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PREFACE

This book reports on the development of a mathematical theory of general
systems, initiated ten years ago. The theory is based on a broad and ambitious
program aimed at formalizing all major systems concepts and the develop-
ment of an axiomatic and general theory of systems. The present book
provides the foundations for, and the initial steps toward, the fulfillment of
that program. The interest in the present volume is strictly in the mathe-
matical aspects of the theory. Applications and philosophical implications
will be considered elsewhere.

The basic characteristics and the role of the proposed general systems
theory are discussed in some detail in the first chapter. However, the unifying
power of the proposed foundations ought to be specifically singled out;
within the same framework, using essentially the same mathematical structure
for the specification of a system, such diverse topics are considered and
associated results proven as: the existence and minimal axioms for state-
space construction; necessary and sufficient conditions for controllability
of multivalued systems; minimal realization from input—output data;
necessary and sufficient conditions for Lyapunov stability of dynamical
systems ; Goedel consistency and completeness theorem ; feedback decoupling
of multivariable systems; Krohn-Rhodes decomposition theorem ; classifi-
cation of systems using category theory.

A system can be described either as a transformation of inputs (stimuli)
into outputs (responses}—the so-called input-output approach (also referred
to as the causal or terminal systems approach), or in reference to the fulfill-
ment of a purpose or the pursuit of a goal—the so-called goal-secking or
decision-making approach. In this book we deal only with the input-output
approach. Originally, we intended to include a general mathematical theory
of goal-seeking, but too many other tasks and duties have prevented us

xi



xii Preface

from carrying out that intention. In fairness to our research already completed,
we ought to point out that the theory of multilevel systems which has been
reported elsewheret although aimed in a different direction, does contain
the elements of a general theory of complex goal-seeking systems. For the
sake of completeness we have given the basic definition of a goal-seeking
system and of an open system (another topic of major concern) in Appendix 11.
We have discussed the material over the years with many colleagues and
students. In particular the advice and help of Donald Macko and Seiji
Yoshii were most constructive. The manuscript would have remained a
scribble of notes on a pile of paper if it were not for tireless and almost
nondenumerable series of drafts retyped by Mrs. Mary Lou Cantini.

t M. D. Mesarovic, D. Macko, and Y. Takahara, “Theory of Hierarchical Multilevel
Systems.” Academic Press, New York, 1970.
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Chapter 1

INTRODUCTION

1. GENERAL SYSTEMS THEORY: WHAT IS IT AND WHAT IS IT FOR?

Systems theory is a scientific discipline concerned with the explanations
of various phenomena, regardless of their specific nature, in terms of the
formal relationships between the factors involved and the ways they are
transformed under different conditions; the observations are explained in
terms of the relationships between the components, i.e., in reference to the
organization and functioning rather than with an explicit reference to the
nature of the mechanisms involved (e.g., physical, biological, social, or even
purely conceptual). The subject of study in systems theory is not a *““physical
object,” a chemical or social phenomenon, for example, but a “system’:
a formal relationship between observed features or attributes. For conceptual
reasons, the language used in describing the behavior of systems is that of
information processing and goal seeking (decision making, control).

General systems theory deals with the most fundamental concepts and
aspects of systems. Many theories dealing with more specific types of systems
(e.g., dynamical systems, automata, control systems, game-theoretic systems,
among many others) have been under development for quite some time.
General systems theory is concerned with the basic issues common to all of
these specialized treatments. Also, for truly complex phenomena, such as
those found predominantly in the social and biological sciences, the specialized
descriptions used in classical theories (which are based on special mathe-
matical structures such as differential or difference equations, numerical or
abstract algebras, etc.) do not adequately and properly represent the actual
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events. Either because of this inadequate match between the events and
types of descriptions available or because of the pure lack of knowledge,
for many truly complex problems one can give only the most general state-
ments, which are qualitative and too often even only verbal. General systems
theory is aimed at providing a description and explanation for such complex
phenomena.

Our contention is that one and the same theory can serve both of these
purposes. Furthermore, in order to do that, it ought to be simple, elegant,
general, and precise (unambiguous). This is why the approach we have taken is
both mathematical and perfectly general. At the risk of oversimplification,
the principal characteristics of the approach whose foundation is presented
in this book are:

(i) It is a marhematical theory of general systems; basic concepts are
introduced axiomatically, and the system’s properties and behavior are
investigated in a precise manner.

(ii) It is concerned with the goal seeking (decision making, control) and
similar representations of systems, as much as with the input-output or
“transformational” (causal) representations. For example, the study of
hierarchical, multilevel, decision-making systems was a major concern from
the very beginning.

(i) The mathematical structures required to formalize the basic concepts
are introduced in such a way that precision is obtained without losing any
generality. It is important to realize that nothing is gained by avoiding the
use of a precise language, i.e., mathematics, in making statements about a
system of concern. We take exception, therefore, to considering general
systems theory as a scientific philosophy, but rather, consider it as a scientific
enterprise, without denying, however, the impact of such a scientific develop-
ment on philosophy in general and epistemology in particular. Furthermore,
once a commitment to the mathematical method is made, logical inferences
can be drawn about the system’s behavior. Actually, the investigation of the
logical consequences of systems having given properties should be of central
concern for any general systems theory which cannot be limited solely to
a descriptive classification of systems.

The decision-making or goal-seeking view of a system’s behavior is of
paramount importance. General systems theory is not a generalized circuit
theory—a position we believe has introduced much confusion and has con-
tributed to the rejection of systems theory and the systems approach in fields
where goal-seeking behavior is central, such as psychology, biology, etc.
Actually, the theory presented in this book can just as well be termed general
cybernetics, i.e., a general theory of governing and governed systems. The
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term ‘‘general systems theory™ was adopted at the initiation of the theory as
reflecting a broader concern. However, in retrospect, it appears that the
choice might not have been the happiest one, since that term has already
been used in a different context.

The application of the mathematical theory of general systems can play a
major role in the following important problem areas.

(a) Study of Systems with Uncertainties

On too many occasions, there is not enough information about a given
system and its operation to enable a detailed mathematical modeling (even
if the knowledge about the basic cause—effect relationships exists). A general
systems model can be developed for such a situation, thus providing a solid
mathematical basis for further study or a more detailed analysis. In this way,
general systems theory, as conceived in this book, significantly extends the
domain of application of mathematical methods to include the most diverse
fields and problem areas not previously amenable to mathematical modeling.

(b) Study of Large-Scale and Complex Systems

Complexity in the description of a system with a large number of variables
might be due to the way in which the variables and the relationships between
them are described, or the number of details taken into account, even though
they are not necessarily germane to the main purpose of study. In such a
case, by developing a model which is less structured and which concentrates
only on the key factors, i.e., a general systems model in the set-theoretic
or algebraic framework, one can make the analysis more efficient, or even
make it possible at all. In short, one uses a mathematically more abstract, less
structured description of a large-scale and complex system. Many structural
problems, such as decomposition, coordination, etc., can be considered on
such a level. Furthermore, even some more traditional problems such as
Lyapunov stability can be analyzed algebraically using more abstract
descriptions.

