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Chapter 1 )
Introducing Artificial Intelligence e

Abstract The field of Artificial Intelligence (AI) has interfaces with almost every
discipline of engineering, and beyond, and all those can be benefited by the use of
AL This chapter presents the introduction to Al, its roots, sub-domains, Turing test
to judge if the given program is intelligent, what are the goals of Al for Engineers
and Scientists, what are the basic requirements for Al, symbol system, what are the
requirements for knowledge representation, and concludes with a chapter summary,
and an exhaustive list of exercises. In addition raises many questions to ponder over,
like, consciousness, and whether it is possible to create artificial consciousness.

Keywords Artificial intelligence - Turing test - Imitation game - Philosophy -
Logic * Computation + Cognitive science * Evolution - Artificial consciousness -
Speech processing - Expert systems - Physical symbol system hypothesis - Formal
system - Knowledge representation

1.1 Introduction

The Artificial Intelligence (Al) is a branch of Computer Science, which is mainly
concerned with automation of Intelligent behavior. This behavior we may consider
from all domains—the human, animal world, and vegetation. A compact definition
of Intelligence is:

Intelligence = Perceive + Analyze + React.

The following are often quoted definitions, all expressing this notion of intelli-
gence but with different emphasis in each case:

e “The capacity to learn or to profit by experience.”

e “Ability to adapt oneself adequately to relatively new situations in life.”

e “A person possesses intelligence insofar as he has learned, or can learn, to adjust
himself to his environment.”

e “The ability of an organism to solve new problems.”

© Springer Nature India Private Limited 2020 1
K. R. Chowdhary, Fundamentals of Artificial Intelligence,
https://doi.org/10.1007/978-81-322-3972-7_1



2 1 Introducing Artificial Intelligence

e “A global concept that involves an individual’s ability to act purposefully, think
rationally, and deal effectively with the environment.”

e “Intelligence is a very general mental capability that, among other things, involves
the ability to reason, plan, solve problems, think abstractly, comprehend complex
ideas, learn quickly and learn from experience.”

The foundation materials of Al comprises—data structures, knowledge represen-
tation techniques, algorithms to apply the knowledge and language, and the program-
ming techniques to implement all these.

To get an idea of Intelligence it requires answering these and many similar ques-
tions:

¢ s intelligence due to a single faculty or it is a name for a collection of distinct
unrelated faculties?

¢ [s it a priori existence or it can be learned? What does exactly happen when we
learn some thing, that is, in terms of information and storage structures.

e What is truly the process of creativity and intuition in human? These again, in
terms of knowledge and its structures.

¢ Does the intelligence require an internal mechanism, or it can be concluded from
the behavior observed?

e What is the mechanism for representing the knowledge in the living cells?

e Are the machines self aware like humans? What are the basic requirements for
creating the facility of self-awareness in machines?

¢ Isit that computer intelligence can be defined only when we know the intelligence
in reference to human beings?

e Would it ever be possible to achieve the intelligence in computers? Or, is it true
that achievement of intelligence is possible only when or is it that an intelligent
entity requires the richness of sensation and experience which might be found only
in a biological existence?

Partly, the aim of Artificial Intelligence (Al) is to find the answer to these questions,
through the tools provided by Al. These tools are because, the Al offers the medium,
as well as the test-bed for theories of intelligence, which can be expressed in the
form of computer programs, and can be tested as well as verified by running these
programs on computers.

Unlike Physics and Chemistry, Al is still a premature field, hence, its structure,
objectives, and procedures are less clearly defined, and not clear like those in physics
and chemistry. The Al has been more concerned about expanding limits of computers,
apart from defining itself,

Learning Outcomes of this Chapter':

1. Defining Al [Familiarity]
2. Describe Turing test thought experiment. [Familiarity]

Uhttps://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf (pp. 121-129).
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3. Differentiate between the concepts of optimal reasoning/behavior and humanlike
reasoning/behavior. [Familiarity]

4. Sub-fields of Al [Familiarity]

5. Determine the characteristics of a given problem that an intelligent system (i.e.,
Al-based system) must solve. [Assessment]

1.2 The Turing Test

In 1950, in an article “Computing Machinery and Intelligence,” Alan M. Turing
proposed an empirical test for machine intelligence, now called Turing Test (see
Fig. 1.1). It is designed to measure the performance of an intelligent machine against
humans, for its intelligent behavior. Turing called it imitation game, where machine
and human counter-part are put in different rooms, separate from a third person,
called interrogator. The interrogator is not able to see or speak directly to any of the
other two, and does not know which entity is a machine, and communicates to these
two solely by textual devices like a dumb terminal [11, 12].

The interrogator is supposed to distinguish the machine from the human solely
based on the answers received for the questions asked over the interface device,
which is a keyboard (or teletype). Even after having asked the number of questions,
if the interrogator is not able to distinguish the machine from the human, then as per
the argument of Alan Turing, the machine can be considered intelligent. Interrogator
may ask highly computation oriented questions to identify the machine, and other
questions related to general awareness, poetry, etc., to identify the human [6].

The game (with the “player machine™ omitted) is often in practice under the
name of viva-voce to discover whether someone really understands something or
has “learned it parrot fashion”.

Many researchers argue that the Turing test is not sufficient to establish the pres-
ence of intelligence. Some of the arguments for and against the above test can be as

follows:
Closed Room
: _F-
)
T3
Computer ~~ 777 1?1_ '}'2_ :fg_D_ —-——--—-
running an , T2, T3: Dumb terminals

intelligent program

Fig. 1.1 Turing test (imitation game)
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1. It takes human being as a reference for intelligent behavior, rather than debating
over the true nature of intelligence: against.

2. The unmeasurable things are not considered, e.g., whether a computer uses inter-
nal structures, or for example, whether the machine is conscious of its actions,
which are currently not answerable: against.

3. Eliminates any bias to human oriented interaction mechanisms, since a computer
terminal is used as a communication device: for.

4. Biased towards only symbolic problem solving: against.

Perceptual skills or dexterity cannot be checked: against.

6. Unnecessarily constrains the machine intelligence to human intelligence: against.

s

Though, the number of counts of against are far more than for, there is yet no
known test which is considered better than the Turing Test.

In the part success of the Turing Test, a powerful computer has deceived humans
in the thinking process, where this machine modeled intelligence of a young boy,
to become the first machine to pass the Turing test, conducted in June 2014. In this
experiment, five machines were tested at the Royal Society in central London to
check if these machines could fool the people into thinking. The machines behaved
like humans, and the conversation was in the form of text. A computer program, by
the name “Eugene Goostman” was developed to simulate a young boy, which came
out to convince the one-third of the judges that it was human [5].

1.3 Goals of Al

Al is the area of computer science aiming for the design of intelligent computer
systems, i.e., systems that have characteristics of intelligence, like, we observe in
human behavior, for example, to understand language(s), and have abilities of learn-
ing, reasoning, and problem solving [9].

For many researchers, the goal of Al is to emulate human cognition, while to
some researchers, it is the creation of intelligence without considering any human
characteristics. To many other researchers, Al is aimed to create useful artifacts
for the comforts and needs of human, without any criteria of an abstract notion of
intelligence.

The above variation in aims is not necessarily a wrong, as each approach uncovers
new ideas and provides a base for pursuing the research in AL. However, there is a
convincing argument that due to the absence of a proper definition of Al itis difficult
to establish as what can and what cannot be done through Al

One of the goals for studying Al is to create intelligence in machines as a general
property—not necessarily based on any attribute of humans. When this is the goal,
it also includes the objective of creation of artifacts of human comforts and needs,
which can be the driving force of technological development. However, this goal
also requires a notion of intelligence, to start with.
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e Roger Penrose in 1995 tried to prove that human mind has non-computable capa-
bilities.

1.4.3 Computation

In the nineteenth and twentieth-century, many scientists defined the formalism of
what is computation, basic theory of it, and that there are things that are not com-
putable irrespective of whatever are the computing resources and time provided.

In the year 1869, William Jevon constructed a Logic Machine capable of handling
Boolean Algebra and Venn Diagrams, and could solve logical problems faster than
human beings.

Alan M. Turing (1912-1954) tried to characterize exactly what are the functions
that can be computed. He used, what is now called as Turing Machine. Unfortunately,
it is difficult to give the notion of computation as a formal definition, however,
the Church-Turing thesis, due to Alonzo Church and Turing, states that a Turing
machine is capable of computing any computable function, which is now, accepted
as a sufficient definition of computability. Turing also showed that there are some
functions which no Turing machine can compute (e.g., Halting Problem)—these are
non-computable functions.

John von Neumann (1903-1957) gave, now what is called as, von Neumann
architecture—a description of a logical model of computation and computer, without
any physical realization of a computer.

In 1960s, two important concepts emerged—intractability (the solution time of
a problem grows at least exponentially) and Reduction of complex problems into
simpler problems.

1.4.4 Psychology and Cognitive Science

Cognitive Psychology or Cognitive Science is the study about the functioning of the
mind, human behavior, and the processing of information about the human brain. An
important consequence of human intelligence is human languages. The early work
on knowledge representation in Al was about human language, and was produced
through research in linguistics.

It is humans’ quest to understand as to how our and other animals’ brains lead
to intelligent behavior, with the aim to ultimately build AI systems. On the other
hand, it is also aimed to explore the properties of artificial systems, like, computer
models/simulations to test our hypotheses concerning human systems.

Many people working in sub-fields of Al are in the process of building models
of how the human system operates, and use artificial systems for solving real-world
problems.
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1.4.5 Biology and Neuroscience

The field of neuroscience says that human brains, which provide intelligence, are
made up of tens of billions of neurons, and each neuron is connected to hundreds or
thousands of other neurons. A neuron is an elementary processing unit, performing a
function called firing, depending on the total amount of activity feeding into it. When
a large number of neurons are connected together, it gives rise to a very powerful
computational device that can compute, as well as learn how to compute.

The concept of human brains, having the capability to compute, as well as learn,
is used to build artificial neurons in the form of electronics circuits, and connect
them as circuits (called ANN—artificial neural networks) in large quantities, to build
powerful Al systems. In addition, the ANN are used to model various human abilities.

The major difference between the functions of neurons and the process of human
reasoning is that neurons work at sub-symbolic level, whereas much of conscious
human reasoning appears to operate at a symbolic level, for example, we do most of
the reasoning in the form of thoughts, which are manipulations of sentences.

The collection of neurons in the form of programs called Artificial Neural Net-
works (ANN), perform well in executing simple tasks, and provide good models
of many human abilities. However, there are many tasks of Al that they are not so
good at ANN, and other approaches are more promising in those areas, compared
to ANN. For example, for natural language processing (NLP) and reasoning, the
symbolic logic, called predicate logic is better suited.

1.4.6 Evolution

Unlike the machines, the humans (intelligence) has a very long history of evolution,
of millions of years, compared to less than hundred years for electronic machines
and computers. The first exhaustive document of human evolution, the evolution
by natural selection is due to Charles Darwin (1809-1882). The idea is that fitter
individuals will naturally tend to live longer and produce more children (may not be
truly valid in the modern world). Hence, after many generations, a population will
automatically emerge with good innate properties [3].

Due to this evolution, the structure of the human brain, and even the knowledge, are
to a sufficient extent built-in at the time of the birth. This is an advantage over ANNs,
which have no pre-stored knowledge, hence they need to acquire the entire knowledge
by learning only. However, the present-day computers are powerful enough that even
the evolution can be simulated using them, and can evolve the Al systems. It has
now become possible to evolve the neural networks to some extent so that they are
efficient at learning. But, may still be challenging to recreate the long history of the
evolution of humans in the ANNs.

A closely related field to ANNs is genetic programming, which is concerned with
writing the programs that evolve over time, and do not need to modify them as it is
done in usual programs when the system requirement changes [4].
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1.5 Artificial Consciousness

Right from the time, automated machines like computers came into existence, it
was the quest of researchers to build machines that can compete in intelligence with
humans. Looking at the current progress rate of smart machines, like smartphones,
it is believed that in the not very far future, it may be possible to build machines
which may be, if not more, but have comparable intelligence to that of humans.
Using such machines, it may be possible to produce human like consciousness in
machines—called as artificial consciousness.

On the contrary, even a far of realization of artificial consciousness gives rise to
several philosophical nature of questions:

e Can the computers be made to think or they will just calculate?

e [s consciousness a human prerogative only, or it can be created in machines also?

¢ s the consciousness due to the material comprised in the human brain, or it can
be created in silicon also (the computer hardware)?

To provide the answers to these questions is difficult as of now, mainly because it
requires combining the knowledge from the fields of computer science, neurophys-
iology, and philosophy.

On the other hand, the very talk of artificial consciousness—a possible product of
the human imagination, express human desires, and fears about future technologies—
may influence the course of progress.

Ata social level, the science fiction stories simulate future scenarios that can help
prepare us for crucial transitions by predicting the consequences of such technolog-
ical advances [1].

1.6 Techniques Used in Al

The Al systems have a lot of variations, for example, the rule-based systems are based
on symbolic representations, and work on inferences. There are other extremes,
the ANN-based system work on the interface with other neurons, and connection
weights. In spite of all these, there are four common features among all of them.

Representation

All Al systems have an important feature of knowledge representation. The rule-
based systems, frame-based systems, and semantic networks make use of a sequence
of if-then rules, while the artificial neural networks make use of connections along
with connection weights.

Learning

All Al systems have capability of learning, using which they automatically build up
the knowledge from the environment, e.g., acquiring the rules for a rule-based expert
system, or determining the appropriate connection weights in an artificial neural
network.
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Rules

The rules of an Al-based system can be implicit or explicit. When explicit, the rules
are created by a knowledge engineer, say, for an expert system, and when implicit,
they can be, for example, in the form of connection weights in a neural network.

Search

The search can be in many forms, for example, searching the sequence of states that
lead to solution faster, or searching for an optimum set of connection weights in an
ANN by minimizing the fitness function.

1.7 Sub-fields of Al

Considering Al as replication of human intelligence may be misleading, and primi-
tive. The later is because the true process of human intelligence and its sources are
still under debate. However, if Al is taken to mean the advanced computing, it means
more justified. In the past two decades, particularly after the year 2k, the AI applica-
tions have evolved and expanded, in the commercial, industrial, medicines and drug
decide, medical science, consumer products, manufacturing processes, and even in
management, to list only a few of its total domain. The use of Al techniques in every
organization has become necessary to maintain competitiveness in the market. Many
organizations keep secret of the true Al techniques they use.

Al now consists of many sub-fields, using a variety of techniques, such as the
following:

Speech Processing: To understand speech, speech generation, machine dialog,
machine user-interface.

Natural Language Processing: Information retrieval, Machine translation, Ques-
tion/Answering, summarization.

Planning: Scheduling, game playing.

Engineering and Expert Systems: Troubleshooting medical diagnosis, Decision
support systems, teaching systems.

Fuzzy Systems: For fuzzy controls.

Models of Brain and Evolutionary: Genetic algorithms, genetic programming,
Brain modeling, time series prediction, classification.

Machine Vision and Robotics: Object recognition, image understanding, Intelligent
control, autonomous exploration.

Machine Learning: Decision tree learning, version space learning.

Most of these have both engineering and scientific aspects. Many of these are
going to be discussed in this text. Following is brief Introduction to some of these
areas.
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Fig. 1.2 Sound waves for the text “Hello” repeated five times by a five year child

1.7.1 Speech Processing

The speech processing and understanding of human speech has number of applica-
tions, some of them we come across quite often, like, speech recognition for dictation
systems, speech production for automated announcements, voice-activated control,
human—computer interface (HCI), and voice-activated transactions are a few exam-
ples.

One of the primary goals is, how do we get from sound waves to text streams and
vice-versa? The Fig. 1.2 is an example, showing the sound wave pattern for the text
“Hello” repeated five times.

To be precise, how should we go about segmenting the stream into words? How
can we distinguish between “Recognize speech” and “Wreck a nice beach”?

1.7.2 Natural Language Processing

Consider the machine understanding and translation of simple sentences given below.

Ram saw the boy in the park with a telescope.
Ram saw the boy in the park with a dog.

In the parse-tree in Fig. 1.3a, the sentence structure is “Ram saw, the boy in the
park, with a Telescope.” Whereas in Fig. 1.3b, it is “Ram saw, the boy in the park
with a dog.” In first, it shows the association of verb saw and telescope, i.e., someone
is seeing using telescope. In Fig. 1.3b the association of boy, and dog is shown, and
all are in the park. The further deeper contexts help in resolving this ambiguity.

