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CHAPTER 1

FROM NATURE TO NATURAL COMPUTING

“

.. science has offen made progress by studying simple abstractions when more realistic
models are too complicated and confiising.”
(I. Stewart, Does God Play Dice, Penguin Books, 1997, p. 65)

“"Often the most profound insights in science come when we develop a method for prob-
ing a new regime of Nature.”

(M. Nielsen and I. Chuang, Quantum Computation and Quantum Information, Cam-
bridge University Press, 2000, p. 3)

1.1 INTRODUCTION

uring the early days of humanity natural resources were used to provide

shelter and food. We soon learned to modify and manage nature so as to
breed crops and animals, build artifacts, control fire, etc. We then started to ob-
serve and study biological, chemical, and physical phenomena and patterns in
order to better understand and explain how nature works. As examples, by learn-
ing about the physical laws of motion and gravity it became possible to design
alrcrafts; and by understanding some basic principles of life it 1s now possible to
manage nature in various levels, from the creation of transgenic food to the con-
trol of diseases.

With the advent of computers, the way human beings interact with nature
changed drastically. Nature 1s now being used as a source of inspiration or
metaphor for the development of new techniques for solving complex problems
in various domains, from engmeering to biology; computers can simulate and
emulate biological life and processes; and new material and means with which
to compute are currently being investigated. Natural computing is the terminol-
ogy introduced to encompass these three types of approaches, named, respec-
tively: 1) computing inspired by nature, 2) the simulation and emulation of
natural phenomena in computers; and 3) computing with natural materials. This
book provides an introduction to the broad field of natural computing. It consti-
tutes a textbook-style treatment of the central ideas of natural computing, inte-
grated with a number of exercises, pseudocode, theoretical and philosophical
discussions, and references to the relevant literature in which to gather further
information, support, selected websites, and algorithms involving the topics cov-
ered here. This introductory chapter provides some motivations to study natural
computing, challenges the student with some sample ideas, discusses its
philosophy and when natural computing approaches are necessary, provides a
taxonomy and makes a brief overview of the three branches of the proposed
taxonomy for natural computing.



2 Introduction

1.1.1. Motivation

Why should we study natural computing and why should research in this broad
area be supported? There are many reasons for doing so; from the engineering of
new computational tools for solving complex problems whose solutions are so
far unavailable or unsatisfactory; to the design of systems presenting nature-like
patterns, behaviors and even the design of new forms of life; and finally to the
possibility of developing and using new technologies for computing (new com-
puting paradigms). Although still very young in most of its forms, the many
products of natural computing are already available in various forms nowadays,
in washing machines, trains, toys, air conditioning devices, motion pictures,
inside computers as virtual life, and so forth. Some of these applications will be
reviewed throughout this book with varying levels of details.

Natural phenomena (e.g., processes, substances. organisms, etc.) have long in-
spired and motivated people to mimic, design, and build novel systems and arti-
facts. For many centuries, the observation of the natural world has allowed peo-
ple to devise theories about how nature works. For example, physics is
abounded with laws describing electromagnetism (Maxwell’s equations), ther-
modynamics (first law: conservation, second law: entropy, and third law: abso-
lute zero), motion (Newton’s laws), and so forth. Artifacts, such as sonar echo-
location, chemical substances used for pharmaceutical purposes. infrared imag-
ing systems, airplanes, submarines, etc., were all developed by taking inspiration
from nature, from animals (bats, birds, etc.) to chemical substances.

Natural computing 1s the computational version of this process of extracting
ideas from nature to develop ‘artificial” (computational) systems, or using natu-
ral media (e.g., molecules) to perform computation. The word artificial here
means only that the systems developed are human-made instead of made by na-
ture. While not the rule, in some cases, the products of natural computing may
turn out to be so life-like that it becomes difficult to tell them apart from natural
phenomena. Natural computing can be divided mto three main branches (Figure
1.1) (de Castro and Von Zuben, 2004; de Castro, 2005):

1) Computing inspired by nature: it makes use of nature as inspiration for
the development of problem solving techniques. The mamn 1dea of this
branch is to develop computational tools (algorithms) by taking inspira-
tion from nature for the solution of complex problems.

2)  The simulation and emulation of nature by means of computing: it 1s basi-
cally a synthetic process aimed at creating patterns, forms, behaviors, and
organisms that (do not necessarily) resemble ‘life-as-we-know-it". Its
products can be used to mimic various natural phenomena, thus increas-
ing our understanding of nature and insights about computer models.

3) Computing with natural materials: it corresponds to the use of natural
materials to perform computation, thus constituting a true novel comput-
ing paradigm that comes to substitute or supplement the current silicon-
based computers.
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Natural Computing

PARTI PART I PART Ill
Computing Inspired by Nature [ |Simulation and Emulation of Nature [ | Computing with Natural Materials

Figure 1.1: The three main branches of natural computing and their order of appearance

in the book.

Therefore, natural computing can be defined as the field of research that,
based on or inspired by nature, allows the development of new computational
tools (in software, hardware or “wetware”) for problem solving, leads to the syn-
thesis of natural patterns, behaviors, and organisms, and may result in the design
of novel computing systems that use natural media to compute.

Natural computing is thus a field of research that testimonies against the spe-
cialization of disciplines in science. It shows, with its three main areas of inves-
tigation - computing inspired by nature, the simulation and emulation of nature
by means of computing, and compuiting with natural materials - that knowledge
from various fields of research are necessary for a better understanding of life,
for the study and simulation of natural systems and processes, and for the pro-
posal of novel computing paradigms. Physicists, chemusts, engineers, biologists,
computer scientists, among others, all have to act together or at least share ideas
and knowledge in order to make natural computing feasible.

It 1s also important to appreciate that the development and advancement of
natural computing leads to great benefits to the natural sciences, like biology, as
well. Many computational tools developed using ideas from nature and the bio-
logical sciences are applied to create models and solve problems within the bio-
sciences. This application domain is becoming even more important over the last
few years with the emergence of new fields of investigation like computational
biology and bioinformatics (Attwood and Parry-Smith, 1999; Baldi and Brunak,
2001; Waterman, 1995). Natural computing has also proven to be useful for a
better understanding of nature and life processes through the development of
highly abstract models of nature. Sometimes natural computing techniques can
be directly aimed at being theoretical models of nature, providing novel insights
into how nature works.

1.2 A SMALL SAMPLE OF IDEAS

The history of science 1s marked by several periods of almost stagnation, mter-
twined with times of major breakthroughs. The discoveries of Galileo, Newto-
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nian mechanics, Darwin’s theory of evolution, Mendel’s genetics, the develop-
ment of quantum physics, and the design of computers are just a small sample of
the scientific revolutions over the past centuries. We are in the midst of another
technological revolution - the natural computing age;, a time when the interac-
tion and the similarity between computing and nature is becoming each day
greater. The transformation may be revolutionary for all those involved in the
development of natural computing devices, but, if they do their job well, it will
not necessarily make much difference for the end users. We may notice our
spreadsheets recalculating faster, our grammar checker finally working, several
complex problems being solved, robots talking naturally to humans, cars driving
themselves, new forms of life, and patterns emerging in a computer screen in
front of us, computers based on biomolecules, etc. But we will all be dealing
with the end results of natural computing, not with the process itself. However,
will ordinary people and end-users get a chance to experiment and play with
natural computing? In fact, we can get our hands dirty already. And we will start
doing this just by testing our ability to look at nature and computing in different
ways.

Below are discussions about some natural phenomena and processes involving
natural means: 1) clustering of dead bodies in ant colonies; 2) bird flocking; and
3) manipulating DNA strands. All of them have already served as inspiration or
media for the development of natural computing techniques and will be pre-
sented here as a first challenge and motivation for the study of natural comput-
ing. Read the descriptions provided and try to answer the following questions.

To clean up their nests, some ant species group together corpses of ants or
parts of dead bodies, as illustrated in Figure 1.2. The basic mechanism behind
this type of clustering or grouping phenomenon is an attraction between dead
items mediated by the ants. Small clusters of items grow by attracting more
workers to deposit more dead bodies. This grouping phenomenon can be mod-
eled using two simple rules:

Figure 1.2: Clustering of dead bodies in an ant colony. (a) Initial distribution of ants. (b)
Clustered bodies.
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Pick up rule: if an ant finds a dead body, it picks it up and wanders around the
arena until it finds another dead body. The probability or likelihood that an ant
picks up a dead body is inversely proportional to the number of items in that
portion of the arena; that is, the more dead bodies around, the smaller the prob-
ability it is picked up, and vice-versa.

Dropping rule: while wandering around, the loaded ant eventually finds more
dead bodies in its way. The more dead bodies are found in a given region of the
arena, the higher the probability the ant drops the dead body it is carrying at that
location of the arena, and vice-versa.

As a result of these very simple behavioral rules, all dead items will eventu-
ally be brought together into a single group, depending on the initial configura-
tion of the arena and how the rules are set up.

Question 1: what kind of problem could be solved inspired by this simple
model of a natural phenomenon?

Question 2: how would you use these ideas to develop a computing tool (e.g..
an algorithm) for solving the problem you specified above? [

Figure 1.3 1illustrates a bird flock. When we see birds flocking in the sky, it 1s
most natural to assume that the birds “follow a leader’; in this picture, the one in
front of the flock. However, it is now believed (and there are some good evi-
dences to support it) that the birds 1n a flock do not follow any leader.

There 1s no “global rule’ that can be defined so as to simulate a bird flock. It 1s
possible, however, to generate scripts for each bird in a simulated flock so as to
create a more realistic group behavior (for example, in a computer simulation).
Another approach, one that is currently used in many motion pictures, 1s based
on the derivation of generic behavioral rules for individual birds. The specifica-
tion of some simple individual rules allows realistic simulation of birds flocking.
The resultant flock 1s a result of many birds following the same simple rules.

Question 1: describe (some of) these behavioral rules that, when applied to
each bird in the flock, result in an emergent group behavior that is not specifi-
cally defined by the individual rules. It means that such rules, together with the
interactions among individual birds, result in a global behavior that cannot often
be predicted by simply looking at the rules.

Figure 1.3: Illustration of a flock of birds.
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Figure 1.4: Double strand of DNA.

Question 2: can you extend these rules to herds of land animals and schools of
fish? That is. is there a significant qualitative difference between these various
types of group behavior? u

Figure 1.4 depicts a double strand of DNA. The DNA molecules contain the
genetic information of all living beings on ecarth. It 1s known that this genetic
information, together with the environmental influences, determines the pheno-
type (expressed physical characteristics) of an individual.

Roughly. DNA molecules are composed of four bases which bind to each
other exclusively in a complementary fashion: A binds with T, and C binds with
G. Genetic engineering techniques can nowadays be used to artificially manipu-
late DNA so as to alter the genetic information encoded in these molecules. For
instance, DNA molecules can be denafured (separated into single strands), an-
nealed (single strands can be ‘glued’ together to form double strands of DNA),
shortened (reduced in length), cut (separated in two), multiplied (copied), modi-
Sfied (e.g., new sequences inserted), etc.

Question 1: if the information that encodes an organism is contained in DNA
molecules and these can be manipulated, then life can be seen as information
processing. Based on your knowledge of how standard computers (PCs) work,
propose a new model of computer based on DNA strands and suggest a number
of DNA manipulation techniques that can be used to compute with molecules.

Question 2: what would be the advantages and disadvantages of your pro-
posed DNA computer over the standard computers? (]

If you have not tried to answer these questions yet, please take your time.
They may give you some flavor of what researchers on some branches of natural
computing do. If you want to check possible answers to these questions, please
refer to Chapters 5, 8, and 9 respectively

So, how did you get on?

If your answers were too different {rom the ones presented in this volume, do
not worry; they may constitute a potentially new algorithm or computing para-
digm!



From Nature to Natural Computing 7

1.3 THE PHILOSOPHY OF NATURAL COMPUTING

One important question this book tries to answer is how researchers discover the
laws and mechanisms that are so effective in uncovering how nature functions
and how these can be used within and for computing. A natural result of this line
of investigation is the proposal of novel ways of computing, solving real-world
problems, and synthesizing nature. Scientific explanations have been dominated
by the formulation of principles and rules governing systems’ behaviors. Re-
searchers usually assume that natural systems and processes are governed by
finite sets of rules. The search for these basic rules or fundamental laws 1s one of
the central issues covered in this book. It is not easy to find such rules or laws,
but enormous progress has been made. Some examples were provided in Section
1.2.

Most of the computational approaches natural computing deals with are based
on highly simplified versions of the mechanisms and processes present in the
corresponding natural phenomena. The reasons for such simplifications and ab-
stractions are manifold. First of all, most simplifications are necessary to make
the computation with a large number of entities tractable. Also, it can be advan-
tageous to highlight the minimal features necessary to enable some particular
aspects of a system to be reproduced and to observe some emergent properties.
A common question that may arise is: “if it is possible to do something using
simple techniques, why use more complicated ones?”

This book focuses on the extraction of ideas and design aspects of natural
computing, in particular the teaching of modeling. how to make useful abstrac-
tions, and how to develop and use computer tools or algorithms based on nature.
In contrast to some books on the technological and advanced aspects of specific
topics, this text outlines the relations of theoretical concepts or particular techno-
logical solutions inspired by nature. It is therefore important to learn how to cre-
ate and understand abstractions, thus making a suitable simplification of a sys-
tem without abolishing the important features that are to be reproduced.