The distinction between classical methods of approximation and the
abstraction approach should be noted. In the former, one uses the same
mathematical structure, and simplification is achieved by omitting some
parts of the model that are considered less important; e.g., a fifth-order
differential equation is replaced with a second-order equation by considering
only the two ‘“dominant” state variables of the system. In the latter approach,
however, one uses a different mathematical structure which is more abstract,
but which still considers the system as a whole, although from a less detailed
viewpoint. The simplification is not achieved by the omission of variables
but by the suppression of some of the details considered unessential.
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(¢c) Structural Considerations in Model Building

In both the analysis and synthesis of systems of various kinds, structural
considerations are of utmost importance. Actually, the most crucial step in
the model-building process is the selection of a structure for the model of a
system under consideration. It is a rather poor strategy to start investigations
with a detailed mathematical model before major hypotheses are tested and a
better understanding of the system 1s developed. Especially when the system
consists of a family of interrelated subsystems, it is more efficient first to
delineate the subsystems and to identify the major interfaces before proceed-
ing with a more detailed modeling of the mechanisms of how the various
subsystems function. Traditionally, engineers have used block diagrams to
reveal the overall composition of a system and to facilitate subsequent
structural and analytical considerations. The principal attractiveness of
block diagrams is their simplicity, while their major drawback is a lack of
precision. General systems theory models eliminate this drawback by intro-
ducing the precision of mathematics, while preserving the advantage, i.ec.,
the simplicity, of block diagrams. The role of general systems theory in
systems analysis can be represented by the diagram in Fig. 1.1. General

- C.omputler
| simulation

]

|

|

1

1
Verbal Block General : Detailed
description > diagram > systems =1 mathematical
of problem model model

FiG. 1.1

systems models fall between block-diagram representation and a detailed
mathematical (or computer) model. For complex systems, in particular, a
general systems model might very well represent a necessary step, since the
gulf between a block diagram and a detailed model can be too great. The fact
that certain general systems techniques and results have become available
to treat the systems problem on a general level makes it possible to add this
step in practice.

(d) Precise Definition of Concepts and Interdisciplinary Communication

General systems theory provides a language for interdisciplinary communi-
cation, since it is sufficiently general to avoid introduction of constraints of
its own, yet, due to its precision, it removes misunderstandings which can be
quite misleading. (For example, the different notions of adaptation used in
the fields of psychology, biology, engineering, etc., can first be formalized in
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general systems theory terms and then compared.) It is often stated that
systems theory has to reflect the “invariant’ structural aspects of different
real-life systems, i.e., those that remain invariant for similar phenomena from
different fields (disciplines). This similarity can be truly established only if the
relevant concepts are defined with sufficient care and precision. Otherwise,
the danger of confusion is too great. It is quite appropriate, therefore, to con-
sider the mathematical theory of general systems as providing a framework
for the formalization of any systems concept. In this sense, general systems
theory is quite basic for the application of the *‘systems approach’ and
systems theory in almost any situation. The important point to note when
using general systems theory for concept definition is that when a concept
has been introduced in a precise manner, what is crucial is not whether the
definition is ““correct” in any given interpretation, but rather, whether the
concept is defined with sufficient precision so that it can be clearly and
unambiguously understood and as such can be further examined and used in
other disciplines. It is in this capacity that the general systems theory offers a
language for interdisciplinary communication. Such an application of
general systems theory might seem trivial from the purely mathematical
standpoint, but is not so from the viewpoint of managing a large team effort in
which specialists from different disciplines are working together on a complex
problem, as is often found in the fields of environmental, urban, regional,
and other large-scale studies.

(e} Unification and Foundation for More Specialized Branches of Systems
Theory

Questions regarding basic systems problems which transcend many
specialized branches of systems theory (e.g., the question of state-space
representation) can be properly and successfully considered on the general
systems level. This will be demonstrated many times in this book. The
problems of foundations are of interest for extending and making proper use
of systems theory in practice, for pedagogical reasons, and for providing a
coherent framework to organize the facts and findings in the broad areas of
systems research.

2. FORMALIZATION APPROACH FOR THE DEVELOPMENT OF THE
MATHEMATICAL THEORY OF GENERAL SYSTEMS

The approach that we have used to develop the generai systems theory
reported in this book is the following :t

T A comparison with some other possible approaches is given in Appendix I1.



6 Chapter I Introduction

(1) The basic systems concepts are introduced via formalization. By
this we mean that starting from a verbal description of an intuitive notion, a
precise mathematical definition for the concept is given using minimal
mathematical structure, i.e., as few axioms as the correct interpretation would
allow.

(ii) Starting from basic concepts introduced via formalization, the mathe-
matical theory of general systems is further developed by adding more
mathematical structure as needed for the investigation of various systems
properties. Such a procedure allows us to establish how fundamental some
particular systems properties really are and also what is the minimal set of
assumptions needed in order that a given property or relationship holds.

The starting point for the entire development is the concept of a system
defined on the set-theoretic level. Quite simply and most naturally for that
level, a system is defined as a relation in the set-theoretic sense, ie., it is
assumed that a family of sets is given,

V={V:iel}
where I is the index set, and a system, defined on ¥, is a proper subset of x ¥,
S x {V:iel}

The components of S, V,, iel, are termed the systems objects. We shall
primarily be concerned with a system consisting of two objects, the input
object X and the output object Y:

ScXxY (1.1)

Starting a mathematical theory of general systems on the set-theoretic
level is fully consistent with the stated objective of starting with the least
structured and most widely applicable concepts and then proceeding with
the development of a mathematical theory in an axiomatic manner.

To understand better some of the reasons for adopting the concept of a
system as a set-theoretic relation, the following remarks are pertinent.

A system is defined in terms of observed features or, more precisely, in
terms of the relationship between those features rather than what they
actually are (physical, biological, social, or other phenomena). This is in
accord with the nature of the systems field and its concern with the organiza-
tion and interrelationships of components into an (overall) system rather
than with the specific mechanisms within a given phenomenological frame-
work.

The notion of a system as given in (1.1) is perfectly general. On the one hand,
if a system is described by more specific mathematical constructs, e.g., a set of
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equations, it is obvious that these constructs define or specify a relation as
given in (1.1). Different systems, of course, have different methods of specifica-
tion, but they all are but relations as given in (1.1). On the other hand, in the
case of the most incomplete information when the system can be described
only in terms of a set of verbal statements, they still, by their linguistic
function as statements, define a relation as in (1.1). Indeed, every statement
contains two basic linguistic categories : nouns and functors—nouns denoting
objects, functors denoting the relationship between them. For any proper set
of verbal statements there exists a (mathematical) relation which represents
the formal relationship between the objects denoted by nouns (technically
referred to as a model for these statements). The adjective ‘“‘proper’ refers
here, of course, to the conditions for the axioms of a set theory. In short, then,
a system is always a relation, as given in (1.1), and various types of systems are
more precisely defined by the appropriate methods, linguistic, mathematical,
computer programs, etc.

A system is defined as a set (of a particular kind, i.e., a relation). It stands
for the collection of all appearances of the object of study rather than for the
object of study itself. This is necessitated by the use of mathematics as the
language for the theory in which a “mechanism’’ (a function or a relation) is
defined as a set, i.e., as a collection of all proper combinations of components.
Such a characterization of a system ought not to create any difficulty since
the set relation, with additional specifications, contains all the information
about the actual “mechanism’’ we can legitimately use in the development of
a formal theory.

The specification of a given system is often given in terms of some equations
defined on appropriate variables. To every variable there corresponds a
systems object which represents the range of the respective variable. Stating
that a system is defined by a set of equations on a set of variables, one essen-
tially states that the system is a relation on the respective systems objects
specified by the variables (each one with a corresponding object as a range)
such that for any combination of elements from the objects, i.e., the values for
the variables, the given set of equations is satisfied.