Though the sentences appear simple, finding out the meaning of each using the
machine is difficult, as the parse-tree of each need to be analyzed for the meaning
associated in each, in addition, the context knowledge is important.
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1.8 Perception, Understanding, and Action

These fields are concerned with vision, speech processing, and robotics. The basic
theme is applications that make machine sense (e.g., to see, hear, or touch), then
understand and think, and finally take action.

For example, the basic objective of machine vision may be to make the machine
“understand” the input consisting of reflected brightness values. Once this under-
standing is achieved, the results can be used for interpretation of patterns, inspecting
parts, action of robots, and so forth. Developing an understanding presents the same
difficulty in all areas of Al, including knowledge based systems—people understand
what they see by integrating an optical image with complex background knowledge.
Such background knowledge has been built over years of experiencing perceptions.
Creating this type of information processing in the machine is a challenging task;
however, some interesting applications have already appeared as the evidence to
support future progress.

The speech processing uses two major technologies. One of these areas focus
on input or speech recognition where acoustic input, like optical input in machine
vision, is difficult task to automate. People understand what they hear with complex
background knowledge. Speech recognition technology includes signal detection,
pattern recognition, and possibly semantics—a feature closely related to Natural
Language understanding. The other technology concerns to the creation of output
or text-to-speech (tts) synthesis. Speech synthesis is easier than recognition, and its
commercialization has been well established.

The field of Robotics integrate many techniques of sensing, and, is one of the Al
areas in which industrial applications have the longest and widest successful records.
The abilities of these robots are relatively limited. For example, only in a limited task
such as welding seams and installing windshields, etc [7].

1.9 Physical Symbol System Hypothesis

The symbols are the basic requirements of intelligent activity, e.g., by human the sym-
bols are basic number systems, alphabet of our languages, sign language, etc. Similar
is the case with entire computer science, the languages, commands, computations, all
have symbols as the base. When the information is processed by computers, on the
completion of the task, we measure the progress, as well as the quality of results and
efficiency of computations, only based on its symbols’ contents in the end results [8].
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1.9.1 Formal System

Basic requirement of achieving Al is formal system, which is based on physical
symbol system hypothesis. The term was coined by Allen Newell and Herbert Simon,
which states that a “physical symbol system” is a necessary requirement for Al to
function. As per this, the physical patterns, called symbols, are combined to produce
structures (i.e., expressions), and the processes act on these to manipulate to produce
new expressions [8].

This symbol system hypothesis claims that human intelligence is due to this
symbol system, which comprises all the alphabets, numerals, and other punctuation
symbols. Thus, the symbol system is a “necessary” requirement for achieving the
intelligence. Based on this argument, one can say that, if the machines are provided
with symbol system with symbol manipulation capabilities, it is “sufficient” for
achieving the intelligence in the machines.

As per the Physical Symbol System Hypothesis (PSSH), the capabilities of symbol
manipulation are the essence for human’s, as well as machines’ intelligence. Hence,
itis a necessary and sufficient tool for achieving intelligence in both the machines and
humans. There is also experimental evidence, that, in various problem solving, like,
in mathematical puzzles, planning of activities, and execution, the symbol system is
the key requirement. By the term “necessary” here means, that the system possessing
general intelligence, on analysis, will prove to be based on a physical symbol system.
And, the term “sufficient” means that the physical symbol system can be organized to
be exhibiting the general intelligence. When the problem-solving process of humans
were simulated step by step on computers by the researchers, it was found to be
simply the process of symbols’ manipulations.

Of course, various researchers have criticized this hypothesis strongly, but still,
it forms the central part of Al research. The critics argue that the symbol systems
work only for high level processes like chess, games, and puzzles, but not suitable
for low level systems like vision and speech recognition. This distinction is based on
the fact that high-level symbols directly correspond to objects, like (cat), (house),
(hill), etc, but not to the low-level symbols that are present in the machinelike neural
networks (or ANN).

1.9.2 Symbols and Physical Symbol Systems

If we look at the entire knowledge of computer science, it is the symbols, which have
been used to explain this knowledge at the most fundamental level. The explanation
is nothing but the scientific proposition of nature, which is empirically derived over
along period of time, through a graduate development. Hence, the symbols are at the
root of artificial intelligence, and are also the primary topic of artificial intelligence.

For all the information processed by computers in the service of finding the end
goals, the intelligence of the system (computers) is their ability to reach goals in
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the face of difficulties and complexity of the solution, as well as the complexity
introduced by the environment. The fundamental requirements to achieve artificial
intelligence is to store and manipulate the symbols, however, there is no uniformity
and specific requirement of storage structures, as the structures vary from method to
method used for implementation of Al, which are mostly the variants of network-
based representation and predicate-based representations.

The “physical systems” used have two important characteristics: 1. Operation of
systems is governed by the laws of physics, when they are realized as engineered
systems, and made of engineered components; and 2. The “symbols™ are not limited
only to the symbols used by human beings.

1.9.3 Formal Logic

The “physical symbol system™ hypothesis has its root to Russel’s formalizing logic,
which states that one need to capture the basic conceptual notion of mathematics in
logic and put that notion to proof and deduction as sound base. This notion, with the
effort ultimately grew in the form of mathematical logic—the propositional logic,
predicate logic, and their variants [13].

1.9.4 The Stored Program Concept

The second generation of computers brought the concept of stored program concept
in the mid-forties, after the Eniac computer. The arrival of these computers was con-
sidered as a milestone in terms of conceptual progress, as well as practical availability
of systems. In such systems, the programs are treated as data, which, in turn, was
processed by other programs, like a compiler program processing another program
as data to generate object code. Interestingly, this capability was already verified and
existed in Turing machine, which came as early as 1936. The Turing machine is a
model of computing given by Alan M. Turing, where, in a universal Turing machine,
an algorithm (another Turing machine) and data are on the very same tape. This idea
was realized practically when machines were built with enough memory to make it
practicable to store actual programs in some internal place, along with the data on
which the program will act, as well as the data which will be produced as a result of
the execution of the programs.

1.10 Considerations for Knowledge Representation

As far as Al is concerned, the following are the aspects of knowledge representation:
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e What is the meaning of Knowledge?

e How the Knowledge can be represented in the machine?

What are the requirements of representation of knowledge, e.g., structures, meth-

ods, size, etc.

How the practical and theoretical aspects differ for knowledge representation?

Can it be? Or, if yes, how to represent the knowledge using Natural Language?

Can we call the databases as a form of knowledge representation?

What are the semantic networks, and what are the frames? How the knowledge

can be represented using these approaches?

e How the knowledge can be represented using the First-Order Predicate Logic
(FOPL)?

e What is a Rule-Based Systems?

e What is an expert system?

e Out of the many techniques, which is the best technique for knowledge represen-
tation?

1.10.1 Defining the Knowledge

As per the Webster English language dictionary, the following are the meanings of
knowledge:

1. The act or state of knowing; clear perception of fact, truth, or duty; certain appre-
hension; familiar cognizance; cognition. [1913 Webster]
Knowledge, which is the highest degree of the speculative faculties, consists in
the perception of the truth of affirmative or negative propositions—Locke. [1913
Webster]

2. That which is or may be known; the object of an act of knowing; a cognition—
Chiefly used in the plural. [1913 Webster]

3. That which is gained and preserved by knowing; instruction; acquaintance;
enlightenment; learning; scholarship; erudition. [1913 Webster]

1.10.2 Objective of Knowledge Representation

The objective of knowledge representation is to express the knowledge in computer
so that the Al programs can use it to perform reasoning and inferences using this in an
efficient way. The knowledge is represented using certain representation language,
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for example, a predicate like language. The language has two important components
in it.

Syntax

The system of a language defines the methods using which we or the machine can
distinguish the correct structures from incorrect, i.e., it makes possible to identify
the structurally valid sentences.

Semantics

The semantics of a language defines the world, or facts in the world of the concerned
domain. And, hence defines the meaning of the sentence in reference, to the world.

1.10.3 Requirements of a Knowledge Representation

A good knowledge representation system for any particular domain should possess
the following properties.

Adequacy of representation

The representation system should be able to represent all kind of knowledge needed
in the concerned Al-based system.

Adequacy of Inference

The representation should be such that all that can be inferable by manipulating the
given knowledge structures should be inferred by the system, when needed.

Inference Efficiency

The knowledge structures in the representation are so organized that the attention of
the system, in the form of deductions, navigates in such a direction that it can reach
the goal quickly.

Efficient acquisition
It should be able to acquire the new information automatically and efficiently, as and

when needed, and also to update the knowledge regularly. In addition, there should
be a provision that knowledge engineer can update the information in the system.

1.10.4 Practical Aspects of Representations

We are aware of good and bad knowledge representation, when we consider the
knowledge representation in English or any other natural language. These are due to
factors, like, syntax, semantics, partial versus full knowledge on any subject, depth
and breadth of knowledge, etc.



1.12  Summary 21

Al has its inter-related goals for scientific, as well as engineering areas. Its roots
are in several historical disciplines, which include, philosophy, logic, computation,
psychology, cognitive science, neuroscience, biology, and evolution.

The major sub-fields of Al now include: neural networks, machine learning, evo-
lutionary computation, speech recognition, text-to-speech translation, fuzzy logic,
genetic algorithms, vision systems and robotics, expert systems, natural language
processing, and planning. Many of these domains have dependency and are inter-
related, for example, neural network is one of the techniques for machine learning.
The common techniques used across these sub-fields are: knowledge representation,
search, and information manipulations.

Human brain and evolution are also the areas of Al modeling.

The study of logic and computers have demonstrated that intelligence lies in the
physical symbol system (PSS)—a collection of patterns and processes. The PSS needs
the capability to manipulate the patterns, i.e., it should be able to create the patterns,
modify the patterns, and should be able to destroy the patterns. The patterns have
important properties, that they can designate objects, processes, and other patterns.
When the patterns designate processes, the later can be interpreted, i.e., to perform
the process steps. The two significant classes of symbol systems we are familiar with
those that are used by human beings, and those by computers. The later uses binary
strings or patterns.

The PSSH (physical symbol system hypothesis) says that to achieve the intelli-
gence, it is sufficient to have three things,

i. arepresentation system, using which anything can be represented,
il. a manipulation system, using which the symbols can be manipulated, and
iii. search using which the solution can be searched.

For the above, it is in fact, not important as whether the medium of storage is the
human brain (neurons) or the electronic memory of computer systems.

Various approaches for knowledge representations (KR) are:

i. Natural languages versus databases.

ii. Frame versus semantic network-based representation.
iii. Propositional and predicate logic-based representation.
iv. Rule-based representation.

Knowledge representation helps to know the object or the concerned concept.
Various characteristics of KR are:

i. KR has syntax and semantics.
ii. Requirements for knowledge representation are: adequacy of representation and
inferencing, and efficiency of inference and acquisition.
iii. Its practical aspects are: complete, computable, and suppression of irrelevant
data.
iv. Components for KR are: lexical, structural, semantic, and procedural.
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Exercises

1
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. Try to analyze your own learning behavior, and list the goals of learning, in the

order of their difficulty level of learning.

. List the living beings—human, dog, cow, camel, elephant, cat, birds, insects, in

the order of their intelligence levels. Also, justify your argument.

. Suggest some method to combine large number of human beings, in a group,

and formulate a method/algorithm to perform the pipeline or any fast computing
work.

. Write an essay, describing the various anticipated theories as to how the human

processes the information?

. Consider a task requiring knowledge like baking a cake. Out of your imagination,

suggest what are the knowledge requirements to complete this task.

. Out of your reasoning, explain the distinction between knowledge and belief.
. What is the basic difference between neural network level processing and pro-

cessing carried out for human reasoning?

. What are the major advantages of humans over modern computers?
. List the examples where PSSH is not sufficient or not the basis of achieving

Intelligence. Justify your claims.
Write an essay, describing how the things (objects/activities) are memorized by

. Plants.

. Birds.

. Sea animals.

. Land animals.

o o0 o

. Human.

‘What can be the size of memories in each of the above cases?

. Discuss the potential uses of Al in the following applications:

. Word processing systems.
. Smartphones.

. Web-based auction sites.

. Scanner machines.

. Facebook.

. Twitter.

. Linkedin.

. Amazon and Flipkart.

S0 - 0 &0 o

12. How the artificial neural networks (ANN) and genetic algorithms differ from

each other in respect of leaning to be used for problem solution? (Note: You
need to explore the Al resources to answer this question).
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13.

It is an accepted scientific base that physical characteristics of life are genetically
transferred. Do you believe that information and knowledge are also genetically
transferred? Justify for yes/no?

14. Are the beliefs of rebirth and reincarnation are also the goals of Al research?

How and how not?
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Chapter 2 )
Logic and Reasoning Patterns e

Abstract Logic is the foundation of Al, and the majority of AI’s principles are based
on logical or deductive reasoning. The chapter presents: contributions of pioneers of
logic, the argumentation theory, which is based on logic and with its roots in propo-
sitional logic, the process of validating the propositional formulas, their syntax and
semantics, interpretation of a logical expression through semantic tableau, followed
with presents the basic reasoning patterns used by human, and their formal notations.
In addition, presents the normal forms of propositional formulas and application of
resolution principle on these for inference. The nonmonotonic reasoning and its sig-
nificance is briefly described. At the end, the chapter presents the axiomatic system
due to Hilbert and its limitations, and concludes with chapter summary.

Keywords Logic - Propositional logic - Deductive reasoning - Argumentation
theory - Syntax and semantics of propositional formulas - Nonmonotonic
reasoning - Hilbert’s axiomatic system

2.1 Introduction

The ancient Greeks are the source of modern logic, their education system empha-
sized the competence in rhetoric (proficient in language) and philosophy; the
words axioms and theorem are from Greek. The logic was used to formalize the
deductions—the derivation of true conclusions—from true premises. Later it was
formalized as a set theory by the mathematician George Boole. Till the arrival of the
nineteenth century, the logic remained more of a philosophical nature, rather than a
mathematical and scientific tool. Later, since complex things could not be reasoned
through logic, the logic became part of mathematics, where mathematical deduction
became justifiable through formalizing a system of logic, and resulted in one very
important breakthrough. This was, about the set of true statements, stated as “the set
of provable statements are only those that are true statements.” This is because some
proof exists for those due to some other true statements.

At the beginning of nineteenth century, the mathematician David Hilbert intro-
duced the logic, as well as theories of the nature of logic-a far more generalization
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of the logic. But, this generalization received a blow when another mathematician
Kurt Gidel showed in 1931 that there are true statements of arithmetics that are not
provable, through his incompleteness theorem.

Now, though mathematical logic remains the branch of pure mathematics, it is
extensively applied to computer science and artificial intelligence in the form of
propositional logic and predicate logic (first-order predicate logic (FOPL)).

As per the Newell’s and Simons’s Physical Symbol System Hypothesis (PSSH),
discussed in the previous chapter, the knowledge representation is the first require-
ment of achieving intelligence. This chapter presents the knowledge representation
using propositional logic, introduces first-order predicate logic (FOPL), and drawing
of inferences using propositional logic.

Logic is a formal method for reasoning, using its concepts can be translated into
symbolic representation, which closely approximate the meaning of these concepts.
The symbolic structures can be manipulated using computer programs to deduce
facts to carry out the form of automated reasoning [9].

The aim of logic is to learn principles of valid reasoning as well as to discern
good reasoning from bad reasoning, identifying invalid arguments, distinguishing
inductive versus deductive arguments, identifying fallacies as well as avoiding the
fallacies.

The Objective of logic is to equip oneself with various tools and techniques, i.e.,
decision procedures for validating given arguments, detecting and avoiding fallacies
of a given deductive or inductive argument.

We study the logic because of the following reasons:

e Logic deals with what follows from what? For example, Logical consequence,
inference pattern, and validating such patterns,

¢ We want the computer to understand our language and does some intelligent tasks
for us (Knowledge representation),

¢ To engage in debates, solving puzzles, game like situation,

e Identify which one is a fallacious argument and what is a type of fallacy?

e Proving theorems through deduction. To find out whether whatever proved is
correct, or whatever obviously true has a proof, and

¢ To solve some problems concerning the foundations of mathematics.