Which level 1s most appropriate for the mvestigation and abstraction depends
on the scientific question asked, what type of problem one wants to solve, or the
life phenomenon to be synthesized. As will be turther discussed, simple behav-
ioral rules for some insects are sufficient for the development of computational
tools for solving combinatorial problems and coordinate collective robotic sys-
tems. These are also useful for the development of computer simulations of bio-
logical systems 1n artificial life, and the creation of abstract models of evolution,
and the nervous and immune systems, all aimed at solving complex problems in
various domains.

Natural computing usually integrates experimental and theoretical biology,
physics and chemistry, empirical observations from nature and several other
sciences, facts and processes from different levels of investigation into nature so
as to design new problem solving techniques, new forms of mimicking natural
phenomena, and new ways of computing, as summarized in Figure 1.5.
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Figure 1.5: Many fields of investigation have to be integrated for the study and devel-
opment of natural computing. As outcomes, new ways of computing, new problem solv-
ing techniques, and possible forms of synthesizing nature result.

1.4 THE THREE BRANCHES: A BRIEF OVERVIEW

This section provides a very brief overview of the three branches of natural
computing and their main approaches. The bibliography cited is basically com-
posed of references from pioneer works and books where further and didactic
information can be found on all topics discussed. Instead of trying to cover the
areas reviewed in detail, general comments about most natural computing tools,
algorithms, techniques and their potential application areas are provided, to-
gether with a discussion of how the resultant computational toels or systems
relate (interact) with nature and the natural sciences. The reader will be pointed
to the chapters that deal specifically with each of the approaches discussed.

1.4.1. Computing Inspired by Nature

The main motivation for this part of the book 1s that nature has greatly enriched
computing. More importantly, nature has been very successful in solving highly
complex problems. In a very low level, there is an urge for survival in living
organisms: they have to search for food, hide from predators and weather condi-
tions, they need to mate, organize their homes, etc. All this requires complex
strategies and structures not usually directly modeled or understood. But, for
instance, viewing a colony of ants foraging for food as an ‘intelligent behavior’
is not always very intuitive for us, used to attribute “intelligent behaviors’ to
‘intelligent beings’. What if I tell you that the way ants forage for food has in-
spired algorithms to solve routing problems in communication networks? Can
you imagine how this 1s done?
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Among all natural computing approaches, computational algorithms and sys-
tems inspired by nature are the oldest and most popular ones. They arose with
two main objectives in mind. First, researchers were interested in the modeling
of natural phenomena and their simulation in computers. The common goal in
this direction is to devise theoretical models, which can be implemented in com-
puters, faithful enough to the natural mechanisms investigated so as to reproduce
qualitatively or quantitatively some of their functioning. Theoretical models are
supposed to provide a deeper insight and better understanding of the natural
phenomena being modeled, to aid in the critical analysis and design of experi-
ments, and to facilitate the recovery of results from laboratory experimentation
or empirical observations. There is a vast number of theoretical models available
in the literature concerning all natural sciences, including biology, ethology,
ecology, pharmacology, nutrition and health care, medicine, geophysics, and so

forth.

However, the focus of computing inspired by nature, under the umbrella of
natural computing, is most often on problem solving instead of on theoretical
modeling, and this leads to the second objective of computing based on nature.
The second objective, thus, involves the study of natural phenomena, processes
and even theoretical models for the development of computational systems and
algorithms capable of solving complex problems. The motivation, in this case, 1s
to provide (alternative) solution techniques to problems that could not be (satis-
factorily) resolved by other more traditional techniques, such as linear, non-
linear, and dynamic programming. In such cases, the computational techniques
developed can also be termed bio-inspired computing or biologically motivated
computing (Mange and Tomassini, 1998, de Castro and Von Zuben, 2004), or
computing with biological metaphors (Paton, 1994).

As computing mspired by nature 1s mostly aimed at solving problems, almost
all approaches are not concerned with the creation of accurate or theoretical
models of the natural phenomena being modeled. In many situations highly ab-
stract models, sometimes called metaphors (Paton, 1992). are proposed mimick-
ing particular features and mechanisms from biology. What usually happens 1s
that a natural phenomenon, or a theoretical model of it, gives rise to one particu-
lar computational tool and this i1s then algorithmically or mathematically im-
proved to the extent that, in the end, it bears a far resemblance with the natural
phenomenon that originally motivated the approach. Well-known examples of
these can be found in the fields of artificial neural networks and evolutionary
algorithms, which will be briefly discussed in the following.

A landmark work in the branch of bio-inspired computing was the paper by
MeCulloch and Pitts (1943), which introduced the first mathematical model of a
neuron. This neuronal model, also known as artiticial neuron, gave rise to a field
of investigation of its own, the so-called artificial neural networks (Fausett,
1994; Bishop, 1996; Haykin, 1999; Kohonen, 2000). Artificial neural networks,
to be discussed in Chapter 4, can be defined as information processing systems
designed with inspiration taken from the nervous system, in most cases the hu-
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man brain, and with particular emphasis on problem solving. There are several
types of artificial neural networks (ANNs) and learning algorithms used to set
up (train) these networks. ANNs are distinct from what is currently known as
computational neuroscience (O’Reilly and Munakata, 2000; Dayan and Abbot,
2001, Trappenberg, 2002), which is mainly concerned with the development of
biologically-based computational models of the nervous system.

Another computing approach motivated by biology arose in the mid 1960°s
with the works of I. Rechenberg (1973), H. P. Schwefel (1965), L. Fogel, A.
Owens and M. Walsh (Fogel et al., 1966), and J. Holland (1975). These works
gave rise to the field of evelutionary computing (Chapter 3), which uses ideas
from evolutionary biology to develop evelutionary algorithms for search and
optimization (Bick et al., 2000a,b; Fogel, 1998; Michalewicz, 1996). Most evo-
lutionary algorithms are rooted on the neo-Darwinian theory of evolution, which
proposes that a population of individuals capable of reproducing and subject to
genetic variation followed by natural selection result in new populations of indi-
viduals increasingly more fit to their environment. These simple three processes,
when 1mplemented in computers, result in evolutionary algorithms (EAs). The
main types of EAs are the genetic algorithms (Mitchell, 1998; Goldberg, 1989),
evolution strategies (Schwefel, 1995; Bever, 2001), evelutionary programming
(Fogel, 1999), genetic programming (Koza, 1992, 1994; Bahnzat et al., 1997),
and classifier systems (Booker et al., 1989; Holmes et al., 2002).

The term swarm intelligence (Chapter 5) was coined in the late 1980’s to refer
to cellular robotic systems in which a collection of simple agents in an environ-
ment interact based on local rules (Beni, 1988; Beni and Wang, 1989). Nowa-
days, the term 1s being used to describe any attempt to design algorithms or
problem-solving devices inspired by the collective behavior of social organisms,
from 1nsect colonies to human societies. Swarm mtelligence has two man front-
lines: algorithms based on the collective behavior of social insects (Bonabeau et
al., 1999), and algorithms based on cultures or sociocognition (Reynolds, 1994;
Kennedy et al., 2001). In the first case, the collective behavior of ants and other
insects has led to the development of algorithms for solving combinatorial opti-
mization, clustering problems, and the design of autonomous robotic systems.
Algorithms based on cultures and sociocognition demonstrated effectiveness in
performing search and optimization on continuous and discrete spaces.

Artificial immune systems (AIS) or immunocomputing (Chapter 6), borrow
1deas from the immune system and its corresponding models to design computa-
tional systems for solving complex problems (Dasgupta, 1999; de Castro and
Timmis, 2002; Timmis et al., 2003). This 1s also a young field of research that
emerged around the mid 19807s. Its application areas range from biology to ro-
botics. Similarly to ANNs, EAs and swarm intelligence, different phenomena,
processes, theories and models resulted in different types of immune algorithms,
from evolutionary-like algorithms to network-like systems. Several other
(emerging) types of algorithms inspired by nature can be found in the literature.
For instance, it is possible to list the simulated annealing algorithm, the systems
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based on growth and development, and the cells and tissues models (Kirkpatrick
et al., 1983; Aarts and Korst, 1989; Paton et al., 2004, Kumar and Bentley,
2003; Glover and Kochenberger, 2003, de Castro and Von Zuben, 2004).

Figure 1.6 summarizes the main components of computing inspired by nature
to be discussed in this book and the respective chapters.

Computing Inspired by Nature

Chapter 3 Chapter 4 Chapter § Chapter 6
EA ANN sl AlS

Figure 1.6: The main components of computing inspired by nature to be discussed in this
book: ANN: artificial neural networks (neurocomputing), EA: evolutionary algorithms
(evolutionary computing); SI: swarm intelligence; AIS: artificial immune systems (im-
munocomputing).

1.4.2. The Simulation and Emulation of Nature in Computers

While biologically inspired computing is basically aimed at solving complex
problems, the second branch of natural computing provides new tools for the
synthesis and study of natural phenomena that can be used to test biological
theories usually not passive of testing via the traditional experimental and ana-
lytic techniques. It 1s in most cases a synthetic approach aimed at synthesizing
natural phenomena or known patterns and behaviors. There 1s also a comple-
mentary relationship between biological theory and the synthetic processes of
the simulation and emulation of nature by computers. Theoretical studies sug-
gest how the synthesis can be achieved, while the application of the theory in the
synthesis may be a test for the theory. There are basically two main approaches
to the simulation and emulation of nature in computers: by using artificial life
techniques or by using tools for studying the fractal geometry of nature (Figure
1.7).

Simulation and Emulation of Nature in Computers

Chapter 7 Chapter 8
Fractal Geometry of Nature Artificial Life

Figure 1.7: The two main approaches for the simulation and emulation of nature in com-
puters and the chapters in which they are going to be presented.
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Recent advances in computer graphics have made it possible to visualize
mathematical models of natural structures and processes with unprecedented
realism. The resulting images, animations, and interactive systems are useful as
scientific, research, and educational tools in computer science, engineering, bio-
sciences, and many other domains. One major breakthrough in the modeling and
synthesis of natural patterns and structures is the recognition that nature 1s frac-
tal in the sense that it can be successtully emulated by fractal geometry (Man-
delbrot, 1983; Peitgen et al., 1992; Flake, 2000; Lesmoir-Gordon et al., 2000).
In a simplified form, fractal geometry (Chapter 7) is the geometry of nature,
with all its irregular, fragmented, and complex structures. In general, fractals are
characterized by infinite details, infinite length, self-similarity, fractal dimen-
sions, and the absence of smoothness or derivative. Nature provides many ex-
amples of fractals, for instance, ferns, coastlines, mountains, cauliflowers and
broccoli, and many other plants and trees are fractals. Moreover, organisms are
fractals; our lungs, our circulatory system, our brains, our kidneys, and many
other body systems and organs are fractal.

There are a number of techniques for modeling fractal patterns and structures,
such as cellular automata (llachinski, 2001; Wolfram, 1994), L-systems or Lin-
denmayer systems (Lindenmayer, 1968; Prusinkiewicz and Lindenmayer, 1990),
iterated function systems (Hutchinson, 1981; Barnsley and Demko, 1985; Barns-
ley, 1988), particle systems (Reeves, 1983), Brownian motion (Fournier et al.,
1982; Voss, 1985), and others. Their applications include computer-assisted
landscape design, the study of developmental and growth processes, and the
modeling and synthesis (and corresponding analysis) of an mnumerable amount
of natural patterns and phenomena. But the scope and importance of fractals and
fractal geometry go far beyond these. Forest fires have fractal boundaries; de-
posits built up in electro-plating processes and the spreading of some liquids in
viscous fluids have fractal patterns; complex protein surfaces fold up and wrin-
kle around toward three-dimensional space in a fractal dimension; antibodies
bind to antigens through complementary fractal dimensions of their surfaces:
fractals have been used to model the dynamics of the AIDS virus; cancer cells
can be identified based on their fractal dimension; and the list goes on.

Artificial life (ALite) will be discussed in Chapter 8. It corresponds to a re-
search field that complements traditional biological sciences concerned with the
analysis of living organisms by trying to synthesize life-like behaviors and crea-
tures in computers and other artificial media (Langton, 1988. Adami. 1998;
Levy, 1992). Differently from nature-inspired computing, approaches in the
ALife field are usually not concerned with solving any particular problem.
Alife has, as major goals, to increase the understanding of nature (life-as-it-1s),
enhance our insight into artificial models and possibly new forms of life (life-as-
it-could-be), and to develop new technologies such as software evolution, so-
phisticated robots, ecological monitoring tools. educational systems, computer
graphics, etc.



From Nature to Natural Computing 13

ALife systems have, thus, been designed to simulate and emulate behaviors
or organisms in order to allow the study or simulation of natural phenomena or
processes. In most cases it emphasizes the understanding of nature, and applica-
tions as a problem solver are left in second plan. For instance, ALife systems
have been created to study traffic jams (Resnick, 1994), the behavior of syn-
thetic biological systems (Ray, 1994); the evolution of organisms in virtual envi-
ronments (Komosinski and Ulatowski, 1999); the simulation of collective be-
haviors (Reynolds, 1987); the study and characterization of computer viruses
(Spafford, 1991); and others. Its major ambition is to build living systems out of
non-living parts; that is, to accomplish what 1s known as “strong ALife” (Sober,
1996; Rennard, 2004).

1.4.3. Computing with Natural Materials

Computing with natural materials 1s concerned with new computing methods
based on other natural material than silicon. These methods result in a non-
standard computation that overcomes some of the limitations of standard, se-
quential John von Neumann computers. As any mathematical operation can be
broken down into bits, and any logical function can be built using an AND and a
NOT gate, any computable ‘thing’ can be worked out by appropriately wired
AND and NOT gates. This independence of a specific representation makes it
possible to use new concepts for the computational process based on natural
materials, such as, chemical reactions, DNA molecules, and quantum mechani-
cal devices.