To develop any kind of theory starting from (1.1), it is necessary to introduce
more structure into the system as a relation. This can be done in two ways:

(i) by introducing the additional structure into the elements of the
system objects, i.e., to consider an element v; € V; as a set itself with additional
appropriate structure;

(i) by introducing the structure in the object sets, ¥;, i € I, themselves.

The first approach leads to the (abstract) time system concept, the second to
the concept of an algebraic system.
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(a) Time Systems

This approach will be introduced precisely in Chapter IT and will be used
extensively throughout the book ; therefore, a brief sketch is sufficient here.

If the elements of an object are functions, e.g.,, v: T, = A,, the object is
referred to as a family object or a function-generated object. Of particular
interest is the case when both the domain and codomain of all the functions in
the given object V are the same, ie., any ve V is a function on T into A4,
v:T — A. T represents the index set for V, while A is referred to as the
alphabet for V. Notice that 4 can be of arbitrary cardinality. If the index set is
linearly ordered, it is called a time set. This term was selected because such an
index set captures the minimal property necessary for the concept of time,
particularly as it relates to the time evolution and dynamic behavior of
systems.

A function defined on a time set is called an (abstract) time function. An
object whose elements are time functions is referred to as a time object. A
system defined on time objects represents a time system.

Of particular interest are time systems whose input and output objects
are both defined on the same sets X < AT and Y = B”. The system is then

Sc A" x BT

(b) Algebraic Systems

An alternative way to introduce mathematical structure in a system’s
object V necessary for constructive specification is to define one or more
operations in ¥ so that V becomes an algebra. In the simplest case, a binary
operation is given, R: ¥V x V — V, and it is assumed that there exists a subset
W of V, often of finite cardinality, such that any element in V can be obtained
by the application of R on the elements of W or previously generated elements.
The set W is referred to as the set of generators, or also as an alphabet and its
elements as the symbols; the elements of the object V are referred to as
words. If R is concatenation, the words are simply sequences of elements from
the alphabet W,

A distinction should be noticed between the alphabet for a time object and
for an algebraic object. For objects with finite alphabets, these are usually the
same sets, i.e., the object, whose elements are sequences from the given set,
can be viewed either as a set of time functions (on different time intervals,
though) or as a set generated by an algebraic operation from the same set of
symbols. When the alphabet is infinite, complications arise, and the set of
generators and the codomain of the time functions are different sets, generally
even of different cardinality.
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In a more general situation, an algebraic object is generated by a family of
operations. Namely, given a set of elements, termed primitive elements,
W, and a set of operationsR = {R,,...,R,}, the object V contains the
primitive elements themselves, W — V,and any element that can be generated
by a repeated application of the operations from R.

We shall use primarily the time systems approach in this book because it
allows a more appealing intuitive interpretation in particular for the pheno-
mena of time evolution and state transition. Actually, it can be shown that
the two approaches are, by and large, equivalent. It should be emphasized,
however, that we shall be using the algebraic structure both within a general
system, S = X x Y, and a general time system, S = AT x BT, although not
necessarily for the problems related to time evolution.

It is interesting to note that the two methods mentioned above correspond
to the two basic ways to define a set constructively : by (transfinite) induction
on an ordered set and by algebraic induction. The implication and meaning of
this interesting fact will not be pursued here any further.



Chapter 11

BASIC CONCEPTS

In this chapter we shall introduce some basic systems notions on the
set-theoretic level and establish some relationships between them. First, we
shall define a general system as a relation on abstract sets and then define
the general time and dynamical systems as general systems defined on the sets
of abstract time functions.

In order to enable more specific definition of various types of systems,
certain kinds of so-called auxiliary functions are introduced. They are
abstract counterparts of relationships, often given in the form of a set of
equations, in terms of which a system is defined. Auxiliary functions enable
also a more detailed analysis of systems, in particular their evolution in time.

In order to define various auxiliary functions, new auxiliary objects,
termed state objects, had to be introduced ; the elements of such an object are
termed states. The primary functions of the state, as introduced in this chapter,
are:

(i) to enable a system or its restrictions, which are both in general
relations, to be represented as functions;

(i) toenable the determination of a future output solely on the basis ofa
given future input and the present state completely disregarding the past (the
state at any given time embodies the entire past history of the system);

(iii) to relate the states at different times so that one can determine
whether the state of a system has changed over time and in what way. This
third requirement leads to the concept of a state space. A general dynamical
system is defined in such a state space.

10
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Some basic conditions are given for the existence of various types of
auxiliary functions in general and in reference to such system properties as
input completeness and linearity. A classification of systems in reference to
various kinds of time invariance of certain auxiliary functions is given.
Finally, some questions of time causality are considered. Two notions are
introduced in this respect:

(i) A system is termed nonanticipatory if there exists a family of state
objects so that the future values of any output are determined solely by the
state at a previous time and the input in this time period.

(i) A system is termed past-determined if, after a certain initial period of
time, the values of any output are determined solely by the past input—output
pair. Conditions are then given for time systems to be nonanticipatory or past-
determined.

1. SET-THEORETIC CONCEPT OF A GENERAL SYSTEM

(a) General System, Global States, and Global-Response Function

Starting point for the entire development is provided by the following
definitions.

Definition 1.1. A (general) system is a relation on nonempty (abstract) sets
Sc x{V:iel} 2.1

where x denotes Cartesian product and I is the index set. A component set
V, is referred to as a system object. When [ is finite, (2.1) is written in the form

ScV, x---xV, (2.2)
Definition 1.2. Let I, < I and I, < I be a partition of I, ie, I, n 1, = ¢,

I,ul, =1 The set X = x{V:iel,} is termed the input object, while
Y = x{V:iel,} is termed the output object. The system § is then

ScXxY (2.3)
and will be referred to as an input—output system.

The form (2.3) rather than (2.2) will be used throughout this book.

Definition 1.3. If S is a function
S:X Y (2.4)

it is referred to as a function-type (or functional) system.



12 Chapter IT  Basic Concepts

Notice that the same symbol § is used both in (2.2) and (2.3) although
strictly speaking the elements of the relation in (2.2) are n-tuples while those
in the relation (2.3) are pairs. This convention is adopted for the sake of
simplicity of notation. Which of the forms for § is used will be clear from the
context in which it is used. Analogous comment applies to the use of the same
symbol § in (2.3) and (2.4).

For notational convenience, we shall adopt the following conventions:
The brackets in the domain of any function, e.g., F :(4) — B, will indicate that
the function F is only partial, i.e., it is not defined for every element in the
domain 4. The domain of F will be denoted by Z(F) = A, and the range by
A(F) = B. Similarly, the domain and the range of S = X x Y will be
denoted, respectively, by

2(5) = {x:@(x, e} and  AS) = {y:@x)(x,y)€S)}

For the sake of notational simplicity, 2(8) = X is always assumed unless
stated otherwise.

Definition 1.4. Given a general system §, let C be an arbitrary set and R a
function, R:(C x X) — Y, such that

(x, )€ S «(3c)[R(c, x) = y]

C is then a global state object or set, its elements being global states, while R
is a global (systems)-response function (for S).

