Great ldeas in
Computer Science
with JAVA

Alan W. Biermann and Dietolf Ramm

|
Alan W. Biermann and Dietolf Ramm

Great Ideas in Computer Science with Java

The MIT Press
Cambridge, Massachusetts
London, England

@ 2002 Massachusetts Institute of Technology

All nghts reserved. No part of this book may be reproduced in any form by any electronic or
mechanical means (including photocopying, recording, or information storage and retrieval) without
permission in writing from the publisher.

This book was set in Times New Roman by Asco Typesetters, Hong Kong, and printed and bound
in the United States of America.

Library of Congress Cataloging-in-Publication Data

Biermann, Alan W, 1939-
Great ideas in computer science with Java [Alan W. Biermann and Dietolf Ramm.
p. cm.
Includes index.
ISBN 0-262-02497-7 (pbk. : alk. paper)
1. Java (Computer program language) 1. Ramm, Dietolf. 11, Title.
QAT76.73.J38 B52 2001
005.2'762—dc21 2001030635

Contents

Preface xiii

Studying Academic Computer Science: An Introduction xuvii
Rumors xvii
Studying Computer Science xwviii
An Approach for Nonmathematical Readers xix

1 The World Wide Web |
World History and Where We Are [
Let’s Create Some Web Pages 2
More HTML 10
We Love HTML, But ... 3
Summary /4

2 Watch Out: Here Comes Java 17
Let's Put Some Action into Those Web Pages 17
The Big Deal: Computer Programming /9
Object-Oriented Programming /¥
The Java Programming Language 22
Decision Trees 22
Getting Started in Programming 27
Program Form and Statement Details 29

v Contents

Program Execution 3/
Interactive Programs and Buttons 353
Reading and Storing Data 40
Programming Decision Trees 5/
*The Arrow Notation and [ts Uses A4
*A Set of Rules for Java 78
Summary 80
3 Numerical Computation and a Study of Functions 83
Let's Calculate Some Numbers &3
Simple Calculations &4
Functions 935
Looping and a Study of Functions 97
Searching for the Best Value 4
Storing Information in Arrays 109
Finding Sums, Minima, and Maxima /17
Putting Things in a Row, and a Special Characteristic of Functions 123
*Putting the Functions in a Row [2§
Summary 127
4 Top-Down Programming, Subroutines, and a Database Application /3!
Let's Solve a Mystery [3]
Top-Down Programming and the Database Program /32
Subroutines /35
Subroutines with Internal Variables [37
Subroutines with Array Parameters /50
Subroutine Communication Examples 156
Storing and Printing Facts for the Database /60
Representing Questions and Finding Their Answers 166
Assembling the Database Program and Adding Components 17/
*Recursion 180

Summary /86

ix

Contents

Graphics, Classes, and Objects /9]

Calling All Artists J9/]

Graphics Primitives 197

Let’s Draw Some Pictures [95

Let’s Create a Class Called House [99
Adding Features to the House Class 203
Creating a Village 207

Subclasses and the Java Class Hierarchy 209
Summary 213

Simulation 275

Predicting the Future 215

How Do You Win an Auto Race? A Simulation 2716
*Avoiding the Plague: A Simulation 227
*Have You Ever Observed Evolution in Action? A Simulation 224
*What Will It Look Like? A Simulation 228

Summary 233

Software Engineering 235

The Real World 235

Lessons Learned from Large-Scale Programming Projects 236
Software Engineering Methodologies 238

The Program Life Cycle 242

Summary 245

Machine Architecture 247

When You Buy a Computer 247

A Sample Architecture: The P88 Machine 248
Programming the P88 Machine 252

Summary 258

Language Translation 26/
Enabling the Computer to Understand Java 26/
Svntactic Production Rules 262

Contents

10

11

12

Attaching Semantics to the Rules 268
The Semantics of Java 271
*The Translation of Looping Programs 240
Programming Languages 289
Summary 2903

Virtual Environments for Computing 297
Use Your Imagination 297
Using an Operating System 300
Hardware Pragmatics 302
The Operating System 34
Files 309

*Contention for Memory and Paging 313
Summary 315

Security, Privacy, and Wishful Thinking 379
What's Really Going on Here? 319

Good Passwords and Cracking 327
Encryption 323

Modern Encryption 329

Attacks 335

Summary 341

Computer Communications 345

Exploration 345

Layers and Local Area Networks (LANs) 346

Wide Area Networks 350

The Internet Protocol (IP) Layer and Above 352
*More on Addressing 354

Metworked Servers 356

More Network-Based Applications 357

The Changing Internet 359

Summary 360

x

Contents

13

14

15

16

Program Execution Time 363

On the Limitations of Computer Science 363

Program Execution Time 364

Tractable Computations 365

Intractable Computations 372

Some Practical Problems with Very Expensive Solutions

Diagnosing Tractable and Intractable Problems 382
*Approximate Solutions to Intractable Problems 384

Summary 385

Parallel Computation 359
Using Many Processors Together 389
Parallel Computation 390
Communicating Processes 395
Parallel Computation on a Saturated Machine 400
WVariations on Architecture 403
*Connectionist Architectures 405
*Learning the Connectionist Weights 412
Summary 419