The history of computer technology has involved a sequence of changes from
one type of realization to another; from gears to relays to valves to transistors to
integrated circuits. Nowadays, a single silicon chip can contain millions of logic
gates. This miniaturization of the most basic information processing elements is
inevitably going to reach a state where logic gates will be so small so as to be
made of atoms. In 1965 G. Moore (1965) observed that there 1s an exponential
growth in the number of transistors that can be placed in an integrated circuit.
According to what 1s now known as the “Moore’s law”, there 1s a doubling of
transistors in a chip every couple of years. If this scale remains valid, by the end
of this decade, silicon-based computers will have reached their limits in terms of
processing power. One question that remains thus, 1s “What other materials or
media can be used to perform computation in place of silicon?”. Put in another
form, after certain level of mimaturization of the computing devices, the stan-
dard physical laws will be no longer applicable, because quantum effects will
begin to take place. Under this perspective, the question that arises relers to
“How should we compute under quantum effects?”.

Computing with natural materials is the approach that promises to bring a ma-
jor change in the current computing technology in order to answer the questions
above. Motivated by the need to identify alternative media for computing, re-
searchers are now trying to design new computers based on molecules, such as
membranes, DNA and RNA, or quantum theory. These ideas resulted in what is
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now known as molecular computing (Paun et al, 1998; Gramf et al., 2001,
Calude and Paun, 2001; Paun and Cutkosky, 2002; Sienko et al., 2003) and
quantum computing or quantum computation (Hirvensalo, 2000; Nielsen and
Chuang, 2000, Pittenger, 2000), respectively. Figure 1.8 summarizes the main
components of computing with natural materials.

Molecular computing 1s based upon the use of biological molecules (bio-
molecules) to store information together with genetic engineering (biomolecu-
lar) techniques to manipulate these molecules so as to perform computation. It
constitutes a powerful combination between computer science and molecular
biology. The field can be said to have emerged due to the work of L. Adleman
who, in 1994, solved an NP-complete problem using DNA molecules and bio-
molecular techniques for manipulating DNA (Adleman, 1994). Since then, much
has happened: several other ‘molecular solutions’ to complex problems have
been proposed and molecular computers have been shown to perform universal
computation. The main advantages of molecular computing are its high speed,
energy efficiency, and economical information storage. An overall, striking ob-
servation about molecular computing is that, at least theoretically, there seem to
be many diverse ways of constructing molecular-based universal computers.
There are, of course, the possibility of errors and difficulties in implementing
real molecular computers. When compared with the currently known silicon-
based computers, molecular computers offer some unique features, such as the
use of molecules as data structures and the possibility of performing massively
parallel computations. In Chapter 9, this book reviews one particular molecular
computing approach, namely, DNA computing.

When the atomic scale of logic gates 1s reached, the rules that will prevail are
those of quantum mechanics, which are quite different from the classical rules
that determuine the properties of conventional logic gates. Thus, if computers are
to become even smaller in the (not so far) future, quantum technology must
complement or supplement the current technology. Quantum computation and
quantum information, introduced in Chapter 10, is the study of the information
processing tasks that can be accomplished using quantum mechanical systems
(Nielsen and Chuang, 2000). In quantum computers information 1s stored at the
microphysical level where quantum mechanisms prevail.

Computing with Natural Materials

Chapter 9 Chapter 10
DNA Computing Quantum Computing

Figure 1.8: The two main branches of computing with natural materials or media.
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In such cases, a bit could represent both zero and one simultaneously, and
measurements and manipulations of these quantum bits are modeled as matrix
operations. The seminal paper by R. Feynman (1982) introduced a computer
capable of simulating quantum physics. A little later on, D. Deutsch (1984) pub-
lished a paper where he demonstrated the universal computing capability of such
quantum computers. Another seminal work that served to boost the field was the
paper by P. Shor (1994) introducing the first quantum algorithm capable of per-
forming efficient factorization, something that only a quantum computer could
do. What is important to remark about quantum computing, though, is that it can
provide entirely novel types of computation with qualitatively new algorithms
based on quantum mechanics; quantum technology thus offers much more than
simply adding the capability of processing more bits using the current silicon-
based computers. Therefore, quantum computing aims at nontraditional hard-
ware that would allow quantum effects to take place.

1.5 WHEN TO USE NATURAL COMPUTING APPROACHES

While studying this book, the reader will be faced with a diverse range of prob-
lems to be solved, phenomena to be synthesized and questions to be answered.
In all cases, one or more of the natural computing approaches briefly reviewed
above will be used to solve the problem, synthesize the phenomenon or answer
the question. However, it is important to acknowledge that natural computing 1s
not the only field of investigation that provides solutions to these, nor is 1t al-
ways the most suitable and efficient approach. To clarify when natural comput-
ing should be used, let us present some examples and arguments in each of the
three branches. Let us assume that you have just finished your undergraduation
course and now have an engineering or science degree in hand. In your first in-
terview for a job in a major company, you are posed with three problems and
given some time to provide solutions to them.

Problem 1: the company is expanding rapidly and now wants to build a new
factory in a country so far unattended. The site where the factory is to be built
has already been chosen as long as the cities to be attended by this factory.
Figure 1.9 depicts the scenario. The problem 1s: given all the cities in the map
find the smallest route from the factory to all cities passing by each city exactly
once and returning to the departure city (factory). This problem 1s well-known
from the literature and is termed traveling salesman problem (T SP).

Such problems have several practical applications, from fast food delivery to
printed circuit board design. Although this problem may be simple to state it 1s
hard to solve, mainly when the number of cities involved is large. For example,
if there is one factory plus three other cities, then there are 6 possible routes; if
there 1s one factory plus four other cities, then there are 24 possible routes; 1f
there 1s one factory plus five other cities, then there are 120 possible routes; and
so on. This corresponds to a factorial growth in the number of possible routes in
relation to the number of cities to be attended.
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Figure 1.9: Map of the new country to be attended by the company. The city where the
factory is going to be built is detached together with the 27 cities to be attended.

The most straightforward solution you could provide to this problem is to
suggest the testing of all possible routes and the choice of the smallest one; an
approach we usually call “brute force™ or ‘exhaustive search’. Although simple,
this approach is only efficient for a small number of cities. Assuming your com-
puter is capable of analyzing 100 routes per second, it would take much less
than a second to solve a three cities instance of this problem and a bit more than
a second to solve a five cities instance of the problem. For the problem pre-
sented, however, the scenario is much different: there are 27! possible routes,
and this corresponds to approximately 1.1 x 10® possible routes to be tested. In
your computer, the exhaustive search approach would take, approximately,
3.0 x 10* hours, or 1.3 x 10” days, or 3.5 x 10" years of processing time to
provide a solution. ]

Problem 2. the expansion plans of the company include the development of
motion picture animations. The first animation to be designed involves a herd of
zebras running away from a few hungry lions. Your task is to propose a means
of realistically and effectively simulating the collective behavior of the zebras.

The first proposal you may come out with is to write a script for each zebra;
that 1s, a computer program that fully describes the action of the zebras in the
field. This, of course, would seem easier than writing a single script to coordi-
nate the whole herd. Again, though simple, this approach has some drawbacks
when the number of zebras involved 1s large and when more realistic scenarios
are to be created. First, as the script is static, in the sense that the behaviors
modeled do not change over time, the resultant collective behavior is the same
every time the simulation is run. Second, the number of scripts to be written
grows with the size of the herd and the complexity of the scripts grows in a
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much larger scale, because the more zebras, the more difficult it becomes to
coordinate the behavior of all animals so as to avoid collisions, etc., and all as-
pects of the collective behavior have to be accounted for within the script.

In such cases, i1t 1s much more efficient and realistic to try and find a set of
simple rules that will be responsible for guiding the individual behavior of the
zebras across the field, similarly to the discussion presented in Section 1.2 for a
bird flock. More details on how to solve this type of problem will be provided in
Chapter 8.

To make your task more complete and challenging, the interviewer also asks
how you would create the surrounding environment in which the animals will be
placed. The simplest approach, in this case, would be to draw the scenarios or
maybe photograph a real scenario and use it as a background for the animation,
as sometimes done in cartoons. The drawing or pictures have to be passed,
frame by frame, and the animals placed on this environment for running the
simulation. A problem with this solution is the amount of memory required to
store all these images (drawings or photographs). For instance, a digital photo of
medium quality requires around 500KB of memory to be stored.

An efficient way of reproducing natural scenarios and phenomena 1s by using
techniques from fractal geometry (Chapter 7). Brownian motion, cellular auto-
mata, L-systems, iterated function systems, and particle systems can be used to
generate scenarios of natural environments; simulate fire, chemical reactions,
cte., all with unprecedented realism and, in most cases, at the expense of a small
amount of memory usage. These techniques usually employ a small number of
rules or equations that are used to generate patterns or simulate phenomena on
line, thus reducing the need for huge storage devices. (]

Problem 3: in the current computer technology, bits constitute the most basic
unit of information. They are phyvsically stored in integrated circuits or chips
based on silicon technology. The need to inerease the memory capacity and
processing speed of computers forced the chips to be able to accommodate more
and more bits, thus promoting a miniaturization of the electronic devices. To
have an idea of the dramatic decrease in size of electronic devices, by the year
2000 approximately 10” atoms were necessary to represent a single bit of infor-
mation. It 1s estimated that by the year 2020 a single atom will be used to repre-
sent one bit of information. The question is: if we will unavoidably reach the
miniaturization limit of current computer technology, what are the other types
(than silicon) of materials that could be used for computing?

Note that the answer to this question may involve a change of computing
paradigm. That 1s, if we are to mvestigate the possibility of computing with a
material that 1s different from silicon, then a completely new type of storing and
manipulating information may be used. An example of a potential novel material
for computing was given in Section 1.2 with the use of DNA. In that case, in-
formation was stored in DNA molecules and genetic engineering techniques
were proposed as means to manipulate DNA for computing (Chapter 9). ]
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When to Use Natural Computing Approaches

To summarize, natural computing approaches almost invariably correspond to
alternative solution techniques to all the problems discussed in this volume and
many others to which they are applicable. In many situations there are other so-
lution techniques for a given problem and these may even provide superior re-
sults. Thus, it is important to carefully investigate the problem to be solved be-
fore choosing a specific solution method, be it a natural computing tool or a dif-
ferent one. To give some hints on when natural computing should be used, con-
sider the following list. Natural computing could be used when:

The problem to be solved is complex, 1.e., involves a large number of
variables or potential solutions, is highly dynamic, nonlinear, etc.

It is not possible to guarantee that a potential solution found is optimal (in
the sense that there is no better solution), but it is possible to find a qual-
ity measure that allows the comparison of solutions among themselves.

The problem to be solved cannot be (suitably) modeled, such as pattern
recognition and classification (e.g., vision) tasks. In some cases, although
it is not possible to model the problem, there are examples (samples)
available that can be used to “teach’ the system how to solve the problem,
and the system 1s somehow capable of ‘learning from examples’.

A single solution is not good enough; that 1s, when diversity 1s important.
Most standard problem-solving techniques are able to provide a single so-
lution to a given problem, but are not capable of providing more than one
solution. One reason for that is because most standard techniques are de-
terministic, 1.e., always use the same sequence of steps to find the solu-
tion, and natural computing is, in its majority, composed of probabilistic
methods.

Biological, physical, and chemical systems and processes have to be
simulated or emulated with realism. Euclidean geometry is very good and
efficient to create man-made [orms, but has difficulty in reproducing
natural patterns. This is because nature is fractal, and only fractal geome-
try provides the appropriate tools with which to model nature.

Life behaviors and phenomena have to be synthesized in artificial media.
No matter the artificial media (e.g., a computer or a robot), the essence of
a given natural behavior or pattern is extracted and synthesized in a, usu-
ally, much simpler form in artificial life systems.

The limits of current technology are reached or new computing materials
have to be sought. Nature abounds with information storage and process-
ing systems, and the scientific and engineering aspects of how to use
these natural materials to compute are the main challenges of the third
branch of natural computing: computing with natural materials.

These prerequisites may not sound so clear yet, but vou will naturally have a
better idea of why, when, and how natural computing should or have been used
as you progress in the book.
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1.6 SUMMARY

Natural computing is the terminology used to refer to three types of systems:
1) computational algorithms for problem-solving developed by taking inspira-
tion from natural phenomena; 2) computational systems for the simulation
and/or emulation of nature; and 3) novel computing devices or paradigms that
use media other than silicon to store and process information.

Although all these branches are quite young from a scientific perspective, sev-
eral of them are already being used in our everyday lives. For instance, we now
have “intelligent” washing machines, games, (virtual) pets, control systems, etc.,
all based on, or using, computing devices inspired by nature; research on ALife
and the fractal geometry of nature has allowed the creation of realistic models of
nature and the simulation and emulation of several plants and animal species,
and has aided the study of developmental processes and many other natural phe-
nomena; and computing with natural materials has given new insights into how
to complement or supplement computer technology as known currently.

Natural computing is highly relevant for today’s computer scientists, engi-
neers, biologists, and other professionals because it offers alternative, and some-
times brand new, solutions to problems yet unsolved or poorly resolved. It has
also provided new ways of seeing, understanding, and interacting with nature.
There 1s still much to come and much to do in such a broad and young field of
investigation as natural computing. However, we now know for sure that this 1s
not only a promising field of research; its many applications, outcomes, and per-
spectives have been affecting our lives, even if this 1s not perceived by most
people. And this 1s just the beginning. Welcome to the natural computing age!