Theorem 1.1, Every system has a global-response function which is not
partial, i.e.,

RiCx XY

PROOF. Let F = Y* = {f:f:X - Y}. Let G = {f,:ce C} = F such that
f.eGe f, = §,where Cisanindex set of G. Let R:C x X — Y be such that
R(c,x) = f(x). Then we claim that S = {(x,y):(3c)(y = R(c,x))}. Let
S = {(x, y):(Fe)y = R(c, x))}. Let(x, y) € §' be arbitrary. Then y = R(c, x) =
J{x) for some ce C. Hence, (x, y)€ S because f, = §. Therefore, §’' = S.
Conversely, let (x, y) € § be arbitrary. Since 2(5) = X 3 x, S is nonempty. Let
f.eG. Let f=(£\{(x f(x)})u{(x,»}. Then feF and f < S. Hence,
f = f.. for some ¢'eC. Consequently, y = f.(x) or (x,y)e$ and hence
S € §'. Therefore, § = §'. Q.E.D.

In the preceding theorem, no additional requirements are imposed either
on C or R. However, if R is required to have a certain property, the global
response function, although it might still exist, cannot be defined on the
entire C x X, ie, R remains a partial function. Such is the case, e.g., when R
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is required to be causal. Since the case when R is not a partial function is of
special importance, we shall adopt the following convention:

R will be referred to as the global-response function only if it is not a partial
Junction. Otherwise, it will be referred to as a partial global-response function.

(b) Abstract Linear System

Although many systems concepts can be defined solely by using the notion
of a general system, the development of meaningful mathematical results is
possible often only if additional structure is introduced. In order to avoid
proliferation of definitions, we shall, as a rule, introduce specific concepts
on the same level of abstraction on which mathematical results of interest
can be developed ; e.g., the concept of a dynamical system will be introduced
only in the context of time systems. The concept of linearity, however, can be
introduced usefully on the general systems level. We shall first introduce the
notion of linearity, which is used as standard in this book.

Definition 1.5. Let o be a field, X and Y be linear algebras over .« and let §
be a relation, § « X x Y, S is nonempty, and

(i) seS&seS—ss+s5€es
(i) seS&oesd > asesS

where + is the additive operation in X x Y and € .21 S is then an (ab-
stract) complete linear system.

In various applications, one encounters linear systems that are not com-
plete, e.g., a system described by a set of linear differential equations whose
set of initial conditions is not a linear space. For the sake of simplicity, we
shall consider in this book primarily the complete systems, and, therefore,
every linear system will be assumed to be complete unless explicitly stated
otherwise. This is hardly a loss of generality since any incomplete linear
system can be made complete by a perfectly straightforward and natural
completeness procedure.

The following theorem is fundamental for linear systems theory.

Theorem 1.2. Let X and Y be linear algebras over the same field 2. § = X x
Y is then a linear system if and only if there exists a global response function
R:C x X - Ysuch that:

(i) Cisa linear algebra over &/ ;

(i) there exists a pair of linear mappings

R,;:C—-Y and R, X =Y

t The operation + and the scalar multiplication on X x Y is defined by: (x,y) + (%, §) =
(x + %,y + 9) and a(x, y) = (ax, ay) where (x, y), (£, )€ X x Yand ae o
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such that for all (¢, x)e C x X
R(c, x) = Ry(c) + Ry(x)

PROOF. The if part is clear. Let us prove the only if part. First, we shall
show that there exists a linear mapping R,: X — Y such that {(x, R,(x)):x e
X} = S.Let X, beasubspace of X and L,: X — Y alinear mapping such that
{(x, L(x)):x € X} = S.Such X and L alwaysexist. Indeed,let(£,))e S # ¢;
then X, = {af:ae .o/} and L;: X, — Y such that L (x®) = o} are the desired
ones. If X, = X, then L, is the desired linear mapping. If X, # X, then L can
always be extended by Zorn's lemma so that X, = X is achieved. Let
L= {L,} be the class of all linear mappings defined on the subspaces of X
such that when the subspace X , is the domain of L, {6 L Ax):xeX S8
holds. Notice that L is not empty Let < be an orderlng on [ defined by:
When L' and L” are in L, then L” < L” iff L” = L”. Since a mapping is a
relation between the domain and the codomain and since a relation is a set,
the above definition is proper. Let P = L be an arbitrary linearly ordered
subset of L. Let L, = \_JP, where \_JP is the union of elements of P. We
shalt show that L, is in L. Suppose (x, y} and (x, y) are elements of L. Then,
since L, = \_JP, there exist two mappings L and L’ in P such that (x, y)e L
and (x,y)e L. Since P is linearly ordered, e.g., L < L', (x,y)e L’ holds.
Since L' is a mapping, y = y'; that is, L, is a mapping. Next, suppose (x', ¥')
and (x”, y") are in L_. Then the same argument implies that (x’, y)e L” and
(x", y")e L" for some L” = P.Since L” is linear, (x' + x",y" + y")eL” < L,.
Furthermore, if (x', y)e L, and « € &, then there exists L' in P such that
(x'.y)eL’; that is, (ax’, @y} e L' = L, holds. Hence, L, is a linear mapping.
Finally, if (x', y') € L, then (x', y") e L' for some L' in P. Hence, (x', ') € §, or
L, c S. Therefore, L, € L. Consequently, L, is an upper bound of P in L. We
can, then, conclude by Zorn’s lemma that there is a maximal element R, in L.
We claim that Z(R,) = X. Ifitis not so, Z(R,)is a proper subspace of X. Then
there is an element £ in X such that £ is not an element of 2(R,). Then X' =
{af + x:0eof & xe Z(R,)} is a linear subspace which includes %(R,)
properly. Notice that every element x’ of X' is expressed in the form x' =
af + x uniquely. As a matter of fact, if x' = af + x = f£ + y, then (« — )X =
(v — x). If & # B, then £ = (@ — B)” (¥ — x) € Z(R,), which is a contradic-
tion. By using this fact, we can define a linear mapping L': X' — Y such that
L'(@% + x) = o + R,(x), where (£, #)e S and xe @(R,). Then L’ is linear
and {(x', L'(x")):x' e X'} = S, and R, is a proper subset of L', which contra-
dicts the maximality of R,. Hence, R, is the desired mapping. To complete
the construction of R, let C be C = {(o, y):(0, )€ S}. C is, apparently, a
linear space over & when the addition and the scalar multiplication are
defined as: (o, y) + (0,y) = (0,y + ') and afo, y) = (0, ay), where o€ .
Let R,:C — Y such that R,{{(0,)) = y. Then R, is a linear mapping. Let
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R(c, x) = R,(x) + R,(x). We shall show that
S ={xy):(I)ceC&y=Rl,x)}=§

Suppose (x, y)e S. Then (x, R,(x)) € S. Since § is linear, (x, y) — (x, Ry(x)) =
(0,y — Ry(x))€S. Hence, (Ic)(ce C&y = Ry(c) + Ry(x)); that is, S = §
holds. Conversely, suppose (x, R,(c) + R,(x))e §'. Since (o, R (c))e S and
(x, R,(x)) € S and since S is linear,

(x, Ry(x)) + (0, Ry(c)) = (x, Ry(c) + Ry(x))€S
Hence, §' = § holds. Q.E.D.

The fundamental character of the preceding theorem is illustrated by the
fact that every result on linear systems developed in this book is based on it.
We can now introduce the following definition.

Definition 1.6. Let S = X x Y be a linear system and R a mapping R:C x
X — Y. R is termed a linear global-response function if and only if

(i) R is consistent with S, i.e.,

(x,y)€ 8 (3c)[y = Rlc, x)]

(i) Cis a linear algebra over the field of X and Y;
(iii) there exist two linear mappings R, :C — Yand R,:X — Y such that
forall(c,x)eC x X

R{c, x) = Ry(c) + Ry(x)

C is referred to as the linear global state object. The mapping R,:C — Y is
termed the global state response, while R, : X — Y is the global input response.

