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Chapter I
Points and lines in the plane

L.1. In which setting and in which plane are we working? And right away
an utterly simple problem of Sylvester about the collinearity of points

We first work in the coordinate plane, which is familiar to everyone, with its
points and fines. As is usual in the “elementary” geometry of school instruction,
this has to do with Euclidean geometry, where there are distances (lengths), angles,
circles, etc. This will also be the setting of the next chapter, but even in this first chap-
ter we will see that we can already do many subtle and difficult things — and even
find open questions — with only the so-called “affine plane”. Affine geometry is a
weaker structure than Euclidean geometry. Simply put: we won’t be working with
anything but points and lines; the mathematical definition is given in Sect. LXYZ at
the end of the chapter. Here we need only recall: two distinct points uniquely deter-
mine a line that contains them, along with a segment that joins them; two distinct
lines intersect in a single point, with the sole exception of parallel lines. Regarding
these, through each point exterior to a given line there passes a unique parallel to
that line. Finally, there is a supplementary affine notion, more subtle than the merely
set-theoretic ones of point and of line, which is the affine invariant attached to three
collinear points: if a, b, ¢ are collinear, there exists a real number (and one only)

denoted %. It indicates a ratio (that can be negative, although negative numbers had
been long forbidden in geometry, even by Poncelet and d’Alembert, until Chasles
actually gave them rights of citizenship), a ratio obtainable by parameterizing the
line considered, but which does not depend on this parameterization. We can thus
speak about the midpoint of a segment, the third-way point, etc. See the necessary
details in Sects. .XYZ and 1.3 below. The precise mathematical language is that
of the real affine plane. If we adjoin a metric — which we permit ourselves occa-
sionally, even in this chapter — we then speak of a Euclidean plane. An important
remark about language: we can speak of “the”, rather than “an”, affine plane. For
in fact any two affine planes are necessarily isomorphic, just as are two real vec-
tor spaces of dimension 2. The same remark applies to Euclidean spaces of any
dimension.

But in this introductory chapter we will see that it is practically impossible to
remain in the affine setting: to comprehend and unify certain things, by Sect. 1.4
we will need to climb the ladder, know how “to go to infinity” and not interject the
Euclidean plane but — more subtly — define the “projective plane”. The degree of
subtlety can be seen historically: projective geometry wasn’t defined until Desargues
in the 1650s and then only heuristically. The sound algebraic construction, following

M. Berger, Geometry Revealed, DOI 10.1007/978-3-540-70997-8_1, 1
© Springer-Verlag Berlin Heidelberg 2010



2 CHAPTER I. POINTS AND LINES IN THE PLANE

the synthetic attempts of Poncelet and Chasles in the years 1820-1840, was made
in the 1850s by the German school: Pliicker, von Staudt and Grassmann, whereas
Euclid dates from 300 B.C.

¢
In 1893 Sylvester posed the following problem:

(I1.1.1) Let E be a finite set of points in the plane that has the following property: for
an arbitrary pair of distinet points of E there exists, on the line joining them,
a third point of E. Show that this is impossible, with the obvious exception of
the case where E consists of collinear points on a single line.

Some readers may prefer the equivalent formulation:

(I.1.2) If E is a finite set of points in the plane not composed of points belonging to
a single line, then there exists at least one line that contains only two of its
points.

. {
Couwbtinue .
Fig. L1.1.

As an exercise we can attempt to convince ourselves of Sylvester’s conjecture
by making some sketches: we quickly see that we are forced into constructing sets
having an infinite number of points. But in spite of this easily won insight, it was
not until 1932 that there was a proof of this conjecture, found by Gallai. We owe
to Kelly in (Kelly, 1948) a proof that uses the following Euclidean argument: if
the points are not all collinear, there is a triple of non-collinear points a, b, ¢ of
E forming a true triangle such that the distance from a to the line bc is minimum
among all such triples. We already have a contradiction if b and ¢ are of the same
side of the altitude from a, for then the distance from b to ac, or else that of ¢ to
ab, is less than that of @ to bc. So b and ¢ must be on opposite sides of the base
of the altitude. But there exists by hypothesis a third point d of E on bc, and we
are led to a new contradiction by considering either the triangle ahd or the triangle
acd.

But this proof leaves us with a bad taste if we are at all purist: the problem
is strictly affine and we should be able to prove the conjecture in a purely affine
manner, without the aid of Euclidean geometry. The purely affine proof of Gallai
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¢t

—

owly ) l,m-cbcwf‘ !

Fig. 11.2.

is found on p. 181 of Coxeter (1989) . Courageous readers may attempt to find
one of their own; but it is important to note that none of the proofs cited so far is
combinatorial in the sense that in a combinatorial proof we compute the number of
points on this or that line, how many lines joining two points of the set pass through
a given point, etc., hoping to find relations that contradict the initial hypothesis.
On the contrary, Gallai’s proof uses the fact that a line in the plane divides it into
two distinct connected regions; we can’t pass from one to the other without inter-
secting the line. Apart from that, Gallai’s proof doesn’t introduce any new concept.
Where then is Jacob’s ladder? We will climb it in two different ways, but reluc-
tant readers may skip immediately to the next section and the second problem of
Sylvester.

The first way of ascending the ladder provides a conceptual and combinatorial
proof of Sylvester’s conjecture, due to Melchior in 1940; details can be found in
Chaps. 8 and 10 of Aigner and Ziegler (1998).

We now use some tools whose motivation will be given subsequently: we extend
(see Sects. .7 and I.XYZ) the real affine plane under consideration to a real projec-
tive plane #. There we consider not the finite set E of points satisfying Sylvester’s
condition, but its dual, i.e. the (necessarily finite) set of lines D dual to E under a
duality of £.
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A duality consists of two mappings: the first associates with each point a of P
a line denoted by a*; the second associates with each line ¢ a point denoted by d*.
The fundamental properties of a duality are the following:

— the mappings @ — a* and d — d* are inverse to each other;

— if the line d passes through the point a, then the line a* passes through the
point d*,

For example, corresponding to two points @ and b lying on d, there are the two
lines a* and b* intersecting in the point 4 *. For a complete definition, see Sect. L.7.

a!Maf— 2\ ¥ *
o E‘J:‘MQJ‘WV\

Fig. I.1.3. Duality between points and lines in the projective plane

For the configuration of points and lines provided by D we then obtain com-
binatorial relations between the two sequences of integers { p, } and {¢,} defined as
follows: p, is the number of polygons of r sides that are found in the cellular decom-
position of & that D defines, while ¢, is the number of points that lie on r lines of D.
We have the following relations, where fo, f1, f2 denote the respective numbers of
vertices, edges and polygons of the cellular decomposition: fo = > t,, fa = >_ pr,
fHh=>r, = %E rp,. But algebraic topology (see the combinatorics of polyhe-
dra in Sect. VIIL.4) tells us that, for the surface &, the Euler-Poincaré characteristic
Jo— f1+ f2 equals 1. To prove Sylvester’s conjecture, we need to prove that 7, = 1
(which implies that in the configuration defined by D there is one point lying on two
lines and, in that defined by E, one line that contains only two points). Suppose to
the contrary that we only have f, > 0 when r = 3. The Euler-Poincaré formula
yields on the one hand

S+ =14 r,2143) 1,

and, on the other,

Ztr+2pr=l+%err21+;Zpr.
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Upon multiplying the first relation by %, the second by % and adding, we obtain a
contradiction.

In Aigner and Ziegler (1998) or Aigner and Ziegler (2003) there is a variant of
the proof by central projection, due to Steenrod, using graph theory and spherical
geometry:

Fig. L1.4. Aigner, Ziegler (1998) © G. M. Ziegler

¢

The second ascent entails introducing concepts of the complex affine plane and the
planar cubic. We will see in Sect. V.14 that a generic cubic in the complex plane
possesses nine distinct inflection points and, most importantly, that each two inflec-
tion points have the property that the line that joins them intersects the cubic once
again in an inflection point. Sylvester’s conjecture is thus false in the complex plane.
This isn’t so surprising, for we can’t apply reasoning “a la Gallai” for the reason that
a line in the complex plane only determines a single connected region. With some
planar algebraic geometry, as in Sect. V.14, it is also easy to see that each complex
planar configuration of nine points satisfying Sylvester’s condition is equivalent to
the one described above. However, there does exist an extension of Sylvester’s re-
sult to complex affine geometry, necessarily of dimension higher than two, as will
be seen in Sect. 1.8, that requires a very high ascent on Jacob’s ladder.

Finally, a result such as (I.1.2) will not completely satisfy a mathematical intel-
lect, requiring as it does for the set E merely the existence of at least one line that
contains only two of its points. A few sketches will convince readers that we might
prove a stronger result, of a sort such as this: we will say that a line associated with
a finite set of points is ordinary if it contains but two points of the set. We denote
by #(n) the minimum number of ordinary lines of a set E of n noncollinear points.
Theorem (1.1.2) states that we always have 7(n) = 1 for each integer n, but we
might suppose that 7(77) may be rather large with increasing n. The question isn’t
yet settled. Here briefly is the present state of affairs; for more details and refer-
ences see Problem F12 in Croft, Falconer and Guy (1991), Chap. 8 of Aigner and
Ziegler (2003), and the second part of Pach and Agarwal (1995) — which is more
conceptual — and also the Introduction, p. 679, of Vol. II of Hirzebruch (1997).
The exact general value of #(n) is unknown; the best we know presently is that
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we always have t > [n/2] (integer part of n/2), which is due to Hansen, but we
don’t have an optimal answer. Moreover the proof of this result of Hansen doesn’t
at the moment seem to bring with it any new concept. Nevertheless, knowledge of
the combinatorics of arrangements of lines in the real plane has recently increased
considerably, see the reference Pach and Agarwal (1995). Finally, for the complex
case, see Sect. 1.8. For their aesthetic aspect and their naturalness, the configura-
tions called Sylvester-Gallai remain much studied; see for example Bokowski and
Richter-Gebert (1992).

¢

The name Erdos deserves special mention. Beyond his numerous results and his
innumerable lectures, he was known first for having a rather long waiting line of
researchers at the end of his lectures. Each in his turn would say: “Professor Erdos,
I don’t know how to settle this or that question”. Almost invariably the response
would be: “Here’s how to do it. Write the article, we’ll sign it jointly”. Given then
the innumerable articles written jointly with him, practically every mathematician
of a certain age appears as a connected component of Erdds and even possesses
an Erdds number defined thus: it’s the minimum number of elements in a chain of
several articles which ends with an article written jointly with Erdds. Your humble
author didn’t escape either; his Erdés number equals 3, via Aryeh Dvoretsky (who
has seven articles jointly with Erdds — if we want to compute an Erdds valence) —
and Eugenio Calabi. Another of Erdos’s striking traits was his ease in making con-
jectures. For many of them he actually offered compensation (which he always paid)
up to five thousand dollars, and he and his purse might thank the deity that he rarely
deceived himself regarding their difficulty.

I.2. Another naive problem of Sylvester, this time on the geometric
probabilities of four points

The second (still purely affine) problem of Sylvester from 1865 treats the ar-
rangement of a quadruple of points in the affine plane: only two arrangements are
possible (in the generic case, where three points are never collinear), either they
form a convex quadrilateral or one of the points lies in the interior of the triangle
formed by the other three. Then there is the natural question:

(1.2.1) If four points are thrown randomly at the plane, what are the probabilities
for abtaining one or the other of the possible configurations?

I\ JaAN
b 1-p rwyyeu
}""9“6‘&“} 3o

Fig. L2.1.
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There are really only two cases to consider; the degenerate ones have probability
zero. But, for the question to make sense, i.e. in order to have a good notion of
probability, we take as our target a planar domain D that is bounded and everywhere
convex. The theoretical answer is then quite simple, the probability of obtaining four
points such that one of them lies in the triangle formed by the other three is given
by the triple integral

4
[.2.2 Sylv(D) = ———— Area(x1, X2, X3) dx1dx2dx
(1.2.2) ylv(D) Area4(D)/13/1:./13 ea(x1. X2, X3) dx1dx2dx3

where we integrate over all triples of points of D (i.e. over all the triangles contained
in D) and where Area(x, x2, x3) denotes the area of the triangle with vertices xi,
X2, x3. The proof is very simple: the probability that the first three points fall re-
spectively in x14+dxy, Xp+dxa, x3+dx3 is dxdxadx;/ Area’ (D). Knowing this,
the probability that the fourth point is in the interior of the triangle formed by the
first three is Area(x1, x2, x3)/Area(D). From this we get the formula by observing
that the event considered is the union of four mutually exclusive events of equal
probability.

traple Lok

Fig. 1.2.2.

The probability of having four points that form a convex quadrilateral is then
simply equal to 1 — Sylv(D). The value of Sylv(D) depends on the “shape” of the
domain D considered; we have Sylv(D) = % for an arbitrary triangle and 1;;2 for
an arbitrary ellipse.

These results should give us much to think about. First, the value is the same
for all triangles and for all ellipses. The reason is simple: in affine geometry, all
triangles are “the same”, all ellipses are “the same”. We will return to all this amply
in Sect. 1.3, where we introduce notions that permit us to clarify what we mean
by “the same”. It will be noted that Sylvester’s condition is purely affine. We now
observe that, in Euclidean geometry, we clearly no longer have such equivalences
for similarly shaped domains.

The two values above show in any case that the probability of having a quadri-
lateral is significantly lower for triangles than for ellipses. This is intuitive enough:
when we take three points, each of which is close to a vertex of the triangle, there
remains but little space for the fourth point outside the new triangle thus formed. In
contrast, near the boundary of a round domain, we have more space. It is important
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to go further, since up to this point we know nothing about other domains. This
problem was settled by Blaschke in 1917:

We always have

1
< Sylv(D) < = for any domain whatsoever.
1272 3

And surely our curiosity won’t be completely satisfied until we know that Blaschke
also showed that equality isn’t attained for the lower and upper bounds except by
triangles and ellipses, respectively: a nice characterization of triangles and ellipses!
See Note 1.4.5 of Santalo (1976) and Klee (1969) and Sect. 5.2 of Gruber and Wills
(1993). We give here the two-fold idea of Blaschke. For the left inequality we use the
Steiner symmetrization which we will encounter several times in Chap. VII (begin-
ning in Sect. VIL5.A), but why not make quick use of it right off? It is described on
the diagram: with each convex domain D and each linear direction A is associated
the symmetrization sym, (D) of D for the direction A.

/ D
/ Wwe ..Euu? have
= ( P(3) > P(sym, (D))
=) eqpality o
! A ‘D:W?WA(.D)

Blaschke shows that each symmetrization can only diminish the integral (1.2.2).
This is easy enough to perceive intuitively, for a few sketches quickly convince us
that the symmetrization of a triangle interior to D often becomes a quadrilateral in
symp (D). Furthermore the diminution is strict provided that the convex set is not
symmetric with respect to the direction considered. Knowing this, we effect some
symmetrizations about well chosen lines (the directions alone matter), for example,
by taking lines with inclinations that are irrational multiples of 7.

For inequality in the reverse sense, Blaschke introduces the notion of cosym-
metrization, which we haven’t encountered anywhere else in the geometric
literature.

It is easy to see that cosymmetrization, conversely, strictly increases the inte-
gral (1.2.2). We approximate D by polygons and thus obtains a reduction to the
polygonal case. For the polygons for which one direction is orthogonal to a line

-

Fig. 1.2.3.
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ws;mA(D)

’P(ws;/wA(D)) = P(D)
Fig. 1.2.4.

joining two nonconsecutive sides, the cosymmetrization always has at least one ver-
tex fewer than the initial polygon and we end up with a triangle, Q.E.D.

¢

Problem (1.2.1) seems well in hand, but in fact we have cheated a bit in requiring
that the domain D be convex and bounded in order for the notion of probability to
make sense. In truth it suffices for D to have finite area, which doesn’t preclude
“passage to infinity”. Note that such a domain, extending to infinity, cannot — ex-
cept for some very special cases — be convex and that Sylvester’s second problem,
cited frequently only for convex sets, continues to make sense for all sets of finite
area. The four points may be in the domain, but the quadrilateral they determine may
emerge from it, which actually needn’t trouble us; it suffices to replace, in formula
(1.2.2), Area(xy, x2, x3) by Area(Triangle(x1, X2, x3) N D). This more general non
compact study was undertaken only very recently and is not yet well understood.
Here is what we know, a recent reference being (Scheinerman and Wilf, 1994): on
the one hand, the shape that yields the lower bound p = 1 — Sylv(D) over all D
isn’t known or even conjectured precisely. On the other hand this work provides a
result that is amazing at first glance: even though we don’t know the exact value
of the optimal probability, it is possible to show that it coincides with another num-
ber, also unknown and extensively studied in combinatorial geometry, see Pach and
Agarwal (1995), for it is related to planar realizations of the complete graph K,
with n vertices (a graph is complete when every pair of vertices is joined by an edge,
and a result of Fany states that we only need use segments for joining vertices). Let
v(K,) be the minimum number of points of intersection of the edges in an arbitrary
planar realization of a complete graph K,,. By putting all the points on a circle, we
get Ci intersections. Readers may find a smaller number with other examples, but a
classical result states that n* is the right order of magnitude. More precisely, there
exists a positive real number v (finite) such that
. v(Ky)
lim =v

n—00 Ci

The amazing result is that v = p.
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Fig. 1.2.5.