1.7 QUESTIONS

1. Find evidences in the literature that support the idea that birds 1n a flock do
not follow a leader.

2. The movie “A Bug’s Life” by Disney/Pixar starts with an ant colony har-

vesting for food. But instead of harvesting food for the colony, the ants
were harvesting for the grasshoppers, who obliged them to do so. The long
line of ants carrying food is stopped when a leaf falls down on their way,
more precisely on their frail. The ants in front of the line just interrupted by
the leaf start despairing, claiming they do not know what to do: that is,
where to go. Another “more instructed’ ant suggests that they might walk
around the leaf thus keeping their harvesting. One ant even claims that such
catastrophe was not nearly as bad as the “twig of 93”.
Based upon this brief summary of the beginning of the movie “A Bug’s
Life”, what can you infer about the way ants forage and harvest food, more
specifically, why did the ants loose their direction when the leaf fell in their
trail?
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CHAPTER?2

CONCEPTUALIZATION

“Adaptationism, the paradigm that views organisms as complex adaptive machines
whose parts have adaptive functions subsidiary to the fitness-promoting function of the
whole, is today about as basic to biology as the atomic theory is to chemistry. And about
as controversial.”

(D. Dennett, Darwin’s Dangerous Idea: Evolution and the Meanings of Life, Penguin
Books, 1995, p. 249)

“Nothing is wrong with good metaphors so long as we don't take them as reality.”
(C. Emmeche, 1997, Aspects of complexity in life and science, Philosophica, 59(1), pp.
41-68.)

“The complexity of a model is not required to exceed the needs required of it.”
(B. S. Silver, The Ascent of Science, 1998, Oxford University Press, p. 79)

2.1 INTRODUCTION

Perhaps the most remarkable characteristic of natural computing is the en-
compassing of a large variety of disciplines and fields of research. Ideas,
principles, concepts, and theoretical models from biology, physics, and chemis-
try are most often required for a good understanding and development of natural
computing. This mterdisciplinarity and multidisciplinarity also involves the use
of concepts that aid in the description and understanding of the underlying phe-
nomenology. However, most of these concepts are made up of ‘slippery” words;
words whose meaning can be different under different domains and words
whose definitions are not available or agreed upon yet.

Therefore, this chapter presents, in a descriptive manner, what 1s meant by
words such as adaptation, complexity, agents, self-organization, emergence, and
fractals. Very few closed definitions will be provided. Instead, descriptive ex-
planations sufficient for the conceptualization and comprehension of the basic
ideas incorporated in natural computing will be given. Some popular science
books will be cited because they introduce important topics using a terminology
with little formalism and mathematics. Some more technical literature may
eventually be cited, but most of it can be readily reached with a quick web
search.

For those readers anxious to put their hands at work with some computational
and algorithmic description of natural computing, this chapter can be temporar-
ily skipped. However, readers are strongly encouraged to go through this chapter
thoroughly, because i1t will give him/her better philosophical basis and insights
into concepts that will be widely used throughout the book. This chapter will
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also provide a better understanding of what is meant by and what is behind of
many of the phenomena, processes, and systems studied in natural computing.
Finally, this chapter makes use of the many concepts reviewed to start our dis-
cussion of nature, which led to the development of natural computing. Several
natural systems and processes are used to illustrate the meaning of the concepts
investigated here. Most of these examples from nature will be returned to in later
chapters.

2.1.1. Natural Phenomena, Models, and Metaphors

All the approaches discussed in this volume are rooted on and sometimes en-
hanced by their natural plausibility and inspiration. The focus is on how nature
has offered inspiration and motivation for their development. However, all these
approaches are very appealing to us mainly for computational reasons, and they
also may help us study and understand the world we inhabit, and even to create
new worlds, new forms of life, and new computing paradigms. They hold out
the hope of offering computationally sufficient accurate mechanistic accounts of
the natural phenomena they model, mimic, or study, almost always with a view
of computing, understanding, and problem solving. They have also radically
altered the way we think of and see nature; the computational beauty and use-
fulness of nature.

Modeling is an integral part of many scientific disciplines and lies behind
great human achievements and developments. Most often, the more complex a
system, the more simplifications are embodied in its models. The term model
can be found in many different contexts and disciplines meaning a variety of
different things. Trappenberg (2002) has defined “models [as] abstractions of
real world systems or implementations of a hypothesis in order to investigate
particular questions or to demonstrate particular features of a system or a hy-
pothesis.” (Trappenberg, 2002; p. 7) It corresponds to a (schematic) description
of a system, theory, or phenomenon, which accounts for its known or inferred
properties and that may be used for further study of its characteristics. Put in a
different form, models can be used to represent some aspect of the world, some
aspect of theories about the world, or both simultaneously. The representative
usefulness of a model lies in its ability to teach us something about the phe-
nomenon it represents. They mediate between the real world and the theories
and suppositions about that world (Peck, 2004).

The critical steps in constructing a model are the selection of salient features
and laws governing the behavior of the phenomena under investigation. These
steps are guided by metaphor and knowledge transfer (Holland, 1998). How-
ever, for purely practical reasons, many details are usually discarded. In the par-
ticular case of natural computing, models are most often simple enough to un-
derstand, but rich enough to provide (emergent) behaviors that are surprising,
interesting, useful, and significant. If all goes well, what may commonly be the
case, the result may allow for the prediction and even reproduction of behaviors
observed in nature, and the achievement of satisfactory performances when a
given function is required from the model.
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The word metaphor comes from the Greek for ‘transference’. It corresponds
to the use of language that assigns one thing to designate another, in order to
characterize the latter in terms of the former. Metaphors have traditionally been
viewed as implicit comparisons. According to this view, metaphors of the form
X is a Y can be understood as X is like Y. Although metaphors can suggest a
comparison, they are primarily attributive assertions, not merely comparisons
(Wilson and Keil, 1997 p. 535-537). For example, to name a computational tool
developed with inspiration in the human brain an ‘artificial neural network’ or a
‘neurocomputing device’ corresponds to attributing salient properties of the hu-
man brain to the artificial neural network or neurocomputing device. The first
part of this book, dedicated to computing inspired by nature, 1s sometimes re-
ferred to as computing with biological metaphors (Paton, 1994) or biologically
inspired computing (de Castro and Von Zuben, 2004).

The use of metaphors from nature as a means or inspiration to develop com-
putational tools for problem solving can also be exemplified by the development
of ‘artificial immune systems’ for computer protection against viruses. One
might intuitively argue: “if the human immune system is capable of protecting
us against viruses and bacteria, why can’t I look into its basic functioning and
try to extract some of these ideas and mechanisms to engineer a computer im-
mune system?” Actually, this type of metaphor has already been extracted, not
only by academic research institutions, but also by leading companies in the
computing area, such as IBM (Chapter 6). There 1s, however, an important dif-
ference between a metaphor and a model. While models are more concerned
with quantitatively reproducing some phenomena, metaphors are usually high-
levels abstractions and inspirations taken from a system or process in order to
develop another. Most metaphors are basically concerned with the extraction or
reproduction of qualitative features.

A simple formula, a computer simulation, a physical system; all can be mod-
els of a given phenomenon or process. What 1s particularly important, though, 1s
to bear in mind what are the purposes of the model being created. In theoretical
biology and experimental studies, models may serve many purposes:

e  Through modeling and identification it is possible to provide a deeper and
more quantitative description of the system being modeled and its corre-
sponding experimental results.

e Models can aid in the critical analysis of hypotheses and in the under-
standing of the underlying natural mechanisms.

e Models can assist in the prediction of behaviors and design of experi-
ments.

e Models may be used to simulate and stimulate new and more satisfactory
approaches to natural systems, such as the behavior of insect societies and
immune systems.

¢ Models may allow the recovery of information from experimental results.

An experiment can be considered as a procedure performed in a controlled en-
vironment for the purpose of gathering observations, data, or facts, demonstrat-
ing known facts or theories, or testing hypotheses or theories. Most biological
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experiments are usually made in vivo, within a living organism (e.g., rats and
mice), or in vitro, in an artificial environment outside the living organism (e.g., a
test tube).

There 1s a significant conceptual difference between experiment, simulation,
realization, and emulation. In contrast to experiments, simulations and realiza-
tions are different categories of models (Pattee, 1988). Simulations are meta-
phorical models that “stand for’ something else, and may cover different levels
of fidelity or abstraction. They can be performed by physical modeling, by writ-
ing a special-purpose computer program, or by using a more general simulation
package that is usually still aimed at a particular kind of simulation. They can be
used, for instance, to explore theories about how the real-world functions based
on a controlled medium (e.g., a computer). As an example, the simulation of a
car accident can be performed by specifying the place and conditions in which
the car was driven and then using a given medium (e.g., the computer) to run the
simulation. Computer simulation is pervasive in natural computing. It has been
used to design problem-solving techniques that mimic the behavior of several
biological phenomena (Chapter 3 to Chapter 6), it has served to drive synthetic
environments and virtual worlds (Chapter 7 and Chapter 8), and it has been used
to simulate DNA computers (Chapter 9).

The realization of a system or organism corresponds to a literal, material
model that implements certain functions of the original; it is a substantive func-
tional device. Roughly speaking, a realization is evaluated primarily by how
well it can function as an implementation of a design specification, and not in
relation to the goodness of the measurements (mappings) they perform. A sys-
tem or function 1s used to realize another when one performs in exactly the same
way as another (Pattee, 1988; Mehler, 2003). To emulate a system is to imitate
or reproduce 1ts functions using another system or medium. The emulating sys-
tem has to perform the same functions of the emulated system in the way the
latter does. A typical example in computer science is the emulation of one com-
puter by (a program running on) another computer. You may emulate a system
as a replacement for the system, whereas you may simulate a system 1if the goal
1s, for instance, simply to analyze or study it.

Natural computing approaches are aimed at simulating, emulating, and some-
times realizing natural phenomena, organisms, and processes with distinct goals.
The metaphorical representation of simulations makes them suitable for design-
ing problem solving techniques and mimics of nature. Realizations of nature, on
the contrary, would be the primary target of the so-called strong artificial life
(Chapter 8). It 1s also important to acknowledge that, as most natural computing
approaches to be studied here usually have not the same goals as models, they
have the advantages of being explicit about the assumptions and relevant proc-
esses incorporated, allowing for a closer control of the variables involved, and
providing frameworks to explain a wide range of phenomena.

Due mainly to these differences in goals and levels of details incorporated,
most of the highly simplified models discussed in this volume are usually treated
as metaphors, simulations, or simple abstractions of natural phenomena or
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processes. In addition, natural computing techniques are usually based upon a
different modeling approach. The theoretical models used in biological sciences
are based, in most cases, on ordinary differential equations (ODE) or Monte
Carlo simulations. For example, when theoretical biologists want to create a
model of an army ant, they use some rule of thumb such as “the more phero-
mone (a chemical released by ants) an ant detects, the faster it runs”. This rule
would be translated into an equation of the type dx/df = kP, where dx/dt is the
speed (distance change, dx, divided by time change, df) of the ant, & 1s a constant
of proportionality, and P is the pheromone level. This simple formula captures
the essence of ant movement as described.

Despite the differences in approach, level of details, and accuracy, it is unde-
niable, and this will become clearer throughout the text, that the inspiration from
nature and the relationship with it is the core of natural computing. Metaphors
are important approaches not only for the creation of useful and interesting
tools, but they may also aid the design of more accurate models and a better un-
derstanding of nature. Thus, it is not surprising that many researchers in natural
computing call their products models instead of metaphors.

2.1.2. From Nature to Computing and Back Again

In most cases, the first step toward developing a natural computing system 1s to
look at nature or theoretical models of natural phenomena in order to have some
insights into how nature 1s, works, and how it behaves. In other cases, it might
happen that you have a given problem at hand, and you know some sort of natu-
ral system solves a similar problem. A good example is the immune system
metaphor for computer security mentioned above. Another classical example 1s
the neural network metaphor: if there are brains that allow us to reason, think,
process visual information, memorize, etc., why can I not look into this system
and try to find its basic functioning mechanisms in order to develop an (intelli-
gent) “artificial brain’?

The problem with the extraction of metaphors and inspiration from nature 1s
that 1t 1s usually very difficult to understand how nature works. In the particular
case of the brain, though some basic signal transmission processes might be al-
ready known (and many other facts as well), it is still out of human reach to
fully uncover its mysteries, mainly some cognitive abilities such as hate and
love. The use of technological means (e.g., computers) to simulate, emulate or
reproduce natural phenomena may also not be the most suitable approach.
Would computers, such as the ones we have nowadays, be suitable to build an
‘artificial brain” or an “artificial organism’? Can we simulate “wetware’ with the
current ‘hardware’? Furthermore, even if we do know how some natural proc-
esses work, would it still be suitable to simply reproduce them the way they are?
For example, we know that most birds are capable of flying by flapping wings,
however airplanes fly using propellers or turbines. Why do airplanes not fly by
flapping wings?