Notice the distinction between the global-response function and the linear
global-response function. The first concept requires only (i), while for the
second, conditions (ii) and (iii) have to be satisfied. A linear system, therefore,
can have a response function which is not linear.

From Theorem 1.2 we have immediately the following proposition.

Proposition 1.1. A system is linear if and only if it has a linear global-
response function.

The concept of a linear system as given by Definition 1.5 uses more than a
“minimal” mathematical structure. The most abstract notion of a linear
system consistent with the formalization approach is actually given by the
following definition.
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Definition 1.7. Let X be an (abstract) algebra with a binary operation«: X x
X — X and a family of endomorphisms & = {«: X — X} ; similarly, let Y has
a binary operation *:Y x Y — Y and a family § = {$:Y — Y}. A function
system S: X — Yis a general linear system if and only if there exists a one-to-
one mapping ¥ :& — J such that:

(i) (Vx,x)[S(x - x) = S(x) * S(x')]
(i) (Vx) (Vo) [S(e(x)) = Y(e)(S(x))]

There could be other concepts of a linear system with the structure
between that in Definitions 1.5 and 1.7, e.g., by assuming that X and Y are
modules rather than abstract linear spaces. We have not considered such
“intermediate’’ concepts in this book because for some essential results the
structure of an abstract linear space is needed. Actually, one might argue
that the concept of linearity based on the module structure is not satis-
factory because it is neither most abstract (such as Definition 1.7) nor
sufficiently rich in structure to atlow proofs of basic mathematical results
such as Theorem 1.2.

2. GENERAL TIME AND DYNAMICAL SYSTEMS

(a) General Time System

In order to introduce the concept of a general time system, we have to
formalize the notion of time. In accordance with the strategy pronounced in
Chapter I, we have to define the notion of time by using minimal mathemati-
cal structure and such that it captures the most essential feature of an
intuitive notion of time. This seems a very easy task, yet the decision at this
junction is quite crucial. The selection of structure for such a basic concept
as the time set has important consequences for the entire subsequent develop-
ments and the richness and elegance of the mathematical results. We shall
use the following notion.

Definition 2.1. A time set (for a general time system) is a linearly ordered
(abstract) set. The time set will be denoted by T and the ordering in T by <.

Apparently, the minimal property of a time set is considered to be that its
elements follow each other in an orderly succession. This reflects our intended
usage of the concept of time for the study of the evolution of systems. No
restrictions regarding cardinality are imposed on the time set. However, the
time set might have some additional structure, e.g., that of an Abelian group.
We shall introduce such additional assumptions when needed.
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For notational convenience, T will be assumed to have the minimal element o.
In other words, we assume that there exists a superset T with a linear ordering
< and a fixed element denoted by o in T such that T is defined by T =
{t:t = o}.

We can introduce now the following definition.

Definition 2.2. Let A and B be arbitrary sets, T a time set, A7 and B” the set
of all maps on T into A4 and B, respectively, X < A" and Y = B”. A general
time system S on X and Yis arelationon X and Y,ie,S < X x Y. Aand B
are called alphabets of the input set X and output set Y, respectively. X and Y
are also termed time objects, while their elements x:T— A and y:T — B
are abstract time functions. The values of X and Y at ¢ will be denoted by x(t)
and y(t), respectively.

In order to study the dynamical behavior of a time system, we need to
introduce the appropriate time segments. In this respect, we shall use the
following notational convention.

Foreveryt, t' > t,

T={tt>t, T'={1t<t], T,={re<r*¥<r}
Lo=T,u{r), T=Tu(g

Corresponding to various time segments, the restrictions of x € AT will be
defined as follows.

x=x|T, xX=x|T, x,=x|T,, Xg=x|T,
¥=x|T, X, ={x:x,=x|T,&xe X}

X' ={x''x'=x|T"&xe X}, Xo={xpixp=x|T, &xe X}
X(t) = {x(t):xe X}
The following conventions will also be used:

xl‘! = ¢’ Xl‘! = {¢}

Based on the restriction operation, we shall introduce another operation
called concatenation. Let x€ AT and x* € A”. Then for any t we can define
another element £ in 47

{x(t), if t<t
R(r) = .
x*(7), if 7>1¢

£ is represented by £ = x'- x,* and is called the concatenation of x* and x,*.
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Given a set X = AT, the family of all restrictions of X as defined above
will be denoted by X, ie.,

X={2:=xV&=x,V2=xV2=x,V&=%,V2=X)
ExeX&tLt'eT&t =1t}

The restrictions in Y and the corresponding operations are defined in
completely the same way as in X.

For the sake of technical convenience, we shall introduce also the following
definition.

Definition 2.3. A time system S = X x Y is input complete if and only if
(VX)(Vx*)(Ve)(x, x* e D2(S) &te T - x' - x,* € 2(5))
and
(V1)({x(t)| xe X} = A)

In the succeeding discussions, every general time system is assumed input
complete unless explicitly stated otherwise.

The restrictions of a time system S are defined in reference to the restrictions
of inputs and outputs:

S, = {(x,y)x, = x| T &y, = y| T, & (x.y) € 5}
§' = {(x", y):x' = x| T' & ' = y| T & (x, y) € 5}
Su = Xy Yu) i Xy = x| T &y = y| Tp & (x, ) € 5}
S={8§=sVs§=5Vi=5Vi=s,}
We shall also use the following notational convention:
X,=X|T, X =X|T, X,=X|T,
and completely analogous for Y, and for §, e.g.,
S, =S8|T, =8| T, and S, =S|T,
Definition 2.4. Let S be a time system § < AT x B”. The initial state object
for S and the initial systems-response function are the global state object and

the global systems response of S, respectively. The initial systems response
will be denoted by p,, i.e., p,:C, x X — Y such that

(x, )€ S < () [plc, x) = y]

We can now introduce the following definition.
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Definition 2.5. Let S be a time system and ¢ € T. The state object at t, denoted
by C,, is an initial state object for the restriction S, ; i.e., it is an abstract set
such that there exists a function p,:C, x X, — ¥, such that

(x;, yye S, = () pfe, x) = y/]
p, is referred to as the (systems)-response function at .
A family of all response functions for a given system, i.e.,
p={p:C, xX,—Y&teT}
is referred to as a response family for S, while C = {C,:te T} is a family of

state objects.

Definition 2.6. Let S be a time system S < X x Y, and p, an arbitrary
function such that p,:C, x X, = Y,. p, will be termed consistent with S if and
only if it is a response function at ¢ for §, i.e.,

(x;, y) €S+ (3 [ple, x) = y.]
Let
$¢ = {(x, y):3)y, = pie, x))}
Then the consistency condition is expressed as
S =35,

Let g = {p,:C, x X, — Y} be a family of arbitrary functions. Then p is
consistent with atime system S if and only if p is a(systems-)response family for
S.ie, forallteT

S = Sr = Sopl T;
Regarding the existence of a response family, we have the following direct
consequence of Theorem 1.1.
Proposition 2.1. Every time system has a response family.
A family of arbitrary maps, naturally, cannot be a response family of a

time system as seen from the following theorem.