Learning Outcomes of This Chapter:

1. Convert logical statements from informal language to propositional logic expres-
sions. [Usage]

2. Apply formal methods of symbolic propositional such as calculating the validity
of formula and computing normal forms. [Usage]

3. Use the rules of inference to construct proofs in propositional. [Usage]

4. Describe how symbolic logic can be used to model real-life situations or appli-
cations, including those arising in computing contexts such as software analysis
(e.g., program correctness), database queries, and algorithms. [Usage|
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The meaning (semantics) is associated with each formula by defining its inter-
pretation, which assign a value true (T) or false (F) to every formula. The syntax is
also used to define the concept of proof—the symbolic manipulations of formulas
to deduce the given theorem. The important thing we should note is that provable
formulas are only those which are always true.

We start the propositional logic with the individual propositional variables. These
variables themselves are formulas, which cannot be further analyzed. We represent
these by English alphabets and subscripted alphabets p, g, r, s, t, p1, P2, 41, G2, - - - »
etc. These formulas may have smaller constituents but it is not the role of propositional
logic to go into the details of their constructions. The use of letters to represent
propositions is not in true sense variables, they simply represent the propositions or
statements in a symbolic form, and they are not the variables in the sense used in
predicate logic (to be discussed later), or in high-level languages like C or Fortran,
where a variable stands for a domain of values. For example, an integer variable
in a Fortran program stands for any integer number as per the specifications of the
language.

The other symbols of propositional logic are operators as follows:

A conjunction operator,

Vv disjunction operator,

— not or inverting operator,

— implication, i.e., if ... than ... rule, and
L contradiction (false).

Let following be the propositions:

p=Sun is star.
g =Moon is satellite.

We can construct the following formulas using the above propositions:

p A g =Sun is star and Moon is satellite.

p V g =Sun is star or Moon is satellite tennis.

—p Vv ¢ =Sun is not star or Moon is satellite.

—p — g =if Sun is not star then Moon is satellite.

A formula in propositional logic can be recursively defined as follows:

(i) Each propositional variable and null are formulas, therefore, p, g, ¢ are formu-
las,
(i) If p, g are formulas, then p A g, p vV g, —~p, p — q, (p), are also formulas,
(iii) A string of symbols is a formula only as determined by finitely many applica-
tions of above (i) and (ii), and
(iv) nothing else is propositional formula.

This recursive form of the definition can be expressed using BN F (Backups-Naur
Form) notation as follows:
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1. formula := atomicformula | formula ~ formula | formula v formula
| formula — formula | = formula | (formula)

2.atomicformula:= L |plg|ripolpi|lp2l...
2.1)

In the above notation, the symbols— f ormula and atomicf ormula, that appears
to the left-hand are called non-terminals and represent grammatical classes. The
P.q,r, L, pp, etc, that appear only to the right-hand side, are called terminals, and
represent the symbols of the language.

A sentence in the propositional language is obtained through a derivation that
starts with a non-terminal, and repeatedly applied the substitution rules from the
BNF notations, until the terminals are reached [8].

Example 2.1 Derivation for p A g — r.

The sequence of substitutions rules to derive this formula, i.e., to establish that it is
syntactically correct, are as follows:

formula = formula — formula
= formula A formula — formula
= atomic A formula — formula
= p A formula — formula
= p Aatomic — formula
= pAqg — formula
= p Aq — atomic
= pAg—>T.

The symbol atomic stands for atomic formula and the symbol “=" stands for
“implies”, i.e., the expression to right to this is implied by the expression to left of
=7

The derivation can also be represented by a derivation-tree (parse-tree), shown
in Fig.2.2. From the derivation-tree, we can obtain another tree shown in Fig.2.3,
called syntax-tree or formation-tree, by replacing each non-terminal by the child that
is an operator under that. There is always unique syntax-tree for every formula. [J

Considering two propositions p, g, the interpretation (semantics) of the formulas
constructed when they are joined using binary operators (v, A, —) are shown in the
truth-table Table 2.1.

The Material conditional *—’ joins two simpler propositions, e.g., p — ¢, read
as “if p then g”. The proposition to the left of the arrow is called the antecedent and
to the right is consequent. There is no such designation for conjunction or disjunction
operators because they are commutative operations. The p — ¢ expresses that g is
true whenever p is true. Thus it is true in every case in Table2.1, except in row
three, because this is the only case when p is true but g is not. Using “if p then ¢”,
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Fig. 2.2 Parse-tree for the
expression p A g — r

31
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Fig. 2.3 Syntax-tree for the —
expression p A g — r
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Table 2.1 Interpretation of propositional formulas
14 q PVvq pArg pP—q
F F F F T
F T T F T
T F T F F
T T T T T

we can express that “if it is raining outside then there is a cold over Kashmir”.
The material conditional is often confused with physical causation. The material
conditional, however, only relates two propositions by their truth values—which is
not the relation of cause and effect. It is contentious in the literature whether the
material implication represents logical causation.

2.4.1 Interpretation of Formulas

The interpretation of formula is assigning truth value to that formula. As discussed
earlier, a formula can be atomic or in may be complex, i.e., joining or atomic formulas.
The following are some definitions related to the interpretation of formulas [1].
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Definition 2.1 (Satisfied, model, valid, and tautology) A propositional formula A is
satisfied iff .7 (A) = True for some interpretation .%. A satisfying interpretation is
called model for A. The formula A is called valid, denoted by = A, iff #(A) = True
for all interpretations .#. A valid propositional formula is also called tautology.

A propositional formula is unsatisfiable (also called contradiction, 1), iff it is
not satisfiable, i.e., #(A) = False, for all interpretations .%. If #(A) = False for
some interpretation ., then A is called non-valid or falsifiable, and denoted by = A.

Definition 2.2 (Simultaneously satisfiable) A set of formulas S = {A;, A2, ..., A,}
is simultaneously satisfiable iff there exists an interpretation .# such that .# (A;) =
True for all i. The § is unsatisfiable iff for every interpretation .# there exits an i
such that % (A;) = False.

2.4.2 Logical Consequence

The logical consequence or logically follows is the central concept in the foundations
of logic. It is much more interesting to assume that a set of formulas is true and then
to investigates the consequences of these assumptions [1].

Assume that 6 and v are formulas (sentences) of a set Z7, and .# is an interpre-
tation of 2. The sentence 6 of propositional logic is true under an interpretation .#
iff .# assigns the truth value T to that sentence. The @ is false under an interpretation
4 iff 6 is not true under .#.

Definition 2.3 (Logical consequence) A sentence yr of propositional logic is a logi-
cal consequence of a sentence (or set of sentences) 6, represented as 6 =V, if every
interpretation .# that satisfy ¢ also satisfy .

In fact, ¥ need not be true in every possible interpretation, only in those interpre-
tations which satisfy 0, i.e, those interpretations which satisfy every formula in 6.
In the formula ((p — g) A p) F g, the g is logical consequence of ((p = g) A p).
The sign ‘F’, is sign of deduction, and S - q is read as § deduces g, where § is a set
of formulas and ¢ is the formula.

A sentence of propositional logic is consistent iff it is true under at least one
interpretation. It is inconsistent if it is not consistent.

Example 2.2 Determine the logical consequenceof v = (p v r) A (—g Vv —r) from
0 = {p, g}, i.e., find € = i, and validity for .

Here v is logical consequence of 6, denoted by 6 |= ¥, because v is true under all the
interpretations such that .# (p) = True, and ¥ (q) = False, is the interpretation,
for which 6 is satisfied.

However, v is not valid, since it is not true under the interpretation .# (p) =
F,7q)=T,#(r)=T.

Further note that 0 - 1 is a valid statement because the expression 6 - i is
always true. |
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2.4.3 Syntax and Semantics of an Expression

Syntax is name given to a correct structure of a statement. It is the meaning asso-
ciated with the expression. It is mapping to the real-world situation is semantics.
The semantics of a language defines the truth of each sentence with respect to each
possible world. For example, the usual semantics for interpretation of the statement
(p VvV g) Aris true in a world where either p or ¢ or both are frue and r is true.
Different worlds can be all the possible sets of truth values of p, g, r, which is total
8. The truth values are simply the assignment to these variables, and not necessarily
the values which are only true. For example, .¥ (p) = F, #(q) =F, ¥ (r) =T,
and S (p) =T, #(q)=F, #(r) =T are the possible worlds for the expression
(pvag)Ar.

2.4.4 Semantic Tableau

Semantic tableau is relatively efficient method for deciding satisfiability for the for-
mula of propositional calculus. The method (or algorithm) systematically searches
for a model for a formula. If it is found, the formula is satisfiable, else not satisfi-
able. We start with the definition of some terms, and then analyze some formulas to
motivate us for the construction of semantic tableau [1].

Definition 2.4 (Literal and complementary pair) A literal is an atom or negation of
an atom. For any atom p, the set {p, —p} is called complementary pair of literals.
For any formula A, {A, —A} is complementary pair of formulas.

Example 2.3 Analysis of the satisfiability of a formula.

Consider that a formula A = p A (—g Vv —p), has an arbitrary interpretation ..
Given this, #(A) =T iff #(p) =T and #(—g v —p) =T. Hence, ¥ (A) =T
iff either,

l. #(p)=Tand #(—~q) =T, or
2. #(p)=Tand #(—-p)=T.

Hence A is satisfiable if either (1) interpretation holds or (2) holds. But (2) is not
feasible. So, A is satisfiable when the interpretation of (1) holds true. Note that the
satisfiability of a formula is reduced to the satisfiability of literals.

It is clear that a set of literals is satisfied if and only if it does not contain com-
plementary pair of literals. In the above case, the pair of literals {p, —=p} in case
(2) is complementary pair, hence the formula is unsatisfied for this interpretation.
However, the first set {p, =g} is not the complementary pair, hence it is satisfiable.

From the above discussion, we have trivially constructed a model for the formula
A by assigning True to positive literals and False to negative literals. Hence, p =
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Table 2.3 Inference rules
Rule

Formula

2 Logic and Reasoning Patterns

Description

Modus ponens

(p—=>qg)rp g

If p then g; p; therefore ¢

Modus tollens

Abduction
Hypothetical syllogism

Disjunctive syllogism

((p—=q)A—q)=—p

|[p=a@)rqbp

(p=q)nlg—r1))

(pvg)r—p g

If p then g; not g; therefore
not p

if p then g; g; therefore ¢

if ptheng; - (p — r)ifg
then r; therefore, if p then r
Either p or g, or both; not p;

therefore, g

conclusion is not necessarily true, because there are other reasons also for lung cancer,
which are not due to smoking. When statistics and probability theory are used along
with abduction, it may result in most probable inferences out of the many likely
inferences. To illustrate how the abduction based reasoning works, we consider a
logical system comprising a general rule and one specific proposition.

All successful enterprising industrialists are rich (general rule). Rajan is arich person (specific
proposition). Therefore, a plausible inference can be that Rajan is a successful, enterprising
industrialist.

However, this conclusion can be false also, because there are many other paths
to richness, such as a lottery, inherited property, coming across a treasure, and so
on. If we have a table of all the riches and how they became rich, we may draw the
probability of abduction for richness to be true in this case.

Inductive Reasoning

The inductive reasoning arrives at a conclusion about all members of a class. It
is based on examination of only a few members of the class and based on that it
generalizes for the entire class. It is broadly reasoning from a specific to the general.
For example, the traffic police comes to know about following situation on a particular
day about nature of road accidents:

Ist accident was due to wrong side drive,
2nd accident was due to wrong side drive,
3rd accident was due to wrong side drive.

One would logically infer that all the accidents are due to wrong side driving.
Another example is about the birds for their flying attribute.

Crow fly,
peacock fly,
pigeon fly.

Thus, we conclude that all the birds fly.
Another example is about the progressive sum of 1st n odd integers:
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1 =12
143=2°
1+3+5=3
14+34+54+7=4

Thus, by induction we prove that, the sum of n successive odd integers is n°.

The outcome of the inductive reasoning process will frequently contain some
measures of uncertainty because including all possible facts in the premises are
usually impossible.

We know that the inference of an accident’s example is not always true, and also
of “all birds fly” is not true, because, ostrich and penguins do not fly. However, for
Ist odd integers sum, it is true.

The deductive or inductive approaches are used in logic, rule-based systems, and
in frames.

Analogical Reasoning

The analogical reasoning assumes that when question is asked, the answer can be
derived by analogy, as in the case of following example.

Premise: All the 100m racers get 5% additional in their merit score.

Question: How much one 400 m racer will get additional in academic score?
Conclusion: Because, 400 m is a race, and an sports activity like 100m, so it will
also benefit one with 5% in final scores.

Analogical reasoning is a type of verbalization of an internalized learning process.
An individual uses processes that require the ability to recognize previously encoun-
tered experiences. This approach is not very common in Al, however, the case-based
reasoning, semantic networks, and frames use this analogical reasoning approach.

Formal Reasoning

It uses the process of syntactic manipulation of data structures to deduce new facts.
A typical example is the mathematical logic used in proving theorems in geometry.
For example, proof by resolution.

Procedural and Numeric Reasoning

It uses mathematical models or simulation to solve the problems. The model-based
reasoning is an example of this approach.

Generalization and Abstraction

The approaches of generalization and abstraction, both can be used with the logical
and semantic representation of knowledge.

Meta-level Reasoning

The meta-level reasoning involves the knowledge about what you, how much you
know about so and so. Also, which approach to use, how successful the inference will
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be, depends on a great extent on which knowledge representation method is used.
For example, reasoning by analogy can be more successful with semantic networks
than with frames.

2.5.1 Rule-Based Reasoning

The rule-based reasoning is also called pattern matching, and uses forward and
backward chaining. The implementation of rule-based system makes use of modus
ponens and other approaches. Consider the rule:

Rule 1: If export rises the prosperity increases.

Using the modus ponens, if the premises, e.g., “The export rises” is true, the
conclusion of the rule is accepted as true. We call this accepting the rule as “rule
fires”. The firing of a rule occurs when all its premises are satisfied, whether all are
true or some are false. On firing, the resulting conclusion is stored in the assertion
base, to use for further firing of the rules and generate the assertions. When a premise
is not available as an assertion, it can be obtained by querying the user, or by firing
other rules. Testing of a rule premise or conclusion is as simple as matching a symbol
pattern.

Every rule in the knowledge base can be checked to see if its premises or conclu-
sion can be satisfied by previously made assertions. This process of matching, if done
using forward chaining, i.e., premises to conclusions. If it is done from conclusions
to premises, it is called backward chaining.

2.5.2 Model-Based Reasoning

A reasoning within a context is important in any reasoning system. In real-life situa-
tions, one often provides a lot of missing contexts or out of context information when
answering certain queries. This situation can be correctly modeled by supplementing
the existing knowledge about the world, with additional context-specific information.
When it is supplemented by context information, reasoning within context becomes
a deduction process.

The added information may act as constrain to the existing information in the
system, as in the absence of this additional information the deduction process has
more paths of freedom in the reasoning process. But, due to the availability of this
added context information the reasoning task becomes easier because the domain
in which reasoning takes place gets restricted (constrained) due to having lesser
flexibility of deduction paths to be navigated. This task can be formalized as a task
of varying contexts.

The knowledge that comprises the information for reasoning in the model-based
system is in the form of a set of models of the world. These models satisty the
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assignments and examples of the world. This is, in contrast, to the use of only the
formulas in the first-order predicate logic to describe the world. The other difference
is that the model-based approach is motivated from a cognitive point of view — the
forerunners of this approach of reasoning are cognitive psychologists who support
the “reasoning by examples.” When a model-based reasoning system is presented
with a query, the reasoning is performed by evaluating the query on these models.

Let us suppose that model-based knowledge base representation I”, and a query
« are both given, and it is required to find out if I” implies « (i.e., I" = «)? This
we can determine in two steps: 1) evaluate « on all the models in the representation,
2) If there is a model of I" that does not satisfy «, the I does not model the alpha
(i.e., I' = «), otherwise we conclude that I |= «. This means if the model-based
representation contains all the models of ", then by definition, this approach verifies
the implication correctly, and produces the correct deduction.

However, there is a problem—the representation of I”, such that it explicitly holds
all the models, is not a plausible solution. The model-based approach is feasible only
if I" can be replaced by small model-based representation, and after that also it should
correctly support the deduction.

Various topics in reasoning are as follows:

Monotonic versus nonmonotonic reasoning,
Reasoning with uncertainty,

Shallow and deep representation of knowledge,
Semantic networks,

Blackboard approach,

Inheritance approach,

Pattern matching,

Conflict resolution.

These are discussed in current, and the following chapters, in details.