Fig. 1.2.6. A very nice complete graph with 11 vertices, due to H. Jensen

For the proof, the connection between the two concepts is achieved thus: we
choose n points in D at random and in a probabilistically independent manner. It
is necessary to prove two opposite inequalities. In the one direction, we start with
an optimal complete graph and surround each of its vertices with a small disk of
radius . We can choose ¢ sufficiently small so that random points taken in this col-
lection of disks yield another optimal graph. We then study Sylvester’s probability,
choosing for D the union of these disks; for ¢ sufficiently small we obtain the re-
quired inequality. Roughly speaking, 1 — Sylv(D) is equal to the probability that the
four points chosen at random form a convex set, i.e. the probability that among the

three possible groupings of edges ab — c¢d, ad — bc, ac — bd, one of them gives
v(Kp)
Ya)

n

rise to an intersection is . Thus we have roughly:

v(Ky)
c4

hn

p = minp(l — Sylv(D)) <

More precisely, it is necessary to take into account the circumstance that the four
points chosen may have the bad sense not to fall into four different small disks; but
the asymptotic behavior of this bad case is in total of the order of O(nl) and thus
goes to zero as 1 goes to infinity.
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In the reverse direction, we start with any domain D in which we choose n points
{pi} at random and probabilistically independently, and we assume that these n
points are the vertices of a complete linear graph K,,. Then the number ¢ of crossings
of this graph is a random variable whose value is always at least v (K, ). Moreover,
consider the random variable

X=3" Ypa ph pe par
a,b,c.d

where the sum is taken over all quadruples of {1...., n} and where 1y, .. .y is a ran-
dom indicator that equals 1 if the convex envelope of {p,. pp. pc. pa} is a convex
quadrilateral, and equals 0 otherwise. Since a random graph can’t have more cross-
ings than the mean, we have v(K,) < E(X) for the mathematical expectation of X.
The desired result is obtained by letting n go to infinity.

The optimal shape of D isn’t known, as already mentioned.

¢

We haven’t yet finished with the problem (1.2.1), which violates the strict rules of
the game: staying in the plane, in dimension two.

(1.2.2) We randomly throw 5 points at a bounded region D of three dimensional
space; what is the probability that they form a frue polyhedron with five ver-
tices? And the same problem with n 4 2 points in the space of n dimensions.

As before we compute the complementary probability to find the probability
that the fifth point is in the interior of the tetrahedron formed by the four others. The
formula is the strict generalization of that given above for an arbitrary dimension,
which in dimension three will be:

5
Sylv(D) = ————— Volume(xy, X2, X3, X4) dxX1dxodx3d x4,
Y()AreaS(D)fD/D[DfD (x1.x2,x3, x4) dx1dx2dx3dxy

where Volume(xy, X2, X3, X4) denotes the volume of the tetrahedron with vertices
X1, X2, X3, X4. Here half the problems remain open at present; we only know what
happens on one side of the conceivable inequalities. First, the value is known for
ellipsoids (here again, there is but one ellipsoid in affine geometry, in which we con-
tinue to be situated, given the nature of the problem (1.2.2)); this is due to Klingman
in 1969. In each dimension d he finds for the ellipsoid €9 (the binomial coefficients
have their usual sense when ¢ is odd and we use the gamma function to define the
necessary factorials when d is even; the gamma function provides a factor /7):
Sylv(e?) = 274 () /(i)

In 1973, Gromer showed conversely that this value is attained only for ellipsoids.
The value in question is thus a rational number when d is odd, and a rational mul-
tiple of 7~% when d is even. The method of proof is again the Steiner symmetriza-
tion, which is viable in all dimensions and which we will continue to encounter in
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Sects. V.11 and VILS8. A recent reference is Sect. 5.2 of Gruber and Wills (1993)
where there is a nice conceptual treatment.

On the other hand, for the maximum value, three problems remain open. Is it
attained for tetrahedrons (in dimensions greater than three we say simplex)? Does it
characterize the tetrahedrons? But above all, how can we calculate the above inte-
gral for tetrahedrons? Readers may find such ignorance surprising for so simple and
ordinary a geometric object as the tetrahedron. In Sect. I11.6 we will encounter two
other unresolved problems on the volumes of tetrahedrons in the three dimensional
sphere S. Readers may also try to see why Blaschke’s cosymmetrization method
doesn’t work in dimension 3 or greater. We will encounter the P(D) in a remark-
able way in Sect. VIL.10. Many important results in this field have appeared quite
recently; see a synthesis in Bardny (2008).

¢

In dimension 3 or more we will not be satisfied with only an estimate of P(D) in the
case of ellipsoids. The problem is to estimate
(1.2.3).

P(D) = n+2

m[D/l;---/DVolume(xl.xz....,xn+1)dx1de...dxn+1.

as a function of invariants attached to the convex set D, where we are dealing with
the volume of the simplex generated by the n + 1 points xy, xa, ..., Xp4+1. We will
find a partial answer in Sect. VIL.10.F.

A final comment: we have just seen for the first time an interaction between ge-
ometry and probability. Historically the original problem is that of Buffon’s needle;
see the elementary exposition in Santalo (1976) and, for a contemporary treatment,
Sect. 5.2 of Gruber and Wills (1993), already mentioned above. Recent directions
in geometric research, in particular the Gromov’s approach with mm-spaces (see
Sect. .XYZ), seem to indicate that the notion of measure — to which the notion of
probability is equivalent — is every bit as important in geometry as that of distance,
of metric. We will encounter other uses of geometric probability in Chaps. VII, XI
and XII.

I.3. The essence of affine geometry and the fundamental theorem

We will attempt — as always without too much formalism — to enter further into
a vision of the real affine plane. If we want to characterize affine geometry accord-
ing to the philosophy of Klein at the turn of the twentieth century, it is necessary to
study its automorphisms, by which we mean the bijections that map the affine plane
onto itself and preserve its structure: lines, collinearity of points, intersections of
lines, etc. In the modern definition given in Sect. . XYZ these are the linear transfor-
mations combined with translations and thus the transformations that can be written,
in arbitrary coordinates: (x, ¥) + (ax + by + c.a’x + b’y + ¢), with the sole
condition ab” — a’b # 0 for the six real numbers a, a’, b, b’, ¢, ¢’. Before returning
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to a purely geometric characterization of these automorphisms we will identify the
affine invariants, that is to say the numbers, the situations, that are “respectable” and
respected by all affine transformations. In any case, we must remember that affine
transformations preserve lines (i.e. collinearity of points) and send parallel lines to
parallel lines.

We begin with points. Two points do not give rise to any invariant since there
always exists an affine transformation taking an arbitrary pair of points to another
arbitrary pair; and it’s the same for three points, which explains the fact noted above:
all triangles in the affine plane are the same, are indistinguishable. This is further-
more plausible — although this is not a proof — because a set of three points depends
on exactly 3 x 2 = 6 parameters and the affine transformations also depend on the
6 parameters written above: a, b, ¢, a’, b’, ¢’. But if the three points considered are
collinear we come upon the first affine invariant: for three collinear points a, b, ¢

C

the real number denoted by £¢ js a characteristic invariant, i.e. it is preserved by

every affine transformation, and two collinear triples a, b, ¢ and a’, b’, ¢’ are trans-
formable into each other if and only if the corresponding invariants are equal. This

"; is the value of the (unique) coordinate of the point

invariant may be defined thus:
¢ on the line defined by a, b, ¢ in a coordinate system where ¢ is the origin and b is

the point with coordinate equal to 1.

t, &
e e o & a &
- O N ;/
-0 "
c s tha Se = -1
Fig. L1.3.1.

As % traverses the interval [0, 1], the point ¢ traverses the segment [a, h] defined
a

by a and b. The notion of segment is thus affine, as is thal of midpoint: the midpoint
of the segment [a, b] is the point ¢ such that Z£ b . Observe that this invariant
is not Euclidean, but that if there is an additional Euulldean structure on our affine
plane, then we may always compute it with the distances ab, ac (with assignment
of the usual signs). Exercise: find conditions under which two sets of four (arbitrary)
points can be transformed into one another.

¢

Passing now to lines, all lines are first of all the same; then, two pairs of lines are
indistinguishable, under the obvious condition that they are simultaneously inci-
dent or simultaneously parallel. For three concurrent lines, there isn’t any invari-
ant: two triples of concurrent lines can always be taken into each other by an ap-
propriate affine transformation. But it isn’t the same for four concurrent lines D;
(i = 1,2.3.4): we can attach an invariant to them in a canonical manner, i.e. their
cross ratio [D1, D2, D3, D4]. This is a characteristic invariant: we can define it in an
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affine manner. But we won’t do this, for it is in fact a projective invariant as will be
shown in an entirely natural and simple manner in Sect. L.6.

impossible

% — X always possible
% X
Fig. 1.3.2.

Again, we can ask numerous questions on the subject of lines. Here is one of
them: given two lines, three lines, or more, what is the number of possible config-
urations? For two or three, it’s easy. For two: either they are concurrent or parallel.
Difficulties begin with three and we encourage readers to sketch, to scribble: the
lines may be concurrent or form a true triangle. But we must not forget the pos-
sibility of parallels, whence two other configurations: three parallel lines or two
parallels and a third that intersects them. We see that for four and more, things be-

come difficult; in particular we begin to get frustrated by the parallels. Here we find
an additional incentive for projective geometry: parallelism doesn’t exist!

¢
four cases

A

The affine transformations map each line into a line, but if we want to com-
pletely capture the essence of affine geometry, e.g. by a purely axiomatic definition

AN
T

two cases

W

SE€ven cases
Fig. 13.3.
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(without a vector space, etc.), we will want to be sure that there don’t exist other
transformations — beyond the affine ones defined above — of the affine plane to it-
self that transform each line into a line, i.e. that preserve the collinearity of points.
We have a completely satisfactory answer to this question:

(1.3.1) (Fundamental theorem of affine geometry) Each bijection of the affine plane
to itself that takes lines into lines is an affine transformation.

It is impossible to pass over the idea of the proof in silence, as much for its
beauty and conceptual importance as for its allowing us to imagine what will hap-
pen in affine geometries over fields other than the reals — complex numbers, quater-
nions, etc. — that will be encountered in Sect. I.8. A detailed proof is found in 2.6
of [B]. We mention only this much: according to what has been said above we may
suppose that our bijection f leaves three noncollinear points fixed, that we will use
to define an origin and coordinates x, y: we then only need show that f is in fact
the identity transformation. The fundamental remark is that parallel lines are trans-
formed into parallels, since parallelism can be defined in a set-theoretic manner and
f is bijective. Thus, in particular, parallelograms are transformed into parallelo-
grams and it suffices to show that f acts identically on the first coordinate axis. To
do this it will certainly be necessary to depart from this line, for any bijection of a
line preserves that line, whether it acts identically or not. To define affine geometry
we identify our line, the x axis, with the field R of real numbers. The figures below,
based solely on parallelism, show that the restriction of f to R is an automorphism:

S+ ) = f(A) + f() and f(Ap) = f(A) f(p).

Fa NN
A

Fig. 1.3.4. Above: a bijective mapping that preserves lines preserves parallelism. Below:
construction of the abscissa points A + p and Ay on the x axis

It is a classical exercise to show that only the identity is an automorphism of R,
but be careful not to use continuity, which has no reason to exist here; we have never
required that f be continuous or even suggested that such a notion can make sense
in the absence of distance!
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We now pose a whole series of natural questions. First, the extension of (1.3.1) to
all dimensions (> 2) is trivial; in contrast, (I.3.1) is false over the complex numbers,
even adding continuity; see Sect. LXYZ. A still more subversive question (a bit
off the ladder) is to ponder the local and the global. But do we need the entire
affine plane for our result? Certainly we do for the proof above, where parallelism
is the key. But could we do without it? The answer is no. We will see definitively
in Sect. 1.5 that a bounded set in the affine plane admits plenty of other bijective
transformations that preserve collinearity; these are the projective transformations.
Thus for a deep knowledge of local affine geometry we need to climb at least one
rung. In Sect. LXYZ we will see that a good understanding of (L.3.1) in a general
context and in good rapport with the axiomatics of the nineteenth century wasn’t
really achieved until 1950.

But back to the elaboration: what happens if we no longer require bijectivity or
globality, or again if we study mappings between spaces of different dimensions? In
the local but bijective case, readers will see, with the aid of passage to the infinite in
the spirit of Sect. 1.6, that the question is easily answered by reverting to the local
affine case, but with full preservation of parallelism.

To finish our discussion of the essence of affine geometry, we pose two more
questions. The first is that of incomplete duality: two distinct points determine a
unique line, but in contrast two lines determine a point only if they are not paral-
lel. Projective geometry will be the appropriate context (see Sects. 1.5 and 1.7) for
having a duality without exception. A second question concerns topology: what is
the topology of the set £ of all the lines of the affine plane? What is its “shape”?
The answer is that the topology of D is that of an open (no boundary) Mobius
strip. We can convince ourselves with the sketches below. We puncture the plane
at a fixed origin. With the exception of the lines that pass through the origin, the
lines of the plane are associated in a one-to-one manner with the points of the
punctured plane (take an auxiliary Euclidean structure and project the origin onto
the line in question) and it only remains to “glue” (or sew) the punctured plane
to the circle of lines that pass through the origin (caution! this is not the unit cir-
cle but is obtained by identifying antipodal points). The segments of the Mbius
strip correspond to parallel lines. This operation, which consists of replacing a point
by the set of lines that pass through it, is called the blowing up at the point; it
is used in an essential way in algebraic geometry. More precisely, looking at the
figure, we trace a disk about the blowing up point and replace it by a Mobius
strip, while gluing the circle which bounds the disk to the circle bounding the
Mébius strip. In this operation, the point is replaced by the median circle of the
strip.

Analytically, the fact that the topology of the set of lines of the plane is not that of
R? is easily seen: it is not possible to obtain all lines with a single type of equation.
For example, the two-parameter expression y = ax + b allows the vertical lines
with equation x = ¢ to escape. If we opt for the equation ax + by + 1 = 0, we lose
the lines passing through the origin. We are thus forced to consider all the equations
ax + by + ¢ = 0; but then the triple (a, b, ¢) and the triple (ka. kb, kc), for k # 0,
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represent the same line. We are forced to pass to the quotient and to equivalence
classes: this is precisely what we do in constructing projective geometry in Sect. L.5.

S

Fig. 1.3.5. Correspondence between lines not passing through O and points of the
punctured plane

to be added: a circle representing
the lines passing through O

Fig. 1.3.6. Blowing up at the origin. The half lines emanating from the origin O (and

not containing the origin) are glued onto a circle of length m, two opposite half lines

being glued to the same point of the circle. The punctured disk (or plane) thus becomes
a Mobius strip

I.4. Three configurations of the affine plane and what has happened to them:
Pappus, Desargues and Perles

We consider the three figures below, the first two are very old, the third dates
from 1965. They seem innocent enough, but they are going to give rise, each in
its turn, to very different phenomena. There are surely plenty of other plane affine
configurations, but our choice has been dictated by the extensions for which the first
two have given rise and the surprising consequences of the third.

Readers will be able to guess the significance of (93, 93) and (103. 103) and
(103, 103) or otherwise refer to Sect. LXYZ or to Sect. 1.9, The first configuration
is that of Pappus (fourth century): given six points situated three apiece on each of
two lines, then the three other points that can be derived from them, as indicated on
the figure, are again collinear. In the second, Desargues’ theorem (circa 1630), we
have two triangles called homological (here abc and a’b’c’), which means that the
lines joining corresponding vertices are concurrent. The conclusion is that the three
points x, y, z indicated on the figure (the points of intersection of the homological
sides) are again collinear. Finally, in the third, the conclusion is that the quotient of

the affine invariants (see above) % 42 i forced, by the allignments drawn, to be

43
equal to %(3 —V3).
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Lappur
(O\'nu 330) [63 , ga }

(1594 4661)

{ '10!' 101 )

Torts 1367

Fig. L4.1.

¢

There are at least three things to mention regarding Pappus’s theorem. The first, very
briefly: when we have six points on two lines, we have a particular case of six points
on a single conic because the pair of lines may be considered as a degenerate conic;
see Chap. IV. In this more general case, the indicated collinearity still holds: this is
the famous theorem of Pascal; see Sect. IV.2.

Fig. 1.4.2.
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We now speak about Pappus’s proofs. The good proof, illuminating for the se-
quel, is one that uses projective geometry, considered amply in the next section.
Suppose that two of the three points of intersection constructed are “af infinity”; see
the figure. Then, as we will see, two pairs of lines that otherwise would intersect are
parallel. It is required to show that the third pair is also made up of parallels. We
pass from ac’ to ca’ by a homothety of ratio u, and we pass from ba’ to ab’ by a
homothety of ratio A (all these homotheties have center O). Thus we pass from b
to ¢ by a homothety of ratio uA and from ¢’ to b’ by a homothety of ratio Au. But
since A = A, the proof is complete.