Theorem 2.1. Let p = {p,:C, x X, > Y, &re T} be a family of arbitrary
maps. There exists a time system S = X x Y consistent with g: thatis, gisa
response family of S if and only if for all t € T the following conditions hold:

(Pl) (Vco] (Vx‘) (er)(acr) [P:(C. » xr) = pn(cos xt xl) I 7;]
(P2) (Ve)(Vx) (3c)(Ix)[pdey, =) = polces X' - x,)| T
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PROOF. First, we shall prove the if part. We have to prove that S =
5,/ | T, is satisfied for every te T. Let (x,, y,) € S,” be arbitrary. Then y, =
pic,, x,) for some ¢, € C,. Property (P2) implies that

Yy = p,(C,, xr) = po(co, x'- xt)l T;
for some (c,, x)e C, x X'. Hence,
‘(xp y:] = (x! * Xps pn(cns x'- x:]}l T::

or(x,, y)€S,”| T,. Therefore,wehave S, = §,7| T,. Conversely, let(x, y) e S,°
be arbitrary. Then

y= po(co! x) = Polly, x' xl)
for some c,. Property (P1) implies, then, that
.Vl T; = pn(co,x' ' xr)l Tr = p:(Cnxr)

for some ¢,e C,, or (x,y)| T, §,*. Hence, §,°| T, < §,”. Combining the first
result with the present one, we have S, = S 2| T,.

Next, consider the only if part. Let x and ¢, be arbitrary. Then (x, p,(c,, X)) €
S.,°. Since §,°| T; < S,°, we have that

(%, Po(Cos XN | T = (X, polCos X' - x) | )€ S”
or
po(co: x!- xt)l Tr = pr(cr’ xr)

for some c,. Hence, we have

(Vt) (Vco)(Vx')(Vx,)(':lc,}(p,(c, > xr) = pn(cn s x' xt)t T;)

Let ¢, and x, be arbitrary. Then (x,, p/(c,, x,)) € §,°. Since §,” < §,°| T,, we
have

Pl X)) = polcy, X' x)| T,
for some ¢, and x'. Hence

(V(Ve)(Vx)(3e) (3x) (plers X) = polCo, X'+ X,) | T)) QED.

(b) General Dynamical System

The concept of a dynamical system is related to the way a system evolves
in time. It is necessary, therefore, to establish a relationship between the
values of the system objects at different times. For this purpose, the response
function is not sufficient, and another family of functions has to be introduced.
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Definition 2,7. A time system S = X x Y is a dynamical system (or has a
dynamical system representation) if and only if there exist two families of
mappings

p=1pC, x X, — Y, &teT}
and
¢={¢y:Cox X, »C,&t1I'eT& >t}
such that

(i) pis a response family consistent with §;

(ii) the functions ¢,,. in the family ¢ satisfy the following conditions
(@) pley, x) | T = pldylc,, X,), Xp0), where x, = Xpr * Xy
(ﬁ) ¢u‘(cn xn’) = ¢r"l'(¢!t”(cl7 xn")v xl"!‘)’ where Kegr = Xppn = Xprpe

¢, is termed the state-transition function (on 7,,.), while ¢ will be referred
to as the state-transition family.
o, is defined for t < t’. However, the following convention:

(1) bulcx,) =c, forevery teT

will be used.

Since a dynamical system is completely specified by the two families of
mappings p and @, the pair (p, @) itself will be referred to as a dynamical
system representation or simply as a dynamical system. If a response family
has a consistent state-transition family, it will be called a dynamical systems-
response family. It will be shown that not every response family is a dynamical
systems-response family.

Condition (a) represents the consistency property of the state-transition
Sfamily (with the given response family), while (f) represents the state-
transition composition property (also referred to as the semigroup property).
Conditions (x) and (f) are rather strongly related. Actually, under fairly
general conditions, property (f8) is implied by («) so that only the consistency
of ¢ with a response family 7 is required in order for ¢ to be qualified as a
state-transition family. To arrive at these conditions, we need the following
definition.

Definition 2.8. Let p be a response family consistent with a time system S. p
is a reduced response family if and only if forallte T

(VC:)(VEJ [(er) (P:(Cp x:) = P:(ars xr)) == ér]

The reduction of p, i.e., of associated state objects C = {C,:t€ T}, does
not represent a significant restriction. It only requires that if the two states
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atany timet € Tlead to the identical future behavior of the system, they ought
to be recognized as being the same.
We have now the following theorem.

Theorem 2.2. Let p = {p,:C, x X, > Y,} be a response family and ¢ =
{¢,,:C, x X,,, » C,} a family of functions consistent with p, i.e., satisfying
condition () from Definition 2.7:

pde, x)| T, = pl"(¢rt"(cl‘ Xyr)s Xy0)

Then if g is reduced, @ has the state-transition composition property, i.c.,
condition (f) from Definition 2.7 is satisfied.

PROOF. From the consistency of ¢, i.e., condition (a), it follows, for
t<t' <",
Phce, X)| T = pd Dyl X o)y X,)
pdes, X) | T = poldye (e, x,0), X))
PeAdulcy, X)X} | T = ppd @y @iy X,p0), Xprpr)s X,0)

Since

p:‘(¢n'(crv xu‘)s x!') | 7:" = (pI(cu xr)' 7;') | Tz"’ = pf(cn x:)l T;"

we have

pt"(¢r1"(cn xrr")’ xr") = p!"(¢|‘r"(¢lr'(cr » X"-), xt’r")’ xl”)

for every x,. € X,.. Since {p,} is reduced, we have
d)ﬂ"(cl’ xu") = ¢r'l”(¢rr’(cz’ xu’)’ x!'t") QED

It should be pointed out that in the definition of a time system, both input
and output objects are defined on the same time set. This is obviously not the
most general case (e.g., an output can be defined as a point rather than as a
function). We have selected this approach because it provides a convenient
framework for the results of traditional interest in systems theory (e.g., the
realization theory presented in Chapter III). The properties and behavior
of systems that have input and output objects defined on different time sets
can be derived from the more complete case we are considering in this book.

(c) General Dynamical Systems in State Space

The concept of a state object as introduced so far has a major deficiency
because there is no explicit requirement that the states at any two different
times are related ; i.e., it is possible, in general, thatforanyt # t',C, n C,. = ¢.
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To use the potential of the state concept fully, the states at different times
ought to be represented as related in an appropriate manner. It should be
possible, e.g., to recognize when the system has returned into the “same”
state it was before, or has remained in the same state, i.e., did not change at all.
In short, the equivalence between states at different times ought to be
recognized. What is needed then is a set C such that C, = C for every te T.
Such a set would represent a state space for the system. At any time the
state of the system is then an element of the state space, and dynamics (i.e.,
change in time) of the system for any given input can be represented as
mapping of the state space into itself.
This consideration leads to the following definition.

Definition 2.9. Let S be a time system S = X x Y and C an arbitrary set. C
is a state space for S if and only if there exist two families of functions p =
{p,:C x X, > Y}and ¢ = {¢,,.:C x X, — C} such that

(i) forallteT,S, = S§”and S, = {(x,y):(Ic)(y = p,(c.x))} = §
(i) forallt,t',t"eT

((Z) P,(C, xt) | T;' = pr‘(¢rt'(c: xu‘): x:‘)

(ﬂ) ¢r:‘(€v X)) = ¢I"l’(¢tl‘"(cl Xypr) Xyrp')

(?) ¢"(C, xn) =

where x, = x,,. - x,, and x,,, = X,,. - X. - X,.. § is then a dynamical system in the
state space C.

Notice that, in general, §, is a proper subset of 5,”. This is so because p is
defined on the entire state space C, while the system might not accept all
states at any particular time; i.e., the set of possible states might be restricted
at a specified instant of time. This leads to the following definition.

