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Foreword to the New Edition
by Douglas R. Hofstadter

In August 1959, my family returned to Stanford, Cali-
fornia, after a year in Geneva. I was fourteen, newly
fluent in French, in love with languages, entranced by
writing systems, symbols, and the mystery of meaning,
and brimming with curiosity about mathematics and
how the mind works.

One evening, my father and I went to a bookstore
where I chanced upon a little book with the enigmatic
title Gddel’s Proof. Flipping through it, I saw many in-
triguing figures and formulas, and was particularly
struck by a footnote about quotation marks, symbols,
and symbols symbolizing other symbols. Intuitively
sensing that Gddel’s Proof and 1 were fated for each
other, I knew I had to buy it.

As we walked out, my dad remarked that he had
taken a philosophy course at City College of New York
from one of its authors, Ernest Nagel, after which they
had become good friends. This coincidence added to
the book’s mystique, and once home, I voraciously gob-
bled up its every word. From start to finish, Gddel’s Proof
resonated with my passions; suddenly I found myself

1X
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obsessed with truth and falsity, paradoxes and proofs,
mappings and mirrorings, symbol manipulation and
symbolic logic, mathematics and metamathematics, the
mystery of creative leaps in human thinking, and the
mechanization of mentality.

Soon thereafter, my dad informed me that by
chance he had run into Ernest Nagel on campus. Pro-
fessor Nagel, normally at Columbia, happened to be
spending a year at Stanford. Within a few days, our
families got together, and I was charmed by all four
Nagels—Ernest and Edith, and their two sons, Sandy
and Bobby, both close to my age. I was thrilled to meet
the author of a book I so loved, and I found Ernest
and Edith to be enormously welcoming of my adoles-
cent enthusiasms for science, philosophy, music, and
art.

All too soon, the Nagels’ sabbatical year had nearly
drawn to a close, but before they left, they warmly
invited me to spend a week that summer at their cabin
in Vermont. During that idyllic stay, Ernest and Edith
came to represent for me the acme of civility, generos-
ity, and modesty; thus they remain in my memory, all
these years later. The high point for me was a pair of
sunny afternoons when Sandy and 1 sat outdoors in a
verdant meadow and I read aloud to him the entirety
of Gadel’s Proof. What a twisty delight to read this book
to the son of one of its authors!

By mail over the next few years, Sandy and I ex-
plored number patterns in a way that had a profound
impact upon the rest of my life, and perhaps on his
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as well. He went on—known as Alex—to become a
mathematics professor at the University of Wisconsin.
Bobby, too, remained a friend and today he—known
as Sidney—is a physics professor at the University of
Chicago, and we see each other with great pleasure
from time to time.

I wish I could say that I had met James Newman. I was
given as a high-school graduation present his magnifi-
cent four-volume set, The World of Mathematics, and 1
always admired his writing style and his love for math-
ematics, but sad to say, we never crossed paths.

At Stanford I majored in mathematics, and my love
for the ideas in Nagel and Newman’s book inspired
me to take a couple of courses in logic and meta-
mathematics, but I was terribly disappointed by their
aridity. Shortly thereafter, I entered graduate school
in math and the same disillusionment recurred. I
dropped out of math and turned to physics, but after a
few years I found myself once again in a quagmire of
abstractness and confusion.

One day in 1972, seeking some relief, I was browsing
in the university bookstore and ran across A Profile of
Mathematical Logic by Howard DeLong—a book that
had nearly the same electrifying effect on me as Godel’s
Proof did in 1959. This lucid treatise rekindled in me
the long-dormant embers of my love for logic, meta-
mathematics, and that wondrous tangle of issues I had
connected with Godel’s theorem and its proof. Having
long since lost my original copy of Nagel and New-
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man’s magical booklet, I bought another one—luckily,
it was still in print!—and reread it with renewed fasci-
nation.

That summer, taking a break from graduate school
and driving across the continent, I camped out and
religiously read about Godel’s work, the nature of rea-
soning, and the dream of mechanizing thought and
consciousness. Without planning it, I wound up in New
York City, and the first people I contacted were my old
friends Ernest and Edith Nagel, who served as intellec-
tual and emotional mentors for me. Over the next
several months, I spent countless evenings in their
apartment, and we ardently discussed many topics, in-
cluding, of course, Godel’s proof and its ramifications.