2.6 Proof Methods

There are two difterent methods, one is through model checking and other is deduction
based. The first comprises enumeration of truth-tables, and is always exponential in
n, where n is the size of the set of propositional symbols. The other, i.e., deduction
based approach is repeated application of inference rules. The inference rules are
used as operators in the standard search algorithm. In fact, the application of the
inference approach to proof is called searching for solution. Proper selection of
search directions is important here, as these will eliminate many unnecessary paths
that are not likely to result in the goal. Consequently, the proof-based approach for
reasoning is considered better and efficient compared to model enumeration/checking
based method. The later is exhaustive and exponential in n, where # is the size of the
set of propositional symbols.
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The property, the logical system follows, is the fundamental property of mono-
tonicity. As per this, if S - «, and £ is additional assertion, then S A B F a.

Thereby, the application of inference rules is legitimate (sound) rule, which helps
in the generation of new knowledge from the existing. If a search algorithm like DFS
(depth first search) is used, it will always be possible to find the proof, as it will
search the goal, whatever the depth may it be. Hence, the inference method in this
case is complete also [7].

Before the inference rules are applied on the knowledge base, the existing sen-
tences in the knowledge base (KB) needs to be converted into some normal form.

2.6.1 Normal Forms

A logical expression can be represented as sum-of-product terms or product-of-sum
terms. If a given logical expression is represented as sums of elementary products,
then this form is called disjunctive normal form (DNF), and if it is represented as
product of elementary sums, it is called conjunctive normal form (CNF). In DNF, the
elementary product terms are called minterms, while in a CNF elementary sum terms
are called maxterms. For a given formula, an equivalent disjunctive normal form with
only disjunctions of minterms is called principle disjunctive normal form or sum-
of-products canonical form. Similarly, an equivalent CNF with only conjunctions of
maxterms is called principle conjunctive normal form or product-of-sums canonical
form [2].

One technique to geta CNF expression for a given DNF expression, say, ~a—bc +
—ab—c + —abc + a—bc is given in steps as follows:

1. Considering a DNF expression of three variable a, b, ¢, write down all the
minterms: ~a—b—c, ~a—bc, ~ab—c, —abe, a—~b—c, a—bc, ab—c, abce.

2. Cross out all combinations in the original DNF. We are left with —a—b—c,
a—b—c, ab—c, abc.

3. Next, write the expression in CNF by inverting each subset of three variables
and ORing as (a + b + ¢)(—a + b + ¢)(—a + —b + c¢)(—a + —b + —¢) in the
form of CNF.

Obtaining DNF from CNF is just the reverse process.

2.6.2 Resolution

The resolution rule is an inference which uses deduction approach. It is used in
theorem proving. If two disjunctions have complementary literals, then a resultant
inference of these is disjunction of these expressions, with complementary terms
removed. If p = p; v p» vV cand ¢ = ¢ v —c are two formulas, then resolution of
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Fig. 2.5 Nonmonotonic
reasoning

No. of Inferences —

Size of Knoledge —

based on classical logic. In classical logic, if a conclusion is warranted on the basis
of certain premises (knowledge), no additional premises will ever invalidate the con-
clusion.

In everyday life, however, it seems clear that we humans draw sensible conclusions
from what we know and that, on the face of new information we often have to take
back previous conclusions. This happens even when the new information we gathered
in no compel us to take back our previous assumptions (see Fig.2.5).

For example, we may hold the assumption that “most birds fly”, but that “penguins
are birds that do not fly”. On learning that “Tweety is a bird”, we infer that “Tweety
flies.” However, on learning that “Tweety is a penguin,” will in no way make us
change our mind about the fact that most birds fly, and also that penguins are birds
that do not fly or the fact that Tweety is a bird. However, it should make us aban-
don our conclusion about Tweety’s flying capabilities. It is desirable that intelligent
automated systems will have to do the same kind of (nonmonotonic) inferences.

Considering that I is a set of sentences of propositional logic, and « is inferred
fromit, i.e I" F «. For any new propositional sentences g, if I" U {8} - « then it is
monotonic reasoning. If it is not necessary that I” U {8} b «, then it is nonmonotonic
reasoning. We note from Fig. 2.5, that some times, even when we add into knowledge
base, the number of inferences decreases instead of increasing; and, this is property
of nonmonotonic reasoning.

Some of the systems that perform such nonmonotonic inferences are—negation
as failure, circumscription, modal system, default logic, autoepistemic logic, and
inheritance systems.

2.8 Hilbert and the Axiomatic Approach

An axiomatic system comprises a set of axioms and a set of primitives, where the
primitives are object names but, these objects are left undefined. The axioms are
the sentences that make assertions about the primitives. Further, these assertions are
not provided with any justifications, so they are neither true nor false. The subse-
quent or new assertions about the primitives are called theorems, are rigorous logical
consequences of axioms and previously proved theorems.



Eal 2 Logic and Reasoning Patterns

In 1899 the mathematician David Hilbert published his ground-breaking research
in the form of a book. He provided a complex deductive system based on five groups
of axioms, namely:

Axioms of incidence,
Axioms of order,

Axioms of congruence,
Axioms of continuity, and
an axiom of parallels.

i

As per Hilbert’s approach, the basic concepts of geometry comprises points, lines
and planes of Euclidean geometry. However, these concepts are never explicitly
defined. Instead, they are implicitly defined by the axioms such that, points, lines,
and planes are any family of mathematical objects that satisfy the given axioms of
geometry.

Twenty years later Hilbert was considered as the chief promoter of a program
intended to provide solid foundations to arithmetic, based on purely axiomatic
methods—the mathematics that model all the computations. It was called formalist
program, and Hilbert was identified as the champion of the formalist approach to
mathematics as a whole [6].

2.8.1 Roots and Early Stages

The formal definitions in an axiomatic system serves the purpose to simplify the
things as they can be used to create new objects made of complex combinations of
primitives and previously defined terms (objects and theorems). If a definite meaning
is assigned to a primitive of an axiomatic system, called as an interpretation, the
theorems become meaningful assertions.

Following are some definitions of the axiomatic system.

Definition 2.11 (Model (for axiomatic system.)) If all the axioms are true for a
given interpretation, then everything asserted by the theorem is also true. Such an
interpretation is called a model for the axiomatic system.

Definition 2.12 (Inconsistent (axiomatic system.)) Since a contradiction can never
be true, an axiomatic system using a contradiction can arrive at a logical deduction
that it has no model. An axiomatic system with this property is called inconsistent.

Definition 2.13 (Consistent (axiomatic system.)) If an abstract axiom system does
have a model, then such system is consistent.

Definition 2.14 (Isomorphic) If two models of the same axiom system can be proved
as structurally equivalent, then they are isomorphic to each other.

An axiomatic system can have more than one model.
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Definition 2.15 (Categorical Axioms) If all models of an axiom system are isomor-
phic then the axiom system is categorical.

Thus, for a categorical axiom system, there exists a model—the one and only
interpretation in which its theorems are all true.

The qualities—truth, logical necessity, consistency, and uniqueness were consid-
ered as the base of classical Euclidean geometry. Till recently, it was accepted that
Euclidean geometry is the only way to think about space. Now, the axiomatic sys-
tems are taken as the basis of geometry, and later all of the mathematics including
the computational mathematics and algorithms.

Hilbert’s definition of an axiomatic system lays the foundation of theory and
verifies that this system satisfies three main properties: independence, consistency,
and completeness. He proposed that just as in geometry, this kind of axiomatic
analysis should be applied to other fields of knowledge, and in particular to physical
theories. When we study any system of axioms as per Hilbert's perspectives, the
focus of interest remained always on the disciplines themselves rather than on the
axioms. The axioms are just a means to improve our understanding of the discipline,
and not aimed to turn mathematics into a formally axiomatized game. For example,
in the case of geometry, a set of axioms were selected in such a way that they reflected
the basic manifestations of the intuition of space [4].

2.8.2 Axiomatics and Formalism

To understand the role of axioms, we will discuss the axioms of the set, as they
are useful in reasoning and inferences. By analyzing the mathematical arguments,
logicians become convinced that the notion of “set” is the most fundamental concept
of mathematics. For example, it can be shown that the notion of an integer can be
derived from the abstract notion of a set. Thus, in our world all the objects are sets,
and we do not postulate the existence of any more primitive objects. To support
this intuition, we can think our universe as all sets which can be built by successive
collecting processes, starting from the empty set, and we allow the formation of
infinite sets.

The first set of axioms for a general set theory was given by E. Zermelo in 1908,
and later developed by A. Fraenkel, hence usually referred to as Zermelo-Fraenkel
(ZF) set theory, the one we are most concerned. Another systems of axioms, which
has only finitely many axioms, but is less natural, was developed by von Neumann,
Bernays, and Godel. The later is usually referred to as Godel-Bernays (GB) set theory.

Following are some of the important axioms of ZF set theory [3, 8].

1. Axioms of Extensibility.

ViVy(Vz(z ex <+ z€Y) > x =y) 2.7
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The above says that set is determined by its members. We can define the subsets
as follows:

xCyeVi(zex — z€y). (2.8)
Also,
XCy<xCyA—x=y. (2.9)
Axiom of the Null set.
JxVy(—y € x). (2.10)

The set defined by this axiom is the empty or null set and we denote it by ¢.
Axiom of Unordered Pairs.
VxVyd:Vw(w ez <> w=x Vv w=y). (2.11)

We represent the set z by {x, y}. Also, {x} is {x,x} and we put (x,y) =
{{x}, {x, y}}. The set {x, y) is called ordered pair of x and y.

Using the above we can define a function as follows: a functionis a set f of ordered
pairs such that (x, y), (x,z) € f — ¥ = z. The set of x such that (x, y) € f is
called domain, and set of y is called range. We say, f maps in set u if the range
of fisinu.

Axiom of set Union. It can be expressed as:
VxdyVz(z e y < Jt(z €t At € X)). (2.12)

The above says that y is union of all sets in x. Using the axiom Eq.2.12, we can
deduce that given x and y, there exists z, such that z =x U y, that is, f € z <
texVvtey.

To motivate for the next axiom being described, if x is an integer, the successor
of x will be defined as x U {x}. Then the *“axiom of infinity” generates a set that
contains all the integers and thus infinite.

Axiom of Infinity. It can be expressed as follows, and we understand that it is the
principle of Induction.

dx(p ex AV(yex — yU{y} ex). (2.13)
Axiom of Power Set. This axiom states that there exists for each x the set y for all
the subsets of x.

Vx3AyVz(z € y < 7 C x). (2.14)

If the axiom of extensionality is dropped, the resulting system may contain atoms,

i.e., sets x such that Yy(—y € x) yet the sets x are different. Indeed, one possible
view is that integers are atoms and should not be taken as sets.
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The first interesting axiom is the Axiom of Infinity. If we drop it, then we can take
a model for ZF set of all finite sets which can be built from ¢.

The axioms discussed above can be used to prove theorems, like, mathematical
induction, invertible functions, and in fact another theorem of set theory, as well as
the corollaries, but the same are not appropriate to cover here, and a curious reader
is encouraged to refer the literature given in the bibliography.

2.9 Summary

Logic is used for valid deductions, and it avoids fallacy reasoning. Logic is also
useful in argumentation theory—a study of how conclusions can be reached through
logical reasoning, that is, whether the claims are soundly based on premises or not.
Argumentation includes debate and negotiation, that are concerned with reaching
mutually acceptable conclusions. The logic is used in proofs, games, and puzzles
solutions. The arguments have the internal structure: comprising of premises, rea-
soning process, and consequence.

The most commonly used, Propositional logic, represents sentences using single
symbols, called atoms, which are joined using the operators Vv, A, =, — to cre-
ate compound sentences. The sign of “—"" in p — q is material implication, also
called conditional join, if p then q. Propositional logic expressions are called sen-
tences/statements; these are interpreted as true or false. The sentences are called wif,
and are defined recursively. A formula is a syntactic concept, which means whether
or not a string of symbols is a formula.

The meaning (semantics) is associated with each formula by defining its inter-
pretation, which assign a value true (T) or false (F) to every formula. Interpretation
of a statement means the assignment of true values to its atoms. A set of truth values
assigned to the atoms in a statement is called its world. Assignment of truth values
to the atoms in a statement, which makes the statement true is called model of the
statement.

The model checking is the process of truth-table enumeration, and is exponential
on n, the number of atoms in a statement. The derivation can also be represented by
a derivation-tree (parse-tree).

A propositional formula A is satisfied iff v(A) = True for some interpretation
v. A satisfying interpretation is called model for A. The formula A is called valid,
denoted by = A, iff v(A) = True for all interpretations v. A sentence is logically
true (valid) iff it is true under every interpretation. = 6 means that € is valid.

A reasoning, in which addition of new knowledge may produce inconsistency in
the knowledge base, is called nonmonotonic reasoning. As per the property of mono-
tonicity, if S F «, and f is additional assertion, then § A B F «. The Nonmonotonic
logic is the study of those systems that do not satisfy the monotonicity property
satisfied by all methods based on classical logic.

The reasoning pattern comprises inference methods: modus ponens, modus tollens,
syllogism; and Proof methods: resolution theorem, model checking, model checking,
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Chapter 3 M)
First Order Predicate Logic e

Abstract The first order predicate logic (FOPL) is backbone of Al, as well a method
of formal representation of Natural Language (NL) text. The Prolog language for Al
programming has its foundations in FOPL. The chapter demonstrates how to translate
NL to FOPL in the form of facts and rules, use of quantifiers and variables, syntax
and semantics of FOPL, and conversion of predicate expressions to clause forms.
This is followed with unification of predicate expressions using instantiations and
substitutions, compositions of substitutions, unification algorithm and its analysis.
The resolution principle is extended to FOPL, a simple algorithm of resolution is
presented, and use of resolution is demonstrated for theorem proving. The interpre-
tation and inferences of FOPL expressions are briefly discussed, along with the use
of Herbrand’s universe and Herbrand’s theorem. At the end, the most general unifier
(mgu) and its algorithms are presented, and chapter is concluded with summary.

Keywords First Order Predicate Logic (FOPL) - Natural language - Quantifiers -
Syntax and semantics of FOPL - Unification - Most general unifier - Resolution
theorem + Theorem proving - Herbrand’s universe - Herbrand’s theorem

3.1 Introduction

This chapter presents a formulation of first-order logic which is best suited as a basic
theoretical instrument—a computer based theorem proving program. As per the
requirements of theory, an inference method should be sound—allows only logical
consequences of premises deducible from the premises. In addition, it should be
effective—algorithmically decidable whether a claimed application of the inference
principle is really an application of it. When the inference principle is performed
by computer, the complexity of the inference principle is not an issue. However, for
more powerful principles, usage of combinatorial information processing for single
application may become dominant.

The system described in the following is an inference principle—the resolution
principle, is a machine-oriented rather than human-oriented system. Resolution prin-
ciple is quite powerful in psychological sense also, as it obeys a single type of

© Springer Nature India Private Limited 2020 51
K. R. Chowdhary, Fundamentals of Artificial Intelligence,
https://doi.org/10.1007/978-81-322-3972-7_3
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inference, which is often beyond the ability of the human to grasp. In theoretical
sense, it is a single inference principle that forms the complete system of first-order
logic. However, this latter property is not of much significance, but it is interesting
in the sense that no any other complete system of first-order logic is based on just
one inference principle, if ever one tries to realize a device of introducing a logical
axioms, or by a schema as an inference principle. The principle advantage of using
the resolution is due to its ability that allows us to avoid any major combinatorial
obstacles to efficiency, which used to be a serious problem in earlier theorem-proving
procedures.

Learning Outcomes of this Chapter:

1. Translate a natural language (e.g., English) sentence into predicate logic state-
ment. [Usage]

Apply formal methods of symbolic predicate logic, such as calculating validity
of formula and computing normal forms. [Usage]

Use the rules of inference to construct proofs in predicate logic. [Usage]
Convert a logic statement into clause form. [Usage]

Describe the strengths and limitations of predicate logic. [Familiarity]

Apply resolution to a set of logic statements to answer a query. [Usage]
Implement a unification-based type-inference algorithm for a simple language.
[Usage]

8. Precisely specify the invariants preserved by a sound type system. [Familiarity]

N

NownRw

3.2 Representation in Predicate Logic

The first Order Predicate Logic (FOPL) offers formal approach to reasoning that has
sound theoretical foundations. This aspect is important to mechanize the automated
reasoning process where inferences should be correct and logically sound.