Definition 2.10. A dynamic system in a state space C is full if and only if it
has §, = S forallte T.

Many full dynamical systems, e.g., those that are also linear and time
invariant, will be considered in this book. However, in general, a system need
not be full; e.g., even a finite automaton is, in general, not a full dynamical
system. A simple example of such a case is given by a Mealy type automaton
specified by:

Input alphabet: {1}, Output alphabet: {1, 2}, State set: {1,2}

The state transition and the output function of the system are given by the
state-transition diagram in Fig. 2.1.
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(ii) Output Function

Time evolution of a dynamical system is customarily described in terms of
the state transition, and it is of interest to relate the changes in states to the
changes in outputs ; specifically, the state at any time t € T ought to be related
with the value of the output at that time. This leads to the following definition.

Definition 3.2. Let § be a time system with the response family g and 4, a
relation

2, = C, x X(t) x Y()
such that
(c,, x(2), W) € 2, = (3x) (V) [y, = pdcy, x,) & x(£) = x,(t) & Y1) = y,(1)]
When 4, is a function such that
A:C, x X(t)— Y1)

it is termed an output function at £, whileA = {4,:t € T} is an output-function
family (Fig. 3.2).

J

FiGg. 3.2

Apparently, 4, is a well-defined relation and exists for any general time
system. The conditions for the existence of an output function will be presented
in the next section.

(iii) State-Generating Function

For a dynamical system, the state at any time ¢ is determined by the initial
state ¢, and the initial input restriction x'. However, for certain classes of
systems, there exists a time # € T such that the state at any subsequent time is
determined solely by the past input and output restrictions ; i.c., no reference
to the state is needed. This leads to the following definition.
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Definition 3.3. Let p be a response family for a time system S and ' a relation
e X' x Y xC,
such that
(¥ eden’ o (Vx Iy '~ x,, ¥ - ) €S =y, = piey, X))
When 7' is a function such that
X' x Y -C,

itis termed a state-generating functionat¢, whilesj = {n": X' x Y' > C, & te
T} is termed a state-generating family (Fig. 3.3).

)

Fic. 3.3

Again, although n' is always defined, the existence of a state-generating
family requires certain conditions which, in this case, are of a more special
kind.

{(b) Some Classification of Time Systems

The auxiliary functions for any t € T are, in general, different. However,
when some of them are the same for all t € T or are obtained from the same

function by appropriate restrictions, various forms of time invariance can be
introduced.

(i) Static and Memoryless Systems

The first type of time invariance refers to the relationship between the
system objects at any given time and is intimately related with the response
function.

Definition 3.4. A system S is static if and only if there exists an initial response
function p,:C, x X — Y for S such thatforallte T

(Ve JYX)VRI[x(E) = R(E) = polCq, X)() = pelco, R)(1)]
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In other words, the system is staticifand only ifforany ¢ € T there existsamap
K,:C, x X(t) = Y(t) such that

(x, y) €8 (e, € C) (V) (yt) = Ki{c,, x(t)))
Any time system that is not static is termed a dynamic system.

Intuitively, a system is static if the value of its output at any time ¢ depends
solely on the current value of the input and the state from which the evolution
has initially started; i.e., if x(t) becomes constant over a period of type, y(t)
becomes constant too. On the other hand, the output of a dynamic system
depends not only on the current value of the input but also on the past
“history”’ of that input as well. Notice that, in general, reference to the initial
state had to be made (Fig. 3.4).

X V1) ES, paleo,x) =)y
(x1.¥2) €8, polco.x,)=y2
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It should be noticed that a distinction is made between a dynamic and
dynamical system. For the former, it is sufficient that the system is not
static, while the latter requires that a state-transition family is defined. This,
perhaps, is not the most fortunate choice of terminology ; however, it has been
selected because it corresponds to the common usage in the already estab-
lished specialized theories.

A related notion to a static system is the following definition.

Definition 3.5. A time system § is memoryless if and only if it is a static
system such that

(VXNVRUVc ) (VE) [x(1) = RAt) = polc,, X)(E) = polCs, R) (1]
or, in terms of the mappings K,:C, x X(t) = Y(t),

(Ve )(VE) (VXNVR)[x() = (1) > Klc,, (1)) = K(&g, R(1))]
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i.e., there exists a mapping K,*: X(t) — Y(¢) such that K *(x(t)) = K/(c,, x(t))
{Fig. 3.5).

s

y(t)
K.*

x(1)

FiG. 3.5

Apparently, a memoryless system is completely characterized by the map
K.*:4 - B. A system that does not satisfy Definition 3.5 is termed a system
with memory.

{ii) Time-Invariant Dynamical Systems

The second kind of time invariancy refers to how system responses at two
different times compare. To introduce appropriate concepts, we shall assume
for this kind of time invariancy that the time set T is a right segment of a
linearly ordered Abelian group T whose group operation (addition) will be
denoted by +. More precisely, T = {t:t > o}, where o is the identity element
of Tand the addition is related with the linear ordering as

t<t et —t>o0

The time set T defined above will be referred to as the time set for stationary
systems.
Foreachte T,let F': X — X denote an operator such that

(VE)FO)(E) = x(t — 1)]

Notice that F' is defined for t < oaswellast > o and that whether or not
F' is meaningful depends on its argument. In general, F'(x,,.) € X 4y s1)
holds whenever F'(x,.,.) is defined.

F'is termed the shift operator; it simply shifts a given time function for the
time interval indicated by the superscript, leaving it otherwise completely
unchanged (Fig. 3.6). We shall use the same symbol F' for the shift operator in
Y and define Ff also in §, F':§ — §, such that

Fi(x, y) = (Fi(x), F'(y))
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We can introduce now the following definition.
Definition 3.6. A time system defined on the time set for stationary systems is
fully stationary if and only if (Fig. 3.7)
(Vt)[te T— F(S) = S,
and stationary if and only if

VOV = t)(t,f e T— S, = F'X(S,)

(xp ¥ ) =F'ixy)

-

Apparently, if a system is fully stationary, F~'(S,. | T,) = F~"(S,) for any
t > t'e T; ie., starting from any given time, its future evolution is the same
except for the shift for the appropriate time interval.

When some given input and output objects X and Y satisfy the condition

(V)(X, = F(X)) and  (Vi)(Y, = F(Y))

they will be referred to as the objects for a stationary system.
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!

= (x3,¥2)€8

(x1,73)¢8
. (x2,73) #8

27
"
Y1
/ X3 (x,,¥1)e8S
-~
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Definition 4.2. An initial systems-response function p,:C, x X =+ Y is
strongly nonanticipatory if and only if

(VO(Ve)(VX)(VR)[x | T' = [ T' = py(ce, X)| T' = polco, 2} T']

Notice that Definitions 4.1 and 4.2 refer to time systems rather than to
dynamical systems.

The difference between the nonanticipatory and strongly nonanticipatory
response functions is that in the latter the present value of the output, y(t),
does not depend upon the present value of the input, x(z), since the restriction
in the antecedent in Definition 4.2 is on T* while in Definition 4.1 ison T* =
T' U {t}; however, in both cases the output is restricted to T".

It should also be pointed out that p, is defined as a full function. This is
an important restriction in the case of nonanticipation because it prevents
some systems of having a nonanticipatory systems-response function. We
shall introduce therefore the following definition.