Last, but not least, sometimes looking at nature or theoretical studies may not
be sufficient to give us the necessary insight into what could be done in compu-
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ting and engineering with these phenomena. We have alreadv seen, in Chapter 1,
that the clustering of dead bodies in ants may result in computer algorithms for
solving clustering problems, and that simple behavioral rules applied to many
virtual birds result in flock-like group behaviors. What if I tell you that the be-
havior of ants foraging for food resulted in powerful algorithms for solving
combinatorial optimization problems? Also, what if T tell you that the behavior
of ant prey retrieval has led to approaches for collective robotics? Can you have
an 1dea of how these are accomplished without looking at the answers in Chap-
ter 57

Due to all these aspects, designing novel natural computing systems may not
be a straightforward process. But this book is not about how to design new natu-
ral computing devices, though some insights about it will certainly be gained.
Instead, it focuses on how the main natural computing systems available nowa-
days were motivated, emerged, and can be understood and designed. Designing
natural computing systems 1s basically an engineering task; that is, physical,
mechanical, structural, and behavioral properties of nature are made useful to us
in computational terms. They can become new problem-solving techniques, new
forms of (studying) nature, or new forms of computing. Each part of natural
computing, and its many branches, is rooted in some specific feature(s):

e Evolutionary algorithms were inspired by evolutionary biology.

o Artificial neural networks were mspired by the functioning of the nervous
system.

e  Swarm systems are based on social organisms (from insects to humans).

e Artificial immune systems extract ideas from the vertebrate immune sys-
tem.

e Fractal geometry creates life-like patterns using systems of interactive
functions, I.-systems, and many other techniques.

o Artificial life 1s based on the study of life on Earth to simulate life on
computers and sometimes develop synthetic forms of life.

e DNA computing is based on the mechanisms used to process DNA
strands 1n order to provide a new computing paradigm.

¢ Quantum computing is rooted on quantum physics to develop another

new computing paradigm.

Although it is generally difficult to provide a single engineering framework to
natural computing, some of its many branches allow the specification of major
structures and common design procedures that can be used as frameworks to the
design of specific natural computing techniques. For instance, evolutionary al-
gorithms can be designed by specifying a representation for candidate solutions
to a problem, some general-purpose operators that manipulate the candidate so-
lutions, and an evaluation function that quantifies the goodness or quality of
each candidate solution (Chapter 3). In artificial life, however, it is much harder
to provide such a framework. It will be seen that most artificial life (ALife) ap-
proaches reviewed here are based on the specification of usually simple sets of



Conceptualization 31

rules describing the behavior of individual agents. The remaining of the ALife
project will involve the modeling of the agents, environment, etc., which are not
part of the scope of this book.

2.2 GENERAL CONCEPTS

2.2.1. Individuals, Entities, and Agents

There is a body of literature about agents and agent-based systems. One of the
main themes of this book is collectivity; populations of individuals, insect socie-
ties, flocks of bird, schools of fish, herds of land animals, repertoires of immune
cells and molecules, networks of neurons, and DNA strands. What all these sys-
tems have in common is the presence of a number of individual entities or com-
ponents. When we model or study these systems, the individuals may go by the
generic name of agents. However, the words individuals, entities, components,
and agents are sometimes used interchangeably and with no distinction through-
out the text.

The term agent 1s currently used to mean anything between a mere subroutine
of a computer program and an intelligent organism, such as a human being. In-
tuitively, for something to be considered an agent, it must present some degree
of autonomy or identity: that is, it must, in some sense, be distinguishable from
its environment by some kind of spatial, temporal, or functional boundary. Tra-
ditionally, agent-based models are drawn on examples of biological phenomena
and processes, such as social insects and immune systems (Rocha, 1999). These
systems are formed by distributed collections of interacting elements (agents)
that work under no central control. From simple agents, who interact locally
following simple rules of behavior and responding to environmental stimuls, it 1s
possible to observe a synergistic behavior that leads to higher-level behaviors
that are much more intricate than those of individuals.

Agent-based research has a variety of definitions of what is an agent, each
hoping to explain one particular use of the word. These definitions range from
the simplest to the lengthiest ones. Here are some examples:

“An agent is anything that can be viewed as perceiving its environment
through sensors and acting upon that environment through effectors.” (Rus-
sell and Norvig, 1995)

“Perhaps the most general way in which the term agent is used 1s to de-
note a hardware or (more usually) software-based computer system that en-
jovs the following properties: autonomy, social ability, reactivity, and pro-
activeness.” (Wooldridge and Jennings, 1995) [Summarized definition, for
the full version please consull the cited reference]

“An autonomous agent 1s a system situated within and part of an envi-
ronment that senses that environment and acts on it, over time, in pursuit of
its own agenda and also so as to effect what it senses in the future.” (Frank-
lin and Graesser, 1997)
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(a) ®

Figure 2.1: Examples of agents. (a) Pictorial representation of biological agents (bird,
neuron, termite, and ant). (b) Physical agent (the AIBO ERS-210 robot by Sony™).

Therefore, an agent can be understood as an entity endowed with a (partial)
representation of the environment, capable of acting upon 1itself and the envi-
ronment, and also capable of communicating with other agents. Its behavior is a
consequence of its observations, knowledge, and its interactions with other
agents and the environment. Agents can be of many types, including biological
(e.g., ants, termites, neurons, immune cells, birds, etc.), physical (e.g., robots),
and virtual agents (e.g., a computer algorithm, Tamagotchi, etc.). as illustrated in
Figure 2.1.

2.2.2. Parallelism and Distributivity

There are several well-known examples involving the capability of processing
more than one thing at the same time. In the natural world, parallel processing 1s
evident in insect societies, brain processing, immune functioning, the evolution
of species, and so forth. All these examples will be studied in this book.

In order for evolution to occur, there must be a number of individuals in a
population competing for limited resources. These individuals suffer genetic
variation and those more fit (adapted) to the environment have higher probabili-
ties of survival and reproduction. All the individuals in the population play 1m-
portant roles in exploring the environment and sometimes exchanging (genetic)
information, thus producing progenies more adapted to the life in a spatial loca-
tion.

In insect societies, in particular in ant colonies, a colony of ants has individu-
als assigned to various tasks, such as harvesting food, cleaning the nest, and car-
ing for the queen. Termites, bees, and wasps also perform similar tasks in a dis-
tributed way: there are individuals allocated for different tasks. All insects in a
colony work in parallel in a given task, but they may switch tasks when needed.
For instance. some worker ants may be recruited for battle when the nest 1s be-
ing invaded.
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In immune systems, a large variety and number of cells are involved in an
immune response. When a virus infects a cell, some specialized immune cells,
named T-cells, recognize fragments of this virus presented by a molecular com-
plex of another specialized antigen presenting cell. This recognition triggers the
action of many other immune cells to the site of infection. In addition, several
other cells are performing the same and other processes, all at once in a distrib-
uted and parallel form.

In the human nervous system, a huge number of neurons are involved in proc-
essing information at each time instant. Talking while driving, watching TV
while studying, hearing a name while having a conversation with someone in the
middle of a party (a phenomenon called the ‘cocktail party effect”), all these are
just samples of a kind of parallel processing. Who does not know about the joke
of not being able to walk while chewing gum? The vast number of neurons we
have endow us with this capability of processing multiple information from mul-
tiple sensors at the same time.

What is surprising about each of the individual processes from the examples
above 1s that they are all a product of a large number of elements and processes
occurring in parallel. At the lowest level of analysis, evolution requires a large
number of individuals to allow for a genetic variety and diversity that ultimately
result in a higher adaptability; insect colonies are composed of thousands, some-
times millions, of insects that work in concert to maintain life in the colony:
immune systems are composed of approximately 10" lymphocytes (a special
type of immune cell); and the human brain contains around 10! nervous cells.
Each of these individual agents contributes its little bit to the overall global ef-
fect of evolution, maintenance of life in the colony (insects), and the body (im-
mune systems), and thought processes and cognition (nervous system).

From a biological and computational perspective, all the end results discussed
are going to be emergent properties of the parallel and distributed operations of
individual entities. All these systems can be termed parallel-distributed systems
(PDS). Rumelhart and collaborators (Rumelhart et al., 1986; McClelland et al.,
1986) have coined the term parallel distributed processing (PDP) to describe
parallel-distributed systems composed of processing elements, in particular neu-
rons. They used this terminology to refer to highly abstract models of neural
function, currently known as artificial neural networks (ANN). These will be
discussed in more detail in Chapter 4 under the heading of Neurocomputing.
PDP networks are thus a particular case of parallel-distributed systems.

2.2.3. Interactivity

A remarkable feature of natural systems is that individual agents are capable of
interacting with one another or the environment. Individual organisms interact
with one another in variety of forms: reproductively, symbiotically, competi-
tively, 1n a predator-prey situation, parasitically, via channels of communication,
and so on. At a macro level, an important outcome of these interactions is a
struggle for limited resources and life. Individuals more adapted to the (local)
environment tend to survive and mate thus producing more progenies and
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propagating their genetic material. Genetic variation together with the selection
of the fittest individuals leads to the creation of increasingly fitter species. Be-
sides, interactivity allows for the emergence of self-organized patterns.

Interactivity 1s an important mean nature has to generate and maintain life.
Complex systems, organisms, and behaviors emerge from interacting compo-
nents. For instance, take the case of genes, known to be the basic functional ele-
ments of life. Researchers have created genetically modified organisms in which
a single gene has been deleted or blocked, a process known as fnockout. In some
situations, these researchers have been surprised to find that some other gene(s)
can take over its whole function or at least part of it. Similar cases are constantly
being reported in the news where people with damaged brains, from accidents
for example, are capable of recovering some of their lost functions after often
long periods of treatment and recovery. It is observed, in most of these cases,
that other portions of the brain assume the functions previously performed by
the damaged areas. Interactions, thus, are not only necessary for the complexity,
diversity, and maintenance of life. but it also leads to emergent phenomena and
behaviors that cannot be predicted by simply looking at discrete components.

In all the main systems studied in this book, several types of interactions can
be observed. For instance, immune cells and molecules communicate with one
another and foreign agents through chemical messengers and physical contact;
insects may also communicate with one another via chemical cues, dancing
(e.g., bees dance to indicate where there is food to the other bees in the nest) or
physical contact (e.g., antennation); and neurons are known to be connected with
one another via small portions of its axons known as synapses. All these com-
munication and contact means allow for the interaction of individual agents in
the many systems. The interactions between individuals can be basically of two
types: direct and indirect. One important example of direct interaction, namely
connectivity, and one important example of indirect mteraction, namely stig-
mergy, will be discussed m the next two sections. Other important examples of
direct interaction are reproduction and molecular signaling, and these will be
specifically discussed in the next few chapters.

Connectivity

Connectionist systems employ a type of representation whereby information is
encoded throughout the nodes and connections of a network of basic elements,
also called units. Their content and representational function 1s often revealed
only through the analysis of the activity patterns of the internal units of the sys-
tem. Although the term connectionism appeared in the mid 1980s to denote net-
work models of cognition based on the spreading activation of numerous simple
units (cf. Rumelhart et al., 1986; McClelland et al., 19806), it can refer to any
approach based on mterconnected elements. These systems are sometimes re-
ferred to as networks.

The peculiarity of connectionist systems is due to several factors. The connec-
tions establish specitfic pathways of interaction between units; two units can only
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interact if they have a connection linking them. The connection is also in most
cases an active element of interaction, i.e., it not only specifies who interacts
with whom, but it also quantifies the degree of this interaction by weighting the
signal being transmitted. The direct interaction via connections also results in a
structured pattern for the system that may, for instance, reflect the structural
organization of the environment in which the network is embedded. Networks
are also very successful examples of parallel-distributed processors, for instance,
neural networks and immune networks. These two types of networks will be
fully explored in this book in Chapter 4 and Chapter 6, respectively.

Stigmergy

Grassé (1959) introduced the concept of stignmergy as a means to refer to how
the members of a termite colony of the genus AMacrotermes coordinate nest
building. He realized how individual termites could act independently on a
structure without direct communication or interactions. This process was termed
indirect social interactions to describe the same mechanism of indirect commu-
nication among bees in a bee colony (Michener, 1974).

The concept of stigmergy provides a general mechanism that relates individ-
ual and colony-level behaviors: individual behaviors modify the environment,
which in turn modifies the behavior of other individuals. The environment thus
mediates the communication of individuals, 1.¢., there is an indirect communica-
tion, mstead of direct, by means such as antennation, trophalaxis (food or liquid
exchange), mandibular contact, visual contact, and so on (Bonabeau et al.,
1999). Self-organization is thus made possible due to the intensity of the stig-
mergic interactions among termites that can adopt a continuum of interactions.

Grassé (1959) gave the original example to illustrate stigmergy involving nest
building in termite colonies (Figure 2.2). He observed that termite workers are
stimulated to act during nest building according to the configuration of the con-
struction and of other workers. Termite workers use soil pellets, which they im-
pregnate with a chemical substance known as pheromone, to build pillars. Ini-
tially, termites deposit pellets in a random fashion until one of the deposits
reaches a critical size. Then, il the group of builders is large enough and the pil-
lars start to emerge, a coordination phase begins. The accumulation of pellets
reinforces the attractivity of deposits due to the diffusing pheromone emitted by
the pellets. Therefore, the presence of an initial deposit of soil pellets stimulates
workers to accumulate more pellets through a pesitive feedback or sell-
reinforcing mechanism (Dorigo et al., 2000).

It is possible to extend the idea of stigmergy to other domains (Holland and
Melhuish, 1999). It can be seen as an even more impressive and general account
of how the interaction of simple entities, such as ants or termites, can produce a
wide range of highly organized and coordinated behaviors and behavioral out-
comes, simply acting and exploiting the influence of the environment. By ex-
ploiting the stigmergic approach to coordination, researchers have been able to
design a number of successful algorithms and systems that can be applied to
several domains, such as discrete optimization, clustering, and robotics.
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Figure 2.2: Termite mound building. (a) Pellets are initially deposited randomly in space.
If the group of builders is large enough and pillars start to emerge (b), then a coordinated
building phase starts (c).

Chapter 5 reviews some of these applications focusing on those systems in-
spired by the behavior of ants. Chapter 8 also provides some examples of stig-
mergic interactions such as the wasp nest building behavior.