The statements of FOPL are flexible enough to permit the accurate representation
of natural languages. The words—sentence or well formed formula will be indicative
of predicate statements. Following are some of the translations of English sentences
into predicate logic:

e English sentence: Ram is man and Sita is women.
Predicate form: man(Ram) A woman(Sita)
e English sentence: Ram is married to Sita.
Predicate form: married (Ram, Sita)
¢ English sentence: Every person has a mother.
The above can be reorganized as: For all x, there exists a y, such that if x is person
then x’s mother is y.
Predicate form: Yx3y[person(x) = hasmother(x, y)]
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e English sentence: If x and y are parents of a child z, and x is man, then y is not
man,
VxVyl[lparents(x, z) A parents(y, z) A man(x)] = —man(y)]

We note that predicate language comprises constants {Ram, Sita}, variables
{x,y}, operators {=, A, V,—}, quantifiers {3,V} and functions/ predicates
{married(x, y), person(x)}. Unless specifically mentioned, the letters a, b, c, ... at
the beginning of English alphabets shall be treated as constants to indicate names of
objects and entities, and those at the end, i.e., u, v, w, ... shall be used as variables
or identifiers for objects and entities.

To indicate that an expression is universally true, we use the universal quantifier
symbol ¥, meaning ‘for all’. Consider the sentence “any object that has a feathers
is a bird.” Its predicate formula is: Vx[hasfeathers(x) = isbird (x)]. Then certainly,
hasfeathers(parrot) = isbird (parrot) is true. Some expressions, although not always
True, are True at least for some objects: in logic, this is indicted by ‘there exists’,
and the existential quantifier symbol 3 is used for this. For example, 3x[bird (x)],
when True, this expression means that there is at least one possible object, that
when substituted in the position of x, makes the expression inside the parenthesis as
True [1].

Following are some examples of representations of knowledge FOPL.

Example 3.1 Kinship Relations.

mother(namrata, priti).(That is, Namrata is mother of Preeti.)
mother(namrata, bharat).

father(rajan, priti).

father(rajan, bharat).

VxVyVz[father(y, x) A mother(z, x) = spouse(y, z)].
VaVyVz[father(y, x) A mother(z, x) = spouse(z, y)].
VxVyVz[mother(z, x) A mother(z,y) = sibling(x, y)].

In above, the predicate father(x, y) means x is father of y; spouse(y, z) means y
is spouse of z, and sibling (x, z) means x is sibling of y. d

Example 3.2 Family tree.

Suppose that we represent “Sam is Bill’s father” by father(sam, bill) and “Harry is
one of Bill’s ancestors” by ancestor(harry, bill). Write a wif to represent “Every
ancestor of Bill is either his father, his mother, or one of their ancestors™.

VYxVylancester(y, bill) = (father(y, bill) v mother(y, bill))
V ((father(x, bill) A ancester(y, x))
V ((mother(x, bill) ~ (ancester(y, x))].
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Example 3.3 Represent the following sentences by predicate calculus wifs.

1. A computer system is intelligent if it can perform a task which, if performed by
a human, requires intelligence.

Ax[[(perform(human, x) — requires(human, intelligence))

A (perform(computer, x)] — intelligent(computer))]

2. A formula whose main connective is = is equivalent to a formula whose main
connective is V.

VaVy[(formula(x) A mainconnective(x,” ="))
A (formula(y) A mainconnective(y, V')

— x =yl

3. If a program cannot be told a fact, then it cannot learn that fact. Vx[(program(x) A
—told (x, fact)) — —learn(x, fact)) O

Example 3.4 Blocks World.

Consider that there are physical objects, like—cuboid, cone, cylinder placed on the
table-top, with some relative positions, as shown in Fig.3.1. There are four blocks
on the table: a, ¢, d are cuboid, and b is a cone. Along with these there is a robot
arm, to lift one of the object having clear top.

Fig. 3.1 Blocks world robot arm
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than B. If A and B have same length, then A has the alphabetically earlier symbol
in the first symbol position, at which A and B have distinct symbols.

e Herbrand Universe. Itis set of ground terms associated with any set of S of clauses.
Let F be the set of all function symbols which occurin clause set S. If F contains any
function symbols of degree 0, then the functional vocabulary of § is F, otherwise,
itis {a} U F, where a is a ground term. In this case, the Herbrand universe of § is
set of all ground terms with only symbols of the functional vocabulary of S.

e Models. It is a set of ground literals having no complementary pair. If M is a
Model and S is a set of ground clauses, then M is a model of § if, for all C € §,
C contains a member of M. In general, if S is any set of clauses, and H is the
Herbrand Universe of S, then M is model of H (S).

e Satisfiability. A set S is Satisfiable if there is a model of S, otherwise § is Unsat-
isfiable.

For every sentence § of first order predicate logic there is always a sentence S»
in Clausal Form which is satisfiable if and only if S; is also satisfiable. In other
words, for every non-clause form sentence there is a logically equivalent clause form
sentence. Due to this, all questions concerning to the validity or satisfiability of
sentences in FOPL can be addressed to sentences in clausal form.

Procedure for obtaining clausal-form for any well-formed formula (wff) are dis-
cussed later in this chapter. In the above we have defined part of the syntax of
predicate logic, which is concerned with the specification of well-formed formulas.
The formalism we are going to use in the next section is based on the notions of
unsatisfiability and refutation rather than upon the notions of validity and proof.

To work on the criteria of refutation and unsatisfirability, it is necessary to convert
the given wff into clausal form.

To determine whether a finite set of sentences (§) of first-order predicate is satis-
fiable, it is sufficient to assume that each sentence in S is in clause form, and there is
no existential quantifiers as the prefix to S. In addition, the matrix of each sentence in
S is assumed to be a disjunction of formulas, each of which is either atomic formula
or the negation of an atomic formula. Therefore, the syntax of § is designed such
that the syntactical unit is a finite set of sentences in this special form, called clause
Jorm. Towards the end of conversion process, the quantifier prefix is omitted from
each sentence, since it is necessary that universal quantifiers bind each variable in
the sentence. The matrix of each sentence is simply a set of disjuncts and the order
and multiplicity of the disjuncts are not important.

3.4 Conversion to Clausal Form

Following are the steps to convert a predicate formula into clausal-form [2].

1. Eliminate all the implications symbols using the logical equivalence: p — g =
-pVgq.
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. Move the outer negative symbol into the atom, for example, replace —Vx p(x)

by Ix—p(x).

. In an expression of nested quantifiers, existentially quantified variables not in the

scope of universal quantifiers are replaced by constants. Replace 3xVy(f (x) —

F ) by Vy(f(a) = f(¥).

. Rename the variables if necessary. For example, in Vx(p(x)) — g(x), rename

second free variable x, as Vx(p(x) — g(y)).

. Replace existentially quantified variables with Skolem functions; then elimi-

nate corresponding quantifiers. For example, for Vx3y[—p(x) vg(y)], we obtain
Vx[—p(x) v q(f (x)). These newly created functions are celled Skolem functions,
and the process is called Skolemization.

. Move the universal quantifiers to the left of the equation. For example, substitute

Jx[—p(x) v ¥y q(y)] by IxVy[—p(x) v g(y)]

. Move the disjunctions down to the Literals, i.e., terms should be connected by

conjunctions only, vertically.

. Eliminate the conjunctions.
. Rename the variables, if necessary.
. Drop all the universal quantifiers, and write each term in a separate line.

The resulting sentence is a CNF, and suitable for inferencing using resolution.

Example 3.5 Convert the expression 3IxVy[Vz p(f(x),v,2) = (Fu g(x,u) A

Jv

r(y, v))] to clausal form.

The steps discussed above are applied precisely, to get the clausal form of the pred-
icate formula.

L.

Eliminate implication.

Vy[=Vz p(f (%), ¥, 2) v Fu glx, u) ATv r(y, v))]

. Move negative symbols to the atom.

Vy[Fz—p(f (x), v, 2) vV Fu qlx, u) A v r(y, v))]

. Replace existentially quantified variables not in the scope of universal quantifier

to constants.

Vy[3z=p(f (@), y,2) vV Qu gla, u) ATv r(y, v)]

. Rename variables (not required in this example.)
. Replace existentially quantified variables that are functions of universal quanti-

fied variables, by Skolem functions:

Yy[=p(f(a),y, g(y) Vv (gla, h(y) Ar(y,[(¥))]
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&

Move ¥ to left is not required in this example.
7. Move disjunctions down to Literals.

Vyl(=p(f(a),y, g(¥)) v (g(a, h(y)) A (=p(f(a), y, g(¥) V r(y, 1(y)))]

8. Eliminate conjunctions.

Yy[=p(f (@), y. g() V (g(a, h(y)), (=p(f(a), y. () V r(y, [(y))]

9. Renaming variable is not required in this example.
10. Drop all universal quantifiers and write each term on separate line.

—p(f(a),y. g(») Vv (g(a, h(y)),
=p(f(a),y, g Vv ry, 1(y).

Example 3.6 Convert the following wif to clause form.

V) @N[px, y) = g, 0] A lg(y, x) = sx, ]}
= @Ax)(YY)[px,y) = sx, ¥)]

For [p(x,y) = q(y, x)] A [g(y, x) = s(x, y)] by application of syllogism, it can be
reduced to [p(x, y) = s(x, y)]. Thus, original expression reduces to:

= (Y@ [px. y) = six, )] = @)V [Pk, y) = s(x, y)]
==V @A) px, y) = six, Y]V @A)V [plx, y) = s(x, y)]
= (F)—=@)pkx,y) = s(x, y)] v @) (V) [plx. y) = s(x, )]
= (@A) (Vy)=[plx, y) = s(x, )] v @A) (V) [plx, y) = s(x, y)]
= (Vy)=lpla,y) = s(a, y)1 vV Ipla,y) = s(a, y)]

= [pla.y) A =sla, )]V [—pla,y) V s(a, y)]

=T

3.5 Substitutions and Unification

The following definitions are concerned with the operation of instantiation, i.e, sub-
stitutions of terms for variables in the well-formed expressions and in sets of well-
formed expressions [8].

Substitution Components

A substitution component is any expression of the form 7'/ V, where V is any variable
and T is any term different from V. The T can be any constant, variable, function,
predicate, or expression.
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Substitutions

A substitution is any finite set (possibly empty) of substitution components, none
of the variables of which are same. If P is any set of terms, and the terms of
the components of the substitution 6 are all in P, we say that @ is a substitu-
tion over P. We write the substitution where components are T, /V/, ..., T/ V. as
6 ={T,/Vy,..., T}/ Vi }, with the understanding that order of components is imma-
terial. We will use lowercase Greek letters 6, A, . denote substitutions.

Instantiations

If E is any function string of symbols, and 6 = {T/V}, ..., T;/Vi} is any substitu-
tion, then the instantiation of E by @ is the operation of replacing each occurrence of
variable V;, | <i <k, in E by term T;. The resulting string denoted by E# is called
an instance of E by 6. That is, if E is the string EqV; Ey ... V; E,, n > 0, then Ef is
the string EoT; E| ... T}, E,,. Here, none of the substrings E; of E contain occurrences
of variables V, ..., Vi after substitution. Some of E; are possibly null, and each V;,
is an occurrence of one of the variables Vi, ..., V.

3.5.1 Composition of Substitutions

Ifte ={T,/Vy,....T/V,} and A are any two substitutions, then the composition of
6 and 2 denoted by @A is union 8" U A, defined as follows:

The @ is set of all components T;A/V;, 1 <i <k, such that T;4 (A substituted
in 0) is different from V;, and X is set of all components of A whose variables are
not among Vi, ..., V.

Within a given scope, once a variable is bound, it may not be given a new binding
in future unifications and inferences. If 6 and A are two substitution sets, then the
composition of 8 and A, i.e., 62, is obtained by applying A to the elements of 6 and
adding the result to A.

Following examples illustrate two different scenario of composition of substitu-
tions.

Example 3.7 Find out the composition of {x/y, w/z}, {v/x}, and {A/v, f(B)/w}.

Let us assume that 6 = {x/y, w/z}, A = {v/x} and p = {A/v, f(B)/w}. Following
are the steps:

1. To find the composition A, A is is substituted for v, and v is then substituted for
x. Thus, A = {A/x, f(B)/w}.

2. When result of Au is substituted in €, we get composition Oipn = {A/y,
f(B)/z}. a

Example 3.8 Find out the composition of & = {g(x, v)/z}, and A = {A/x, B/y,
C/w.DJ/z).
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By composition,

Or = {g(x,y)/z} o {A/x, B/y}
= {g(A,B)/z,A/x, B/y, C/w]}

The {D/z} has not been included in the resultant substitution set, because other-
wise, there will be two terms for the variable z, one g(A, B) and other D. O

One of the important property of substitution is that, if £ is any string, and ¢ = 64,
then Ec = E@A. It is straight forward to verify that ¢ = & = 6 for any substitu-
tion 6. Also, composition enjoys the associative property (6A)u = 6(A ), so we may
omit the parentheses in writing multiple compositions of substitutions. The substi-
tutions are not in general commutative; i.e., it is generally not the case that A = A8,
because for this E6A has to be equal to EAO, which is not guaranteed. However, the
composition has distributive property.

The point of the composition operation on substitution is that, when E is any
string, and o = 0, the string Eo is just the string EOA, i.e., the instance of E6 by A.

3.5.2 Unification

If E is any set of well-formed expressions and 6 is a substitution, then 8 is said to unify
E, or to be a unifier of E, if EO is a singleton. Any set of well-formed expressions
which has a unifier is said to be unifiable [6].

In proving theorems using quantified variables, it is often necessary to “match”
certain subexpressions. For example, to apply the combination of modus ponens
and universal instantiation (Eq. 3.5) to produce “mortal(socrates)”, it was necessary
to find substitution {socrtaes/x} for x that makes man(x) and man(socrates) equal
(singleton).

Unification algorithm determines the substitutions needed to make two predicate
expressions match. For this, all the necessary condition is that variables must be uni-
versally quantified. Unless the variables in an expression are existentially quantified,
they are assumed to be universally quantified. This criteria allows us full freedom
choosing the substitutions. The existentially quantified variables can be eliminated
by substituting them with constants or with Skolem functions that makes the sentence
true. For example, in sentence,

dx mother(x, jill),
we can replace x with a constant designating jill’s mother, susan, to get:
mother(susan, jill);

and write unifier as {susan/x}.
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3.6.1 Theorem Proving Formalism

It is a syntactic inference procedure, when applied to clauses, determines, if the
satisfied set is unsatisfiable. Proof is similar to proof by contradiction and deduce []
(i.e., null). If for example, we have set of clauses (axioms) Cy, C3, ..., C,, and we
want to deduce D, i.e., D is logical consequence of of Cy, Cs, . .., C,. For this we add
=D to the set {Cy, C,, ..., C,}, then we show that set is unsatisfiable by deducing
contradiction [7].

The process of deduction using resolution is given in Algorithm 3.1. Given two
clauses C,, C, with no variables in common, and if /, is a literal in C, and its
complement literal ; is a literal in C,, then [, > can be dropped and disjunction C
is obtained from the remaining part of C;, C;. The C is called resolvent of Cy, C;.

Let C;, =—=P Vv Q, and C, = =Q V R, then following can be deduced through
resolution,

P=0,0=R (3.2)
P=R )
equivalently,
(=PV Q). (=QVR) (3.3)

S (=PVR)

It can be easily verified that (=P Vv Q) A (mQ V R) = (—P V R), hence (=P Vv
Q) A (—Q V R) = (=P Vv R) is a valid statement. Thus, =P Vv R is inference or the
resolvent. Arriving to a proof by above is called proof by refutation.

Resolution says that if there are axioms of the form —P Vv Q and there is another
axiom of the form —Q Vv R, then —P V R logically follows; called the resolvent. Let
us see why it is so? When —P v Q is True, then either —P is True or Q is True. For
other expression, when —Q Vv R is True, then either —Q is True or R is True. Then we
can say that =P v R is certainly True. This can be generalized to two expressions,
when we have any number of expressions, but two must be of opposite signs.

3.6.2 Proof by Resolution

To prove a theorem, one obvious strategy is to search forward from the axioms, using
sound rules of inference. We try to prove a theorem by refutation. It requires to show
that negation of a theorem cannot be True. The steps for a proof by resolution are:

1. Assume that negation of the theorem is True.

2. Try to show that axioms and assumed negation of theorem, together are True,
which cannot be True.

Conclude that above leads to contradiction.

4. Conclude that theorem is True because its negation cannot be True.

b



3.6 Resolution Principle 65

To apply the resolution rule,

1. Find two sentences that contain the same literal, one in its positive form and one
in its negative form, like,

CNF : summer Vv winter, —winter V cold ,

2. use the resolution rule to eliminate the complement literals from both sentences
to get,
CNF : summer V cold.