Alerted by what has been said in regard to the fundamental theorem of affine
geometry, readers may ask what happens with the theorem for affine geometry over
the other fields and thus deduce that Pappus’s theorem is true for complex affine
geometry, but not for quaternion affine geometry, since the quaternion field isn’t
commutative. It is a consequence of an axiomatic study of affine geometry that the
commutativity of the underlying field can be characterized by the validity of the
configurations of Pappus. All this dates from the time indicated above in Sect. 1.3;
see for example Artin (1957) or Baer (1952).

Recently Schwartz (1993) has given Pappus a second look. Here, very briefly, is
what it’s about, see the original text for more details. The starting point is this naive
remark: to every pair of triples of collinear points, Pappus associates a third such
triple; we then have an operation on such triples. Whence two questions: what is
the algebraic nature of this operation? What happens if we iterate it a few or many
times, or even indefinitely? In Schwartz (1993) these two questions are resolved and
each is placed on an appropriate rung of the ladder; see also Berger (2005).

{uveads
S (farnale

Fig. 1.4.3.

The fundamental remark is that the operation “two triples produce a third” can be
inverted: we can go backwards. The reversal is illustrated by the figure on the right.
To study the iteration of this operation (after having composed two triples T and
T’ to obtain T”, we may compose T and T”, or T and T”, and so forth), Schwartz
introduced what he called “labeled boxes”, consisting of two triples — in the box
labeled ((a.b.c), (a', b, c’)), we have that abb’a’ is the box and ¢, ¢’ are the points
labeled on the sides “above” and “below” — along with the transformations

o:((a.b.c) (@ b .c)) ((a.b.c)(a".b" c"))
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and
v:((a.b.0). (@ b)) > (@b, c). (@".b".c")).

It is easy to see that these two operations are related by only two conditions:
0? = identity, 3 = identity. The group they generate is none other than the

famous modular group, i.e. the group denoted SL(2,Z), defined as the group of
b
matrices (f d) with integer entries and determinant ad — bc = 1. It is interest-

ing to encounter in connection with Pappus this group that governs a good part of
mathematics and is the most important after R and C. We find it in number theory,
complex analysis, Riemann surfaces and algebraic geometry, i.e. for elliptic curves;
see Sect. V.14. We will encounter it again in connection with polygonal billiards in
Chap. XI.

T

Fig. 1.4.4. Schwartz (1993) © IHES

Now Schwartz has studied the figure obtained by applying the operations of this
group to an initial box. It is drawn in Fig. 1.4.4, to which we in fact need to add a
whole complement (in order to go backwards), that turns out to be a Mobius strip
(not drawn: this would be difficult). Schwartz shows that the discrete set of points
marked by all the triples thus obtained can be extended by continuity to a closed
continuous curve. If we start with one box that is an harmonic quadrilateral — and
only in this case — all the marked points lie on a single line. In every other case the
curve is fractal, but with an exceptional additional property: at each of its points,
the line of support of the triple passing through this point intersects it in exactly one
point, the one considered. This isn’t the case for most fractals, where either there
are plenty of lines that don’t intersect the curve, e.g. the snowflake, or at the other
extreme every line passing through this point intersects it amidst other points, e.g.
a fractal curve that spirals. It seems that the only other known comparable example
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is that of the graph of Brownian motion in one dimension: at each of its points it
behaves like the graph of the function x — x1/2.

It is the moment to suggest that readers develop one or more purely affine proofs
of Pappus’s theorem, if only to appreciate projective geometry and in spite of the
fact that they will need to climb a bit up the ladder.

¢

We can also use projective geometry for a proof of the Desargues configuration by
letting two of the collinear points go to infinity. We then only need use a homothety
with center O. Thus the commutativity of R isn’t needed, but the complete calcula-
tion will show readers that we use the associativity of R: A(pv) = (Au)v for all A,
m, v. This is important in the axiomatic theory of affine and projective spaces: we
can replace the associativity of the object which must play the role of the underlying
field by the requirement that Desargues’ theorem hold. Interested readers will verify
by calculation that to ascertain that two nonintersecting lines are parallel in an affine
plane over an arbitrary field we need to use its associativity, it being understood that
a line is a set defined by an equation ax + by + ¢ = 0 and that two lines are parallel
if and only if they are obtainable from each other by translation.

Fig. 1.4.5. Proof of Desargues theorem. We can assume that x and y, the respective

points of intersection of be and b'c’ and of ac and a’c’ are at infinity, i.. that bc and

b'c’, and ac and a’c’, are parallel. It is then just a matter of showing that ab and a’d’

are parallel. But these hypotheses bring with them the existence of a homothety with
center O that sends a, b, ¢ to @', b’, ¢/, respectively. Hence the result

But there exists another proof that will subsequently appear less artificial. We
embed the affine plane in the affine space of three dimensions and consider the
figure obtained as the projection into dimension two of the figure below, where the
three lines defining the projection between the two aren’t coplanar. The result is then
trivial: the three points x, y, z are collinear since they belong to the intersection of
two planes, which is always a line.

The preceding explains why, in the axiomatic theory of affine or projective ge-
ometry, the situation in dimension two is completely different from the general case:
affine or projective planes are hardly categorical. A typical example: there exists a
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Fig. 1.4.6. A figure necessarily drawn in the plane, but where we nonetheless see the
perspective representation of a figure in space

Fig. 1.4.7. The same figure deprived of what allows us to see it “'in space”

quasi-field, the Cayley octonions, denoted by Ca, where there is no longer associa-
tivity; see Sect. .XYZ. Although a projective plane, denoted by CaP?, can be well
defined over Ca, we can never define CaP” for any n = 3; see Besse (1978). The
reason for this is precisely that Desargues’ theorem would be valid there according
to the above figure; but we know that this would imply the associativity of the alge-
braic object, the Cayley octonions. We mention in passing that CaP? is for us one
of the most beautiful of all geometric objects and that we could call it the panda
of geometry. But in spite of this exceptional beauty, it is difficult to construct and
extremely few authors construct it in detail; an exception can be found in 3.G of
Besse (1978).
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Finally, for a dynamic study of Desargues’ configuration like that for Pappus,
and by the same author, see Schwartz (1998). For another approach to iterations of
geometric theorems, see Smith (2000), also cited at the end of Sect. II.1.

¢

The philosophy of Perles’s example is as follows: the configuration can never be
realized in the rational affine plane, i.e. the subset of the affine plane made up of
all points whose two coordinates are rational numbers in a given coordinate system
(modulo which we always have isomorphic objects); the reason is simply that V5is
irrational.

The existence of irrational affine configurations was known before Perles, see for
example the notion of accessible point on p.126 of Coxeter (1964). For computer
enthusiasts this means that such configurations are not, in an exact sense, visible on
the screen. On the other hand we can inject the irrationals in a formal way, especially
a number such as +/5, which can be defined for example by the equation x> —5 = 0.
But the precise Perles configuration has a much deeper interest: it allowed him to
show the existence of polytopes in dimension 8, that can never be realized with
the same combinatoric and with vertices having rational (or, equivalently, integer)
coordinates. We will return to this question amply in Sect. VIIL.12.

I.5. The irresistible necessity of projective geometry and the construction
of the projective plane

We have had reason to be unhappy on several occasions above: first, while
Pappus’s theorem — like Desargues’ in the purely affine context — presents several
variants because of possibilities of parallelism. We have an even simpler question,
encountered at the end of Sect. 1.3: into how many regions do two, three, four, etc.
lines divide the plane?

— X

thase  ragious foun reger

Fig. L5.1.

Even though its formal definition in algebraic language may seem unproblem-
atic, it requires a bit of time to begin to feel at ease with projective geometry and we
thus beg readers to be patient and not to become discouraged. As further evidence of
this difficulty it should suffice to remark that, even though introduced by Desargues
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at the beginning of the seventeenth century, projective geometry wasn’t firmly es-
tablished until the second half of the nineteenth century. Desargues’ naive definition
is as follows: the projective plane P* associated with the affine plane P extending
P is nothing other than P itself to which a line P, of points at infinity is adjoined,
the elements of Py, (the line “at infinity” of P) being the set of directions of lines of
P: P* = P U Py. We then say that two distinct parallel lines intersect precisely at
the point at infinity that corresponds to their common direction. As for a line D of
P and the line at infinity, they intersect precisely at the point of Py corresponding
to the direction of D. Finally, for lines joining two distinct points of P*: if one is in
P and the other in P, the line joining them is the one that passes through the first
point with the direction given by the second; the line joining two points at infinity is
the line at infinity. Thus for two lines in P* — just as for two points — we can make
existence statements without exception, without fear of parallelism.

b L i

2\ 7

Fig. 1.5.2.

But this construction is abstract. It demands an act of faith and furthermore
doesn’t give us a basis for calculation, for which coordinates are needed. For finding
a concrete geometric construction of P*, we are inspired by the proof of Desargues’s
theorem obtained by embedding P in a space Q of three dimensions and taking an
arbitrary point O of Q not in P. We have climbed a rung! With each point of P is
associated a unique line of Q which passes through O. We will call lines through
O “O-lines” for short and O the “origin” of Q; an O-plane of Q is likewise a plane
through the origin. Among the lines passing through O precisely those are missing
that are parallel to the plane P of Q; but we see that these are associated in a biu-
nique fashion with the directions of the lines of P. We only need add that through
a point at infinity corresponding to a direction of a set of parallel lines of P there is
an O-line that has that direction. We thus define P* concretely as the set of all the
lines passing through the origin of Q. The lines of P* will be the planes (always
passing through the origin) of Q. The intersection axioms are now evident: two dis-
tinct O-lines uniquely determine an O-plane of Q; thus a line of P* and two distinct
O-planes Q intersect in a well determined O-line of Q. So now we no longer have
any exception or particular case, just as we have wanted.

Even though it isn’t really necessary (and has no significance for projective
geometry over an arbitrary field), we can make this construction of P* still more
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Parallel lines have the same point The intersection of lines of P correspond
at infinity to the intersection of planes of Q
Fig. 1.5.3.

plausible as follows: if a point m regresses to infinity along a line D of P, the line
OD tends toward the directed line parallel to D.

Historically this construction of projective space simply reflects the need that
painters have for representing a portion of space in a picture. The point O above
is nothing other than the eye of the painter (the observation point) and the plane
P the picture (the picture plane). The “empirical” rules for geometric constructions
employed in the arts are consequences of projective geometry.

We can now calculate in P* since we have the vectorial calculus in Q at our
disposal: the points of P* are none other than those of Q within multiplication by
a scalar. Let us quickly see how things work. For an arbitrary coordinate system
(x.y.z) in Q, the points of P* will thus be triples of reals, not all zero, modulo an
equivalence relation: the triple (x, y, z) is equivalent to the triple (kx.ky,kz) for
all nonzero real k, a triple of homogeneous coordinates for the same point. Most
important is the case where the coordinate system is such that the plane P is defined
in Q by the equation z = 1. Then the points of P have for homogeneous coordi-
nates the triples (x, y, z) with z # 0: the point (x, y) of P will have homogeneous
coordinates (x. y, 1) and all associated triples. Conversely, the triple (x, y, z) asso-
ciated with (x/z, y/z, 1) will be a triple of homogeneous coordinates of the point
(x/z, y/z) of P. Thus the points of the line of the equation ax + by + ¢ = 0 satisfy,
in homogeneous coordinates, the equation ax + by + ¢z = 0. The passage from
the first equation to the second is called homogenization.

In contrast, the points at infinity are those of type (x, y,0), and the point at
infinity of a line satisfies the homogeneous equation of this line.

It is convenient to use the notation (x : y : z) to represent the set of all triples
of homogeneous coordinates that can be obtained from the triple (x, y, z) by scalar
multiplication. We then have (x : y : z) = (x" : y' : z’) if and only if there is
a nonzero scalar k such that x’ = kx, y' = ky, z/ = kz,ie. (x : y : z) and
(x" 1 y" : z') represent the same point of P*.
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As an example of significance for us in the spirit of Sect. .1, see the expression
of Hesse’s configuration in homogeneous coordinates in Sect. 1.8. On the other
hand, what we see globally is the projective plane, a quite different story that we will
touch on later. The human mind doesn’t like objects obtained through an equivalence
relation that can’t be embedded in any ordinary space.

¢

This introduction of projective spaces may seem a bit artificial, but is in fact an
essential tool for many problems where we have to consider things “within a scalar”.
We will see examples of this in I1.6 and IV.7 for the space of all circles, or that of all
spheres or of all conics.

An additional property of projective spaces is that they are compact, which is
essential for certain problems; they are truly “round” (there are no longer points at
infinity, they have been tamed): everything is “at a finite distance”.

¢

To respond to a whole array of natural questions we now need to study projective
geometry (planar here, but see Sect. LXYZ) from the points of view of geometry,
algebra (group of transformations) and topology (topology of the projective plane).
This study must be done for the structure itself, initially independent of its being
an extension of affine geometry. But of course we will want to know subsequently
how to refurn to the affine plane. A (the) projective plane # is defined a priori as
the set of vectorial lines (one-dimensional subspaces) of a (the) real vector space
P of dimension 3, the lines of this projective plane being the vectorial planes (two-
dimensional subspaces). For the algebraist this will be the quotient of P\0 modulo
the equivalence: v = v’ if there exists a real k such that v’ = kv.

What are the good transformations of /7 In the spirit of (1.3.1) it is now easy for
us to find biunique transformations of an affine plane that preserve lines, but only
locally: simply consider the figure below and the projection starting at the origin of
the space of three dimensions Q, where we have embedded two copies P and P’ of
the affine plane.

We shouldn’t fail to mention that we have a injective transformation from all
of P onto all of P/, with just one line of P and one line of P’ removed. Note that,
in the projective coordinates of P and P’ obtained starting with systems of ordinary
coordinates (x, y.z) and (x’,y’.z’) in Q in which P and P’ are respectively the
planes z = 1 and z’ = 1, these transformations are expressed in a linear fashion.
These are the transformations we need to apply if we want to assemble different
aerial photos in order to compose a single map. Whence the following definition:
the projective transformations of J# are the (invertible) linear mappings of Q applied
to (vectorial) lines. So much for geometry, but for the algebraist we consider linear
transformations within a scalar. For example, in a coordinate system, we deal with
all 3 x 3 invertible matrices modulo the multiplication of all their terms by a single
nonzero scalar. More conceptually: the group of projective transformations of Q is
the quotient of the linear group of Q by nonzero multiples of the identity.
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In homogeneous coordinates a projective transformation will always have the
form:

xX'=ax+by+cz., y=dx+ey+ fz, Z'=gx+hy+iz
or else, in affine coordinates:
o ax+by+c. Y = dx+ey+f‘
gx+hy+i gx+ hy+i
From this we deduce many things, in particular the important possibility of finding,
for each quadruple of noncollinear points, coordinates written as

(1,0,0), (0.1,0), (0.0.1), (1.1.1),

which is called a projective frame.

For the transformations of a projective line, see the following section. The pre-
ceding shows that a perspective (i.e. a central projection) of one line onto another is
a homography (defined on the next page) and (see below) preserves the cross ratio:
see Fig. 1.6.2.
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Fig. 15.5.

¢

Now in the spirit of Sect. 1.3 it’s a rather easy exercise to show that, given two
quadruples of non collinear points of /2, there exists a unique projective trans-
formation taking one into the other. In the axiomatic theories this result is diffi-
cult, but essential; it is thus called the second fundamental theorem of projective
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geometry, see, in addition to Artin (1957) and Baer (1952), the classic (Veblen and
Young, 1910-1918).

For us, in the vectorial context the result proceeds from the following fact (left to
readers): for each quadruple a, b, ¢, d of noncollinear points, we can find a system
of homogeneous coordinates such that @ = (1.0,0), b = (0,1,0), ¢ = (0.0,1),
d = (1,1, 1). The theorem then follows at once.

But now we have to answer the question for four collinear points. For collinear
triples, we have of course transitivity. But for four, by definition of the projective
plane, we need to know what happens for four vectorial lines of a vectorial plane, a
question that we left open in Sect. 1.3, In fact this opens an abyss under our very feet:
we have completely forgotten to speak of the projective line! Otherwise expressed:
what are the lines of #7 What is their geometry, assuming they have one?

L.6. Intermezzo: the projective line and the cross ratio

A (the) projective line is thus the set of lines of a vectorial plane, a set that
we will denote by RP', in agreement with Sect. LXYZ. The topologist is quickly
satisfied here; the figure below shows that this set is in bijection with a (the) circle.
This isn’t astonishing, the construction of the projective line consists of completing
the affine line by appending a single point co at infinity; everything then closes up in
acircle. Itis well to emphasize that for the line there aren’t two points at infinity, but
one only. As in the affine plane it matters little in which sense we pass to infinity; we
end up with the same point. This compactification of the line into a circle by a point
at infinity is a particular case of a more general construction. Readers should be
aware that there exist other types of compactification; we encounter some of these
in Sect. IL.3.

wihat et te de what o de
Fig. L6.1.