The year 1972 marked the beginning of my own
intense personal involvement with Go6del’s theorem
and the rich sphere of ideas surrounding it. Over the
next few years, I developed an idiosyncratic set of ex-
plorations on this nexus of ideas, and wound up calling
it Godel, Escher, Bach: an Eternal Golden Braid. There is
no doubt that the parents of my sprawling volume were
Nagel and Newman’s book, on the one hand, and
Howard DeLong’s book, on the other.

What is Godel’s work about? Kurt Godel, an Austrian
logician born in 1906, was steeped in the mathematical
atmosphere of his time, which was characterized by a
relentless drive toward formalization. People were con-
vinced that mathematical thinking could be captured
by laws of pure symbol manipulation. From a fixed set
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of axioms and a fixed set of typographical rules, one
could shunt symbols around and produce new strings
of symbols, called “theorems.” The pinnacle of this
movement was a monumental three-volume work by
Bertrand Russell and Alfred North Whitehead called
Principia Mathematica, which came out in the years
1910-1913. Russell and Whitehead believed that they
had grounded all of mathematics in pure logic, and
that their work would form the solid foundation for all
of mathematics forevermore.

A couple of decades later, Godel began to doubt this
noble vision, and one day, while studying the extremely
austere patterns of symbols in these volumes, he had a
flash that those patterns were so much like number
patterns that he could in fact replace each symbol by a
number and reperceive all of Principia Mathematica not
as symbol shunting but as number crunching (to bor-
row a modern term). This new way of looking at things
had an astounding wraparound effect: since the subject
matter of Principia Mathematica was numbers, and since
Godel had turned the medium of the volumes also into
numbers, this showed that Principia Mathematica was its
own subject matter, or in other words, that the pat-
terned formulas of Russell and Whitehead’s system
could be seen as saying things about each other, or
possibly even about themselves.

This wraparound was a truly unexpected turn of
events, for it inevitably brought ancient paradoxes of
self-reference to Godel’s mind—above all, “This state-
ment is false.” Using this type of paradox as his guide,
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Godel realized that, in principle, he could write down
a formula of Principia Mathematica that perversely said
about itself, “This formula is unprovable by the rules
of Principia Mathematica.” The very existence of such a
twisted formula was a huge threat to the edifice of
Russell and Whitehead, for they had made the absolute
elimination of “vicious circularity” a sacred goal, and
had been convinced they had won the battle. But now
it seemed that vicious circles had entered their pristine
world through the back door, and Pandora’s box was
wide open.

The self-undermining Goédelian formula had to be
dealt with, and Go6del did so most astutely, showing
that although it resembled a paradox, it differed subtly
from one. In particular, it was revealed to be a true
statement that could not be proven using the rules of
the system—indeed, a true statement whose unprov-
ability resulted precisely from its truth.

In this shockingly bold manner, Gédel stormed the
fortress of Principia Mathematica and brought it tum-
bling down in ruins. He also showed that his method
applied to any system whatsoever that tried to accom-
plish the goals of Principia Mathematica. In effect, then,
Godel destroyed the hopes of those who believed that
mathematical thinking is capturable by the rigidity of
axiomatic systems, and he thereby forced mathemati-
cians, logicians, and philosophers to explore the mys-
terious newly found chasm irrevocably separating prov-
ability from truth.

Ever since Gobdel, it has been realized how subtle
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and deep the art of mathematical thinking is, and the
once-bright hope of mechanizing human mathematical
thought starts to seem shaky, if not utterly quixotic.
What, then, after Go6del, is mathematical thinking be-
lieved to be? What, after Gddel, is mathematical truth?
Indeed, what is truth at all? These are the central issues
that still lie unresolved, seventy years after Godel’s ep-
och-making paper appeared.

My book, despite owing a large debt to Nagel and
Newman, does not agree with all of their philosophical
conclusions, and here I would like to point out one key
difference. In their “Concluding Reflections,” Nagel
and Newman argue that from Godel’s discoveries it
follows that computers— “calculating machines,” as
they call them—are in principle incapable of reason-
ing as flexibly as we humans reason, a result that sup-
posedly ensues from the fact that computers follow “a
fixed set of directives” (i.e., a program). To Nagel and
Newman, this notion corresponds to a fixed set of axi-
oms and rules of inference—and the computer’s be-
havior, as it executes its program, amounts to that of a
machine systematically churning out proofs of theo-
rems in a formal system. This mapping of computer
onto formal system takes the term “calculating ma-
chine” very literally—that is, a machine built to deal
with numbers and arithmetical facts alone. The idea
that such machines by their very nature should churn
out sets of true statements about mathematics is seduc-
tive and certainly has a grain of truth to it, but it is far
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from the full vision of the power and versatility of
computers.