The Algorithm 3.1 is an algorithm for theorem proving through resolution-
refutation, where « is the theorem to be proved, and g is set of axioms, both of
these are input to the algorithm. All the inputs to algorithm are in the clause form.
The algorithm returns “true” if the theorem is true, else returns “False”.

Algorithm 3.1 Algorithm-Resolve(Input: «, )

1: ' = U [—a)

2: while there is a resolvable pair of clauses C;, C; € I" do
3. C =resolve(C;, Cj)

4 if C = NIL then

5 return “Theorem « is true”
6: endif
7

8:

9:

r=rujcj
end while
Report that theorem is False

3.7 Complexity of Resolution Proof

The question is, how you can be so clever to pickup the right clauses to resolve? The
answer is that you take advantage of two ideas:

1. You can be sure that every resolution involves the negated theorem, directly or
indirectly.

2. You know where you are and where you are going, hence you can compute the
difference to help you proceed with your intuition for selection of clauses.

Consider there are total n clauses, ¢ ... c¢,. We can try to match ¢; with ¢ ... ¢y,
and in next level ¢, is matched with ¢5 . .. ¢,, and so on. This results to breadth first
search (BFS). Consider that resolvents generated due to this matching are ¢} . .. ¢},
Next all the newly generated clauses are matched with the original, and then they
are merged into the original. This process is repeated until contradiction is reached,

showing that theorem is proved. Since, the entire set of clauses are compared, the
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proof is bound to result, if it exists, at all. This gives completeness to the resolution
proof.

The other alternative is, nodes which are farther and farther away are matched
before those which are closer to the root. The ¢; is matched with first child ¢> out of
¢z ...cy. Then ¢; is matched with its first child generated, and so on, resulting to the
search process called DFS (depth first search).

However, the above both are brute-force algorithms, and are complex. The other
methods are heuristic based. In fact, there is difficulty to express your concepts
required in pure logic. One of the approaches is to use the clauses having smallest
number of literals. Another, to use negated clauses.

The resolution search strategies are subject to the exponential-explosion problem.
Due to this, those proofs which require long chains of inferences, will be exponen-
tially expensive in time.

All resolution search strategies are subject to a version of halting problem, for
search is not guaranteed to terminate unless there actually is a proof. In fact, all
complete proof procedures for the first order predicate calculus are subject to halting
problem. Complete proof procedures are said to be semi-decidable, because they are
generated to tell you whether an expression is a theorem, only if the expression is
indeed a theorem.

Theorem proving is suitable for certain problems, but not for all problems, due to
the following reasons:

1. Complete theorem proving requires search, and search is inherently exponential,
2. Theorem provers may not help you to solve practical problems, even if they do
their work instantaneously.

3.8 Interpretation and Inferences

A FOPL statement is made of predicates, arguments (constants or variables), func-
tions, operators, and quantifiers. Interpretation is process of assignment of truth
values (True/False) to subexpressions and atomic expressions, and computing the
resultant value of any expression/statement. A statement or expression in predicate
logic is also called wwf (well formed formula).

Consider the interpretation of predicate formula:

Vx[bird (x) — flies(x)]. (3.4)

To find out the satisfiability of the formula (3.4), we need to substitute (instantiate)
a value for x (an instance of x) and check if flies(x) is true. Until, that x is found,
it may require instantiation with large number of values. Similarly, to check if the
Eq. (3.4) is valid, it may require infinitely large number of values in the domain of
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x to be verified. If any one of that makes the formula false, the formula is not valid.
Thus, checking of satisfiability as well as validity of a formula is predicate logic are
complex process. The approach of truth table and tableau method we discussed in
the previous chapter are applicable here also.

Given a predicate sentences of m number of predicates each having one argument,
and domain size of all the arguments is n, in the worst case it will require total n™
substitutions to test for satisfiability, as well as for validity checking. However, a
sentence of m propositions will require in the worst case only 2" substitutions.
Hence, satisfiability checking in predicate sentences is much more complex than that
in proposition logic. It equally applies with expressions having existential quantifiers,
like, 3x[bird (x) — flies(x)].

Thus, it is only the proof methods, using which logical deductions can be carried
out in realistic times.

Example 3.11 Given, “All men are mortal” and “Socrates is man”, infer using pred-
icate logic, that “Socrates is mortal”.

The above statement can be written in predicate logic as:

Yx[man(x) = mortal(x)],

man(socrates). (3.5)

Using a rule called universal instantiation, a variable can be instantiated by a
constant and universal quantifier can be dropped. Hence, from (3.5) we have,

man(socrates) = mortal (socrates),

man(socrates). (3.6)

Using the rule of modus ponens on (3.6) we deduce “mortal(socrates)”. It
is also logical consequence. If I' = {[man(socrates) = mortal(socrates)] N man
(socrates)}, and @ = mortal (socrates), then we can say that I" - «.

The set of formulas I" is called knowledge base. To find out the result for the
query “Who is man?”, we must give the query

Iman(X).
in Prolog (to be discussed later), which will match (called unify or substitute) man(X')

with man(socrates) with a unification set, say, 8 = {socrates/X }. The substitution
which returns man(socrates) is represented by man(X)6. |
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Example 3.12 Prolog Program.

The sentence in Eq. (3.5) will appear in prolog as,

mortal (socrates) :- man(socrates).

man(socrates).

< 3

Here, the sign “:-’is read as ‘if’. The subexpression before the sign ‘:-’is called
‘head’or procedure name and the part after *:-’is called body of the rule. The sentence
(3.6) can also be written in a clause form (to be precise, in Horn clause form) as,

mortal (socrates) vV —man(socrates).

man(socrates). (3.7

3.8.1 Herbrand’s Universe

Defining an operational semantics for a programming language is nothing but to
define an implementation independent interpreter for it. In case of predicate logic,
the proof procedure itself behaves like an interpreter. The Herbrand’s Universe and
Herbrand’s base play an important role in interpretation of predicate language. In the
following, we define the Herbrand’s Universe and Herbrand’s Base.

Definition 3.1 (Herbrand’s Universe) In a predicate logic program, a Herbrand Uni-
verse H, is a set of ground terms that use only function symbols and constants.

Definition 3.2 (Herbrand’s Base) A set of atomic formulas formed by predicate
symbols in a program, is called Herbrand’s base. The additional condition is that,
arguments of these predicate symbols are in the Herbrand Universe.

For a predicate program, the Herbrand universe and Herbrand base are countably
infinite if the predicate program contains a function symbol of positive arity. If the
arity of function symbols is zero, then both the haerbrand’s universe and base are
finite [3].

In special cases, when resolution proof is used on FOPL, it reduces the expressions
to propositional form. If the set of clauses is A, its Harbrand’s universe is set of all
the ground terms formed using only the function symbols and constants in A. For
example, if A has constants a, b, and a unary function symbol f, then the Herbrand
universe is the infinite set:

{a. b, f(a),f(b).f(f(a)).f(F(B)).f(f(f(a)), ...}

The Herbrand’s base of A is the set of all ground clauses ¢6 where ¢ € A and 6
is a substitution that assigns the variables in ¢ to terms in the Herbrand’s universe.
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3.8.2 Herbrand’s Theorem

Herbrands theorem is a fundamental theorem based on mathematical logic, that
permits a certain type in reduction from FOPL to propositional logic [4].

In its simplest form, the Herbrand’s theorem states that a formula of first-order
predicate logic 3x A, where A is quantifier free, is provable if and only if there exist
ground terms M, ..., M, such that,

EAlx =MV VA[x:=M,]. (3.10)

When using the classical formulation, the Herbrand’s theorem relates the validity
of a first-order formula in Skolem prenex form' to the validity of one of its Herbrand

extensions. That means, the formula Vx; ... Vx,{(x; ..., x,) is valid if, and only if]
/\:" Y (i, ..., ) is valid for some m > | and some collection of ground Herbrand
terms f,iJ‘.

Since it is possible that every classical first-order formula can be reduced to this
Skolem prenex form through the Skolemization while preserving its satisfiability, the
Herbrand’s theorem provides a way to reduce the question of validity of first-order
formulas to propositional logic formula.

However, the required Herbrand’s extension and the terms f; ; cannot be computed
recursively (for otherwise first-order logic would be decidable), this result is highly
useful for the automated reasoning as it gives a way to some highly efficient proof
methods such as resolution and the resolution refutation.

Theorem 3.1 A closed formula F in Skolem form is satisfiable if and only if it has
a Herbrand model.

Proof 1f the formula has a Herbrand model then it is satisfiable. For the other direc-
tion let & = (U, , I;) be an arbitrary model of F. We define a Herbrand structure
P = Uy, 1z) as follows:

Universe: Uy = D(F)

Functional Symbols: f#(t, t2, ..., t,) =f(t1. t2, ..., 1)

Predicate Symbols: (1, ..., t,) € PZiff o/ (1), ..., o (t,) € P7 .

Claim: 2 is also a model of F.

We prove a stronger assertion: For every closed form G in Skolem form such that
G* only contains atomic formulas of F* : if & &= G then & = G.

By induction on the number » of universal quantifiers of G.

Basis (n = 0). Then G has no quantifiers at all.

It follows .o/ (G) = Z8(G), this proves the theorem. O

To perform reasoning with the Herbrand base, the unifiers are not required, and we
have a sound and complete reasoning procedure, which is guaranteed to terminate.
The idea used in this approach is: Herbrand’s base will typically be an infinite set of
propositional clauses, but it will be finite when Herbrand’s universe is finite (there

'A string of quantifiers followed by a quantifier-free part, e.g., ¥x| ... Va,¥r(xy ..., x,).
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is no function symbols and only finitely many constants appear in it). Sometimes
we can keep the universe finite by considering the type of the arguments (say ) and
values of functions (f), and include a term like f () in the universe only if the type of
t is appropriate for the function f. For example, f (f) may be, birthday(john), which
produces a date.

3.8.3 The Procedural Interpretation

Itis easy to procedurally interpret the sets of clauses, say, A, which contain at most one
positive literal per clause. However, along with this any number of negative literals
can also exist. Such sets of clauses are called Horn sentences or Horn Clauses or
simply clauses. We distinguish three kinds of Horn clauses [3].

1. ‘[]’the empty clause, containing no literals and denoting the truth value false, is
interpreted as a halt statement.

2. B, V ---V B,,aclause consisting of no positive literals and n > 1 negative literals,
is interpreted as a goal statement. Note that goal statement is negated and added
into the knowledge base to obtain the proof through resolution refutation.

3.Av Bl VoV 1_3’,1, a clause consisting of exactly one positive literal and n > 0
negative literals is interpreted as a procedure declaration (i.e., rule in Prolog
program). The positive literal A is the procedure name and the collective negative
literals are the procedure body. Each negative literal B;, in the procedure body
is interpreted as a procedure call. When n = 0 the procedure declaration has an
empty body and interpreted as an unqualified assertion of fact.

In the procedural interpretation, a set of procedure declarations is a program. Com-
putation is initiated by an initial goal statement, which proceeds by using declared
procedures to derive new goal statements (subgoals) B;s from old goal statements,
and terminates on the derivation of the halt statement. Such derivation of goal state-
ments is accomplished by resolution, which is interpreted as procedural invocation.

Consider that, a selected procedure call A, inside the body of a goal statement as,

A V- VA VA VAL V- VA, 3.11)
and a procedure declaration is given as,
A VB V---VB,.m=>0. (3.12)
Suppose, the name of procedure A’ matches with the procedure call A;, i,e., some
substitution & of terms for variables makes A; and A’ identical. In such a case, the

resolution derives a new goal statement by disjunction formulas (3.11) and (3.12) as
given below, subject to substitution 6.
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Ay V- VA_ VB V- VB, VA V---VA,)b. (3.13)

In general, any derivation can be regarded as a computation, and any refutation
(i.e. derivation of []) can be regarded as a successfully terminating computation. It is
to be noted that, only goal oriented resolution derivations correspond to the standard
notion of computation.

Thus, a goal-oriented derivation, from an initial set of Horn clauses A and from
an initial goal statement (computation) C; € A, is a sequence of goal statements
Ci,....C,. So that each C; contains a single selected procedure call and Ci,
obtained from C; by procedure invocation relative to the selected procedure call
in C;, using a procedure declaration in A.

For the implementation of above, one method is model elimination. Using this, the
selection of procedure calls is governed by the last-in/first-out rule: a goal statement
is treated as a stack of procedure calls. The selected procedure call must be at the
top of the stack. The new procedure calls which by procedure invocation replace the
selected procedure call are inserted at the top of the stack. This would result to a
depth-first search procedure.

The Predicate logic is a nondeterministic programming language. Consequently,
given a single goal statement, several procedure declarations can have a name which
matches the selected procedure call. Each declaration gives rise to a new subgoal
statement. A proof procedure which sequences the generation of derivations in the
search for a refutation behaves as an inferpreter for the program incorporated in the
initial set of clauses.

The following example explains how to use procedural interpretation to append
two given lists.

Example 3.13 Appending two lists [3].

Let a term cons(x, y) is interpreted as a list whose first element, the head, is x and
whose fail y is the rest of the list. The constant nil denotes the empty list. The terms
u, x, y, and z are variables. The predicate append|(x,y,z) denotes the relationship: z is
obtained by appending y to x.

The following two clauses constitute a program for appending two lists.

append (nil, x, x). (3.14)

append (cons(x, y), z, cons(x, u)) vV append (v, z, u). (3.15)

The clause in statement (3.14) represents halt statement. In (3.15) there is a
positive literal for procedure name, and negative literal(s) for the procedure body,
both together it is procedure declaration. The positive literal means, if cons(x, y)
is appended with z, it results to x appended with u such that u is, y appended
with z. The later part is indicated by the complementary (negative) term. Note that
clausal expression (3.15) is logically equivalent to the expression append (v, z, u) —
append (cons(x, y), z, cons(x, u)).
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Suppose it is required to compute the result of appending list cons(b, nil) to the
list cons(a, nil). Therefore, the goal statement is,

append (cons(a, nil), cons(b, nil), v), (3.16)

where v (a variable) and a, b (constants), are the “atoms” of the lists. To prove using
resolution, we add the negation of the goal,

append (cons(a, nil), cons(b, nil), v), (3.17)

into the set of clauses. The program is activated by this goal statement to carry out
the append operation. With this goal statement the program is deterministic, because
only one choice is available for matching. The following computation follows with
a goal directed theorem prover as interpreter: The goal statement,

Cy = append (cons(a, nil), cons(b, nil), v). (3.18)

matches with the clause statement (3.15) with matchings: x = a, y = nil, z = cons
(b, nil). Also, v = cons(x, u) = cons(a, u), i.e., there exists a unifier 6; = {cons
(a,w)/v}. The variable u has been renamed as w. On unifying clauses (3.18) and
(3.15), the next computation C; is:

C, = append (nil, cons(b, nil), w)0,. (3.19)

Keeping 6, accompanying the predicate in above is for the purpose that if C; is
to be unified with some other predicate, the matching of the two shall be subject to
the same unifier 6.

As next matching, C> can be unified with (3.14) using a new unifier 6, =
{cons(b, nil) /w} to get next computation,

Cs3 = [16s. (3.20)
The result of the computation is value of v in the substitution, i.e.,

v = cons(a, u)
= cons(a, w)

= cons(a, cons(b, nil)).
The above result is equal to goal: append (cons(a, nil), cons(b, nil), v). O

Example 3.14 Theorem proving using resolution-refutation.

Following axioms are about the observed block relationship shown in Fig. 3.3, which
are already in clausal form.
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Fig. 3.3 Objects on table

cylinder

box

T

on(cylinder, box).
on(box, table).

It is required to be shown that object cylinder is above table, i.e., above(cylinder,
table), given the the following rules:

VxVylon(x,y) — above(x,y)], and
VxVyVz[above(x, y) A above(y, z) — above(x, 7)].

After we have gone through the procedure for conversion to clausal form, the
above axioms are transformed into clause forms.

—on(u, v) Vv above(u, v).
—above(x,y) V —mabove(y, 7) V above(x, 7).

The expression to be proved is “above(cylinder, table)”; its negation is
—above(cylinder, table). Let us list all the clauses systematically.

(1) —on(u, v) v above(u, v).

(2) —above(x,y) v —above(y, z) V above(x, z).
(3) on(cylinder, box).

(4) on(box, table).

(5) —above(cylinder, table).