2.2.4. Adaptation

Adaptation can be defined as the ability of a system to adjust its response to
stimuli depending upon the environment. Something, such as an organism. a
device, or a mechanism, that is changed (or changes) so as to become more suit-
able to a new or a special application or situation, becomes more adapted to the
new application or situation. The use of the word adaptation 1s, in many cases,
related with evelution (cf. Wilson and Keil, 1999; p. 3—4). However, many other
important concepts in natural computing, such as learning and self-organization,
can also be viewed as types of, or resulting from, adaptation mechanisms.

Learning

Learning may be viewed as corresponding to the act, process, or experience of
gaining knowledge, comprehension, skill, or mastery, through experience, study,
or interactions. Learning systems are those able to change their behavior based
on examples in order to solve information-processing demands. An important
virtue of adaptation in learning is the possibility of solving information process-
ing tasks and the abulity to cope with changing (dynamic) environments.

A consideration of what it takes to learn reveals an important dependence on
gradedness (the passing through successive stages of changes) and other aspects
of natural mechanisms (O’Reilly and Munakata, 2000). Learning, or more gen-
erally adapting, can be viewed as a synonym for changing with the end result of
knowledge (memory) acquisition. When a system learns 1t changes its pattern of
behavior (or another specific feature), such as the way information is processed.
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It is much easier to learn if the svstem responds to these changes in a graded,
proportional manner, instead of radically altering the way it behaves.

These graded changes allow the system to try out a number of different pat-
terns of behavior, and get some kind of graded proportional indication of how
these changes are affecting the system’s interaction with the environment. By
exploring several little changes, the system can evaluate and strengthen those
that improve performance, while abandoning or weakening those that do not.
There are, however, other types of learning procedures in nature that are more
discrete than the graded one just described. For instance, it is believed that there
are some specialized areas in the brain particularly good at “memorizing’ dis-
crete facts or events.

In contrast to some beliefs, learning does not depend purely on consciousness
and also does not require a brain. Insect societies learn how to forage for food,
and our immune systems learn how to fight against disease-causing agents - a
principle explored in the vaccination procedures. Even evolution can be viewed
as resulting in learning, though evolutionary systems are more appropriately
characterized as adaptive systems in the context of natural computing.

Neurocomputing models, and others based on computational neuroscience,
provide useful accounts of many forms of learning, such as graded learning and
memorization. Chapter 4 reviews some of the standard and most widely spread
neurocomputing techniques, and provides a discussion about the main learning
paradigms in this field, namely supervised, unsupervised, and reinforcement
learning.

Evolution

In its simplest form, the theory of evolution is just the idea that life has changed
over time, with younger forms descending from older ones. This 1dea existed
well before the time of Charles Darwin, but he and his successors developed 1t
to explain both the diversity of life and the adaptation of living things to their
environment (Wilson and Keil, 1999; p. 290-292).

In contrast to learning, evolution requires some specific processes to occur.
First, evolution involves an individual or a population of individuals that repro-
duce and suffer genetic variation followed by natural selection. Without any one
of these characteristics, there is no evolution. Therefore, there cannot be evolu-
tion if there is a single individual, unless this individual is capable of asexually
reproducing. Also, some variation has to occur during reproduction so that the
progeny brings some ‘novelty’ that allows it to become more adapted to the en-
vironment. Finally, natural selection is responsible for the maintenance of the
genetic material responsible for the fittest individuals to the environment; these
will have survival and reproductive advantages over the others, less fit individu-
als. The outcome of evolution, like the outcome of learning, is a better adaptabil-
ity to life and the environment.

Both, the evolved genetic configuration of organisms together with their

learning capabilities make important contributions to their adaptability to the
environment. But perhaps only m the context of learning the genetic encoding
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can be fully understood, much as the role of DNA itself in shaping the pheno-
type must be understood in the context of emergent developmental processes.

2.2.5. Feedback

Essentially, feedback occurs when the response to a stimulus has an effect of
some kind on the original stimulus. It can be understood as the return of a por-
tion of the output of a process or system to the input, especially when used to
maintain performance or to control a system or process. The nature of the re-
sponse determines how the feedback is labeled: negative feedback is when the
response diminishes the original stimulus (they go in the opposite direction); and
positive feedback is when the response enhances the original stimulus (they go
in the same direction). An important feature of most natural systems described
in this text 1s that they rely extensively on feedback, both for growth and self-
regulation.

Take the case of the human brain as an example of extensive feedback loops
and their importance. The brain can be viewed as a massive network of neurons
interconnected via tiny gaps known as synapses. Any brain activity, such as
thinking of a word or recognizing a face, triggers a vast array of neural circuitry.
FEach new brain activity triggers a new array, and an unimaginably large number
of possible neuronal circuits go unrealized during the lifetime of an individual.
Beneath all that apparent diversity, certain circuits repeat themselves over and
over again. All these feedback and reverberating loops are believed to be neces-
sary for learning, and are consequences of the high interconnectivity of the
brain.

Positive Feedback

Positive feedback 1s a sort of self-reinforcing (growth) process in which the
more an event occurs, the more it tends to occur. Take the case of the immune
system as an example. When a bacterium invades our organism, it starts repro-
ducing and causing damage to our cells. One way the immune systems find to
cope with these reproducing agents 1s by reproducing the immune cells capable
of recognizing these agents. And the more cells are generated, the more cells can
be generated. Furthermore, the immune cells and molecules release chemicals
that stimulate other immune cells and molecules to fight against the disease-
causing agent. Therefore, the response of some immune cells provides some sort
of positive feedback to other immune cells reproduce and join the pool of cells
involved in this immune response.

The termite mound building behavior discussed previously is another example
of a positive feedback mechanism. The more soil pellets are deposited in a given
portion of the space, the more pellets tend to be deposited in that portion be-
cause there 1s more pheromone attracting the termites (Iigure 2.3). But these
self-reinforcing (positive feedback) processes have to be regulated by negative
Jeedback processes, otherwise the systems would go unstable or the resources
would be depleted.
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More termites

More pheromeone

Figure 2.3: Example of positive feedback.

There are several other examples of positive feedback in nature:

Human breeding: the more humans reproduce, the more humans exist to
reproduce.

Feeding the baby: a baby begins to suckle her mother’s nipple and a few
drops of milk are released, stimulating the production and release of more
milk.

Avalanche: an avalanche starts at rest and, when disturbed, accelerates
quickly towards its end pomt at the base of a slope.

Autocatalysis: autocatalysis occurs in some digestive enzymes such as
pepsin. Pepsin is a protein-digesting enzyme that works in the stomach.
However, the stomach does not secrete pepsin; it secretes an inactive
form, called pepsinogen. When one pepsinogen molecule becomes acti-
vated, it helps to activate other pepsinogens nearby, which in turn can ac-
tivate others. In this way, the number of active pepsin molecules can in-
crease rapidly by using positive feedback.

Giving birth: while giving birth, the more uterine contractions a mother
has, the more it 1s stimulated to have, until the child 1s born.

Scratching an itch: scratching an itch makes it more infected and dam-
aged, and thus more itchy.

Ripening fruits: a ripening apple releases the volatile plant hormone eth-
ylene, which accelerates the ripening of unripe fruit in its vicinity; so
nearby fruits also ripen, releasing more cthylene. All the fruits become
quickly ripe.

Negative Feedback

Negative feedback by contrast, plays the role of regulating positive feedback so
as to maintain a(n) (dynamic) equilibrium of the medium. It refers to change in
the opposite direction to the original simulus. The thermostat 1s one of the most
classic examples of negative feedback. It takes the reading of a room’s tempera-
ture, measures that reading according to a desired setting, and then adjusts its
state accordingly. If the room’s temperature is too low, more hot air 1s allowed
to flow into the room; else if the temperature is too high, then more cold air
flows into the room (Figure 2.4).
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Figure 2.4: Example of negative feedback.

Negative feedback is at the heart of every stable, self-regulating svstem. If a
company raises prices too high, people stop buying, and soon the company cuts
the price to increase sales. In the immune system example given above, after the
infection 1s successfully eliminated, specific immune cells are stimulated to re-
lease other chemical substances that suppress the replication of immune cells,
thus ceasing the immune response. Without this negative feedback mechanism,
death by uncontrolled cell reproduction would be inevitable. And without the
positive feedback, death from infection would be inevitable.

There are also plenty of examples of negative feedback in nature:

e FKcosystems: in an ecosystem composed of, say rabbits and grass, when
there 1s plenty of grass to feed the rabbits, they tend to reproduce with
greater rates. But as there are more rabbits in the environment, the more
grass will be eaten, and the less grass will be left as food; the amount of
grass provides a feedback to the rabbits birth rate.

e Homeostasis: blood glucose concentrations rise after eating a meal rich in
sugar. The hormone insulin is released and 1t speeds up the transport of
glucose out of the blood and mto selected tissues, decreasing blood glu-
cose concentrations.

e Metabolism: exercise creates metabolic heat that raises the body tempera-
ture. Cooling mechanisms such as vasodilatation (flushed skin) and
sweating begin, decreasing the body temperature.

o Climate theory: the curvature of the earth helps making it so that conti-
nental glaciers expanding equator ward experience strong sunlight and
tend to melt. Another example 1s the tendency for continental glaciers to
make cold, high-pressure regions, which do not favor further snowfall.

2.2.6. Self-Organization

An mmportant question in biology, physics, and chemistry 1s “Where does order
come from?” The world abounds with systems, organisms, and phenomena that
maintain a high internal energy and organization in seeming defiance of the laws
of physics (Decker, 2000). Water particles suspended in air form clouds; a social
insect grows from a single celled zygote into a complex multicellular organism
and then participates in a structured social organization; birds gather together in
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a coordinated flock; and so forth. What is so fascinating is that the organization
seems to emerge spontaneously from disordered conditions, and it does not ap-
pear to be driven solely by known physical laws or global rules. Somehow, the
order arises from the multitude of interactions among the simple parts. Self-
organization may also go by the name ‘emergent structuring’, ‘self-assembly’,
‘autocatalysis’, and ‘autopoiesis’, though most of these concepts have some
slight differences to the self-organization concept provided here (see Project 3).

Self-organization refers to a broad range of pattern-formation processes in
both physical and biological systems, such as sand grains assembling into rip-
pled dunes, chemical reactants forming swirling spirals, cells making up highly
structured tissues, and fishes joining together in schools. A basic feature of these
diverse systems is the means by which they acquire their order and structure. In
self-organizing systems, pattern formation occurs through interactions internal
to the system, without intervention by external directing influences. As used
here, a pattern corresponds to a particular, organized arrangement of objects in
space or time. Examples of biological behavioral patterns include a school of
fish, a raiding column of army ants, the synchronous flashing of fireflies, and the
complex architecture of a termite mound (Camazine et al., 2001). But self-
organization does not only affect behavioral patterns, it 1s also believed to play a
role in the definition of patterns. such as shapes, and the coating of several ani-
mals (see Figure 2.5). In these cases, it is believed that not only the genetic code
of these animals determine their physical expressed characteristics, some self-
organized processes may also be involved.

The concept of self-organization can also be conveyed through counterexam-
ples. A system can form a precise pattern receiving instructions from outside,
such as a blueprint, recipe, orders, or signals. For instance, the soldiers marching
form a neat organized process that 1s not self-organized. Their sequence of steps,
direction of movement, velocity, etc., are all dictated by specific instructions. In
such cases, the process is organized but not self-organized. It is less obvious,
however, to understand how a definite pattern can be produced in the absence of
such instructions.

The self-organized pattern formation in social systems is one of the main
themes of this book, and will become clearer and more exemplified along the
chapters. It will be seen that many social insects, such as ants, termites, and
bees, are capable of building extremely complex nests without following any
blueprint, recipe, leader, or template. It 1s interesting to note that, although all of
them have a queen (the queen ant, the queen termite, and the queen bee), queens
are basically involved in reproduction, mainly when the colony size is very
large.

There is even an interesting historical fact about the queen bee. Until the late
19"™ century, in a time when men were considered superior to women, queen
bees were called kings, because people could not accept that anything so well
organized could be run by females. Although females could actually run the
colony, it 1s now known that, in most cases, the main role of the queens is to lay
eggs. Even more surprising, such complex patterns of behavior, architecture
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designs, and foraging and hunting strategies, do not require any global control or
rule whatsoever; they are amazing self-organized undertakings.
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Figure 2.5: Animal patterns believed to involve self-organized pattern formation. (a)
Polygonal shapes on the shell of a turtle. (b) Stripes coating the tiger skin. (¢) Stripes in
the 1guana’s tail.
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Characteristics of Self-Organization

Self-organization refers to spontaneous ordering tendencies sometimes observed
in certain classes of complex systems, both natural and artificial. Most self-
organized systems present a number of features:

Collectivity and interactivity: self-organizing systems (SOS) are usually
composed of a large number of elements that interact with one another
and the environment.

Dynamics: the multiplicity of interactions that characterize self-
organizing systems emphasize that they are dynamic and require contin-
ual interactions of lower-level components to produce and maintain struc-
ture.

Emergent patterns: SOS usually exhibit what appears to be spontaneous
order; the overall state of a self-organized system 1s an emergent prop-
erty.

Nonlinearities: an underlying concept in self-organization is nonlinearity.
The interactions of components result in qualitatively new properties that
cannot be understood as the simple addition of the individual contribu-
tions.

Complexity: most self-organizing systems are complex. The very con-
cepts of complexity and emergence are embodied in SOS. However, it 1s
more accurate to say that complex systems can be self-organizing sys-
tems.

Rule-based: most SOS are rule-based, mainly biological self-organizing
systems. Examples of rules governing natural self-organized systems
were already reviewed, such as the ones that result in dead body cluster-
ing in ant colonies. Further examples will be given in the following chap-
ters.