Although computers, as their name implies, are built
of rigidly arithmetic-respecting hardware, nothing in
their design links them inseparably to mathematical
truth. It is no harder to get a computer to print out
scads of false calculations (“2 + 2 = 5; o/o0 = 43,”
etc.) than to print out theorems in a formal system. A
subtler challenge would be to devise “a fixed set of
directives” by which a computer might explore the
world of mathematical ideas (not just strings of mathe-
matical symbols), guided by visual imagery, the associ-
ative patterns linking concepts, and the intuitive pro-
cesses of guesswork, analogy, and esthetic choice that
every mathematician uses.

When Nagel and Newman were composing Gddel’s
Proof, the goal of getting computers to think like
people—in other words, artificial intelligence—was
very new and its potential was unclear. The main thrust
in those early days used computers as mechanical in-
stantiations of axiomatic systems, and as such, they did
nothing but churn out proofs of theorems. Now admit-
tedly, if this approach represented the full scope of
how computers might ever in principle be used to
model cognition, then, indeed, Nagel and Newman
would be wholly justified in arguing, based on Godel’s
discoveries, that computers, no matter how rapid their
calculations or how capacious their memories, are nec-
essarily less flexible and insightful than the human
mind.
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But theorem-proving is among the least subtle of
ways of trying to get computers to think. Consider the
program “AM,” written in the mid-1970s by Douglas
Lenat. Instead of mathematical statements, AM dealt
with concepts; its goal was to seek “interesting” ones,
using a rudimentary model of esthetics and simplicity.
Starting from scratch, AM discovered many concepts of
number theory. Rather than logically proving theo-
rems, AM wandered around the world of numbers,
following its primitive esthetic nose, sniffing out pat-
terns, and making guesses about them. As with a bright
human, most of AM’s guesses were right, some were
wrong, and, for a few, the jury is still out.

For another way of modeling mental processes com-
putationally, take neural nets—as far from the theo-
rem-proving paradigm as one could imagine. Since the
cells of the brain are wired together in certain patterns,
and since one can imitate any such pattern in software—
that is, in a “fixed set of directives”—a calculating en-
gine’s power can be harnessed to imitate microscopic
brain circuitry and its behavior. Such models been
studied now for many years by cognitive scientists, who
have found that many patterns of human learning, in-
cluding error making as an automatic by-product, are
faithfully replicated.

The point of these two examples (and I could give
many more) is that human thinking in all its flexible
and fallible glory can in principle be modeled by a
“fixed set of directives,” provided one is liberated from
the preconception that computers, built on arithmeti-
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cal operations, can do nothing but slavishly produce
truth, the whole truth, and nothing but the truth. That
idea, admittedly, lies at the core of formal axiomatic
reasoning systems, but today no one takes such systems
seriously as a model of what the human mind does,
even when it is at its most logical. We now understand
that the human mind is fundamentally not a logic en-
gine but an analogy engine, a learning engine, a guess-
ing engine, an esthetics-driven engine, a self-correcting
engine. And having profoundly understood this lesson,
we are perfectly able to make “fixed sets of directives”
that have some of these qualities.

To be sure, we have not yet come close to producing
a computer program that has anything remotely resem-
bling the flexibility of the human mind, and in this
sense Ernest Nagel and James Newman were exactly on
the mark in declaring, in their poetic fashion, that
Godel’s theorem “is an occasion, not for dejection, but
for a renewed appreciation of the powers of creative
reason.” It could not be said better.