¢

Algebraically, a projective line D, in particular RP', can always be written as the
set of pairs (x, y) of real numbers, not all zero, within equivalence: (kx,ky) is
equivalent to (x. y) for each nonzero real k. As in the case of triples, we can use
the notation (x : y) to designate the pairs taken within multiplication by a scalar.
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We recover the affine line as the set of pairs where y is nonzero: (x,y) = (x/y. 1),
which provides an embedding ¢ + (¢, 1) of the affine line into the projective line.
The projective transformations, called homographies of the projective line, are the
mappings (x, y) = (ax + by,cx + dy). Interpreted for the affine line, these are
the mappings 1 + ffig
oo and oo ‘Ci, consistent with the notion of limit, to comfort us once more if
need be. The projective group of the line — the group of projective transformations,
homographies — has three parameters, permitting us to uniquely map each triple of
points into a given triple. It clearly does not preserve, when restricted to the affine

line, the invariant % encountered in Sect. I.3. On the other hand, there does exist an

which thus extend onto the projective line by —% =

invariant for four (distinct) points {m;} i = 1,2, 3.4, called the cross ratio of these
four points and denoted [m;] = [my, ma.ms, m4). Two quadruples of points are in
projective correspondence if and only if their cross ratios are equal. In an arbitrary
coordinate system, for points m; = (f;, 1), this cross ratio equals: % % After
a moment’s reflection its value is no longer surprising, it being the quotient of two
affine invariants associated in a natural way with the quadruple considered. On a
projective line, likewise for four distinct points, it is necessary that the cross ratio
accept the value oo, e.g. for all x we have x = [0, 00, x, 1]. We note that the fact
that the mapping m + [a, b, m, c,] establishes a bijection between a projective line
and RP! is equivalent to the fact that we are able to take (a, b. ¢) as the “projective
frame”, and is important for our being able to speak of “harmonic conjugation”.
Note that the cross ratio can be defined on an affine line; its invariance carries over
by the fact that it is preserved by the point projection of the figure below, which
furthermore allows it to be calculated for a quadruple of concurrent lines in the
affine plane:

[lap]. laq]. [ar]. [as]] = [p.q. 7. s]p;

see Fig. [.6.2. We have the interpretation: the lines passing through the point a form
a projective line, which answers finally the question posed in Sect. 1.3,

The above formula plays an essential role in certain geometric constructions.
The case where the cross ratio equals —1 is particularly important; we say then that

Pf

Fig. 1.6.2.
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the four points are in harmonic division. A purely geometric construction is given in
Sect. I.7; note its systematic usage in Sect. IV.4.

The cross ratio is not invariant when we permute the points considered, but its
behavior is simple and most interesting; see 6.3 of [B] for a detailed study. Direct
calculation shows that [b,a,c,d] = [a,b,c.d)  and [a,b,c,d]+ [a,c,b,d] = 1,
which allows us to calculate what happens for all the other permutations. But keep in
mind for later (see Sect. V.14) that the simplest cross ratio A which is invariant for all

2_ 3
% We find in pp. 43-51 (Darboux, 1917)
the calculation providing this invariance of A for the four roots of an equation of

fourth degree, as a function of the coefficients of this equation.

¢

The real projective line and its group of transformations is not an object that has
been artificially concocted by geometers for their exclusive enjoyment. First of
all, the “homographic” functions 1 + ?;]:3 are encountered everywhere; they
are quotients of affine functions and are very important in the complex case. An
important physical application of the notion of projective line is found in the the-
ory of centered systems in optics. Lenses, mirrors, etc., are arranged in some way
on a line that is their common axis; zoom lenses of the most sophisticated vari-
ety are of this type. Then the correspondence between a point of the axis and
its image is always a homography. To convince ourselves of this it suffices to
study the case of a mirror or of a single lens; we succeed since the homogra-
phies form a group. Readers will surely remember the following formula from
school: 1 1 1

permutations of the four points is

X ;—f-

where x is the abscissa of the object, x’ that of its image, and f the focal length,
positive or negative. Note that in optics infinity is essential; here it provides the focal
point (image of the point at infinity) and the focal objective (reciprocal image of the
point at infinity).
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Fig. 16.3.

The homographies, real (as here) or complex, are of primary importance in ge-
ometry; we will see this very soon in Sects. 1.3 and IL.4. Their classification —
by their fixed points among other ways, especially as involutions, i.e. the homogra-
phies whose square equals the identity — is fundamental, but we will have but lit-
tle to do with it (at the end of Sect. 1V.6); see Chap. 6 of [B]. Finally, note that
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the complex projective line, in its role as a topological object, is nothing other
than the sphere S2, for it is obtained by appending a point to the complex line
C (which is the real plane R?): C* = CU oo = S?; we will see this again
in I1.4.

L.7. Return to the projective plane: continuation and conclusion

We haven’t yet finished with the projective plane. We first note that the cross ratio
allows us to recognize when two quintuples of points are projectively equivalent;
compare with Sect. 1.3 for the affine case and its invariant. We now study in depth the
relation between affine geometry and projective geometry, if only to make rigorous
the proofs of the theorems of Pappus and Desargues that were outlined in Sect. L.3.

Starting with P, we constructed P*, which contains the line at infinity. The essen-
tial things is that in P* = P U P and above all in any projective plane $ whatever
we can choose a line D and make it the line at infinity of the complement $\D of D in
J. That is to say, in the construction of Fig. .5.3, we replace the plane z = 0 by the
plane defined by the origin and the desired line taken in the plane z = 1. The affine
space so defined is “the” plane parallel to this new plane. For example the affine
invariant % of three collinear points on a line F equals the cross ratio [c, b, a, cop],
where oor denotes the point at infinity of the line F, i.e. corp = D N F. To say for
instance that ¢ is the midpoint of ab is equivalent to saying that ¢, b, a, cop form a
harmonic division. In summary, we can accomplish this: in an arbitrary affine plane,
completed to form a projective plane, we can alter the line at infinity, i.e. stay in the
projective plane with all its advantages, all its properties, but decide on “new paral-
lels”. We can also speak of the “transfer to infinity of one or more collinear points”:
we let the new line at infinity pass through these points (or we can use a projective
transformation sending the given line to the line at infinity). All this is certainly a
rung up Jacob’s ladder, where we can manage things a bit better. Fundamental is the
fact that the cross ratio is conserved under these “transfers”.
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Fig. L7.1.
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The preceding technique was used to prove Pappus and Desargues in Sect. 1.4.
We now use it to demonstrate the classical property of the configuration of the com-

plete quadrilateral:
p
/ g to €oo
a &

— s fto4n

!
Fig. L7.2.

In this figure the four points a, ¢, x, y are in harmonic division. To see this,
it suffices to transfer the two points f and g to infinity. Then a. b, ¢, d becomes a
parallelogram and our result simply translates the fact that the diagonals of a parallel-
ogram intersect at their midpoints. Despite its simplicity, the configuration (6,, 43)
of the complete quadrilateral may be seen as a geometric rendering of the fact that
the solution of an equation of fourth degree may be reduced to that of a third degree
equation. Indeed, this configuration associates in a canonical way a triple of points
with a quadruple (find this in the figure). See Sect. LXYZ for an entirely projective
proof.

¢

We now attack the question of duality, used in Sect. I.1 and imperfect in the affine
context: there points and lines played similar, but not identical, roles. Furthermore,
the space of all lines had a topology different from that of the points (the affine
plane), among other reasons because we could not find a good one-to-one corre-
spondence between these two sets (see Sect. 1.3).

Pep 4_

Fig. 17.3.

In & the duality is perfect with regard to the line joining two points and to the
intersection of two lines. However, we would like to obtain a one-to-one correspon-
dence between & and the set D of all its lines: but this is utterly simple, since P
is the set of lines through the origin of a vector space Q of dimension three and O
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the set of vectorial planes: we only need put a Euclidean structure on Q. With the
directed line D we associate the perpendicular plane denoted by DP*P. There is a
single defect: this bijection depends on the Euclidean structure chosen. The alge-
braist might prefer an alternative, but equivalent, presentation: let us choose some
representation in projective coordinates, i.e. a projective frame of Q. Then the de-
sired bijection consists of associating with the point (a. b, ¢) the line with equation
ax + by + cz = 0. As for “modern” algebraists, they will observe that if & is the
projective space associated with Q, then D is identified naturally with the vector
space Q* of Q. But, just as there doesn’t exist a natural isomorphism between Q and
Q*, there doesn’t exist a natural canonical isomorphism between & and D.

For more on geometric dualities, the correlations, see 14.8.12 of [B] or p.260 of
Frenkel (1973) for the general case, and Sect. 1.8 below and Sect. IV.4 for the very
particular case of Mobius tetrahedra. Duality will be unavoidable in a large part of
Chap. VII. Furthermore this duality is completely geometric: given two points, the
point of intersection of their two image lines has for an image precisely the line
that joins the initial two points. This allows us to systematically obtain twice as
many theorems, or to relate a desired theorem to another, perhaps simpler, theorem.
In the sequel we will encounter examples in various contexts; see Sects. [V.4 and
VIIL.8 (conics, Pascal and Brianchon, inscribability of polyhedra). Right away read-
ers can look for the duals of the theorems of Pappus and Desargues (see Sect. IV.4
as needed). Note that the mapping D — D* of the left part of Fig. 1.7.3 is imperfect:
the origin doesn’t have a dual; it is in fact the line at infinity.

¢

Attentive readers will not have missed noticing that, even though / and D are now
in good bijection and have the same topology, this doesn’t at all divulge the nature
of the topology of #. The first thing to observe is that # is compact, and this is
also true for all the more general projective geometries of Sect. LXYZ. In fact, if
&P is the set of points of Q\ 0 considered within multiplication by a nonzero scalar,
this is also the set of points of the unit sphere of Q (a Euclidean structure is chosen
for Q) modulo multiplication by =1, in other words the set obtained by identifying
antipodal points of this sphere.

Nonetheless, the “shape” of £ is not simple, and for an essential reason: if
is clearly a surface, moreover compact, it can nonetheless never be realized as a
surface that is embedded in three dimensional space, this since J isn’t orientable.
The trick that was used for the projective line in Sect. 1.6 doesn’t work anymore. For
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on the oriented sphere, which must replace the oriented circle (compare Fig. 1.6.1
with Fig. 1.7.4), it is necessary to append all the points at infinity, and not just a
single point; and in order to do that, cause the intervention of a “blowing up” (see
Sect. 1.3 and Fig. 1.3.6).

A better way of understanding the topology of # is to see that not only can
we obtain # by identifying antipodal points of the sphere, but that we can also be
content to let this identification operate just on a hemisphere (boundary included):
we need then only identify antipodal points of the equator. We can still choose to
keep a band about the equator, it still being required that we identify antipodal
points in this band. We obtain in this way a Mobius strip and & then appears as
the union of a Mdbius strip and a spherical cap, i.e. a disk sewn together without
ambiguity.

Fig. L.7.5. Ways of seeing the projective plane. At lefi: identify antipodal points. Middle,

identify antipodal points of the equator. At right, identify antipodal points of a band

(which comes down to preserving only the middle line of the band, while identifying
ab and b’a’; pay attention to the direction of travel)

It is because 4 contains a Mdbius strip that it is not an orientable surface; and
it is for this reason that # is not embeddable in R?: if fact, to embed # in R3
would be to define a transformation of £ into R? that is continuous and injective;
the geometer says without double point or without self-intersection. In view of com-
pactness such a transformation would automatically realize a homeomorphism of
& onto its image. However, a result from topology states that each compact surface
in R without boundary possesses an interior and an exterior and is, for this reason,
orientable.

A more direct proof of the fact that # is not embeddable in three dimensional
space amounts to observing that a Mobius strip cannot be glued, following a com-
mon boundary, to a topological disk without the band and the disk intersecting. The
boundary of the Mébius strip is indeed a circle (moreover unknotted), but a circle
intertwined with the strip:

T
= & @)%@

Fig. L7.6.
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the fact that Steiner discovered it when he was in Rome in 1844, We will encounter
the Veronese surface in Sects. I1.0 and V.9.

Fig. 1.7.9. Steiner’s Roman surface. Fischer (1986a) © G. Fischer

Note that the complement in # of a projective line is connected, in contrast to
the affine case, infinity serving as the connection bond. The same thing is true for the
median line of the Mobius strip. How do we see that we have the same phenomenon?
By considering, in the projective plane, a band containing a given line D. The band
situated between two lines parallel to D won’t do, since it contains only a single
point at infinity, but the region contained between the two branches of a hyperbola
(situated on both sides of D) contains a whole segment of points at infinity, and it
clearly has the topology of a Mobius strip, since it is obtained by identifying, in a
rectangle, two opposite sides traversed in opposite senses.

This fact explains why a curve located on one side of its asymptote, when it tends
toward infinity, always returns from infinity in the opposite direction. The curve is
in fact tangent to its asymptote at its point at infinity, and if the contact is ordinary
the curve does not cross its tangent. In particular this is the case for the point at
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a a'=b

<— line at infinity

b b'=a
Fig. 1.7.10. A neighborhood of a line in the projective plane has the topology of a
Méibius strip

infinity of a hyperbola: the homography or homogeneous coordinate transformation,
(x.y.z) = (z,y.x),0r (x,y) —= (1/x, y/x) in affine coordinates, transforms the
hyperbola with equation xy = z2 (xy = 1 in affine coordinates) into the parabola
with equation zy = x2 (y = x? in affine coordinates), tangent to the x axis at the
origin. The curve does not cross its asymptote; it’s the plane that makes a half turn
like a MObius strip.

As for the connectivity property indicated above, it explains the well-known
trick of cutting a paper Mdébius strip along its center curve and then continuing to cut
along new median curves. It is left to readers to carry out the necessary experiments.

= -1 .7

cut anomd  the
cul p‘%adm ovweund the cneda
Fig. L7.11.
¢
We have seen that there exists a canonical metric structure on P = RPZ, derivative

from that for the sphere: the distance between the two points p, ¢ € RP? is the
angle, between 0 and /2, between the two lines of R? which give rise to p and
g. This geometry is called elliptic; it must be seen as a generalization of Euclidean
geometry, for any two projective lines intersect in a single point (which is not the
case for the great circles of spherical geometry). Here there are never any parallels,
whereas in hyperbolic geometry in contrast there is an infinity of parallels for any
given line. For more details on elliptic geometry, see Chap. 19 of [B]. But here is an
example to which we should pay attention. It has to do with studying the cases of
the equality of triangles: are two triangles for which two sides are the same equal,
in particular are their three angles the same? An initial remark: two points in & are
joined by a unique shortest path (projection of an arc of a circle onto the sphere) if
their distance apart is less than 7 /2, otherwise there are exactly two shortest paths;
but we will only discuss triangles with distances between vertices all less than /2.
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Fig. 1.7.12. The three lines (D,E,F) and the three lines (D', E',F') form equilateral

triangles of sidesr/3 in &. But these friangles are completely different: in the second

the three angles equal s, in the first the three angles equal A, where cosA = %

(apply the fundamental formula of spherical trigonometry)

£

p z:
V

Oy <7

type I type II
Fig. 1.7.13. The two types of triangles in projective space, distinguished by their rise

We return to the equality of triangles, the exemplary case being, viewed as
sketched in R?3, that of a trihedron with three equal angles of 7/3 and of a de-
generate trihedron formed by three lines of a plane which makes among them the
equal angles 7 /3. What can happen here, seeing that everything goes well in spher-
ical geometry? To understand this, it is natural to go back to the sphere; but just
one point of  provides two different points (antipodes) of the sphere. A curve of
#. here a side of a triangle, once a vertex has been lifted onto S2, is lifted without
ambiguity into S? because the projection of the sphere onto the projective plane is
bijective and bicontinuous when restricted to a sufficiently small open set of S2, typ-
ically the open hemisphere (spherical cap of aperture m) centered at a given point.
Continuing in like manner for the two remaining sides we obtain a curve formed by
three arcs of circles in §2, but for which the terminal point is either the chosen point
of departure or its antipode. These two cases are exactly those of the two triangles
in /3 considered. There are thus two types, I and I, of triangles in &, but note that
the type II will only be encountered if the sum of the sides is greater or equal to 7.
Readers will easily show, by deftly applying the case of equal spherical angles, that
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the equal angle case holds if, besides the equality of the respective sides, the two
triangles considered are of the same type.

»‘7‘\

Fig. 1.7.14. Lifting into S2 of the two “exemplary” triangles of Fig. 1.7.13

With the canonical metric structure of J, the associated duality of Sect. 1.7 is
expressed thus: the projective line that is dual to a point p is made up of points
of & located at a distance 7/2 from p. For this associated geometry, perpendicular
bisectors, etc., see [B]. It is interesting to note that elliptic geometry, which furnishes
a trivial counterexample to Euclid’s parallel postulate, was not known until well
after hyperbolic geometry was discovered. This is due, among other reasons, to the
difficulty of “seeing” the real projective plane.

Finally, we indicate why the only transformations that preserve lines are the pro-
jective transformations: the proof is achieved by fixing any line at infinity and apply-
ing the fundamental theorem of affine geometry to the complement. This result is of-
ten called the second fundamental theorem of projective geometry; see Sect. LXYZ
for the “first fundamental theorem”.