Feedback loops: positive and negative feedback contribute to the forma-
tion of self-organized processes by amplifying and regulating fluctuations
in the system.

Alternatives to Self-Organization

Self-organization is not the only means responsible for the many patterns we see
in nature. Furthermore, even those patterns that arise through self-organization
may involve other mechanisms, such as the genetic encoding and physical con-
straints (laws). Camazine et al. (2001) provide four alternatives to self-
organization:

Following a leader: a well-informed leader can direct the activity of the
group, providing each group member with detailed instructions about
what to do. For example, a captain in a battle field gives order to each
soldier relating to where to attack, etc.
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e Building a blueprint: a blueprint is a compact representation of the spatial
or temporal relationships of the parts ol a pattern. For instance, each mu-
sician of an orchestra receives a musical score that fully specifies the pat-
tern of notes within the composition and the tonal and temporal relation-
ships among them.

o Following a recipe: each member of the group may have a recipe, i.e., a
sequential set of instructions that precisely specify the spatial and tempo-
ral actions of the individual’s contribution to the whole pattern. For ex-
ample, you tell someone how to get to your place by specifying the pre-
cise sequence of streets he/she must follow. A blueprint is different from
a recipe because it does not specify how something is done, only what is
to be done.

e Templates: a template 1s a full-size guide or mold that specifies the final
pattern and strongly steers the pattern formation process. For example, a
company that makes car parts uses a template in which raw material is
poured in order to make the desired parts; each part has its own template.

2.2.7. Complexity, Emergence, and Reductionism

Complexity and emergence are some of the most difficult terms to conceptualize
in this chapter. Viewpoints and definitions of complexity (complex systems) and
emergence vary among researchers and disciplines. This section discusses only
some of the many perspectives; further and more complete studies can be found,
for instance, in (Emmeche, 1997; Baas and Emmeche, 1997), the special issue
on Complex Systems of the Science magazine (Science, 1999), on the Santa I'e
volumes on Artificial Life and Complex Systems (e.g., Cowan et al., 1994;
Morowitz and Singer, 1995), and on the Artificial Life and Complex Systems
journals (see Appendix C).

Complexity

To start the discussion, let us present a very simplistic idea that fits into the con-
text of natural computing: a complex system is a system featuring a large number
of interacting components whose aggregate activity is nonlinear (not derivable
by summing the behavior of individual components) and typically exhibit self-
organization (Morowitz and Singer, 1995; Holland, 1995; Gallagher and Ap-
penzeller, 1999 Rocha, 1999). Consider the case of an organism; say the human
body. Can you tully uncover how 1t works by looking at its major systems and
organs? The answer 1s no. Take an even more reductionist approach, and try to
understand the organism by analyzing all its cells and molecules. Can you un-
derstand it now? Not still. Some limitations of this more traditional reductionist
way of thinking will be discussed later. What 1s important here 1s the tact that
for complex systems we are unable to understand/explain their behavior by ex-
amining its component parts alone.

The studies on complexity suggest that not only the internal organization (e.g.,
the genetic code of a biological organism) of a system is sufficient for its full
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understanding, but also how the system itself and its component parts interact
with one another and the environment. The internal microstructure, self-
organizing capabilities, and natural selection are part of the most important as-
pects necessary for a better understanding of complex systems.

Perhaps the most remarkable contribution of complexity to science was the
perception that many natural phenomena and processes can be explained and
sometimes reproduced by following some basic and simple rules. For instance,
the most striking aspects of physics are the simplicity of its laws. Maxwell’s
equations, Schrodinger’s equations, and Hamiltonian mechanics can each be
expressed in a few lines. Many ideas that form the foundations of nature are also
very simple indeed: nature i1s lawful, and some basic laws hold everywhere. Na-
ture can produce complex structures even in simple situations and can obey sim-
ple laws even in complex situations (Goldenfeld and Kadanoft, 1999).

The five basic forms of investigating complex systems have already been dis-

cussed (Section 2.1.1), namely. experimentation, simulation, theoretical model-
ing, emulation, and realization. Experiments are necessary for raising a range of
information about how the natural organisms and processes behave. S8imulations
are often used to check the understanding, validate experimental results, or
simulate a particular system or process. Theoretical models are useful for the
understanding, complementation, prediction, critical analysis, and quantitative
and qualitative description of natural phenomena. Finally, realizations and emu-
lations are fundamental for the possibility of creating and studying (new) life-
like patterns and forms of life.

In order to explore the complexity inherent in nature, one must focus on the
right level of description. In natural computing, higher-levels of description are
usually adopted. Most systems developed are highly abstract models or meta-
phors of their biological counterparts. The meclusion of too many processes, de-
tails, and parameters, can obscure the desired qualitative understanding and can
also make the creation of computational systems based on nature unfeasible. For
instance, the artificial’ neural networks are based upon very simple mathemati-
cal models of neural units structured in a network-like architecture and subjected
to an iterative procedure of adaptation (learning). Despite all this simplicity, the
approaches to be presented still capture some important features borrowed from
nature that allow them to perform tasks and solve problems that, in most cases,
could not be solved satisfactorily with the previously existing approaches.

In Hidden Order, J. Holland (1995) starts with a discussion of how natural
(biological and social) systems are formed and self-sustained. Among the sev-
eral instances discussed, there is the case of the immune system with its numer-
ous cells, molecules and organs. Other examples range from the New York City
to the central nervous system. These systems are termed complex adaptive sys-
tems (CAS), in which the (complex) behavior of the whole 1s more than a simple
sum of individual behaviors. One of the main questions involved in complex
adaptive systems 1s that of how a decentralized system - with no central plan-
ning or control - 1s self-organized.



46 General Concepts

Despite the differences among all complex adaptive systems and organiza-
tions, in most cases, the persistence of the system relies on some main aspects:
1) interactions, 2) diversity, and 3) adaptation. Adaptability allows a system or
organism to become better fit to the environment or to learn to accomplish a
given task. Adaptability also has to do with the system’s capability of processing
information (or computing); another important feature of a complex adaptive
system. The major task of surviving involves the gathering of information from
the environment, its processing and responding accordingly. It is clear, thus, that
computing or processing information does not require a brain, ants, immune
systems, evolutionary processes, flocks of birds, schools of fish, and many other
complex adaptive systems present the natural capability of processing informa-
tion.

According to Holland, the choice of the name complex adaptive systems 1is
more than a terminology “It signals our intuition that general principles rule
CAS behavior, principles that point to ways of solving attendant problems.”
(Holland, 1995, p. 4). This turns back to the idea that there are general rules or
principles governing natural systems. The question, thus, can be summarized as
how to extract these general principles. This is also one of the main aims of this
book and will be illustrated and more clearly identified in all chapters.

Emergence

Important questions about complex adaptive systems rely upon the understand-
ing of emergent properties. At a very low level, how do living systems result
from the laws of physics and chemustry? That is, how do the genes specify the
unfolding processes of biochemical reactions and interactions that result in the
development of an organism? Are the genes the necessary and sufficient ingre-
dients to development? At higher levels, how insect societies are organized?
How do brains process information? How does the immune system cope with
disease-causing agents? Why does a flock of bird present such a coordinated
behavior? None of these questions can be answered without having in mind the
concept of emergence; that 1s to say, the properties of the whole are not pos-
sessed by, nor are they directly derivable from, any of the parts - a water particle
1s not a cloud, and a neuron is not conscious.

All the systems and processes discussed above present behaviors by drawing
upon populations of relatively “unintelligent’ individual agents, rather than a
single, “intelligent” agent. They are bottom-up systems, not lop-down. They are
complex adaptive systems that display emergent behaviors. Emergence 1s a con-
cept tightly linked with complex systems. In these systems, agents residing on
one scale or level start producing behaviors that lie scale(s) above them: social
insects create colonies; social animals create flocks, herds, and schools; immune
cells and molecules compose the immune system; neurons form brains, and so
forth. The movement from low-level rules to higher-level sophistication is what
we call emergence (Johnson, 2002).

One important feature most emergent systems and processes discussed in this
book share is that they are rule-governed. Remember, nature is lawful! It means
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that it 1s possible to describe them in terms of a usually simple set of laws or
rules that govern the behavior of individual agents. This book presents various
instances of small numbers of rules or laws generating (artificial) systems of
surprising complexity and potential for problem solving, computing, and the
simulation of life-like patterns and behaviors. It will be interesting to note that
even with a fixed set of rules, the overall emergent behaviors are dynamic (they
change over time) and, in most cases, unpredictably.

Holland (1998) underlines a number of features of emergent (or complex) sys-
tems and suggests that emergence 1s a product of coupled, context-dependent
interactions. These interactions, together with the resulting system are nonlinear,
where the overall behavior of the system cannot be obtained by summing up the
behavior of its constituent parts. Temperature and pressure are easy to grasp
examples of emergent properties. Individual molecules in motion or closely
placed result in temperature and pressure, but the molecules by themselves do
not present a temperature or a pressure.

For short, the complex and tlexible behavior of the whole depends on the ac-
tivity and interactions of a large number of agents described by a relatively
small number of rules. There 1s no easy way to predict the overall behavior of
the system by simply looking at the local rules that govern individual behaviors,
though we may have some intuition about it. The difficulty increases even fur-
ther when the individual agents can adapt; that is, when the complex systems
become complex adaptive systems. Then, an individual’s strategy (or the envi-
ronment) is not only conditioned by the current state of the system, it can also
change over time. Even when adaptation may not affect an individual directly, 1t
may still affect it indirectly. For instance, stigmergic effects result in the adapta-
tion of the environment as a result of the action of individual agents. This, in
turn, results in different patterns of behavior for the agents. What 1s important to
realize, thus, is that the increase in complexity results in an increase of the pos-
sibilities for emergent phenomena.

To make the conceptual idea of emergence even clearer, consider the follow-
ing example. Imagine a computer simulation of highway traffic. Simulated
‘semi-intelligent” cars are designed to drive on the highway based on specific
interactions with other cars following a finite set of rules. Several rules can be
defined, such as:

e  Cars should drive on the high speed lane 1if their speed 1s over 100Km/h,
otherwise they should drive on the lower speed lanes.

e  Cars should only take over using the higher speed lane.
e Avoud collisions.

e  Stop in the red light.

e Vary speed smoothly.

As the cars can vary speed, change lanes, and are subjected to several con-
straints (speed, traftic lights, road limits, etc.), their programming enables them
to have unexpected behaviors. Such a system would define a form of complex
behavior, for there are several agents dynamically interacting with one another
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and the environment in multiple ways, following local rules and unaware of any
higher-level instructions. Nevertheless, the behavior of such a system can only
be considered emergent if discernible macro-behaviors are observed. For in-
stance, these lower-level rules may result in the appearance of traffic jams and a
higher flux of cars on the high-speed lane than on the lower speed ones. All
these are emergent phenomena that were not programmed in the local rules ap-
plied to the cars. They simply emerged as outcomes of the lower-level interac-
tions, even though some of them could be predicted.

Several features and behaviors of natural systems are not so obviously emer-
gent; only a detailed analysis of complex interactions at the organism level can
show that they are genuinely new features that only appear at the higher levels.
However, emergent behaviors of natural systems can be observed through the
creation of models. Even highly abstract and simplified models, such as the ones
that will be reviewed here, allow us to simulate, emulate, observe, and study
several emergent behaviors of natural complex adaptive systems. In particular,
DNA strands, chromosomes, ant colonies, neurons, immune systems, flocks of
birds, and schools of fish, will all be seen to present a large variety of emergent
properties.

Reductionism

The classical vitalist doctrines of the 18™ century are based on the idea that all

life phenomena are animated by immaterial life spirits. These life spirts deter-
mine the various life phenomena, but are themselves unexplainable and inde-
scribable from a physical perspective. By contrast, the reductionist position, also
in the 18" century, insisted that a large part, if not all, of the life phenomena can
be reduced to physics and chemistry (Emmeche et al., 1997).

For long, scientists have been excited about the belief that natural systems
could be understood by reductionism; that 1s, by seeking out their most funda-
mental constituents. Physicists search for the basic particles and forces, chemists
seek to understand chemical bonds, and biologists scrutinize DNA sequences
and molecular structures in an effort to understand organisms and life. These
reductionist approaches suggest that questions in physical chemistry can be an-
swered based on atomic physics, questions in cell biology can be answered
based on how biomolecules work, and organisms can be understood in terms of
how their cellular and molecular systems work (Gallagher and Appenzeller,
1999; Williams, 1997).

However, apart from a few radicals, the reductionists do not claim that the
higher psychological functions can be reduced to physics and chemistry. As an
outcome of the scientific development in many areas, such as cytology, neuro-
anatomy, immunology, and neurophisiology, it became very difficult to maintain
the more classical positions (Emmeche et al., 1997).

Advances 1 science and technology have led to transformations in the vital-
ists” and reductionists’ positions as well. After a number of scientific discoveries
in the early 19" century. the vitalists gradually limited their viewpoints to a nar-
rower field. They now insisted that only the higher psychological functions were
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irreducible, but admitted that a large range of biological phenomena could be
described scientifically. Reductionists now claimed that every phenomenon in
the world, including the highest psychological ones, could be reduced to physics
and chemistry (Emmeche et al., 1997).

Although the reductionist approaches work to some extent, scientists are now
beginning to realize that reductionism 1s just one of the many tools needed to
uncover the mysteries of nature. There might be additional principles to life and
nature embodied in properties found at higher levels of organization, and that
cannot be seen in lower levels. These properties are known as emergent proper-
ties. For instance, it is still not possible to understand higher psychological phe-
nomena, such as love and hate, by simply looking at how neurons work.