There is, however, an irony to Nagel and Newman'’s
interpretation of Godel’s result. Godel’s great stroke of
genius—as readers of Nagel and Newman will see—
was to realize that numbers are a universal medium for
the embedding of patterns of any sort, and that for
that reason, statements seemingly about numbers
alone can in fact encode statements about other uni-
verses of discourse. In other words, Godel saw beyond
the surface level of number theory, realizing that num-
bers could represent any kind of structure. The analo-
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gous Godelian leap with respect to computers would
be to see that because computers at base manipulate
numbers, and because numbers are a universal me-
dium for the embedding of patterns of any sort, com-
puters can deal with arbitrary patterns, whether they
are logical or illogical, consistent or inconsistent. In
short, when one steps back far enough from myriads
of interrelated number patterns, one can make out
patterns from other domains, just as the eye looking at
a screen of pixels sees a familiar face and nary a 1 or
o. This Godelian view of computers has exploded on
the modern world to such an extent that today the
numerical substrate of computers is all but invisible,
except to specialists. Ordinary people routinely use
computers for word processing, game playing, com-
munication, animation, designing, drawing, and on
and on, all without ever thinking about the basic arith-
metical operations going on deep down in the hard-
ware. Cognitive scientists, relying on the arithmetical
hardware of their computers to be error-free and un-
creative, give their computers “fixed sets of directives”
to model human error-making and creativity. There is
no reason to think that the processes of creative math-
ematical thinking cannot, at least in principle, be mod-
eled using computers. But back in the 1950s, such
visions of the potential of computers were hard to see.
Still, it is ironic that in a book devoted to celebrating
Godel’s insight that numbers engulf the world of pat-
terns at large, the primary philosophical conclusion
would be based on not heeding that insight, and would
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thereby fail to see that calculating machines can repli-
cate patterns of any imaginable sort—even those of
the creative human mind.

I shall close with a few words about why I have taken
the liberty of making some technical emendations to
this classic text. Although the book received mostly
warm accolades from reviewers, there were some critics
who felt that in spots it was not sufficiently precise and
that it risked misleading its readers. The first time
through, I myself was unaware of any such deficiencies,
but many years later, when reading Gddel’s Proof with
an eye to explaining these same ideas myself as pre-
cisely and clearly as possible, I stumbled over certain
passages in Chapter VII and realized, after a while, that
the stumbling was not entirely my own fault. It made
me sad to realize that this beloved book had a few
blemishes, but there was obviously nothing I could do
about it. Oddly enough, though, in the margins of my
copy I carefully annotated all the glitches that I uncov-
ered, indicating how they might be corrected—almost
as if I had foreseen that one day I would receive an
email out of the blue from New York University Press
asking me if I would consider writing a foreword to a
new edition of the book.

I must certainly be among the readers most pro-
foundly affected by the little opus by Ernest Nagel and
James Newman, and for that reason, having been given
the chance, I owe it to them to polish their gem and to
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give it a new luster for the new millennium. I would
like to believe that in so doing, I am not betraying my
respected mentors but am instead paying them hom-
age, as an ardent and faithful disciple.

Center for Research on Concepts and Cognition
Indiana University, Bloomington
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Introduction

In 1931 there appeared in a German scientific period-
ical a relatively short paper with the forbidding title
“Uber formal unentscheidbare Sitze der Principia
Mathematica und verwandter Systeme” (“On Formally
Undecidable Propositions of Principia Mathematica
and Related Systems”). Its author was Kurt Godel, then
a young mathematician of 25 at the University of Vi-
enna and since 1938 a permanent member of the In-
stitute for Advanced Study at Princeton. The paper is a
milestone in the history of logic and mathematics.
When Harvard University awarded Go6del an honorary
degree in 1952, the citation described the work as one
of the most important advances in logic in modern
times.

At the time of its appearance, however, neither the
title of Godel’s paper nor its content was intelligible to
most mathematicians. The Principia Mathematica men-
tioned in the title is the monumental three-volume
treatise by Alfred North Whitehead and Bertrand Rus-
sell on mathematical logic and the foundations of

1
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mathematics; and familiarity with that work is not a
prerequisite to successful research in most branches of
mathematics. Moreover, Godel’s paper deals with a set
of questions that has never attracted more than a com-
paratively small group of students. The reasoning of
the proof was so novel at the time of its publication
that only those intimately conversant with the technical
literature of a highly specialized field could follow the
argument with ready comprehension. Nevertheless, the
conclusions Godel established are now widely recog-
nized as being revolutionary in their broad philosophi-
cal import. It is the aim of the present essay to make
the substance of Godel’s findings and the general char-
acter of his proof accessible to the nonspecialist.
Godel’s famous paper attacked a central problem in
the foundations of mathematics. It will be helpful to
give a brief preliminary account of the context in
which the problem occurs. Everyone who has been
exposed to elementary geometry will doubtless recall
that it is taught as a deductive discipline. It is not pre-
sented as an experimental science whose theorems are
to be accepted because they are in agreement with
observation. This notion, that a proposition may be
established as the conclusion of an explicit logical proof,
goes back to the ancient Greeks, who discovered what
is known as the “axiomatic method” and used it to
develop geometry in a systematic fashion. The axio-
matic method consists in accepting without proof cer-
tain propositions as axioms or postulates (e.g., the ax-
iom that through two points just one straight line can
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be drawn), and then deriving from the axioms all other
propositions of the system as theorems. The axioms
constitute the “foundations” of the system; the theo-
rems are the “superstructure,” and are obtained from
the axioms with the exclusive help of principles of
logic.