Definition 4.3. Let R = C, x X and p,:(R) - Y. p, is an incomplete non-
anticipatory initial systems response of S if and only if

(i) p, is consistent with S, i.e.,
(x, Y) €S = (3c,) [polcys X) = y & (c,, X) € R]
(i) (V) (Ve )(Vx)(VR)[(c,, x)eR & (c,, R)e R & x| T"
=X I T - po(co! XJl T = pn(cn’£)| T’]
Definition 4.4. We shall say that the system S is (strovngly) nonanticipatory

if and only if it has a complete (strongly) nonanticipatory initial-response
function.
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(ii) Past-Determinacy

Definition 4.5. A time system § = A7 x BT is past-determined from { if and
only if there exists i € T such that (see Fig. 4.2)

(i) (V0x, y)e SHV(X, ¥) e SHVE = B([(x,y) = (x7, y") & x;,
= X;] = Vi = )
(i) (VO YY) Ay (o, YD e ST - (xF- x;, ¥ - y) € S)

4
/
I
|
|

T
/"x

\
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Past-determinacy means that there exists i € T such that for any ¢ > i,
the future evolution of the system is determined solely by the past observa-
tions, and there is no need to refer to an auxiliary set as, e.g., the initial state
object.

Condition (ii), which will be referred to as the completeness property, is
introduced as a mathematical convenience.

(b) Existence of Causal-Response Family

Theorem 4.1. Every time system has an incomplete nonanticipatory initial
systems response.

PROOF. Let = € § x § be a relation such that (x, y) = (x, y') if and only
if y = y'. Then, apparently, = is an equivalence relation. Let §/= = {[s]} =

C,, where [s] = {s*|s* = s&s*eS}.t Let p,:C, x X — Y such that
if (x,y)e[s]
undefined otherwise

po(ls), x) = {

+ In this book the following convention will be used for a guotient set. Let E be an equivalence

relation on a set X. Then the quotient set X/E will be represented by X/E = {[x]}. where [x] is
the equivalence class of x, i.e.,

[x] = {x*:(x, x*)c E& x* € X}
and [ ] will be considered as the natural mapping, i.e, [ ]:X — X/E.
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Notice that p, is properly defined, because if (x, y) € [s] and (x, ) € [s], then
y = y'. In general, p,_ is a partial function. First, we shall show that

S ={(x,3):(3)ceC, &y = plc,x)} = §

If (x, y) € S, then p([(x, ¥)], x) = v by definition. Hence, (x, y)e S, or S < §".
Conversely, if (x, y) € S, then y = p,([s], x) for some [s] € C,. Then (x, y) € [s]
follows from the definition of p,. Hence, ' = S. Furthermore, if the values of
2.((s), x) and p,([s], x’) are defined, then p,([s], x) = p([s], x") for any x and x'".
Hence, condition (ii) in Definition 4.3 is trivially satisfied. Q.E.D.

Theorem 4.1 cannot be extended for the full initial systems-response
function, i.e., when p, is a full function. There are time systems that do not
have a (complete) nonanticipatory initial systems response as defined in
Definition 4.1; in other words, requirement for the initial response to be a
full function prevents a causal representation of the systems in the sense of
nonanticipation. Such systems can either be considered to be essentially
noncausal or it can be assumed that only an incomplete description of the
system is available and that noncausality is due to having only partial
information. This can be best shown by an example as given in Fig. 4.3.

X
A .

/
\X;

YA

Ya

FiG. 4.3

Consider a system S which has only two elements, S = {(x,, y,), (x;,¥,)}
which are as shown in Fig. 4.3. Since the initial segments of both x, and x,
are the same, while those of y, and y, are different, the initial state object
ought to have at least two elements if we want to have a nonanticipatory
initial-response function. Let C, = {c, ¢’} and p,(c, x,) = y;, po(C¢’, X2) = ¥;.
If p, is a full function, (c, x,) is also in the domain of p,. Therefore, either
PalC, X3) = ¥y 0T py(c, X;) = y,. But p(c, x;) = y, implies (x, y,) €5, ie., p,
is not consistent with S, while p (¢, x;) = y, violates the nonanticipation
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condition in Definition 4.1 since the initial segments of x, and x, are the
same, while y, and y, are not. The system S does not have, therefore, a
complete nonanticipatory response function.

Definition 4.6. A response family g = {p,:t € T} is called nonanticipatory
if and only if every p, is an initial nonanticipatory response function of §,.

Theorem 4.2. A time system has a nonanticipatory response family if and
only if it has an initial nonanticipatory response function.

PROOF. The only if part is obvious. Let us consider the if part. Let
p..C, x X — Y be an initial nonanticipatory systems response. Let C, =
C, x X'and p,:C, x X, - Y, such that if ¢, = (c,, £'), then

pey, x,) = polcg, & x) | T, for teT

Then the consistency conditions in Theorem 2.1 are trivially satisfied, i.e.,
g = {p.:te T} is a response family. Furthermore, suppose x,| T, = x,'| T,
for t' > t. Then if ¢, = (c,, £),

pl(ct’ xr” Tn' = po(Cn, £ xr) | Tu'
and B
pdce x,) | Tu’ = Po(Cos X'+ ;)| Ty

Since p, is nonanticipatory and £ x,| T"= #'- x| T", we have
pdee, x| T = (pole, &~ x) | T T,y
= (polce, &%) T)| T,y
= polco, &' x) T
= pde x| T

Hence, p, is nonanticipatory. Q.E.D.

(c) Causality and Output Functions

Conditions for the existence of an output function and an output-generat-
ing function can be given directly in terms of the nonanticipation of systems
response.

Dependence of the output function upon nonanticipation is clearly
indicated by the following proposition.

Proposition 4.1. A time system has an output-function family 1 = {4,:C, x
X(t) = Y(¢)} if the system is nonanticipatory.
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PROOF. Since the system is nonanticipatory, there exists, by Theorem 4.2,
a nonanticipatory response family g = {p,:t € T}. Let 4, be defined for the
nonanticipatory response family. Suppose (¢, , x(t), y(t)) € A, and (¢, X'(t), y'(r)) e
4, where x(t) = x'(t). Since

x| T, = x(t) = X'(t) = x| T,
and since p, is nonanticipatory, we have that
pice, x,) | T_:r = plc, X)) T,

or y(t) = y'(t). Hence 4, is a mapping such that 4,:C, x X(t) - Y(t). Q.E.D.

The concept of an output function illustrates one of the important roles
of the concept of state: If a state is given and the system is nonanticipatory,
all information about the past of the system, necessary to specify the present
value of output, is contained in the state itself.

Dependence of the output-generating function upon the nonanticipation

of the system is quite similar to the dependence of the output function and
is given by the following proposition.

Proposition 4.2. A time system has an output-generating family i = {u,,
C, x X,. — Y{(t")} if the system is nonanticipatory.

PROOF. The proof is similar to that of Proposition 4.1. Q.ED.

From Proposition 4.1 it is obvious that the output of a nonanticipatory
time system can be determined solely by the present state and the present
value of the input. For some systems, however, the present output depends
solely upon the present state and does not depend upon the present value
of the input. For the analysis of these systems, a somewhat stronger notion,
namely, that of strong nonanticipation, is needed.

Proposition 4.3. A time system has an output function such that forallte T
(YD (VRO e, = &, = Alc,, x(1) = A&, 2(1))]
if it is a strongly nonanticipatory system.
PROOF. Since the system is strongly nonanticipatory, there exists a strongly

nonanticipatory initial system response p,. Then the same procedure as
used in Proposition 4.1 proves the statement. Q.E.D.

When the system is strongly nonanticipatory, for every t € T there appar-
ently exists a map

K,:C,— B
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