Now, we manually run the Algorithm 3.1 on the clauses (1)-(5), as well as those
which would created new, to unify them according to unification Algorithm 3.2,
until we reach to a null resolvent.

First we resolve clauses (2) and (5) and bind x to ‘cylinder’and z to ‘table’.
Applying the resolution, we get resolvent (6). Unifier for this is {cvlinder/x, table/z}.
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Then ES = {p(fred), p(fred)}
and GS' = {fred /x, fred [y}
and therefore EGS = {p(fred), p(fred)} = ES.

So, given a unifier, you can always create a more general unifier. When both of
these unifiers are composed and instantiate the original expression E, you get the
same instance as it was obtained with the earlier unifier.

3.9.1 Lifting

It is necessary to show that the general resolution principle is sound and complete.
However, a technical difficulty is the completeness of the proof. Using the Herbrand’s
theorem and semantic trees, we can prove that there is a ground resolution refutation
of an unsatisfiable set of clauses. But, this cannot be generalized as a proof for
general resolution, because the concept of semantic trees cannot be generalized.
Why it cannot be generalized, is due to the variables, which give rise to potentially
infinite number of elements in the Herbrand’s base, as we will show it shortly.

Fortunately, there is a technique, called, “Lifting”, to prove completeness of a
theorem. Following are the steps for lifting:

1. first prove the completeness of the system for a set of ground classes, then,
2. as a second step, lift the proof to non-ground case.

Example 3.16 Infinite inferences.

Let us assume that there are two non-ground clauses: 1. p(u, a) V gq;(u) and, 2.
—p(v, w) V g2(v, w). If the signature pattern contains function symbols, then these
clauses have infinite sef of instances, as follows:

{p(r.a) v q\(r) | ris ground}.
{=p(s.1) V qa(s, 1) | s, t are ground}.

We can resolve above instances if and only if r = 5 and t = a. Then we can
apply the resolution refutation and obtain the inference given in the denominator of
Eq. (3.21), which are infinite, due to variable s.

ps,a) Vv qi(s), =p(s,a) Vv ga(s, a)
q1(8) V q2(s, a)

(3.21)

O
The above difficulty can be overcome by taking a ground resolution refutation
and “lifting” it to a more abstract general form.
The lifting is an idea to represent infinite number of ground inferences of the form
given in Eq. (3.21) by a single non-ground inferences:
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p(u! a) A% Ch(“—'), _lp(vs W) % Q’Q(Va W)
q1(v) vV q2(v, a)

This lifting can be done using most general unifier, we will be discussing shortly.

Example 3.17 Find out the Lifting for following clauses:

Cir=p)vpifm)Vvp{fw)vqglu
Cy ==p(f(x)) vV —pz) Vrkx)

Using the substitution 0 = {f(a)/u,a/v,a/w,a/x,f(a)/z}, the above clauses
become C| = p(f(a)) v q(f(a)), and C; = —p(f(a)) V r(a). Using C;| and C3, it
resolves to C" = ¢(f(a)) v r(a). The lifting claims that there is a clause C =
g(f (x)) Vv r(x) which is resolvent for clauses C; and C», such that clause C” is ground
instance of C. This can be realized using the unification algorithm to obtain a most
general unifier (mgu) of clauses C; and C», the latter two clauses resolves to C, as

{f ) /u,x/v, x/w, f(x)/z}.

3.9.2 Unification Algorithm

A unification algorithm is central to most of the theorem-proving systems. This
algorithm receives as input a pair of expressions, and returns as output a set of
substitutions (assignments) that make the two expressions look identical.

The unification algorithm recursively compares the structures of the clauses to be
matched, working across element by element. The criteria is that,

1. the matching individuals, functions, and predicates must have the same names,

2. the matching functions and predicates must have the same number of arguments,
and

3. all bindings of variables to values must be consistent throughout the whole match.

To unify two atomic formulas in an expression A, we need to understand the
disagreement set.

Definition 3.8 Disagreement Set.

If A is any set of well-formed expressions, we call the set D the disagreement set
of A, whenever D is the set of all well-formed subexpressions of the well-formed
expressions in A, which begin at the first symbol position at which not all well-formed
expressions in A have the same symbol. O

Example 3.18 Find out the disagreement set for given set of atoms.

Let the string is, A = {p(x, h(x, y), y), p(x, k(y), ¥), p(x, a, b)}, having three predi-
cate expressions. The disagreement set for A is,

D = {h(x, y), k(y), a}. (3.22)
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Once the disagreement is resolved through unification for this this symbol position,
there is no disagreement at this position. The process is repeated for the new first
symbol position at which all wifs in A do not have same symbol, and so on, until A
becomes a singleton.

Evidently, if A is nonempty and is not a singleton (a set with exactly one element),
then the disagreement set of A is not a singleton and nonempty. Also, if # unifies A,
and A is not singleton, the # unifies the disagreement set A. O

For A to be a finite nonempty set of well-formed expressions for which the sub-
stitution Algorithm 3.2 terminates with “return o, ", the substitution o, available as
output of the unification algorithm is called the most general unifier (mgu) of A, and
A is said to be most generally unifiable [8, 9].

Algorithm 3.2 Unification-Algorithm (Input: A, Output: o4)
1: Setog =6,k =0

2: while true do

3: if Aoy is a singleton then

4: Setop = o

5: terminate

6: endif

7:  Let Uy be the earliest and V; be the next earliest element in the disagreement set Dy of Aay

(see Eq. 3.22)
8: if V is a variable, and does not occur in Uj then

9: set op41 = o {Ur/ Vi ).
10: k=k+1

11: else

12: (A is not unifiable)
13: exit.

14:  end if

15: end while

Through manually running the Algorithm 3.2 for the disagreement set in (3.22),
stepwise computation for oy is as follows:
Fork =0, and oy = &,

o1 = op{k(¥) /h(x, y)}
= o1 = {k(y)/h(x, y)}.

which, in the next iteration becomes,

ox = a{a/k(y)}
= {k)/h(x, y)Ha/k)}.
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The same process is repeated for the disagreement set of 3rd argument in A, which
results to substitution set as {b/y}.

o3 = o2 {b/y}
= {k()/k(x, y)Ha/ k() Hb/y}).

On substituting these, we have,
A = {p(x,a,b),p(x,a,b),p(x,a,b}.

which is a singleton, and o3 is mgu.

For obtaining the unifier oy, the necessary relation required between Uy and V}
is, V} has to be a variable, and U}, can be a constant, variable, function, or predicate.
Vi may even be a predicate or function with variable.

The Algorithm 3.2 always terminates for finite nonempty set of well-formed
expressions, otherwise it would generate an infinite sequence of A, Aoy, Aoa, ...,
each of which is a finite nonempty sets of well-formed expressions, with the property
that each successive set contains one less variable than its predecessor. However, this
is impossible because A contains only finitely many distinct variables.

The Algorithm 3.2 runs in O(n®) time on the length of the terms, and an even
better. However, there exists more complex, but linear time algorithms for same.
Because, most general unifiers (mgus) greatly reduce the search, and can be calculated
efficiently, almost all Resolution-based systems implementations are based on the
concept of mgus.

3.10 Unfounded Sets

In the well-founded semantics, the unfounded sets provide the basis for negative
conclusions. Let there is a program P (set of rules and facts in FOPL), its associated
Herbrand base is H, and suppose its partial interpretation is /. Then, some A € H
is called an unfounded set of P with respect to the interpretation /, with following
condition: for each instantiated rule R € P, at least one of the following holds: (In
the rules P, we assume that p is a head, and g; are the corresponding subgoals.)

1. Some positive / negative subgoal g, of the body of the rule is false in the interpre-
tation /,
2. Some positive subgoals g; of the body occurs in the unfounded set A.

For rule R with respect to /, a literal that makes conditions 1 or 2 above true is
called witness of unusability.

Intuitively, the interpretation [ is intended model of P. The rules that satisfy
condition 1 cannot be used for further derivations because their hypotheses are already
known to be false.
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The condition 2 in above, called unfoundedness condition, states that all the rules
which might still be usable to derive something in A, should have an atom (i.e., a
fact) in A as true. In other words, there is no single atom in A, that can be established
to be true by the rules of P (as per the knowledge of interpretation /). Therefore, if
we infer that some or all atoms in A are false, there is no way available later, using
that we could infer that an atom is true [4].

Hence, the well-founded semantics uses conditions 1 and 2 to draw negative
conclusions, and simultaneously infers all atoms in A to be false. The following
example demonstrates the construction of unfounded set from the set of rules and
facts.

Example 3.19 Unfounded set.

Assume that we have a program in predicate logic with instantiated atoms.

p(c).

gla) < p(d).

pla) < p(c), = p(b).
q(b) < g(a).

p(b) < — pla).

pd) < gla), = q(b).
pd) < q(b), = g(c).
ple) < —p(d).

From above rules, we see that A = {p(d), g(a), g(b), g(c)} is an unfounded set
with respect to ¢ (null set). Since A is unfounded, its subsets are also unfounded. The
component, {g(c)} is unfounded due to condition (1), because there is no rule available
to establish its truth. The set {p(d), g(a), g(b)} is unfounded due to condition (2) (their
subgoals or body appear in unfounded set.

There is no way available to establish p(d) without first establishing g(a) or g(b).
In other words, whether we can establish —g(b) to support the first rule for p(d) is
irrelevant as far as determination of unfoundedness is the concern.

Interestingly, there is no way available to establish g(a) in the absence of first
establishing p(d), and also there is no way available to establish ¢(b) without first
establishing g(a). Further, g(¢) can never be proven. We note that among p(d), g(a),
and g(b) as goals, none can be proved without the other two or their negation as
subgoals.

The pair p(a), p(b), even though they depend on each other, but does not form
an unfounded set due to the reason that the only dependence is through negation.
Hence, it can be concluded that the any attempt for proof of p(a) and p(b) will fail,
but this claim is faulty.

The difference between sets {p(d), g(a), g(b)} and {p(a), p(b)} is as follows:
declaring any of p(d), g(a), or g(b) false (unfounded), does not create a proof that
any other element of the set is true.
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8.

9.

10.

I1.

12.

13.
14.

Consider a set of statements of FOPL that uses two 1-place predicates: Large
and Small. The set of object constants are a, b. Find out all possible models for
this program. For each of the following sentences find out the models in which
each of the sentence becomes true.

Vx Large(x).

Vx —Large(x).

dx Large(x).

dx —Large(x).

Large(a) ~ Large(b).
Large(a) v Large(b).

Vx [Large(x) A Small(x)].
Vx [Large(x) v Small(x)].
Vx [Large(x) = —Small(x)].

~FR e R0 o

Find out the clauses for the following FOPL formulas.

a. IVyFz(P(x) = (Q() = R(2))).
b. VxVy((P(x) A Q(¥)) = FzR(x,y, 2)).

Define the required predicates and represent the following sentences in FOPL.

Some students opted Sanskrit in fall 2015.

Every student who opts Sanskrit passes it.

Only one student opted Tamil in fall 2015.

The best score in Sanskrit is always higher than the best score in Tamil.
There is a barber in a village who shaves every one in the village who does
not shave himself / herself.

f. A person born in country X, each of whose parents is a citizen of X or a
resident of X, is also a resident of X.

o0 op

Determine whether the expression p and g unify with each other in each of the
following cases. If so, give the mgu, if not justify it. The lowercase letters are
variables, and upper are predicate, functions, and literals.

a. p=[flx, g, x3),x2,b); g=f(glhla,xs), x2), x1, h(a, x4), x4).
b. p=fx.f(u,x);: g=f(F (. a)fzf® ).
c. p=f(g), h(u.v)); g=f(w,jx, y).

What can be the strategies for combination of clauses in resolution proof? For
example, if there are N clauses, in how many ways they can be combined?
Why resolution based inference is more efficient compared modus-ponens?
Let I' is knowledge base and « is inference from I”. Give a comparison among
the following inferences, in terms of their performances:

a. Proof by Resolution, i.e., I' - «,
b. Proof by Modus poenes, i.e., I" F «,
c¢. Proof by Resolution Refutation, i.e., I' U {—a} F ¢.
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135.

16.

17.

18.

19.

20.

21.

22.

23,
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Given n number of clauses, draw a resolution proof tree to demonstrate combin-
ing them. Suggest any two strategies.

Given the knowledge base in clausal form, is it possible to extract answers from
that making use of resolution principle? For example, finding an answer like,
“Where is Tajmahal located?”

Represent the following set of statements in predicate logic, convert them to
clause from, then apply the resolution proof to answer the question : Did Ranjana
kill Lekhi?

“Rajan owns a pat. Every pat owner is an animal lover. No animal lover ever
kills an animal. Either Rajan or Ranjana killed a pat, called Lekhi.”

Explain:

a. Unification
b. Skolemization
c. Resolution principle versus resolution theorem proving.

Use resolution to show that the following set of clauses is unsatisfiable.

{pla,z), =p(f(f (@), a), =p(x, g(y) v p(f (x), »)}.

Derive L from the following set of clauses using the resolution principle.
{p(a) v p(b), =p(a) v p(b), p(a) v —p(b), =p(a) vV —p(b)}.

Give resolution proofs for the inconsistency Vx shaves(Barber,x) —
—shaves(x, x), where Barber is a constant.
Consider ab locks-world described by facts and rules:

Facts:

ontable(a), ontable(c), on(d, c), on(b, a), heavy(b),
cleartop(e), cleartop(d), heavy(d), wooden(b), on(e, b).

Rules:

All blocks with clear top are black.

All wooden blocks are black.

Every heavy and wooden block is big.

Every big and black block is on a green block.

Making use of resolution theorem find out the block that is on the green block.
Given the following knowledge base:

If x is on top of y then y supports x.

If x is above y and they are touching each other then x is on top of y.
A phone is above a book.

A phone is touching a book.
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24,

25.

26.

27.
28.

29.

30.

31.

32.

33.

Translate the above knowledge base into clause form, and use resolution to show
that the predicate “supports(book, phone)” is true.
How resolution can be used to show that a sentence is:

a. Valid?
b. Unsatisfiable?

“The application of resolution principle for theorem proving is a non-
deterministic approach.” justify this statement.

a. Use Herbrand’s method to show that formula,
Vx shaves(barber, x) — —shaves(x, x)

is unsatisfiable?
b. What is Herband’s universe for § = {P(a), =P(f (x)) v P(g(x))}?

Prove that Vx—p(x) and —3x p(x) are equivalent statements.

Let § and T be unification problems. Also, let o be a most general unifier for §
and € be a most general unifier for o (T). Show that f¢ is a most general unifier
forSUT.

Write the axioms describing predicates: grandchild, grandfather, grandmother,
soninlaw, fatherinlaw, brother, daughter, aunt, uncle, brotherinlaw, and first-
cousin.

For each pair of atomic sentences in the following, find out the most general
unifier.

. knows(father(y), v) and knows(x, x).

(g () =y, k() = h(v), v =f(g(2), w)}.
. pla,b,b) and p(x, y, 7).

. q(y, g(a, b)) and g(g(x, x), y).
older(father(y), y) and older(father(x), ram).

o0 o

Explain what is wrong with the below given definition of set membership pred-
icate €:

Vx,s:x € {x| s}

Vx,s:xes=>Vy:xely|s}

Consider the following riddle: “Brothers and sisters have I none, but that man’s
father is my father’s son”. Use the rules of kinship relations to show who that
man is?

Let the following be a set of facts and rules:

Rita, Sat, Bill, and Eden are the only members of a club.

Rita is married to Sat.

Bill is Eden’s brother.

Spouse of every married person in the club is also in the club.
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a. Represent the above facts and rules using predicate logic.

b. Show that they do not conclude “Eden is not married.”

c. Add some some more facts, and show that now the augmented set conclude
that Eden is not married.
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Chapter 4 M)
Rule Based Reasoning e

Abstract The popularity of rules-based systems (RBSs) is due to their naturalness.
This chapter presents the potential applications of RBSs, the working of RBS, forward
and backward chaining RBSs, their Algorithms, and inferencing using these systems.
The analysis of complexity of preconditions, and efficiency of rule selection are
introduced to sufficient depth, as well the cofmparison between the two types of RBSs
are presented. A typical RBS, and other methods—model-based and case-based
approaches are also discussed. In addition, number of solved, as well exhaustive list
of exercises are provided at the end of the chapter for practice. The chapter concludes
with its summary.