The axiomatic development of geometry made a
powerful impression upon thinkers throughout the
ages; for the relatively small number of axioms carry
the whole weight of the inexhaustibly numerous prop-
ositions derivable from them. Moreover, if in some way
the truth of the axioms can be established—and, in-
deed, for some two thousand years most students be-
lieved without question that they are true of space—
both the truth and the mutual consistency of all the
theorems are automatically guaranteed. For these rea-
sons the axiomatic form of geometry appeared to many
generations of outstanding thinkers as the model of
scientific knowledge at its best. It was natural to ask,
therefore, whether other branches of thought besides
geometry can be placed upon a secure axiomatic foun-
dation. However, although certain parts of physics were
given an axiomatic formulation in antiquity (e.g., by
Archimedes), until modern times geometry was the
only branch of mathematics that had what most stu-
dents considered a sound axiomatic basis.

But within the past two centuries the axiomatic
method has come to be exploited with increasing
power and vigor. New as well as old branches of math-
ematics, including the study of the properties of the
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familiar cardinal (or “whole”) numbers,* were supplied
with what appeared to be adequate sets of axioms. A
climate of opinion was thus generated in which it was
tacitly assumed that each sector of mathematical
thought can be supplied with a set of axioms sufficient
for developing systematically the endless totality of true
propositions about the given area of inquiry.

Godel’s paper showed that this assumption is unten-
able. He presented mathematicians with the astound-
ing and melancholy conclusion that the axiomatic
method has certain inherent limitations, which rule
out the possibility that even the properties of the non-
negative integers can ever be fully axiomatized. What

* Number theory is the study, going back to the ancient Greeks,
of the properties of the natural numbers o, 1, 2, §,... —also
sometimes called the “cardinal numbers” or “non-negative inte-
gers.” Such properties include: how many factors a number has;
how many different ways a number can be represented as a sum of
smaller numbers; whether or not there is a biggest number having
some specified property; whether or not certain equations have
solutions that are whole numbers; and so on. Although number
theory is inexhaustibly rich and full of surprises, its vocabulary is
tiny—an alphabet of just a dozen symbols allows any number-
theoretical statement to be expressed (although often cumber-
somely).

In this book, we shall occasionally use the term “arithmetic” as a
synonym for “number theory,” but of course what this term entails
is the full, rich universe of properties of the natural numbers, and
not merely the mechanics of addition, subtraction, multiplication,
and long division as taught in elementary schools, and as mecha-
nized in cash registers and adding machines. [ —Ed.]
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is more, he proved that it is impossible to establish the
internal logical consistency of a very large class of de-
ductive systems—number theory, for example—unless
one adopts principles of reasoning so complex that
their internal consistency is as open to doubt as that of
the systems themselves. In the light of these conclu-
sions, no final systematization of many important areas
of mathematics is attainable, and no absolutely impec-
cable guarantee can be given that many significant
branches of mathematical thought are entirely free
from internal contradiction.

Godel’s findings thus undermined deeply rooted
preconceptions and demolished ancient hopes that
were being freshly nourished by research on the foun-
dations of mathematics. But his paper was not alto-
gether negative. It introduced into the study of founda-
tion questions a new technique of analysis comparable
in its nature and fertility with the algebraic method
that René Descartes introduced into geometry. This
technique suggested and initiated new problems for
logical and mathematical investigation. It provoked a
reappraisal, still under way, of widely held philosophies
of mathematics, and of philosophies of knowledge in
general.