2.2.8. Bottom-up vs. Top-down

Broadly speaking, there are two main approaches to addressing the substantive
question of how in fact nature works. One exploits the model of the familiar
serial, digital computer, where representations are symbols and computations are
formal rules (algorithms) that operate on symbols. For instance, ‘if-then’ rules
are most often used in formal logic and circuit design. The second approach is
rooted in many natural sciences, such as biology, neuroscience, and evolutionary
theory, drawing on data concerning how the most elementary units work, inter-
act, and process information. Although both approaches ultimately seek to re-
produce input-output patterns and behaviors, the first 1s more fop-down, relying
heavily on computer science principles, whereas the second tends to be more
bottom-up, aiming to reflect relevant natural constraints.

Bottom-Up

Most complex systems exhibiting complex autonomous patterns and behaviors
are parallel and distributed systems of interacting components taking decisions
that directly affect their state and the state of some other components (e.g., their
neighbors). Each component’s decisions are based on information about its own
local state. Bottom-up systems and models are those in which the global behav-
ior emerges out of the aggregate behavior of an ensemble of relatively simple
and autonomous elements acting solely on the basis of local information.

The reductionist approach 1s to some extent a bottom-up approach. Reduction-
ism assumes that the study of individual components is sufficient for a full un-
derstanding of the organism as a whole. Bottom-up approaches also seek for the
study of component parts, but do not necessarily claim that the whole 1is just the
sum of its parts; it allows for emergent phenomena as well. Biology is in most
cases a reductionist scientific enterprise (it has been changing over the last few
years though). Natural computing, although highly inspired or based on biology.
1s more rooted on bottom-up approaches than on purely reductionist techniques.
Theories about complexity and emergence are pervasive in natural computing,
and may be of primary importance for the study and formalization of natural
computing techniques.
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Another way of viewing bottom-up systems or approaches is related to how
they develop or evolve; a design perspective: the most deeply embedded struc-
tural umt 1s created first and then combined with more of its parts to create a
larger unit, and so on. For instance, if a system develops or evolves by con-
stantly adding new parts to the system until a given criterion or state of maturity
is achieved, this system is said to follow a bottom-up design.

A classical example of bottom-up design in natural computing involves artifi-
cial neural networks whose architecture is not defined @ priori; thev are a result
of the network interactions with the environment. Assume, for instance, that you
are trying to design an artificial neural network capable of recognizing a set of
patterns (e.g., distinguish apples from oranges). If the initial network has a sin-
gle neuron and more neurons are constantly being added until the network is
capable of appropriately recognizing the desired patterns, this network can be
said to follow a bottom-up architecture design. In nature, a classical example of
a bottom-up system is the theory of evolution, according to which life on Earth
is a result of a continuous and graded procedure of adaptation to the environ-
ment.

Top-Down

In the early days of artificial intelligence, by the time of the Dartmouth summer
school in 1956, most researchers were trying to develop computer programs
capable of manipulating symbolic expressions. These programs were developed
in a fop-down manner: by looking at how humans solve problems and trying to
‘program’ these problem-solving procedures into a computer. Top-down ap-
proaches assume that it is possible to fully understand a given system or process
by looking at its macro-level patterns.

Most artificial intelligence techniques based upon the top-down paradigm are
known as knowledge-based or expert systems. They rely upon the existence of a
knowledge base or production system containing a great deal of knowledge
about a given task provided by an expert. In these systems, an action 1s taken 1f a
certain specific condition 1s met. A set of these production systems results in an
intelligent system capable of inferring an action based on a set of input condi-
tions. Knowledge-based systems were rooted on a philosophy inspired by cogni-
tive theories of the information processes involved in problem solving.

Top-down systems and approaches can also be studied under the perspective
of how the system develops with time - the design perspective: an over-
complicated system 1s initially designed and then parts of it are eliminated so as
to result in a satisfactorily more parsimonious structure still capable of perform-
ing its task. We have discussed, in the previous section, that it 1s possible to de-
sign an artificial neural network for pattern recognition by simply adding neu-
rons until the desired patterns are recognized. The opposite direction could also
be adopted: an over-sized network could be initially designed and neurons
would then be pruned until a network of reasonable size remained, still capable
of meeting its goal.
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To make the distinction even clearer, consider the case of building a sand cas-
tle. A bottom-up approach is the one in which you keep pouring sand and mold-
ing it, and a top-down approach is the one in which vou initially pour a lot of
sand, making a big mountain of sand, and then you start molding the castle from
the mountain of sand.

2.2.9. Determinism, Chaos, and Fractals

One of the classical positions in the theory of science is that scientific theories
are capable of providing deterministic relations between the elements being in-
vestigated. A deterministic system can have its time evolution predicted pre-
cisely; all events are inevitable consequences of antecedent sufficient causes.
The main characteristic of this type of deterministic system is predictability.
When 1t 1s possible to predict the development or time evolution of a system
from some predefined conditions there 1s a deterministic relation between the
clements that constitute the system. This classical perspective demands the ca-
pacity of predicting the time evolution of a system, thus precluding the appear-
ance of new and emergent phenomena.

One of the most interesting and exciting results of recent scientific develop-
ment, mainly in physics, 1s the remodeling of the relation between determinism
and prediction. It 1s now evident that there are many systems that can be de-
scribed adequately as being strictly deterministic but that still remain unpredict-
able. The impossibility of predicting the properties arising within many systems
considered totally deterministic is the consequence of the well-known Poin-
caré¢’s treatment of the three-body problem and the Hadamard’s investigation of
the sensitivity to initial states - insights from the latter half of the 19" century
that have recently given rise to the chaos theory. Several processes in physics
and biology are deterministic but unpredictable. Thus, one of the very important
theoretical consequences of chaos theory 1s the divorce between determinism
and predictability.

Before chaos theory, scientists (mainly physicists) were suffering from a great
ignorance about disorder in the atmosphere, in the turbulent sea, in the fluctua-
tions of wildlife populations, in the oscillations of the heart and the brain. The
irregular side of nature, the discontinuous and erratic side, has been a puzzle to
science. The insights from chaos theory led directly into the natural world - the
shapes of clouds, the paths of lightening, the microscope intertwining of blood
vessels, the galactic clustering of stars, the coast lines. Chaos has created special
techniques of using computers and special kinds of graphic images, pictures that
capture fantastic and delicate structures underlying complexity. The new science
has spawned its own language, such as the word fractals.

The word fractal comes to stand for a way of describing, calculating, and
thinking about shapes that are irregular and fragmented, jagged and broken-up -
shapes like the crystalline curves of snowflakes, coast shores, mountains, clouds,
and even the discontinuous dusts of galaxies (see Figure 2.6). A fractal curve
implies an organizing structure that lies hidden among the hideous complication
of such shapes.
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Figure 2.6: Examples of the fractal geometry of nature. (a) Clouds. (b) Top of mountains
in Alaska.

Fractals - the term used to describe the shape of chaos - seem to be every-
where: a rising column of cigarette smoke breaks into swirls; a flag snaps back
and forth in the wind; a dripping faucet goes from a steady pattern to a chaotic
one; and so forth (Gleick, 1997; Stewart, 1997).

Chaos theory 1s often cited as an explanation for the difficulty in predicting
weather and other complex phenomena. Roughly. it shows that small changes in
local conditions can cause major perturbations in global, long-term behavior in a
wide range of ‘well-behaved’ systems, such as the weather. Therefore, chaos
embodies three important principles: sensitivity to initial conditions, cause and
effect are not proportional, and nonlinearities. This book talks very little about
chaos; however Chapter 7 describes the Fractal Geometry of Nature as the main
branch of the study of biology by means of computers aimed at creating life-like
shapes or geometrical patterns.
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2.3 SUMMARY

This chapter started with a discussion of what are models, metaphors, experi-
ments, simulations, emulations, and realizations. These concepts are important
for they allow us to distinguish natural computing techniques from theoretical
models, computer simulations from realizations, and so on. Some comments
about the difficulty in creating a general framework to design natural computing
systems were also made. However, it was argued that each approach, with the
exception of some topics in the second part of this book, do have specific
frameworks for their design. Also, 1t was emphasized that this 1s a book about
how existing techniques can be understood, reproduced, and applied to particu-
lar domains, not a book about how to engineer new techniques. Of course, from
reading this text the reader will certainly get the feeling of natural computing
and will then find it much easier to go for his/her own personal explorations and
design of novel natural computing approaches.

If the contents of this chapter were to be summarized in a single word, this
word would be complexity or complex system. Complexity encompasses almost
all the terminology discussed here. It may involve a large number of interacting
individuals presenting or resulting in emergent phenomena, self-organizing
processes, chaos, positive and negative feedback, adaptability, and parallelism.
Although this book is not about the theory of complex systems, it provides de-
sign techniques, pseudocode, and applications for a number of complex systems
related with nature.

2.4 EXERCISES

2.4.1. Questions

Provide alternative definitions for all the concepts described in Section 2.2.

2. List ten journals that can be used as sources of information about natural
systems and processes that could be useful for natural computing and ex-
plain your choice.

3. Name two connectionist systems 1n nature in addition to the nervous system
and the immune network. Explain.

4. Section 2.2.5 presented the concepts of positive and negative feedback. In

Section 2.2.3, the presence ol an mitial deposit of soil pellets was demon-
strated to stimulate worker termites to accumulate more pellets through a
positive feedback mechanism. It is intuitive to think that if no negative
feedback mechanism existed in this process, the process could go uncon-
trolled. Name three negative feedback mechanisms involved in the termite
mound building process.

5. Name a natural system or process that involves both, positive and negative
feedback. and describe how these are observed.
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Exercises

9.

Exemplify some natural systems (excluding those involving humans) that
exhibit alternatives to self-organization. That is, provide an example of a
natural system whose parts behave in a follow a ‘leader’ manner, one that
follows a ‘blueprint’, one that follows a ‘recipe’, and one that follows a
‘template’. The resultant pattern or process may vary from one case to an-
other. Provide a list of references.

Discuss the advantages and disadvantages of self-orgamization over its
alternatives.

The discussion about self-organization shows it is potentially relevant to
fundamental questions about evolution. One issue is whether life itself can
come into existence through a self-organizing process. A second issue 1s the
relationship between natural selection and self-organization once life is up
and running. Discuss these two possible implications of self-organization to
life.

Two other mmportant concepts in natural computing are competition and
cooperation among agents. Provide definitions for both concepts under the
perspective of agent-based theory.

2.4.2. Thought Exercise

L.

An example of vehicular traffic flow was given as an instance of an emer-
gent system (Section 2.2.7). Assume that there 1s a road with a single lane, a

radar trap is installed in this road and a number of cars are allowed to run on
this road. Embody the following rules in each car:

e [fthere is a car close ahead of you, slow down.

e [f there 1sn’t any car close ahead of you, speed up (unless you are al-
ready at maximum speed).

e Ifyoudetect a radar trap, then slow down.

What types of emergent behavior would you expect from this system? Will
there be any traffic jam?

(After answering the question, see Chapter 8 for some possible implica-
tions.)

2.4.3. Projects and Challenges

1.

Write a computer program to simulate the traffic flow described in the exer-
cise above. Compare the results obtained with your conclusions and the dis-
cussion presented in Chapter 8.

It was discussed in Section 2.2.6 that some patterns coating the skin of
many animals are resultant from self-organizing processes. Perform a broad
search for literature supporting this claim. Name, summarize, and discuss
the most relevant works, and give your conclusive viewpoint.
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(2]

3]

[4]

[5]
[6]
[7]
(8]

[

Write an essay discussing the similarities and differences between the con-
cepts autopoiesis, autocatalisys, and self-organization. The essay should be
no longer than 10 pages. Provide a list of references.

Name other alternatives to self-organization and give examples.

From our math courses we know that a point is a zero-dimensional geomet-
rical form, a line is a one-dimensional form, a square is a two-dimensional
form, and so on. Can you determine the dimension of a snowflake? Justify
your answer.
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64 Problem Solving as a Search Task

It is possible, on the other side, to assess and compare the performance of dif-
ferent algorithms in specific problem domains and, therefore, it is possible to
look for a technique that provides the best performance, on average, in this do-
main.

In contrast to the global optimum, a Jlocal optimum is a potential solution
x € F in respect to a neighborhood N of a point y, if and only if eval(x) < eval(y),
¥ y € N(x), where N(x) ={y e F :dist(x,y) <&}, dist 1s a function that deter-
mines the distance between x and y, and € is a positive constant. Figure 3.1 illus-
trates a function with several local optima (minima) solutions, a single global
optimum (minimum), and the neighborhood of radius & around one of the local
optima solutions.

The evaluation function defines a response surface, which will later be termed

Sfitness landscape (Section 3.4.4), that is much like a topography of hills and
valleys. The problem of finding the (best) solution is thus the one of searching
for a peak, assuming a maximization problem, n such a fitness landscape. If the
goal is that of minimization, then a valley has to be searched for. Sampling new
points in this landscape 1s basically made in the immediate vicinity of current
points, thus 1t 1s only possible to take local decisions about where to search next
in the landscape. If the search 1s always performed uphill, 1t might eventually
reach a peak, but this might not be the highest peak in the landscape (global op-
timum). The search might sometimes go downhill in order to find a point that
will eventually lead to the global optimum. Therefore, by not knowing the fit-
ness landscape and using only local information, it is not possible to guarantee
the achievement of global optima solutions.

—_
Local optima (minima)

Global optimum (minimum)

Figure 3.1: Illustration of global and local minima of an arbitrary function. Dark circle:
global minimum: White circles: local minima.