I.8. The complex case and, better still, Sylvester in the complex case:
Serre’s conjecture

In Sect. I.1 we briefly alluded to affine geometry over the field of complex num-
bers, and even over the quaternions. The definition of the affine plane (over the
reals), in which we have worked until now (see Sect. LXYZ), extends trivially to the
case of an arbitrary base field, not only to number fields, in particular the complex
numbers C (commutative) and the quaternions [ (non commutative), but also to
all other fields, in particular the finite fields, the most simple among them being the
field of two elements Z, = Z/2Z . But there is no reason at all to restrict ourselves
to dimension 2, since everything is constructed using only the algebraic theory of
vector spaces (if necessary, refer to Sect. LXYZ). Beyond what will be said in this
section, see p. 9 of the introduction of Orlik and Terao (1992). For example, there
is no strict notion of cross ratio in the non commutative case, typically over the
quaternions, but only of conjugate classes, which take its place.
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Let us repeat that Sylvester’s theorem of Sect. 1.1 is false over the complex num-
bers, the simplest numerical example is written in projective coordinates for the
complex projective plane CP?; specifically, the nine points with projective coordi-

nates 0.1.—1), (1,0,=1), (1,—1,0),
0.1,—®). (1,0,—w), (1,—w,0),
0,1, —w?), (1.0, —w?), (1, —w?2.0).

Here @ denotes a cubic root of unity other than 1, e.g. (—1 + i\/g)/Z. These nine
points are the inflection points of the cubic (projective) equation x> + y3 + z3 —
3axyz = 0 (a # 0). We verify by hand, without having need of the theory of
planar cubics, that on each line joining two of these nine points there is always a
third. Algebraically the condition for the collinearity of three points is translated
by the fact that the determinant of their nine coordinates is zero. This configuration
(94. 123) is called Hesse’s configuration. Readers who like simple calculations but
hate projective coordinates will be able, with the aid of an appropriate projective
transformation, to write the coordinates for a system of nine points of this type in
the complex affine plane. There are too many zeros in the three possible places in
the above array to allow us to proceed solely by division of the same coordinate.
We will have observed that collineation here is complex, but we can regard the
condition by taking a complex vector space as a real vector of twice the dimension;
then Sylvester’s condition will be that we always have a third point on the complex
line generated by two given points; but of course this complex line is in effect a real
plane.
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Fig. 1.8.1. Hesse’s configuration

In 1966 Jean-Pierre Serre announced the following conjecture: “Let there be
given, in a complex affine space of arbitrary dimension, a finite system of points
satisfying Sylvester’s condition: show then that this set of points is necessarily con-
tained in a (complex) plane V. We emphasize that the proof, if there is one, cannot
be purely combinatorial, and that if Sylvester was wrong in the complex case, it’s
because a line D does not separate the complex plane C2 into two regions: C2\ D is
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Fig. 1.9.2. At left, Reye’s configuration. Af right, the configuration formed by the cen-
ters of homothety of rhree circles (below, recall the properties of the centers of ho-
mothety of two circles). Hilbert, Cohn-Vossen (1996) © Springer

infinity. But why can’t we do the same thing for triangles? It is easy to convince our-
selves of this impossibility “by hand”, but that would not really get to the heart of
the matter. We must climb the ladder, which we do in recalling the end of Sect. 1.6,
which turns out to be profitable in all dimensions. There we constructed a bijection
between the points and lines of the plane, which with each triangle then associates
a new triangle; but we can’t require that this bijection have the property that the line
associated with a point pass through that point. However, this is possible in a projec-
tive space (projective, so as to avoid exceptions) @ of three dimensions: there exists
a hijective transformation f of @ onto the set @* of all its planes such that p € f(p)
for each point p of @. Of course we require further that the properties of collinearity
and intersection be preserved. Thus any tetrahedron defines a pair of Mdbius type
by adding to it the tetrahedral image under f. And here is the “parachuting” of such
an f: we set up projective coordinates in some way (any choice will do) and de-
fine f((a,b,c,d)) to be the plane with equation —bx + ay — dz + ct = 0. The
membership condition is obviously satisfied and, things being linear, all properties
of intersection, collinearity, etc. are preserved as we would like.

Fig. 1.9.3. Mobius tetrahedra, I [B] Géométrie. [\Iathan (1977, 1990) réimp. Cassini.
(2009) © Nathan Edition
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In fact, we have indeed climbed the ladder somewhat. First, we see that we will
be able do the same thing for every space of uneven dimension, the number of pro-
jective coordinates being even in this case. But above all the theory of all this was ac-
complished geometrically and very laboriously at the end of the nineteenth century.
Now, algebraically, linear and multilinear algebra permit us to resolve completely
all the questions that can be posed, and this in arbitrary dimension and over an arbi-
trary field. The essential problem is knowing what are the bijections between a space
and its dual (the space of its hyperplanes) that preserve intersections and collinearity.
The answer is that there are two possible types, ones that we have encountered: the
type given by a Euclidean structure, i.e. a quadratic form (corresponding to a sym-
metric bilinear form) of maximum rank, and the type called symplectic, i.e. given
by an antisymmetric bilinear form of maximum rank, it being understood that a
symmetric or antisymmetric bilinear form of maximum rank on a vector space E
defines a bijection of E onto its dual E* and, by passage to the quotient, a bijection
of the projective space #(E) onto the space of its hyperplanes. In the second type,
we have the Mobius property that each point belongs to its dual; and it is trivial
that these structures cannot exist in even dimensions (odd dimension for the vector
space). Since the quadratic forms of maximum rank — at least in the real case —
are categorical, as are the symplectic forms of maximum rank, we now know ev-
erything. The proof of this fundamental result is Exercise 14.8.12 of [B], a more
complete reference is Frenkel (1973).

)
Fig. 19.4. Schlifli’s double six. Hilbert, Cohn-Vossen (1996) © Springer

¢

Schlifli’s double six is given in the above figure. It’s a configuration of type
(302, 125), but the notation here indicates 30 points and 12 lines (no planes). The
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proof of its existence isn’t elementary; it makes essential use of algebraic geometry,
specifically that a cubic surface (of degree 3) in three dimensional space and without
singularities contains exactly 27 lines in the complex case, and in the real case 27,
15, 7 or 3 lines.

An “elementary” exposition is contained in §25 of Hilbert and Cohn-Vossen
(1952). The point of departure is to take four lines in space in general position.
There exist two lines that intersect them all, which is seen using what is found in
Sect. IV.10: the set comprised by the lines intersecting three given lines in general
position is a quadric surface, so that the desired lines, based on four lines, are ob-
tained by looking for the points of intersection of the fourth line with the quadric
surface defined by the first three. In general there are two such points, our four lines
being “generic”. The construction of the double six begins thus: we start with a
line Dy, then construct at random five lines E», E3, E4, Es, Eg intersecting D;. Let
Dg be the next line, other than Dy, intersecting the four lines E2, E3, E4, E5. Then

Fig. 1.9.5. Clebsch’s diagonal surface. Fischer (1986a) (© G. Fischer
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D;, which in addition to intersecting Es, E4, E5, Eg, likewise intersects D3, Dy,
Ds. It remains to define E; as the line likewise intersecting D, D3, D4, Ds. Now,
we have numerous other intersections that form, by construction, a configuration of
type (302, 125). But the proof is difficult and, as already indicated, requires the use
of algebraic geometry; see the book cited above for an heuristic proof.

We will encounter this configuration in Sect. V.16. There indeed exist real cu-
bic surfaces containing 27 lines, all without singularities, e.g. Clebsch’s diagonal
surface. The theoretic considerations are found in Fischer (1986b), they depend on
Fig. 1.9.5.

1.10. Arrangements of hyperplanes

We have seen that there is a difficulty in studying the finite sets of lines in the
real affine plane, because of the possibility of parallels. Nonetheless, the question of
the maximum number of connected components of the complement of n lines was
resolved before the twentieth century, and in fact by Schlifli for the complement of
n hyperplanes in arbitrary dimension. In order to have the maximum number, it is
necessary to be in the generic case; what happens when more than two lines inter-
sect, and for the parallels, dates from 1889. This does not give a classification; such
a study leads in fact to problems in topology, algebraic geometry, convexity, com-
binatorics, number theory, (arithmetic) analysis and geometry without any obvious
relations. We will not speak further here of the real case; we refer readers to its intro-
duction in Orlik and Terao (1992) or pp. 679-706 of volume II (Hirzebruch, 1987b),
not to forget the commentaries of pp. 802-804.

The complex case has an even greater richness, and provides much pleasure
when connections are found between seemingly different things. The book cited
above (Orlik and Terao, 1992) is entirely devoted to it; it’s a subject that ascends
quite high on the ladder and has a very recent development. We can’t speak about
it in detail, or even partially. We have seen a first approach in Sect. 1.7 above. In
a second approach, we first remark that, if the complement of a hyperplane in a
complex space is connected, contrary to the real case, in return it isn’t simply con-
nected: if we “make the tour” of a hyperplane, we obtain a loop (closed curve)
that isn’t contractible to a point. More generally, with a finite set of hyperplanes
we associate the fundamental group of its complement, i.e. the group generated
by the closed curves through a fixed point (in the complement, of course) that
“turns” about the hyperplanes of the arrangement under consideration. We obtain
this group by considering two closed curves to be equivalent if they are deformable
each into the other, in a continuous fashion, without of course intersecting the fig-
ure about which they are turning. The nature of this group and more generally the
topology of this complementary set are much studied nowadays and yield surprising
relationships.

The simplest case is the topology of the complement of two intersecting lines of
C2: it is easily seen that this set can be continuously deformed onto the product of
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two circles, i.e. a torus. In particular, the fundamental group of this complement is
that of the torus, thus ZZ2.

I. XYZ

For the mathematical objects described above and for proofs, a general and com-
plete reference is [B], to which we add Hilbert and Cohn-Vossen (1952) for the
configurations.

Before mathematicians, curious and practical minds would ask how to make
lines straight, planes “flat” — all this both in drawing instruments and in industrial
practice of a more or less high degree of precision; and finally for the highest de-
gree of precision, that of metrology. We will give some brief indications about this
problem in Sect. ILXYZ.

The real affine plane is defined as follows: we consider a real vector space P
of dimension 2, or, what amounts to the same thing — modulo isomorphism — the
set R? of pairs (x, y) of real numbers. The points are thus the elements of R?; the
lines are all the subsets that are translations of a vectorial line of R?. We might
say that our affine plane is a real vectorial plane for which the origin has been
forgotten; there is no longer an origin, no special point. The properties enjoyed by
lines and planes, and their relationships, are direct consequences of the axioms for
vector spaces. This definition will not satisfy very abstract minds; there remains a
mental trace of an origin. In [B] there is a more axiomatic presentation. Here we
will retain our point of departure: with each pair (p. ¢) of points of the affine space
there is associated the vector (“free” in the old language) that may be denoted g — p,
or often also fc?, which belongs to the vector space, giving rise to the affine space
under consideration.

An important element, which serves as the foundation for the more conceptual
construction mentioned above (i.e. not favoring an origin, or even the ghost of one),
is the barycentric calculus. Two points p, ¢ cannot be added in an intrinsic manner
(we can only subtract them, but the result is a vector and not a point of the space
considered. On the other hand, the midpoint of the two points can be written pT”,
and more generally we can divide a segment by a given ratio; see the affine invari-
ant introduced in Sect. I.3. What matters in % is that it can be written %p + %q.
More generally we can define in an intrinsic and practically trivial fashion any fi-
nite sum Y _ A; p; such that the sum of the coefficients (called barycentric) satisfies
> A = 1. Two facts are essential: the associativity of this operation and the unique-
ness of the coefficients for the sums for three points forming a true triangle. This
furnishes “purely affine” coordinates for the plane, coordinates called barycentric;
for all the details see Chap. 3 of [B]. Briefly and in any dimension, since no changes
are needed: if {p;} (i = 1,.... d + 1) denotes a set of 4 + 1 points in real affine
space of dimension d forming a simplex — which means that none of them belongs
to the hyperplane defined by the remaining d — then for each point x of the space
there exists a unique expression (a “barycentric sum of the {p;}") x = > A;(x) p;
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consisting of the identity element 1 and seven other generators {¢;} (i = 1,...,7) for
which the multiplication table is furnished by the triangles inscribed in a heptagon
as in Fig. LXYZ.2.

ii—'l

i.+3

Fig. LXYZ.2.

More precisely, we consider all triples of the form {e;,e; 1, e;43} for i going
from 1 to 7 and where the additions in the subscripts are computed modulo 7. Each
of these triples obeys the same laws as the triple {i. j, k} from the definition of
the quaternions: e;e;j41 = €43, ¢j+16; = —e;+3. Even though this law is not
ultimately associative, we can nonetheless define a reasonable geometry over Ca,
not just in dimension 2, but also in dimension 3 and beyond. For references on
this topic, which is especially subtle in the case of the construction of the “panda”
encountered in Sect. 1.4, the projective plane over Ca, see 4.8.3 of [B] and the
references given there. See above all the entirety of Chap. XIV of (Porteous, 1969).
A recent reference on octonions is Baez (2002).

¢

We must pay strict attention to the tricks intuition can play, as soon as we are work-
ing over the complex field instead of over the reals. A plane over the complex num-
bers has real dimension 4. A typical example is this: what is the topology of the
complement of a point in C? It is that of a cylinder, which may be contracted to a
circle, whereas in R it amounts to two intervals, which contract to two points; in
each instance the complement in R is not connected, which is no longer the case in
C. And for the complement of two intersecting lines in the plane C2? In the case of
the real plane, we find four connected components. But here the complement is con-
nected; if we contract it onto the intersection of €2 with the unit sphere S3in R4, it
turns out, according to Sect. IL.5, that the complement has the same topology as the
complement in S* of two orthogonal circles, i.e. of a torus T2. Another motivation
for geometry over the complex numbers is the recent notion of quantum computers,
these are objects that truly operate in C.

¢

Another caveat is that, when we work in higher dimensions, our intuition loses prac-
tically all its rights, all its effectiveness. We will see numerous manifestations of this
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in Chap. VII. But high dimensions are absolutely necessary in numerous mathemat-
ical studies, both theoretical and applied, especially since about 1950. Loading an
image on a computer requires working in spaces of, say, dimension 10000. Think
also about credit cards, of cryptography, of biology and the error correcting codes
that are studied in Chap. X. All of linear programming involves a potentially large
number of “consumers”, and hence enormous dimensions.

Another need is that of functional analysis, which leads to the study of convex
sets in very high dimensions; see Chap. VII. Our intuition will be put to the test
there, starting with the volume of spheres of radius 1, for which the volume tends
ultra-fast to zero as the dimension becomes large.

Still another need is that of physics, where statistical mechanics treats sets of
particles with numbers of order 10?3, which thus lives in spaces having such dimen-
sions.

¢

Also interesting is the remark due to Pierre Cartier that, in fact, we scarcely com-
prehend more than dimension 1. The reason isn’t merely that our brain works in
a linear fashion, sequentially, for in fact (as far as is known today) it works rather
like a parallel computer. It seems that this is simply for the crude reason “that it’s
simpler”. For in fact dimension 2 isn’t yet well understood; pattern recognition, for
example, is in its infancy. Dimension 3, however indispensable for all the objects
of space, harbors numerous open problems, as we shall see. Some people think that
our difficulties in dimension 3 are due, at least in part, to the fact that the group
of rotations in space is not commutative. But all these reflections on the profound
nature of mathematics and the functioning of our brain are still in limbo. To para-
phrase Pierre Cartier, in (Cartier, 1991): “The very subjective, if not to say blurred,
character of art criticism is without doubt due to this characteristic. In our epoch of
intensive use of computers and of computer-aided creativity, there is a regrettable
gap.” Making a leap from dimension 1 to dimensions 2 and 3 is one of the present
obstacles to progress in mathematics. Similar obstacles have led to the creation of
non-Euclidean geometry and to the discovery of Gidel’s theorem.

¢

The fundamental theory of affine geometry, seen for the real plane in Sect. 1.3, is
proved by the same technique for all dimensions and all fields. But there are two very
important modifications that we give here; for more, see 2.6 of [B]. We proceed first
to the obvious exclusions (the miracle is that there aren’t others). First the case of
dimension 1, where the collinearity condition is vacuous: every bijection preserves
lines, since there is but one line here! But things get more complicated according to
the qualities of the field K considered. It is necessary at first to completely exclude
the field Z, of two elements, for then the affine line contains only two points and the
collinearity condition is again vacuous. But above all the proof of I.3.1 goes through
thanks to the fact that only the identity is an automorphism of the real number field.
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It’s not entirely the same for other fields, e.g. the field of complex numbers admits
the automorphism that transforms z into its complex conjugate Z: conjugation pre-
serves sums and products. A semi-affine transformation of an affine space into a
field K is, by definition, modulo a translation, a semi-linear transformation (more
generally we can speak of a semi-affine transformation of one affine space into an-
other), i.e. a transformation f such that f(Ax + py) = o(X) f(x) + a(p) f(y),
where o : K — K is any automorphism of the field K. We point out that C admits
lots of other automorphisms besides the identity and the conjugation z — Z, but if
we further require continuity, then there remain only those two. The fields of char-
acteristic k different from 0 admit the celebrated Frobenius automorphism x + x*,
whose importance in mathematics should not be underestimated, e.g. it enters Frobe-
nius, Georg into Deligne’s proofs of Ramanujan’s conjectures; see Sect. II1.3 (and
Sect. I11.6). On the other hand, the quaternion automorphisms are easy to classify;
see 8.12.11 of [B]. And so these “refined” mappings are never so frightening as they
can be in the case of the complex numbers.