The details of Godel’s proofs in his epoch-making
paper are too difficult to follow without considerable
mathematical training. But the basic structure of his
demonstrations and the core of his conclusions can be
made intelligible to readers with very limited mathe-
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matical and logical preparation. To achieve such an
understanding, the reader may find useful a brief ac-
count of certain relevant developments in the history
of mathematics and of modern formal logic. The next
four sections of this essay are devoted to this survey.
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The Problem of Consistency

The nineteenth century witnessed a tremendous ex-
pansion and intensification of mathematical research.
Many fundamental problems that had long withstood
the best efforts of earlier thinkers were solved; new
areas of mathematical study were created; and in vari-
ous branches of the discipline new foundations were
laid, or old ones entirely recast with the help of more
precise techniques of analysis. To illustrate: the Greeks
had proposed three problems in elementary geometry:
with compass and straight-edge to trisect any angle, to
construct a cube with a volume twice the volume of a
given cube, and to construct a square equal in area to
that of a given circle. For more than 2,000 years unsuc-
cessful attempts were made to solve these problems; at
last, in the nineteenth century it was proved that the
desired constructions are logically impossible. There
was, moreover, a valuable by-product of these labors.
Since the solutions depend essentially upon determin-
ing the kind of roots that satisfy certain equations,
concern with the celebrated exercises set in antiquity

7
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stimulated profound investigations into the nature of
number and the structure of the number continuum.
Rigorous definitions were eventually supplied for neg-
ative, complex, and irrational numbers; a logical basis
was constructed for the real number system; and a new
branch of mathematics, the theory of infinite numbers,
was founded.

But perhaps the most significant development in its
long-range effects upon subsequent mathematical his-
tory was the solution of another problem that the
Greeks raised without answering. One of the axioms
Euclid used in systematizing geometry has to do with
parallels. The axiom he adopted is logically equivalent
to (though not identical with) the assumption that
through a point outside a given line only one parallel
to the line can be drawn. For various reasons, this
axiom did not appear “self-evident” to the ancients.
They sought, therefore, to deduce it from the other
Euclidean axioms, which they regarded as clearly self
evident.! Can such a proof of the parallel axiom be

! The chief reason for this alleged lack of self-evidence seems to
have been the fact that the parallel axiom makes an assertion about
infinitely remote regions of space. Euclid defines parallel lines as
straight lines in a plane that, “being produced indefinitely in both
directions,” do not meet. Accordingly, to say that two lines are
parallel is to make the claim that the two lines will not meet even
“at infinity.” But the ancients were familiar with lines that, though
they do not intersect each other in any finite region of the plane,
do meet “at infinity.” Such lines are said to be “asymptotic.” Thus,
a hyperbola is asymptotic to its axes. It was therefore not intuitively
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given? Generations of mathematicians struggled with
this question, without avail. But repeated failure to con-
struct a proof does not mean that none can be found
any more than repeated failure to find a cure for the
common cold establishes beyond doubt that humanity
will forever suffer from running noses. It was not until
the nineteenth century, chiefly through the work of
Gauss, Bolyai, Lobachevsky, and Riemann, that the im-
possibility of deducing the parallel axiom from the oth-
ers was demonstrated. This outcome was of the greatest
intellectual importance. In the first place, it called at-
tention in a most impressive way to the fact that a proof
can be given of the impossibility of proving certain prop-
ositions within a given system. As we shall see, Godel’s
paper is a proof of the impossibility of formally dem-
onstrating certain important propositions in number
theory. In the second place, the resolution of the par-
allel axiom question forced the realization that Euclid
is not the last word on the subject of geometry, since
new systems of geometry can be constructed by using a
number of axioms different from, and incompatible
with, those adopted by Euclid. In particular, as is well
known, immensely interesting and fruitful results are
obtained when Euclid’s parallel axiom is replaced by
the assumption that more than one parallel can be
drawn to a given line through a given point, or, alter-

evident to the ancient geometers that from a point outside a given
straight line only one straight line can be drawn that will not meet
the given line even at infinity.
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natively, by the assumption that no parallels can be
drawn. The traditional belief that the axioms of geom-
etry (or, for that matter, the axioms of any discipline)
can be established by their apparent self-evidence was
thus radically undermined. Moreover, it gradually be-
came clear that the proper business of pure mathema-
ticians is to derive theorems from postulated assumptions,
and that it is not their concern whether the axioms
assumed are actually true. And, finally, these successful
modifications of orthodox geometry stimulated the re-
vision and completion of the axiomatic bases for many
other mathematical systems. Axiomatic foundations
were eventually supplied for fields of inquiry that had
hitherto been cultivated only in a more or less intuitive
manner. (See Appendix, no. 1.)

