar shape—a square:

qaooaa aaaada

a a

aaa aaa aaaoa aaaoa

a a aoa aoca

a a aoca aoa aoaqoa aoaoa
1 4 9 16 25 36

This picture also gives us a formula for the sum of the first # odd numbers:

n

On=» (2i—1)=n’

i=1

Exercise 3.1. Find a geometric proof for the following: take any triangular num-
ber, multiply it by 8, and add 1. The result is a square number. (This problem
comes from Plutarch’s Platonic Questions.)

3.2 Sifting Primes

Pythagoreans also observed that some numbers could not be made into any non-
trivial rectangular shape (a shape where both sides of the rectangle are greater
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than 1). These are what we now call prime numbers—numbers that are not prod-
ucts of smaller numbers:
2,3,5,7,11,13,...

(“Numbers” for the Greeks were always whole numbers.) Some of the earliest
observations about primes come from Euclid. While he is usually associated
with geometry, several books of Euclid’s Elements actually discuss what we now
call number theory. One of his results is this theorem:

Theorem 3.1 (Euclid VII, 32): Any number is either prime or divisible by some
prime.

The proof, which uses a technique called “impossibility of infinite descent,” goes
like this:'

Proof. Consider a number A. If it is prime, then we are done. If it is compos-
ite (i.e., nonprime), then it must be divisible by some smaller number B. If B
is prime, we are done (because if A is divisible by B and B is prime, then A is
divisible by a prime). If B is composite, then it must be divisible by some smaller
number C, and so on. Eventually, we will find a prime or, as Euclid remarks in his
proof of the previous proposition, “an infinite sequence of numbers will divide
the number, each of which is less than the other; and this is impossible” O

This Euclidean principle that any descending sequence of natural numbers ter-
minates is equivalent to the induction axiom of natural numbers, which we will
encounter in Chapter 9.

Another result, which some consider the most beautiful theorem in mathemat-
ics, is the fact that there are infinitely many primes:

Theorem 3.2 (Euclid IX, 20): For any sequence of primes {p,,...,p.}, thereisa
prime p not in the sequence.

Proof. Consider the number

g=1+]]p
i=1

'Euclid’s proof of VII, 32 actually relies on his proposition VII, 31 (any composite number is
divisible by some prime), which contains the reasoning shown here.
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In other words, the aliquot sum is the sum of all proper divisors of n—all the
divisors except n itself.
Now we're ready for the proof of Theorem 3.3, also known as Euclid IX, 36:

If 2" — 1 is prime, then 2"~ (2" — 1) is perfect.
Proof. Letq = 2""'(2" —1). We know 2 is prime, and the theorem’s condition is
that 2" — 1 is prime, so 2"~ ' (2" — 1) is already a prime factorization of the form

n=pipst...par,wherem =2,py =2,a, =n—-1,p, =2"—-1,anda, = L
Using the sum of divisors formula (Equation 3.6):

2(n71)+l —1 r 1 2. 1
i = 1 'iZ"lﬁl
F—12%-1 2"-1)+1
(2n-1)-1 (2"=1)+1
("-DE"-1)-D(E" -1+
(@*-1@2"-1)-1)
—2"-D(2"-1+1)
=22 —1)=2:20"12%—1) =2¢

=(2h—1} -

=(@2"-1)-

Then
a(g) =a(q)—q9=29-q9=9q
That is, g is perfect. d

We can think of Euclid’s theorem as saying that if a number has a certain
form, then it is perfect. An interesting question is whether the converse is true:
if a number is perfect, does it have the form 2"~1(2” — 1)? In the 18th century,
Euler proved that if a perfect number is even, then it has this form. He was
not able to prove the more general result that every perfect number is of that
form. Even today, this is an unsolved problem; we don't know if any odd perfect
numbers exist.

Exercise 3.7. Prove that every even perfect number is a triangular number.

Exercise 3.8. Prove that the sum of the reciprocals of the divisors of a perfect
number is always 2. Example:

1 1 1
P e |
tat3ts

3.5 The Pythagorean Program

For Pythagoreans, mathematics was not about abstract symbol manipulation, as
it is often viewed today. Instead, it was the science of numbers and space—the