¢

We now define a projective space of dimension n over the field K as the set of “vec-
torial lines” (one-dimensional subspaces) of a vector space of dimension n + 1 over
K. All these spaces are in fact the same, so we can speak of the projective space of
dimension n over K; we denote it by KP". Algebraically, it’s the quotient of K" 1\ 0
modulo the equivalence relation such that w = v if and only if there exists £k € K
(necessarily nonzero) for which w = kwv. The (projective) lines, planes, hyperplanes
of KP" correspond to vector subspaces of K"+ of respective dimensions 2, 3 and n.
The case of the projective line is the object of study of Chap. 6 of [B].

We introduced the projective spaces essentially for the purpose of completing
affine geometry so that the intersection theorems could be presented without excep-
tional cases in their statements; but apart from the miracles mentioned below, the
idea of considering the elements of a vector space “within a scalar factor” is very
natural, if not to say indispensable. We will see two examples in this book, the first
is the space of circles and spheres in Sect. IL.6; the second is that of conics and
quadrics (see Sect. IV.7). It isn’t possible to really thoroughly understand circles,
spheres, conics and quadrics without introducing the projective space formed by
their equations. This is very much in the spirit of Jacob’s ladder. Here now, very
briefly, are the essential properties of projective geometries.

The complex projective spaces are among the most important objects of alge-
braic geometry.

The projective transformations are (bijective) linear mappings of K"*1\0 re-
tracted onto KP"; they are also called homographies. They obviously form a group,
called the projective group, denoted by GP(n ; K), whose structure is that of the quo-
tient of the linear group GL(n ; K) by the group of multiples of the identity. In terms
of coordinates, it is the multiplicative group of the (n + 1) x (n + 1) matrices with
elements in K, modulo the group of multiples of the identity matrix. The projective
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spaces over finite fields are encountered in combinatorial geometry. Here is a typi-
cal example in the spirit of Sylvester’s problem of Sect. I.1: whatever its dimension,
the projective space Z,P" over the field Z» of two elements is a finite set such that,
for each pair of points, there is a third point on the line that joins them. In fact, all
projective lines over Z, have three elements: two affine and their point “at infinity”.

The homographies of the projective line are classified and studied in detail in
Chap. 6 of [B]. The involutions (homographies which when squared yield the iden-
tity) play a particularly important role. If a homography has two distinct fixed points
a and b, then the cross ratio [a.b,m. f(m)] is constant; conversely, the relation
[a,b,m, f(m)] = k defines a homography, an involution when k = —1.

¢

As indicated above in Sect. 1.7, there is a second fundamental theorem of projective
geometry valid in any dimension and over any field; but as in the affine case it is
necessary at first to make the obvious exclusion of dimension 1. But subsequently
there will be no need to exclude the field of two elements; for a projective line, in
contrast to an affine line, always contains at least three points. The conclusion is that
we find only semi-projective transformations, i.e. projective transformations modi-
fied if need be by an automorphism of the field; see as needed 5.5.8 of [B] and the
references mentioned there. The first fundamental theorem of projective geometry
states that the transformations in projective dimension n are sufficiently abundant
in order to transform two arbitrary (n + 2)-tuples of points into one another; see as
necessary 4.5.10 of [B]. The result is trivial using linear algebra, although it bears a
ponderous name, which comes from the fact that it is difficult to prove and is much
more concealed if we pursue the axiomatic theory of projective geometry. Here we
have parachuted the projective spaces with linear algebra, while axiomatic projec-
tive theory constructs them (more or less completely) with axioms bearing on points,
lines, etc., and properties required for their various intersections, properties that are
trivial in linear algebra. Readers interested in the axiomatic theory can consult the
two basic books that exist Artin (1957) and Baer (1952). The theory remains dif-
ficult and, in our opinion, of mediocre elegance for the case of projective planes,
since there is no Desargues’ theorem — seen in Sect. 1.4 — at our disposal; readers
may be able to form an opinion with a cultural text such as (Lorimer, 1983).

In complex geometry it is very important to know that, while topologically the
real projective line is the circle S', the complex projective line is the sphere S2;
see the end of Sect. 1.6. Note that the real plane — as a real object — is projectified
into RP? by appending a line at infinity, topologically a circle. But the same real
plane, when seen as a complex line, is projectified with a single point at infinity,
which yields the sphere S? topologically. Thus we have two quite different com-
pactifications of R2. In Sect. II.3 we will see a third, also utterly essential, where
compactification provides the topology of a disk; the interior is R? but the compact-
ification adds the boundary circle. For more on the topology of projective spaces,
which are elements of constructions essential in algebraic topology, there are some
references in Chap. 4 of [B]. We mention only that RP" is orientable for all odd
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n, nonorientable otherwise. Let us add here, however, that the complex projective
spaces are the generating elements of the cobordism ring in algebraic topology. The
theory of cobordism, which dates from the 1950s, is a classification of compact dif-
ferential manifolds; see Husemoller (1975). As for homographies z fji’g , which
dominate a large part of mathematics, we will encounter them in Sects. I1.3 and I1.4.
For a modern proof of the fundamental theorem of geometry, affine or projective,

see Faure (2002).
¢

A configuration of an affine or projective plane is simply a specification of a set
of points and the lines joining those points. Such a configuration evidently does not
have any interest unless we require particular properties. We say that a configuration
T is of type (pg.rs), where p,g.r. s are integers, if there are p points and r lines,
such that for each point of 7 there pass exactly g lines of 7 and if every line of t
contains exactly s points of 7. An accounting implies the relation pg = rs. The
proof of the existence of a configuration of a given type may be trivial, but also
more or less difficult.

The complete quadrilateral is a configuration (43, 63); existence is trivial but
nevertheless interesting to interpret in Euclidean geometry as that formed by the
six centers of homothety of three circles; this has served us above for the Reye
configuration. In Sect. 1.7 we saw its very useful property of harmonic conjugation,
proved by “transfer to infinity”. Here we give a purely projective proof “in situ”.

The complete quadrilateral is thus the figure formed by four lines in general
position (the sides) and their six points of intersection (the vertices). These points
of intersection are joined pairwise by three diagonals. The property of harmonic
conjugation mentioned above is the following: two vertices a and b not located on
the same side (and thus located on one of the diagonals) having been chosen, and
i being the point of intersection of the two other diagonals, the sides issuing from
a divide the segment bi harmonically. This means that, if we let x and y denote
the points of intersection of the sides passing through a with the line bi, we have
(b,i,x,y) =—1.

Fig. LXYZ.3.

In Sect. L7, this property was proved by transferring the points @ and b to in-
finity, and thus in making a parallelogram out of the quadrilateral. The “classical”
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Chapter II
Circles and spheres

I1.1. Introduction and Borsuk’s conjecture

If the first chapter was essentially about affine and projective geometry, we now
want to enter the Euclidean realm, i.e. we will now have a metric at our disposal,
a notion of distance between points, with subsidiary notions such as circles and
spheres. The basic reference for circles and spheres, completely authoritative at the
time of its publication, is Coolidge (1916). We have made a critical selection from
the enormity of classical results; see the very beginning of Sect. IL.2. But of course
above all we have chosen to talk about recent results, all the more if they require a
climb up the ladder.

¢

Borsuk’s conjecture. In the spirit of this book and before touching on problems
leading us to configurations that are natural but rather sophisticated, we must speak
about Borsuk’s conjecture. Its statement is trivial, except that it deals with arbitrary
dimension. It is one of the simplest assertions in all of Euclidean geometry, for it
doesn’t involve anything but distance. Here it is formulated as a question, where E4
denotes  -dimensional Euclidean space without reference to any particular coordi-
natization (in contrast, R4 is d-dimensional Euclidean space with canonical coordi-
nates):

(IL.1.1) In the Euclidean space E4, can we decompose any bounded part E into
d + 1 parts of diameter strictly less than the diameter of E?

Fig. IL1.1.

The figures above seem to show that the problem is indeed trivial. Recall that
the diameter of a bounded set E of an arbitrary metric space is the supremum of the
distance between points of E: diam(E) = sup{d(x. y) : x, y € E}. The conjecture
is certainly true for d = 1, and it is also evident that ¢ + | is necessary; that ¢
doesn’t suffice is left to the readers. We are going to describe in a bit of detail some

M. Berger, Geometry Revealed, DOI 10.1007/978-3-540-70997-8_2, 61
© Springer-Verlag Berlin Heidelberg 2010
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of the history of this conjecture, whose various aspects seem enriching. For the
algebraic topologist, we need first say that in Borsuk (1933) that — among other
things — an important result was proved that had been conjectured by Ulam, specit-
ically that each continuous mapping of the sphere $¢ into E? sends at least one
pair of antipodal points onto the same point, which is intuitive enough for d = 1
or d = 2. At the end of the text, Borsuk conjectured (II.1.1), or rather he merely
stated the problem, for he was much too good a mathematician to make a conjec-
ture without knowing a lot more. In fact his theorem just quoted implicitly suggests
that we can’t ever decompose the sphere $4 into only d pieces of smaller diameter,
whence the idea for the problem. Borsuk’s proof of the quoted theorem was a bit
complicated, but H. Hopf pointed out to him that it is really instantaneous thanks to
degree theory; see Chap. 7 of [BG].

: @ 4 w

e —)

Fig. 1I.1.2. Borsuk’s theorem ford = 1 andd = 2

Borsuk’s conjecture didn’t lack for dedicated investigators; but even for the
plane, the matter isn’t quite as trivial as it perhaps seems. For this and for the more
recent history, the reference is 19.3 of Griinbaum (1993). We only mention that, for
the plane, we can proceed thus: we inscribe E in a convex set E' of constant width
(see the end of Sect. VL.9) equal to the diameter of E. This is easily done by taking
the intersection of all the circular disks containing E. Next the continuity principle
(turn around!) shows that there exists a regular hexagon circumscribed about this
new body whose opposite sides are a distance apart equal to our diameter. We cut

J3

this hexagon into three (non regular) hexagons of diameter equal to *5=, suppos-

ing diam(E) = 1; this cuts E a fortiori in the same way. We have thus succeeded,

moreover with a gain of a factor always equal to at least %

For three dimensional space, it was necessary to await (Eggleston, 1957) for
the first proof. No proof is really very simple. The best gain presently known is

0.9987...; whereas 0.888... = /(3 + +/3)/6 has been conjectured. The fact that it
is much closer to 1 than for the plane allows us to predict a difficult prospect for
dimension 4. Here again the proof consists of inscribing E in an “adapted” polytope,
specifically and for the moment a regular octahedron whose parallel faces are a
distance apart equal to the diameter in question and, after having trimmed it down
at the vertices, subjecting it to some subtle dissections (see Fig. I1.1.4). Later proofs
of a combinatorial nature were found using finite point sets. The properties of their
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Fig. II.1.3. Circumscribe about our body equilateral triangles in all directions; by

continuity at least two of these friangles are congruent. Moreover, as these two

triangles have their parallel sides at a constant distance, their intersection must be a
regular hexagon

Fig. I.1.4. Boltyanski, Martini, Soltan (1997) © Springer and H. Martini

mutual distances are studied; see e.g. 13.15 of Pach and Agarwal (1995), Chap. | of
Zong (1996) and Boltyanski, Martini, and Soltan (1997).

Meanwhile, for higher dimensions, it was necessary to make do with results for
sets E having special properties. First, the solid balls in all dimensions are easily cut
up — see the figure above — e.g. by inscription in a regular simplex. Next, every E
having a center of symmetry is cut up using the following elementary observation:
when two points p.q of E attain the diameter of E, then E is contained between
the two parallel hyperplanes that pass through p and q and are orthogonal to the
line pq. If there is a center of symmetry for the cut (and there must be, since E has
a center of symmetry), this can’t be anything other than the midpoint O of pg; and
thus E is entirely contained in the ball whose center is O and whose boundary sphere
passes through p, g. We now need only cut this ball as above or in some other way.
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real projective space RPN, which is realized isometrically by the Veronese manifold
above. Let A be a connected portion of RPN with diameter less than /2. We can
then lift it within SN into A’, which will be contained in a hemisphere. Now in SN we
have an isodiametric inequality which generalizes that of the penultimate subsection
of Sect. VIL.7:

Among all the domains of SN contained in a hemisphere and of given volume,
the smallest diameter is attained exactly by the spherical caps.

The proof proceeds by the Steiner symmetrization (see Sect. VIL.5) — for this
method extends without difficulty onto the sphere — while paying attention to the
convexity. It’s for this reason that we need to be in a hemisphere from the outset.
The diameter here being less than /2, the greatest volume will be obtained by a
cap of radius strictly smaller than /4. We then finish with a calculation of volumes;
the disjoint parts partitioning A’ cannot be greater in number than the quotient of
the total area of the hemisphere with that of a cap of radius /4.

A recent text on Borsuk’s conjecture is Raigorodskii (2004). For more on Bor-
suk’s conjecture, as well as for other “strange phenomena” in geometry, see the
book that is entirely devoted to them: Zong (1996), especially Sects. VIL.11, VII.12,
VIL.13.D and the slicing conjecture in Sect. X.6.

11.2. A choice of circle configurations and a critical view of them

We present some figures formed by circle configurations (see Sect. ILXYZ and
in particular “a scandal to repair”) in the Euclidean plane 52, We will comment on
them later, restricting our attention to those that arise from the idea underlying this
work. Specifically, we study geometric situations that can be stated quite simply, but
which have led, and possibly still lead, to more intensely conceptual developments,
to rungs up Jacob’s ladder. We comment on what exists for finding proofs (entire or
partial) or for understanding them deeply or placing them in a more general context,
etc. We hope that readers will take the trouble to contemplate these figures at length,
to compare them and decide which are interesting and which, to the contrary, seem
unaesthetic or otherwise unappealing. Chapter I was set in the affine context; we are
now entering into the metric context. Readers destined to want to embrace every-
thing, i.e. to climb the ladder in order to unify their vision, will find in Sect. ILXYZ
how to connect the metric to the complex projective setting by projectifying, and
then complexifying, the Euclidean plane.

¢

For those who like constructions and practical matters, we should point out that cir-
cles are constructed with compasses, whereas linear rulers and also graduated go-
niometers (protractors) for measuring angles are always produced in a “physical”
and thus approximate way; see Sect. I1.3 below, Sect. V.7 and above all Sect. ILXYZ
of this chapter for more on this.



11.2. A CHOICE OF CIRCLE CONFIGURATIONS 67

And then there is the question of critical perspective: an historical example is
that of “triangle geometry”, a discipline which has seen a disproportionate flower-
ing, but which to our knowledge has contributed absolutely nothing in the way of
Jacob’s ladders. The analysis (Davis, 1995) is very interesting, even if we don’t
completely share the conclusions. References on the subject can be found there of
course, among them the classic (Lalesco, 1952).

Fig. 11.2.1. The butterfly theorem

Fig. I1.2.2. The four circles tangent to the three sides of a triangle
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Fig. 11.2.3. The Wallace-Simson line

¢

To our knowledge, the butterfly (Fig. II.3.1) has only limited interest: the correct-
ness of the middle of this completely naive figure isn’t easy to show and we leave
conviction to readers. In fact it’s a trick problem: the result is formulated in a metric
(Euclidean) fashion, although it is really a theorem of projective geometry. In fact,
let us introduce the polar D of the point a with respect to the circle C and consider
the (harmonic) homology defined by the pair (a,D); it’s an involutive projective
transformation (see Sect. 1.7). By construction, this homology preserves C and D
and thus interchanges the two points p and ¢. But on the line D it is a homography
that preserves the point at infinity, thus an affine transformation. Now, it preserves
the midpoint a of pq: it’s the metric symmetry of D with center @, and thus a is
clearly also the midpoint of pg. Apart from this, to our knowledge, the butterfly
theorem doesn’t yield any movement on Jacob’s ladder.