Keywords Rule-based systems (RBSs) + Forward chaining - Backward chaining -
Forward chaining Algorithm - Backward chaining Algorithm - Model-based
reasoning - Case-based reasoning - Conflict resolution

4.1 Introduction

Symbolic rules are popular for knowledge representation and reasoning. Their pop-
ularity stems mainly from their naturalness, which facilitates comprehension of the
represented knowledge. The basic form of a rule is,

if <conditions> then <conclusion>

where <conditions> represent the conditions or premises of a rule, and the
<conclusion> represent its conclusion or consequence. The conditions of a rule
are connected between each other with logical connectives such as AND/OR thus
forming a logical function. When sufficient conditions of a rule are satisfied, the
conclusion is derived and the rule is said to fire (or trigger). Rules represent general
knowledge regarding a domain.
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In a rule based system, each if pattern may match to one or more of assertions in
a collections of assertions. The collections of assertions is called working-memory
(Fig.4.1). The assertions collectively may match to premises of one or more rules in
the knowledge base. This is done by “match” block of the inference-engine. All the
rules matching with the assertions in the working memory are put in the conflict set,
from where one of the rule is “selected” based on some conflict resolving criteria set
for, and then the selected rule is executed. The resulting consequences/conclusions
(the then patterns) are put in the working memory to form new assertions, and the
process continues till desired result (goal) is not reached.

A system like this is called deduction system, as it deduces new inferences from
the rules and assertions. A realistic example of a rule is:

R1: if 1. stiff neck,
2. high temperature, and
3. impairment of conciousness occur togetehr,
then

meningitis is suspected.

In the above, meningitis is a disease related to“Inflation of membrane of spinal
chord and brain” will be suspected by this rule if the “if”” patterns 1, 2, 3 are found true.

RBS can be applied in judiciary systems also. Following is an example of a more
complex a rule.

If the plaintiff received an eye injury

and it was one eye injured

and treatment for eye required surgery

and recovery from the injury was almost complete
and visual acuity was slightly reduced by the injury
and there is fixed condition,

then increase the injury trauma factor by $5,000.

Facts is the kind of data in a knowledge base that express assertions about prop-
erties, relations, propositions, etc. In contrast to rules, which the RBS interprets
as imperatives, facts are usually static and inactive implicitly. Also, a fact is silent
regarding the pragmatic value and dynamic utilization of its knowledge. Although
in many contexts facts and rules are logically interchangeable, in the RBSs they are
quite distinct.

In addition to its static memory for facts and rules, an RBS uses a working-
memory to store temporary assertions. These assertions record earlier rule-based
inferences. We can describe the contents of working memory as problem-solving
state information. Ordinarily, the data in working memory adhere to the syntactic
conventions of facts. Temporary assertions thus correspond to dynamic facts.

The basic function of an RBS is to produce results. The primary output may be—
a problem solution, an answer to a question, or result of an analysis of some data.
Whatever the case, an RBS employs several key processing determining its overall
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activity. A world manager maintains information in working memory, and a built-in
control procedure defines the basic high-level loop; if the built-in control provides
for programmable specialized control, an additional process manages branches to
and returns from special control blocks.

Some times, the patterns specify the actions rather than assertions, e.g., “to put
them on the table”. In such case the rule based system is called reaction system.

In both the deduction systems and reaction systems, forward chaining is the pro-
cess of moving from the if patterns to then patterns, where if patterns identifies the
appropriate situation for deductions of new assertion, and performance of an action
in the case of reaction system.

4.3 Forward Chaining

In a forward chaining system, we start with the initial facts, and use the rules to
draw new conclusions (or take certain actions), given those facts. Forward chaining
systems are primarily data-driven. Whenever an if pattern is observed to match an
assertion, the antecedent is satisfied. When all the if patterns of a rule are satisfied,
the rule is triggered. When a triggered rule establishes a new assertion or performs
an action, it is fired. This procedure is repeated until no more rules are applicable
(Fig.4.1).
The selection process is carried out in two steps:

1. Pre-selection: Determining the set of all the matching rules, also called the
conflict-set.

2. Selection: Selection of a rule from the conflict set by means of a conflict resolving
strategy.

4.3.1 Forward Chaining Algorithm

A simple forward chaining Algorithm 4.1 starts from the known facts in the knowl-
edge base, and triggers all the rules whose premises are the known facts, then adds
the consequent of each into the knowledge base. This process is repeated until the
query is answered or until there is no conclusion generated to be added into the
knowledge base. We will use symbols @, A, y to represent substitutions. The unify
is a function unifies the newly generated assertion ¢’ and the query «, and returns a
unifying substitution A if they are unified, else returns null.

Let @ be the goal. The forward-chaining Algorithm 4.1 picks up any sentence
s € I', where I' is knowledge base, and checks all possible substitutions 6 for s.
Let, the predicate form of s is p; A po A -+ A p, — g. On substituting 8, say, it
results to (p1 A pa A ... pp)8 = (P APy AL..p)), such that p’s € I'. Let (p] A
p5A...py) — q', such that ¢’ = g6. This ¢’ is added into new inference. If the
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inference ¢’ and goal « unify, then their unifier A is returned as the solution, else the
Algorithm continues.

Algorithm 4.1 Forward-chaining(Input: I, «) // « is a query, I" is knowledge base

1: while True do

2: new={}

3 for each sentence s € I" do

4: Convert s into the format py A p2 A+ A pp — g

5 for each substitution 6 such that (p] A pj A....A py) < (PrAP2A...,A p,)B for
some pis € I" do

6: q' <~ g0

7: new < new U {q'}

8: A< unify(q’, a)

9: if A is not null then

10: return A

11: end if

12: end for

13: I' <« I"' U new // add new inferences in knowledge base

14:  end for

15: end while

16: Return Fail

The Algorithm may fail to terminate in the case when the raised query has no
answer. For example, every natural number can be generated by recursively applying
successor operation on a natural number, and assuming that 0 is natural number. This
will lead to indefinite loop for very large numbers.

naturalnum(0).

Vx[naturalnum(x) — naturalnum(succ(x)).]

The following example demonstrates the manual run of forward chaining Algo-
rithm.

Example 4.1 Produce the inference, given the knowledge base I' = {man(x) —
mortal(x), man(socrates)} and query @ = mortal (w), i.e., “Who is mortal?”

We follow the Algorithm 4.1 manually and note that pyA - -+ A p, = p; = man(x);
Py = man(socrates), substitution = {socrates/x}, and g = mortal(x). Also,

’
q =qb
= mortal(x){socrates /x}
= mortal(socrates).
Also, new = {} U {¢'} = mortal(socrates).

On unification of « (i.e, mortal(w)), and ¢, the unifier A obtained is,
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A=unify(q’, o)
unify(mortal(socrates), mortal(w))

{socrates/w}.

Hence, the answer for query is w = socrates. ]
Complexity Issues

The complexity of the forward chaining Algorithm is determined by the inner loop in
the Algorithm 4.1. It finds all the possible premises such that the premises unify with
certain set of facts in the knowledge base I". The process is called pattern matching,
and tried for every rule, for every substitution #. Thus, if set of rules are P, there are
n* substitutions for each rule, assuming that in worst case k arguments and » number
of literals’ assignments for each argument in the P. This makes the complexity of
above Algorithm as,

| P|n* 4.1)

which is exponential. However, since the size and arities are constant in the real-
world, the complexity of expression (4.1) is a polynomial in nature. To search the
predicates for matching, they are indexed and a hash function is generated for quick
search.

4.3.2 Conflict Resolution

When we are doing data-directed reasoning, we may not like to fire all of the rules
in case more than one rule is applicable. In cases where we want to eliminate some
applicable rules, some kind of conflict resolution is necessary for arriving at the
most appropriate rule(s) to fire. In a deduction system all rules generally fire, but in
a reaction system, when more than one rule are triggered at the same time, only one
of the possible actions is desired [4].

The conflict resolving strategy is used to avoid superfluous rules. The most obvious
strategy is to choose a rule at random, out of those that are applicable. Following are
some common approaches for deciding the preferences for the rule to fire.

Selection by order

Selection by order may either on the order in which the rule appears in the knowledge
base, or the order may be based on how recent the rule was used.

Order

Pick the first applicable rule in the order they have been presented. This is the type
of strategy used by Prolog, and is one of the most common ones. Production system
programmers would take this strategy into account when formulating rule sets.
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Recency

Select an applicable rule based on how recently it has been used. There are different
versions of this strategy, ranging from firing the rule that matches on the most recently
created (or modified) wff, to firing the rule that has been least recently used. The
former could be used to make sure that a problem solver stays focused on what it
was just doing (typical of depth-first search); the latter would ensure that every rule
gets a fair chance to influence the outcome (typical of breadth-first search).
Selection according to syntactic structure of the rule

There are many ways one can consider the syntax, e.g., it may be conditions and their
specificity, or the size of the rule: largest, smallest, or in increasing order of size.

Specificity Criteria

Select the applicable rule whose conditions are most specific. A set of conditions is
taken as more specific than other if the set of wifs that satisfy it is a subset of those
that satisfy the other. For example, consider the following three rules:

i) if bird(x) then add(canfly(x))

i) if bird(x) A weight(y, x) A gt(y, 5kg) then
add(cannotfly(x))

iii) if bird(x) A penguin(x) then add(cannotfly(x))

Here, the second and third rules are both more specific than the first, because the
condition in (ii) and (iii) are more specific than in (i) (condition of (i) is very general).
If we have a bird that has weight greater than 5 kg, or it is a penguin, then the first
rule applies, because the condition of “bird” is satisfied. However, in this case the
other two rules should take precedence, as they are more specific. Note that if the bird
is a penguin and heavy, neither second nor third is applicable, and another conflict
resolution criteria must be applied to decide between the second and third rules.

Largest Rule First

Apply the syntactically largest rule, i.e., the rule which contains the most proposi-
tions.

Incremental in Size

Solutions to subproblems are constructed incrementally, and are cached to avoid the
recompilation.

Selection by Means of Supplementary Knowledge

The supplementary knowledge about the rules may be in the form of priority of the
rules, or as meta-knowledge.

Highest Priority First

For this purpose each rule must be given a priority, which may be represented, e.g.,
by a numeric value.
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For this, the goal expression is initially placed in the working memory, followed
with this, the system performs two operations:

5., 66

1. matches the rule’s “consequent” with the goal. For example, g in p; A po A -+ A
Pn = q,

2. selects the matched rule p; A po A ... p, — ¢ and places its premises (p; A
-+ A pp) in the working memory.

The second step in above corresponds to the transformation of the problem into
subgoals. The process continues in the next iteration, with these premises becoming
the new goals to match against the consequent of other rules. Thus, the backward
chaining system, in the human sense are hypothesis testing.

Backward chaining uses stack. First, the goal is put in the stack, then all the rules
which results to this goal are searched and put on the stack. These becomes the sub-
goals, and the process goes on till all the facts are proved or are available as literals
(ground clauses). Every time the goal and premises are decided, the unification is
performed.

4.4.1 Backward Chaining Algorithm

The Algorithm for backward chaining returns the set of substitutions (unifier) which
makes the goal true. These are initially empty. The input to the Algorithm is knowl-
edge base I', goals «, and current substitution 6 (initially empty). The Algorithm
returns the substitution set A for which the goal is inferred. The Algorithm 4.2 is the
backward-chaining Algorithm.

Algorithm 4.2 Backward-chaining(Input: I, o, #) // « is a query, I" is knowledge

base, 6 current substitution (initially empty), A represent substitution set for the query

to be satisfied (initially empty)

Le={Lrx=1{}

2: q' b

3: for each sentence s € I', where s = py A pa A ..., Apy, —> g and y < unify(q,q’) # null
do

4: dpew < (PLAP2A -+ A Pp)

5: 6«0y

6: A <backward-chaining(I", apew, 0) U A
7: end for

8: return A

Example 4.2 Apply the backward-chaining Algorithm for inferencing from a given
knowledge base.

Let I = {man(x) — mortal(x), man(socrates)}. Assume that it is required to
infer answer for “Who is mortal?” That is, goal & = mortal(w), find w. The loop
iterations in the backward-chaining Algorithm 4.2are as follows:
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Ist Iteration: Initially € is empty, hence, ¢' = «f = mortal(w). From Algorithm
and knowledge base I', the sentence is, s = (man(x) — mortal(x)). Next, y =
unify(mortal(x), mortal(w)) = {w/x}. Also, the new goal, a,.,, = man(x). The
new value of current substitution is, 6 <« 6y = {H{w/x} = {w/x}. Next, compute
A = backward-chaining(I', man(x), {w/x}) U X, as a recursive call.

Recursive call: We apply the Algorithm in a recursive mode, and get g’ = man(x)
{w/x} = man(w). Next, the subgoal man(w) (i.e., g’) matches with other subgoal
(it is a fact) man(socrates) € I'. Hence, y = unify(man(socrates), man(w)) =
{socrates /w}. Next, the new goal is, «,,,,, = man(socrates) and new substitution is:

6 =06y
= {w/x}socrtaes/w}
= {socrates/x}.

In the next call of recursion at step 5, ¢’ = a6 = man(socrates) {socrates/x},
the substitution fails, as there is no x where “socrates” can be substituted. Hence,
g' = null. Since y is null, the for loop at step 3 terminates, and returned value of A
is {socrates /w}, i.e., w = socrates, or mortal (socrtaes). O

4.4.2 Goal Determination

If the goal is not known in the knowledge base, the rule interpreter first decides
whether it can be derived or must be requested from user. For the derivation of goal,
all the rules which includes the goal in their consequent part are processed. These
rules can be identified efficiently if they are indexed according to their consequent
parts.

Backward chaining therefore contains implicitly a dialogue control, where order of
the questions decides the order of the rules for deriving a parameter. This dependency
on the order reduces the modularity of the rule-based system. The efficiency of the
backward-chained rule interpreter is determined by the formulation of the goal: the
more precise the goal, the smaller is the search tree of rules to be checked and
questions to be asked. For example, in medicine, a query may be: “What is name of
disease?” as against an alternate query of “Is X the name of disease?”.

The examples of back-ward chained rule interpreter are MY CIN, and PROLOG.

4.5 Forward Versus Backward Chaining

Whenever the rules are such that typical set of facts relate to large number of con-
clusions, i.e., the fan-out is larger than fan-in, it is better to use backward chaining.
This is to stop in explosive growth in search space. On the other hand, when the rules
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Table 4.2 Knowledge base
for Animal-Kingdom

Rule

sponge(x) — animal (x)

arthopod(x) — animal(x)

fish(x) — vertebrate(x)

mammal(x) — vertebrate(x)

carnivore(x) — mammal(x)

dog(x) — carnivore(x)

S.no

1

2

3 vertebrate(x) — animal(x)
4

5

6

7

8

cat(x) — carnivore(x)

are such that a typical hypothesis can lead to many facts, i.e., fan-in is larger than
fan-out, it is better to use forward chaining. The reason being that if we go backward
in a case where fan-in is high, it would lead to exponentially growing search space,
so we prefer forward chaining in such knowledge.

If there is a situation that all the required facts are known, and we want to get all
the possible conclusions from these, the forward chaining is better. However, if the
rules are such that facts are incompletely known, we cannot proceed from the facts
to conclusions, and thus goal driven strategy should be used.

Forward chaining is often preferable in cases when there are many rules with the
same conclusions, because we choose the satisfying premises. In backward chaining
it may lead to non-satisfying premises. The following examples demonstrate this.

Example 4.3 Given a knowledge base for an animal kingdom, infer animal(bruno)
after adding of dog(bruno). The taxonomy of the animal kingdom includes such rules
as shown in Table4.2.

It is required to show that, K B + dog(bruno) — animal(bruno).

1. Forward Chaining. We start with rule 7, and unify dog(brunoe) with dog(x).
Next, we will successively infer and add carnivore(bruno), mammal(bruno), ver-
tebrate(bruno), and animal(bruno). The query will then succeed immediately.
The total work is proportional to the height of the hierarchy of this taxonomy,
which is 4.

2. Backward-chaining. Alternatively, if we use backward chaining, the query
animal(bruno) will unify with the first rule above and generate the sub-query
sponge (bruno), which will initiate a search for bruno through all the subdi-
visions of sponges. Not finding, it tries with 2nd rule, but orthopod is not in
consequent. Next, with rule 3, the goal driven chain is: “animal — vertebrate —
fish”, which fails. The successful invocation rule sequence is “3 — 5 — 6 —
7.7 Thus, it searches the entire taxonomy of animals looking for dog(bruno).
We note that work done in the background chaining much more than forward
chaining. However, this is not necessarily true always. O