The over-all conclusion that emerged from these
critical studies of the foundations of mathematics is
that the age-old conception of mathematics as “the
science of quantity” is both inadequate and misleading.
For it became evident that mathematics is simply the
discipline par excellence that draws the conclusions logi-
cally implied by any given set of axioms or postulates.
In fact, it came to be acknowledged that the validity of
a mathematical inference in no sense depends upon
any special meaning that may be associated with the
terms or expressions contained in the postulates. Math-
ematics was thus recognized to be much more abstract
and formal than had been traditionally supposed:
more abstract, because mathematical statements can
be construed in principle to be about anything what-
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soever rather than about some inherently circum-
scribed set of objects or traits of objects; and more
formal, because the validity of mathematical demon-
strations is grounded in the structure of statements,
rather than in the nature of a particular subject matter.
The postulates of any branch of demonstrative mathe-
matics are not inherently about space, quantity, apples,
angles, or budgets; and any special meaning that may
be associated with the terms (or “descriptive predi-
cates”) in the postulates plays no essential role in the
process of deriving theorems. We repeat that the sole
question confronting the pure mathematician (as dis-
tinct from the scientist who employs mathematics in
investigating a special subject matter) is not whether
the postulates assumed or the conclusions deduced
from them are true, but whether the alleged conclu-
sions are in fact the necessary logical consequences of the
initial assumptions.

Take this example. Among the undefined (or “prim-
itive”) terms employed by the influential German
mathematician David Hilbert in his famous axiomati-
zation of geometry (first published in 189g) are
‘point’, ‘line’, ‘lies on’, and ‘between’. We may grant
that the customary meanings connected with these ex-
pressions play a role in the process of discovering and
learning theorems. Since the meanings are familiar, we
feel we understand their various interrelations, and
they motivate the formulation and selection of axioms;
moreover, they suggest and facilitate the formulation
of the statements we hope to establish as theorems.
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Yet, as Hilbert plainly states, insofar as we are con-
cerned with the primary mathematical task of explor-
ing the purely logical relations of dependence between
statements, the familiar connotations of the primitive
terms are to be ignored, and the sole “meanings” that
are to be associated with them are those assigned by
the axioms into which they enter.? This is the point of
Russell’s famous epigram: pure mathematics is the sub-
ject in which we do not know what we are talking
about, or whether what we are saying is true.

A land of rigorous abstraction, empty of all familiar
landmarks, is certainly not easy to get around in. But it
offers compensations in the form of a new freedom of
movement and fresh vistas. The intensified formaliza-
tion of mathematics emancipated people’s minds from
the restrictions that the customary interpretation of
expressions placed on the construction of novel sys-
tems of postulates. New kinds of algebras and geome-
tries were developed which marked significant depar-
tures from the mathematics of tradition. As the
meanings of certain terms became more general, their
use became broader and the inferences that could be
drawn from them less confined. Formalization led to a
great variety of systems of considerable mathematical
interest and value. Some of these systems, it must be

2 In more technical language, the primitive terms are “implicitly”
defined by the axioms, and whatever is not covered by the implicit
definitions is irrelevant to the demonstration of theorems.
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admitted, did not lend themselves to interpretations as
obviously intuitive (i.e., commonsensical) as those of
Euclidean geometry or arithmetic, but this fact caused
no alarm. Intuition, for one thing, is an elastic faculty:
our children will probably have no difficulty in accept-
ing as intuitively obvious the paradoxes of relativity, just
as we do not boggle at ideas that were regarded as
wholly unintuitive a couple of generations ago. More-
over, as we all know, intuition is not a safe guide: it
cannot properly be used as a criterion of either truth
or fruitfulness in scientific explorations.

However, the increased abstractness of mathematics
raised a more serious problem. It turned on the ques-
tion whether a given set of postulates serving as foun-
dation of a system is internally consistent, so that no
mutually contradictory theorems can be deduced from
the postulates. The problem does not seem pressing
when a set of axioms is taken to be about a definite
and familiar domain of objects; for then it is not only
significant to ask, but it may be possible to ascertain,
whether the axioms are indeed true of these objects.
Since the Euclidean axioms were generally supposed
to be true statements about space (or objects in space),
no mathematician prior to the nineteenth century ever
considered the question whether a pair of contradic-
tory theorems might some day be deduced from the
axioms. The basis for this confidence in the consistency
of Euclidean geometry is the sound principle that logi-
cally incompatible statements cannot be simultane-