¢

The fact (Fig. I1.3.2) that there exist four circles tangent to the three sides of any
triangle in the Euclidean plane is not profound; we use the interior and exterior bi-
sectors of the triangle (which gives a new way of obtaining a complete quadrilateral,
cf. Sect. 1.7). Nonetheless, we want to mention this figure, for its generalization to
dimension 3 (and higher) sets a trap, pointed out to the author by his school mathe-
matics teacher, the late Jean Itard, when he was 16; a trap into which practically all
the mathematicians to whom the author has posed the problem have fallen, at least
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Fig. I1.2.6. The seven circles theorem and that of five circles. Above and below, the
conditions for the tangency of the circles are satisfied, but the lines are not coincident;
or the four cocyclic points, and “one time in two”

can be found in detail in Sect. 10.6.8 of [B]; but we are going to give the essentials,
for the result is fascinating and the proof trivial, once barycentric coordinates have
been introduced. One of the appeals of this very elementary geometry problem is
that, once the dimension exceeds 2, the number of spheres tangent to the faces of
a simplex depends on the initial figure; for example, in dimension 3 this number
depends on the areas of the faces of the tetrahedron considered,; it is equal to 8 typ-
ically, but decreases to 5 for the regular tetrahedron. It is equal to 24 in general. In
dimension three, as far as pure geometry is concerned, it’s a matter of looking at the
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Fejes Toth, Laszlo, 105, 512, 590-593,
632, 639, 657

Fenchel, Werner, 499

Ferguson, Samuel, 631

Fermat, Pierre de, 174, 253, 305, 317,
509, 582, 653

Feuerbach, Karl, 69, 74

Figiel, Tadeusz, 471

Firey, William, 487

Fodor, Ferenc, 588

Fourier, Joseph, 177, 273, 280, 298, 391,
411, 468, 499, 570, 584, 628,
640, 679, 710

Franks, John, 767, 769770

Frégier, Paul, 245

Frey, Gerhard, 317

Frobenius, Georg, 53

Fubini, Guido, 65, 429

Fuller, R. Buckminster, 150

Funk, Paul, 462, 746

Fiiredi, Zéltan, 105

Gage, Michael, 301, 302

Gale, David, 541, 555

Gallai, Tibor, 2, 6

Galperin, Gregory, 756

Gauss, Carl Friedrich, 64, 278, 284, 359,
369-370, 377, 395-396, 487,
510, 623, 625, 626, 632, 748,
757,761

Ghys, Etienne, 267

Gibbs, Josiah Willard, 144

Girard, Albert, 144, 514

Gluck, Herman, 173, 363, 431

Gluskin, Efim, 453

Gdodel, Kurt, 52

Golay, Marcel, 646, 663, 665

Gram, Jorgen, 430, 642

Grassmann, Hermann, 2, 144

Graustein, William C., 282

Graves, Charles, 186, 190, 236, 240

Grayson, Matt, 755, 766

Green, Leon, 146

Gregory, James, 171

Gromer, Helmut, 11
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Gromov, Mikhael, VIII, 12, 57, 65, 141,
181, 286, 300, 304, 363, 364,
387, 398, 490, 497498, 512,
582, 734

Grothendieck, Alexander, 166, 471

Grotsche, Martin, 448

Gruber, Peter M., 190, 523, 757

Griinbaum, Branko, 411, 505, 597

Gudkov, Dmitrii A., 322

Guillemin, Victor, 745

Gullstrand, Allvar, 394

Hadamard, Jacques, 376-377, 527, 684,
752

Hadwiger, Hugo, 64, 466, 496, 515

Haken, Wolfgang, 640

Hales, Thomas C., 631, 634, 638

Halpern, Benjamin, 294, 723

Hamilton, Richard S., 301-302

Hamilton, William Rowan, 144

Hammer, Preston C., 460

Hamming, Richard, 660-661, 666

Hansen, Sten, 6

Harmack, Axel, 322

Harriot, Thomas, 144, 514, 630

Hart, Harry, 80, 270

Hass, Joel, 757

Hausdorff, Felix, 115, 429, 438, 490,
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He, Zheng-Xu, 105

Hedlund, Gustav, 772

Henk, Martin, 657

Hensley, Douglas, 466

Herglotz, Gustav, 387

Hermite, Charles, 173, 648—-649, 652

Heron of Alexandria, 145, 512

Hesse, Ludwig Otto, 26, 41, 56

Hilbert, David, 86, 236, 320, 322, 358,
363,372,472, 487488, 632,
726, 745

Hingston, Nancy, 769-771, 781

Hirzebruch, Friedrich, 42

Hlawka, Edmund, 651

Holder, Otto, 414, 425, 455, 469470

Hooke, Robert, 187

Hopf, Eberhard, 763, 772

Hopf, Heinz, 62, 95-96, 173, 252, 346,
358, 384, 389, 741

Hubbard, John, 708

Humbert, Marie, 324-325

Hurdal, Monica K., 113

Hurwitz, Adolf, 281, 299, 482

Itard, Jean, 68
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Jacobi, Carl, 217, 220, 350, 355, 669,
748, 777

John, Fritz, 194, 449

Jonquieres, Ernest de, 228, 230

Jordan, Camille, 249, 251, 259

Juel, Christian, 329, 331

Kac, Mark, 672

Kahn, Jeff, 64

Kalai, Gil, 64

Katok, Anatole, 694, 707, 733, 762-763,
781

Kazhdan, David, 175

Keane, Michael, 694

Keller, Ott-Heinrich, 605

Kellogg, Oliver, 281

Kelly, L.M., 2

Kepler, Johannes, 174, 411, 522, 629,
630, 633, 637, 639-641, 655

Kerckhoff, Steven, 700

Kershner, Richard, 593

Klein, Felix, 12, 82, 90, 98, 106, 133,
205-208, 322, 400, 505, 522,
532, 564, 604

Klingman, Darwin D., 11

Kneser, 672

Knorrer, Horst, 242

Knothe, Herbert, 300, 442

Koebe, Paul, 110-111, 535-537

Kolmogorov, Andrei, 683, 733, 763, 774

Kontsevitch, Maxim, 327

Korteweg, Diederik, 242

Koszul, Jean-Louis, 237

Krahn, Edgar, 486

Krein, Mark, 446

Kuiper, Nicolas, 36, 364, 388

Labourie, Frangois, 363, 387

Lagrange, Joseph-Louis, 524, 566, 575

Laguerre, Edmond, 132, 214

Laplace, Pierre-Simon, 748

Lashof, R.K., 376

Lawson, Blaine, 173

Lax, Peter, 242

Lazutkin, Vladimir, 717, 722

Lebesgue, Henri, 113, 191, 391, 428,
429, 494, 527

Lee, Carl W., 544

Leech, John, 171, 176, 646

Lefschetz, Solomon, 544

Legendre, Adrien-Marie, 457

Leonardo da Vinci, 628

Levi-Civita, Tullio, 358

Lévy, Paul, 473,512
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Lévy,Paul, 474

Lie, Sophus, 207, 618

Lieb, Elliot H., 455

Liebmann, Karl Heinrich Otto, 386

Liouville, Joseph, 90, 106, 354, 545,
712,731, 763, 768, 772

Loewner, Charles, 194, 449, 603

Longhurst, Robert, 383

Lorentz, Hendrik, 725

Lovisz, Laszlo, 537

Lovasz, Laszlo, 448

Lubotzky, Alexander, 164-167

Lusternik, Lazar, 765

Méibius, August, 113

MacBeath, A. Murray, 296, 436, 439

Mackay, John S., 77

Mabhler, Kurt, 444, 477, 566, 575

Mandelbrot, Benoit, 603

Maiié, Ricardo, 778

Manin, Yuri, 208

Marchaud, André, 329, 331

Marchetti, Federico, 694

Margulis, Gregori, 175

Masur, Howard, 700, 704, 781

Mather, John, 720, 721

Maxwell, James Clerk, 146, 473

Mazur, Stanislaw, 451

McLaughlin, Sean, 634

McMullen, Peter, 540-541, 544

Melchior, E., 3

Mercator, Gerardus, 748

Michel, Louis, 708

Michel, René, 745

Michelson, Albert, 120, 270

Milman, David, 446

Milman, Vitali, 445, 451, 459

Milnor, John W., 521, 632

Minkowski, Hermann, 363, 410, 414,
420, 422423, 434, 439440,
478, 558, 567, 573-575, 623,
640, 651, 654, 658

Mbibius, August, 16, 43—44, 147-148,
206, 279, 329, 777

Monge, Gaspard, 351, 442

Morgan, Frank, 595, 757

Morley, Frank, 71,77, 191

Morse, Marston, 345, 376, 749, 770,
778

Morse, Samuel, 660

Moser, Jiirgen, 683, 727, 763

Mukhopadhyaya, Syamadas, 278, 279
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Nadirashvili, Nikolai, 377, 384

Nash, John, 364, 388

Neumann, Bernhard, 727

Neumann, Walter, 769

Nevanlinna, Rolf, 91

Newton, Isaac, 168, 170-171, 187, 253,
413, 498

Nirenberg, Louis, 362

Osserman, Robert, 272, 775-777
Ostrowski, Alexander, 252

Pach, Janos, 105

Pajor, Alain, 459

Pappus, 17-18, 23, 32, 50, 195, 202, 553

Pascal, Blaise, 33, 194-195, 202, 553

Pascal, Etiennc, 274

Paternain, Gabriel P., 778

Paternain, Miguel, 778

Peaucellier, Charles, 80, 270

Penrose, Roger, 567, 607-608

Perelman, Grigori, 174, 497, 641

Perles, Micha, 17. 23, 553

Petty, Clinton, 445, 464

Phillips, Ralph, 164167

Pick, Georg, 567

Planck, Max, 712

Plateau, Joseph Antoine Ferdinand, 382

Pliicker, Julius, 2, 192, 214, 219, 307

Pogorelov, Aleksei V., 362, 388

Poincaré, Henri, 4, 84-85, 134, 174,
315, 353,515, 542, 641,
752-753, 755,757, 769

Poinsot, Louis, 522

Poisson, Denis, 584, 628, 668

Poncelet, Jean-Victor, 1-2, 72, 77, 81,
100, 102, 191, 202-203,
216-219, 221, 225, 305, 308,
317, 319, 327, 566, 714-715

Porteous, Tan R., 395

Ptolemy, 80, 130-131

Puiseux, Victor, 307, 390

Pythagoras, 687

Quetelet, Adolphe, 192

Rademacher, Hans, 332

Radin, Charles, 616

Radon, Johann, 482, 746

Ragsdale, Virginia, 322
Ramanujan, Srinivasa, 53, 166, 175
Reichel, Wolfgang, 486

Reuleaux, Franz, 391

Reye, Theodor, 43
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Ricci-Curbastro, Gregorio, 304

Richter-Gebert, Jiirgen, 538, 551

Riemann, Bernhard, 20, 86, 110, 148,
174,252, 318, 357-358, 572,
652, 697, 700

Rinow, Willi, 346, 358, 741

Rivin, Igor, 76, 532, 534

Roberval, Gilles de, 199

Robinson, Raphael, 607-609

Roch, Gustav, 318

Rodin, Burt, 105

Rodrigues, Benjamin Olinde, 64,
371-372

Rogalski, Marc, 454

Rogers, Claude, 588, 592, 630, 632, 633,

652, 655, 657
Rolle, Michel, 252
Ronga, Felice, 231
Ruziewicz, Stanislaw, 174

Sachs, Hans, 111, 535

Samelson, Hans, 681

Sarnak, Peter, 164—167, 174-175, 713

Sauer, Norbert, 453

Schlafli, Ludwig, 43, 235, 332, 522,
541, 544, 545

Schlegel, Victor, 541, 555

Schmidt, Erhard, 300, 397

Schneider, Rolf, 444

Schnirelman, Lev, 765

Schottky, Friedrich, 90, 107

Schramm, Oded, 108, 111, 536, 603

Schrijver, Alexander, 448

Schiitte, Karl, 154, 159, 162

Schwartz, Richard, 19-20, 511, 709,
728

Schwarz, Hermann, 297, 298, 414, 420,
422-423, 443

Scott, G.D., 637

Secber, Ludwig, 623

Segre, Beniamino, 326

Senechal, Marjorie, 171, 599, 607, 609

Serre, Jean-Pierre, 4042, 667

Severi, Francesco, 230

Shannon, Claude, 660

Shelah, Saharon, 453

Shephard, Geoffrey C., 477, 598

Shioda, Tetsuji, 653

Simons, James H. (Jim), 173

Simson, Robert, 68, 73

Sinai, Yakov, 710, 712

Slazenger (brand of golf ball), 159, 160,
162, 165
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Smale, Stephen, 149, 168

Smillie, John, 700

Smith, Paul A., 641

Sommerville, Duncan, 543

Stanley, Richard, 544, 557-558

Staude, Otto, 236, 240

Steffen, Klaus, 525

Steiner, Jakob, 8, 36-37, 60, 71, 74,
76-71, 81, 92-93, 216, 219,
223, 226-228, 295-297, 303,
420, 423, 436, 438, 475, 478,
489, 530-532

Steinitz, Ernst, 505, 517, 532, 538-539,
550, 553-554

Stirling, James, 430, 433, 650, 652

Stokes, George Gabriel, 299, 300, 378,
397

Sturm, Charles, 245, 281, 769

Sullivan, Dennis, 105, 116, 175

Sylvester, James Joseph, 2-6, 40, 42, 54,
56-57, 309, 459, 480

Szarek, Stanislaw, 453

Tabachnikov, Sergei, 281, 678, 713

Tammes, Pieter, 153, 155-158, 161

Tarnai, Tibor, 157

Tarski, Alfred, 172

Taylor, Brook, 332

Teichmiiller, Oswald, 403, 700-702

Thom, René, 282, 330-331, 392, 394,
480, 536, 545

Thue, Axel, 590

Thurston, William, VIII, 108, 110, 112,
535, 537

Tits, Jacques, 213

Tognoli, Alberto, 231

Ulam, Stanislaw, 62. 480, 483, 678

van der Waerden, Bartel L., 153-154,
159, 161-162, 230

Veech, William, 703-704

Veronese, Giuseppe, 36, 65-66, 280

Villarceau, Yvon, 102, 132, 191, 234

Viro, Oleg, 322, 331

von Neumann, John, 678

von Staudt, Karl, 2

Voronoi, Georgii, 114, 153, 162, 590,
626, 632, 638, 649

Vust, Thierry, 231

Wagon, Geoffroy, 156
Walker, Robert J., 307
Wallace,William, 68
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Astride, 297
Astronomy, 88, 121, 142, 195
Astrophysics, 442
Asymptote, 37, 38
Asymptotic, 168
Asymptotic behavior, 429
Asymptotic estimate, 157, 653, 655,
680, 759
Asymptotically uniformly distributed,
164
Atlas, 333
Atomic, 118
Attraction
Newtonian, 485
universal, 187
Automorphism, 12, 15, 574
Frobenius, 53
Autopolar triangle, 211
Autosimilarity, 609
Average
spatial, 732
time, 732
Averaging effect, 120
Axiom
of choice, 611
Hausdorff’s, 333
separability, 121
Axioms
intersection, 24
Axis radical, 126

Badness, 456, 465
Ball, 133, 209, 323, 348, 399, 439, 458,
469, 629, 630, 637
almost perfect, 368
billiard, 190
canon, 170
closed, 418
fabrication, 120
golf, 149, 159
soccer, 156, 157
tennis, 157, 387
true, 367
unit, 427
Ball for L?, 427
Band, 573, 759
Band of trajectories, 686, 726
Barycentric calculus, 48
Barycentric coordinates, 69
Bearing, navigational, 152
Bees, 595
Belt, 752
Bending, 387
Bernoulli shift, 731, 731, 733

SUBJECT INDEX

Bijection, 78
Bijectivity, 16
Bilinearity, 425
Billiards, 563, 567, 675, 743, 759, 768
circular, 713, 714
concave, 567,711,712, 733
convex, 717
dynamical system, 688
Einstein, 728
elliptical, 714, 716
ergodic, 722
exterior, 727
generic, 723
generic convex, 723
hyperbolic, 567, 728
in an isosceles right triangle, 676
mushroom, 678, 727
phase space, 697
plane, 603
polygonal, 20, 705, 781
rational, 695, 696, 700, 703
periodic trajectory, 725
rectangular, 744
in a right triangle, 689
in a square, 679, 680
square, 751
trajectory, 676, 719, 720
Binomial coefficients, 11
Biprism, 614
Bisector, perpendicular, 40
Bisectors, 77
Bisectrix, 188
exterior, 714
Bit, 661
Blowing up, 16, 230
Boat construction, 480
Body
floating, 479, 481
intersection, 477
projection, 477
solid, 489
The Book, 57
Boundary, 187, 434, 448, 481, 720
concave, 728
Bounded, 141
Bourgain-Milman inequality, 445
Box, 614
Brachistochrone, 323
Brain, 294
Branch, 307
infinite, 311
Brillouin zones, 563
Buckyball, 150
Buffon’s needle, 12, 57
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Bundle

tangent, 334
Butterfly, 68
Butterfly theorem, 125

Cable, 593
CAD (computer aided design), 116, 270,
367
Cages of clathrine, 156, 157
Calculation
computer, 115
decimal, 563
Calculus
differential, 91, 209, 347, 740
integral, 429
of variations, 303, 347, 384
Calibration, angular, 118
Caliper, 116
Cannonball, 626
Carbon, 624
Catching a lion in the desert, 80
Catenoid, 382, 386
Caustic, 190, 325, 393, 715, 717, 717,
718, 721-723, 727,729
Lazutkin, 718
Causticity, of quadrics, 242
Cayley octaves, 50
Cayley’s astroid, 356
Cell
activated, 294
Voronoi, 590, 591, 627, 632, 643,
645, 654, 655
Center
of curvature, 266
of gravity, 149, 278, 456, 479,
480, 484, 531
of homothety, 43
of an inversion, 79
of a polytope, 545
of pressure, 479, 480
of symmetry, 63, 547
Center-symmetric, 439, 444
Ceramic, 117
Chain
infinite, of theorems, 69
of spheres, 94
of theorems, 74
Change
of chart, 317
of sign, 528
of variables, 429
Chaos, 712, 775
uniform and total, 732
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Characteristic
Euler-Poincaré, 345, 379, 389,
699
Chart, 333, 702
geographic, 747
3264 (the 3264 Chasles conics), 305,
331
Chern-Lashof formulas, 376
Chord, 130
Cicatrice, 169
Circle, 1, 26, 61, 115, 124, 129, 184,
214, 250, 257, 298, 302, 303,
336, 359, 608, 760
on the canonical sphere, 766
circumscribed, 74
complex, 100
Euclidean, 308
Euler’s, 74
exotic, 100
of inversion, 79
metaphorical, 191
nine point, 75
oriented, 74
osculating, 79, 266, 266, 271,
278
point, 97
small, 88
of small radius, see small circles
in the space, 88
superosculating, 310
Circles
bitangent at cyclic points, 216
concentric, 78, 216
enlaced, 101
orthogonal, 128
tangent to the three sides of a
triangle, 67
tangent to three sides of a triangle
generalization in dimension
> 2,68
Villarceau, 100-102, 234
Circles of Apollonius, 113, 113
Circuit, 515, 555
Circular disk, 486
Circumscribability, 532
Circumscribed polygon, 213
Circumsribability, 532
Class, 717
cke 332
c’P, 332
of a curve, 319
Classes
Chern, 42, 378
secondary characteristic, 173
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Classification, 281, 745
affine, of quadrics, 234
of compact surfaces, 402
of geometric curves, 257
of isometries, 131
of kinematic curves, 256
projective, of cubic, 312
of minimal generic curves, 284
of tilings
Penrose, 610
topological
of surfaces, 344
Clathrine, 156, 157
Clifford parallels, 95, 95, 99
Climbing Jacob’s ladder, 3, 69, 96, 216,
383
Clique, 605
Clock, 323
Closed curve, 174
Closed set, 333
Co-conicity, 554
Co-orientation, 371
Cocube, 420, 427, 427, 445, 458, 544,
547
Cocyclic points, 215
Code
cyclic, 666

error correcting, 52, 309, 655, 659,

661
error detecting, 57
generating matrix, 665, 665
generating polynomial, 666
Golay, 646, 647, 663, 665
Hamming, 664, 665
linear, 665
perfect, 665
spherical, 655
zero of, 666
Coding, 665, 709
of a trajectory, 684
Coefficient of (thermal) expansion,
117
Cohomology, 649
Coloring, 608
Combinatorial, 3, 62, 513, 599, 600
Combinatoric, 108, 110
Combinatorics, 57, 243, 285, 306, 505,
508, 535, 641, 684
Comble, 72
opposed, 73
Communications, 659
Commutative, 49
Compact, 26, 33, 141
Compact set, 262, 333

SUBJECT INDEX

Compactification, 88, 90
Compactness, 298, 303, 448, 597, 755
Blaschke, 658
Compass, 509
Compensation, 570, 573
Complexification, 208
Complexify, 100
Complexity, 115, 684
algorithmic, 161, 518, 534, 553
computational, 518
exponential, 157
of the face sequence, 729
Component
connected, 83, 108, 251, 320
Composition, 332, 609
of inversions, 82, 87
Compression, image, 294
Computer, 52, 115, 144, 163, 168, 195,
350, 386, 530, 538, 588, 607,
629, 632, 653, 660, 729
Computer algebra, 341
Concave, 440
Concavity
logarithmic, 470
Concentration, 776
Concepts, 278
Concert hall, 686
Condensed matter, 169
Condition
Holder, 425
Conditions
for determining a conic, 227
McMullen, 544
Cone, 133, 343, 374
with apex removed, 373
Euclidean, 699
of revolution, 183, 184, 529
Configuration, 14, 43, 55, 149
circle, 66, 66, 96
of the complete quadrilateral, 32,
55
Desargues’, 21
Friauf’s, 155
Hesse’s, 26, 41
irrational affine, 23
of 27 lines, 46. 47, 329
Pappus’s, 17, 19
paratactic ring, 98
Perles’s, 23
of the projective plane over the
field Z2, 56
of regular hexagons, 78
of the snub cube, 156
of spheres, 78, 98
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Reye’s, 43, 55
rigid, 177
Ronga-Tognoli-Vust, 231
Sylvester-Gallai, 6
of type (pq,rs). 43
Conformal, 84, 109
mapping, 400
radius, 111
Conformal invariance, 603
Conformal representation, 103, 108,
109, 112, 148
Congruence, 524
Conic, 18, 26, 33, 100, 102, 125, 181,
182, 200, 212, 243, 252, 266,
308, 310, 317, 386, 510, 744
Chasles, 226, 231
complete, 230
degenerate, 18, 127, 200
dual, 205, 220
dual (or polar) of a conic with
respect to a conic, 205
osculating, 209
proper, 184, 200
real Euclidean, 183
sextactic, 278, 311
tangent, 205, 209
tangent to five conics, see also
conics, Chasles, 76
Conics
homofocal, 188, 714, 717
Conjecture
Borsuk’s, 61-66
Busemann-Petty, 463, 464, 470,
477
Caratheodory, 389, 390
dodecahedral, 633
four color, 639
Hadamard’s, 377
Kepler’s, 174,411, 629, 641, 655
Lawson’s, 173
of Paul Lévy, 512
Poincaré, 174, 497, 641
Rogalski’s, 454
Rogers’, 655
sausage, 657
Serre’s, 40, 41
Shepard’s, 477
Smyth, 641
Steiner’s, 530
Sylvester’s, 2
Weil, 166
Willmore’s, 390
Conjectures
Ramanujan, 167, 175
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Conjugate
harmonic, 197
with respect to a circle, 122, 196
with respect to a conic, 204
with respect to a quadratic form,
124
with respect to two lines, 56
Conjugate harmonics, 56
Conjugate on a geodesic, 353
Conjugation
complex, 83
harmonic, 55
Connect, 266
Connected, 37, 66, 257
Connected component, 83, 108, 251
Connected component of Erdos, 6
Conservation of angles, 79
Consistent metric, 148
Constant
Hermite, 650-652
Lipschitz, 165
Planck, 712
Rogers, 635, 636
Constant area, 168
Constructibility, 542
Construction with a ruler, 195
Contact, 266
of order 3 (or 4), 209, 210
order of, 278
Container, 637
Context
continuous, 772
discrete, 772
generic, 393
Riemannian, 727
Continued fraction, 118, 224, 565, 566,
575, 680, 684, 712, 713, 718,
729
in several variables, 567
periodic, 566
Continuity principle, 231
Continuous, 573
Contortion, 250
Contour, 294
apparent, 395, 396
theoretical, 397
Contractible, 320, 336, 539
Contraction embedding, 364
Convergence of algorithms, 629
Convex, 7. 349
function, 412
set, 415
Convex floating body, 483
Convex set, 175, 781
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center-symmetric, 419
compact, 434
Convexity, 49, 66, 270, 301, 409, 777
global, 262
local, 262, 392
in physics, 411
Coordinates, 24, 186,416
associated with a chart, 334
barycentric, 48, 49, 69
elliptic, 188, 239
homofocal, 238
homogeneous, 23, 124, 280
isothermal, 400
normal, 371
polar, 187, 462
purely affine, 48
spherical, 462
use of, 144
Correlation, 33
Correspondence
algebraic, 220
projective, 202
Cosymmetrization, 8, 12
Counterexample
Efimov’s, 388
Nadirashvili’s, 377, 384
Pogorelov’s, 362, 388
Weinstein’s, 746
Counting the periodic geodesics, 759
Coupling, 608
Covering, 94, 375, 530, 593, 628, 764
continuous, of a surface, 753
finest, 593, 639
minimum, 754
ramified, 222
of a surface, 753
by two sheets, 36
triple, 766
universal, 604
universal, of the circle, 258
Crease, 395
Criterion for convexity, 413
Cross-cap, 35
Cross ratio, 13, 28.31. 123, 316
of 4 complex numbers, 132
of 4 generators of a quadric, 235
over the quaternions, 50
of 4 points of a conic, 201, 212,
213
of 4 points of a generator of a
ruled surface, 343
of 4 points of a line, 27, 29
of 4 tangents to a conic, 205
of 4 tangents to a cubic, 312

SUBJECT INDEX

Crumpled paper, 374
Crumpling
Bleecker’s, 388
Cryptography, 52
Crystal, 585, 659
snow, 115
Crystallography, 576, 585, 624
Euclidean, 617
Cube, 43, 152, 154, 427, 445, 450, 458,
472,518, 520, 525, 531, 544,
547, 630, 711
snub, 156, 157, 523
unit, 661, 664
Cubic, 182, 220, 308
Cayley’s abstract, 222
Cayley’s concrete, 221
complex, 314
cross ratio invariant, 314
generic, 5
osculating, 281
periods, 314
planar, 5
real, 314
singularity-free, 308
Curvature, 120, 265, 271, 359, 363, 491,
571, 750, 781
affine, 279
algebraic, 264, 269, 326, 377
constant, 303, 360, 763
Gauss, 278
Gaussian, 358, 364, 366, 369, 305,
396, 487, 757, 761
local, 146
mean, 364, 366, 366, 384, 397,
498
negative, 710, 774
negative or zero, 382
positive, 182, 781
principal, 366, 373, 382, 398, 403,
498
projective, 279
Ricci, 304
scalar, 264, 269
of sections by a plane containing
the normal, 364
strictly negative, 763
strictly positive, 750
total, 366, 366, 369
Curve, 90, 120, 254, 329, 425, 740
algebraic, 253, 305, 316, 324, 390,
483
branch, 307
complex of genus 1, 308
decomposable, 306
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Hamming, 661, 661

hyperbolic, 86

induced, 346

tangential, 192, 217, 219

between two compact sets, 438
Distance traveled, 263
Distributing points on $2, 617
Distribution

Dirac, 726, 727

electric, 486

mass, 274

weight, 666
Distribution on the sphere, 663
Divergence, 701

exponential, 774, 775

of a vector field, 300
Division, harmonic, 461
DNA inequality, 269

Dodecahedron, 152, 427, 515, 518, 531,

618
regular, 520, 525, 547
snub, 156, 523
truncated, 532
Domain
bounded, 677
compact, 295
Dirichlet, 114, 153, 579
fundamental, 114, 579
modular, 314, 566, 577, 578
polygonal, 401
Voronoi, 114, 153, 160, 523, 606,
627, 633, 657
Dominoes, 602, 603
Double bubble, 385
Double ellipse, 749
Doubile six, Schlifli’s, 45, 235
Doubly periodic, 579
Drivers, 263
Drops
of liquid, 384
of metal, 384
Drum, 486
shape, 585
Dual, 3, 477
Dual (of a conic), 205
Duality, 4, 16, 32, 122, 195, 197, 202,
204, 237, 311, 318, 343, 497,
507, 584, 593
incomplete, 16
for spherical triangles, 143
Dunes, 629
Dynamic, 23, 77, 609
Dynamic geometry, 188
Dynamic, geometrically, 106
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Dynamical system, 688
Dynamics, 147, 190, 302, 377, 567, 616,
748
of the annulus, 769
complex, 603
of foldings of quadrilaterals, 328
Hamiltonian, 342
symbolic, 684

Earth, 232
Earthquake, 601
Eccentricity, 185
Edge, 507
cusp, 395
directed, 545
Eigenvalues of the Laplacian, 727, 762
Elastica, 302
Elastic collision, 675
Elastic string, 348
Electricity, 109
Electromagnetism, 326
Electron, 149
Ellipse, 7, 36, 181, 184-186, 190, 200,
208, 323, 744
Ellipsoid, 11, 102, 234, 354, 372, 388,
389, 393, 395, 416, 420, 427,
442, 444, 449, 455, 464, 487,
639, 729, 749, 759
Binet’s, 457
of dimension > 2, 356
homofocal, 241
of inertia, 232, 457, 484
of inertial, 456
John-Loewner, 194, 444, 448, 453,
464,472
Legendre’s, 457
of revolution, 342, 350, 354, 739
recalcitrant, 580
solid, 418
sufficiently flattened, 388
triaxial, 350
with three axes, 747
Elliptic, 182
Elliptoid, 187
Embankment, 442
Embedding, 335, 341
contraction, 364
equivariant, 36
isometric (sphere), 363
Emery powder, 367
Enantomorph, 600
Encagement, 534, 535
of an arbitrary convex set, 537
Enemy dictators, 153, 168, 170
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Energy. 161, 302
kinetic, 689
mean, 473
minimal, 168, 168
minimum, 162
point, 170
potential, 481
s, 168
total, 161
Energy level, 686, 752, 759
Engineer, naval, 480
Enlaced generators of a quadric, 234
Entropy, 613, 617, 733, 772, 774, 778
Liouville, 712, 775, 781
measure-theoretic, 734
metric, 733, 775
positive, 774
topological, 707, 733, 734, 775
volumic, 733
Envelope, 274, 291, 356, 483, 730
convex, 417, 442, 493, 551, 557,
593, 656
of a one-parameter family of
planes, 374
Envelopment, 202, 205
Epicycloid, 323, 325
Epigraph of a function, 425
Epistemology, 641
Equality of darkening, 695
Equality of triangles, 39
Equation
algebraic, 525
Codazzi-Mainardi, 373
of conics, 198, 212, 216
differential, Gauss’s, 359, 361,
364
Diophantine, 575
of ellipses, 187
Euler’s, 271, 274
evolution, 487, 489, 489, 497
Gauss-Codazzi, 403
general fifth degree, 522
heat, 182, 756, 766, 781
intrinsic, 269
KdV (Korteweg-de Vries), 242
Loewner, 603

partial differential, 182, 301, 362,

388,400, 414, 756
polynomial, 161
of third degree, 309
wave, 182, 781
Equator, 34, 153, 431, 473
Equilibrium, 274
Equilibrium positions, 275
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Equipotential, 109
Equivalence

asymptotic, 459

stable, 553
Equivariant, 36
Erector kit, 226
Ergodicity, 702, 710, 712, 730, 732, 772,
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in phase, 743, 746, 751
Erlanger Program, 206
Erosion, 487
Estimation of the deficit, 512
Euclidean, 278
Euclidean heredity , 121
Euler-Poincaré characteristic, 4
Evaluator, 445
Everywhere dense, 331, 438, 772
Evolute, 323, 323
Example, Osserman-Donnay, 775
Examples of surfaces, 342
Excavation, 442
Existence of a minimum, 299
Expansion

asymptotic, 603

Puiseux, 390
Expansive, 182
Experimental, 637
Experimental Mathematics, 78
Exponential decrease, 773
Exponential growth, 761
Exponential, complex, 132
Extactic, 280
Extension, 26
Extension by continuity, 125
Exterior, 285
Exterior of a simple closed curve, 260
Eye, 394, 397

Fabrication
industrial, 366, 367
of surfaces, 399
Face, 427, 434, 506, 507
Face, k-, 507
Fakir, 637
False center, 478
Family
continuous
of caustics, 190
of circles, 102, 329
of dynamical systems, 691
one parameter, 92, 536, 702
one-parameter
of surfaces (= deformation),
387
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Fiber, 292, 780
unitary, 354, 731
unitary tangent, 772, 780
Fiber optic, 588, 593
Field
base, 77
commutative, 217, 306, 309
complex, 253
finite, 49, 56, 545, 666
Jacobi, 777
quadratic, 545
of rational numbers, 306
real, 253
of tangent directions, 389
of two elements, 54
vector, 300
Filling
by normals, 398
Film, 381
Finite collection of intervals, 694
First fundamental form, 365
First fundamental formula of spherical
trigonometry, 142
First fundamental theorem of projective
geometry, 54
First harmonics, 280
Fish eye
Maxwell’s, 146
Five conics problem, 227
Five dots or dashes, 660
Flag, 509, 519
of a polygon, 509
Flexible, 524
Flexion, 524
Floating body, 483
Flow, 688, 731
conjugate geodesic, 779, 780
geodesic, 678, 731, 772,772, 774
on a surface, 342, 731
mixing, 733, 733
Teichmiiller, 702
uniquely ergodic, 688
Flow about an airfoil, 109
Focal
objective, 30
point, 30
Focal sheet, 394, 395
of a surface, 392
Focalization, of umbilics, 240
Focus, 190, 386, 715
of an ellipse, 185
of an hyperbola, 185
of a parabola, 185
Focusing, of rays, 722
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Folding, 395
Folding about a diagonal, 510
Foldings of polygons, 226
Foliation, 774
Foot, 304, 398, 498, 705
Force
centrifugal, 265
exterior, 741
gravitational, 740
Form
automorphic, 175
bilinear
antisymmetric, 45
symmetric, 45, 204
cubic, 280
linear, 199
local, 267
local, of a surface, 368
mirror, 600
modular, 167, 316, 669, 670
polar, 124, 128
quadratic, 99, 125, 133, 135, 136,
177, 199, 200, 280, 416, 456,
575, 623, 647, 667, 733
degenerate, 125
integral, 668
normalized, 219
of rank 1, 36
space, 377, 401, 563, 604, 618,
641, 761
symplectic, 45
Formula
Cauchy’s, 434, 477
Ehrhart, 568, 570
Euler’s, 160, 513, 515, 516, 522,
528, 541
first fundamental, of spherical
trigonometry, 142
Gauss-Bonnet, 377
Harriot-Girard, 514
Heron's, 145, 512
of intrinsic components of the
acceleration, 265
Laguerre’s, 132, 214
Pick, 567
Poisson, 571, 584, 628, 668
Riemann-Hurwitz, 317
Steiner-Minkowski, 478
Stirling’s, 430, 432, 433, 650, 652
Stokes’, 295, 299-300, 378, 397,
496
Whitney’s, 283
Formulas
Chern-Lashof, 376