MNoncomputability 423

Speed Is Not Enough 423

On the Existence of Noncomputable Functions 423

Programs That Read Programs = 424

Solving the Halting Problem 43/

Examples of Noncomputable Problems 436
*Proving Noncomputability 438

Summary 442

Artificial Intelligence 445
The Dream 445
Representing Knowledge 448
Understanding 450

377

xti Contents

Learning 457

Frames 462

An Application: Natural Language Processing 464
Reasoning 471

Game Playing 487
*Game Playing: Historical Remarks 486

Expert Systems 489

Perspective 496

Summary 501

Appendix: The IntField and DoubleField Classes 503

Readings 51/
Index 515

X0 Preface

book can also serve as a text in the only computer science course that some students will
ever take. It provides a conceptual structure of computing and information technology
that well-informed lay people should have. It supports the model of FlTness (Fluency in
Information Technology) described in a recent National Research Council study (Snyder
et al. 1999) by covering most of the information technology concepts that the study
specified for current-day fluency.

A Thousand Heroes

This book is the product of fifteen years of experience in teaching “great ideas in computer
science” at Duke University and many other institutions. The list of contributors includes
many faculty and student assistants who have taught the “great ideas” approach. (See,
for example, a description by Biermann of this type of course at several universities, in
“Computer Science for the Many,” Computer 27 (1994): 62-73.) Our teaching assistants
have contributed extensively by helping us develop an approach to introducing Java, by
writing many of the notes that eventually evolved into this book, and by developing the
laboratory exercises and software for our classes. The primary contributors were Steve
Mpyers, Eric Jewart, Steve Ruby, and Greg Keim. We owe special thanks to our faculty
colleagues Owen Astrachan, Robert Duvall, Jeff Forbes, and Gershon Kedem for pro-
viding constructive critique, stimulating conversation, and technical advice. Ben Allen
prepared some of the Java programs that are presented in the simulation chapter. Carrie
Liken created some of the graphics in chapter 5. Matt Evans was the artist for most of
the cartoons. Charlene Gordon contributed cartoons for chapters five and eleven. Other
contributors have been David and Jennifer Biermann, Alice M. Gordon, Karl, Lenore,
and M. K. Ramm, Jeifu Shi, Michael Fulkerson, Elina Kaplan, Denita Thomas, our
several thousand students in courses at Duke, long lists of people who helped us with our
earlier editions, our manuscript editors Deborah Cantor-Adams and Alice Cheyer, and,
as always, our kind executive editor Robert Prior,

L

Studying Academic Computer Science:
An Introduction

Rumors

Computers are the subject of many rumors, and we wonder what to believe. People say
that computers in the future will do all clerical jobs and even replace some well-trained
experts. They say computers are beginning to simulate the human mind, to create art,
to prove theorems, to learn, and to make careful judgments. They say that computers
will permeate every aspect of our jobs and private lives by managing communication,
manipulating information, and providing entertainment. They say that even our political
systems will be altered—that in previously closed societies computers will bring universal
communication that will threaten the existing order, and in free societies they will bring
increased monitoring and control. On the other hand, there are skeptics who say that com-
puter science has many limitations and that the impact of machines has been overstated.

Some of these rumors are correct and give us fair warning of things to come. Others
may be somewhat fanciful, leading us to worry about the future more than is necessary.
Still others point out questions that we may argue about for years without finding
answers, Whatever the case, we can be sure that there are many important issues related
to computers that are of vital importance, and they are worth trying to understand.

We should study computer science and address these concerns. We should get our
hands on a machine and try to make it go. We should control the machine; we should
play with it; we should harness it; and most important, we should try to understand how it
works. We should try to build insights from our limited experiences that will illuminate
answers to our questions. We should try to arm ourselves with understanding because the
Computer Age is upon us,

This book is designed to help people understand computers and computer science. It
begins with a study of programming in the belief that using, controlling, and manipulating
machines is an essential avenue to understanding them. Then it takes readers on a guided
tour of the internals of a machine, exploring all of its essential functioning from the internal

Xuiff Mniroduction

registers and memory to the software that controls them. Finally, the book explores the
limitations of computing, the frontiers of the science as they are currently understood.

In short, the book attempts to give a thorough introduction to the field with an emphasis
on the fundamental mechanisms that enable computers to work. It presents many of the
“preat ideas™ of computer science, the intellectual paradigms that scientists use to under-
stand the field. These ideas provide the tools to help readers comprehend and live with
machines.

Studying Computer Science

Computer science is the study of recipes and ways to carry them out. A recipe is a proce-
dure or method for doing something. The science studies kinds of recipes, the properties of
recipes, languages for writing them down, methods for creating them, and the construc-
tion of machines that will carry them out. Of course, computer scientists want to distin-
guish themselves from chefs, so they have their own name for recipes: they call them
algorithms. But we will save most of the technical jargon for later.

If we wish to understand computer science, then we must study recipes, or algorithms.
The first problem relates to how to conceive of them and how to write them down. For
example, one might want a recipe for treating a disease, for classifying birds on the basis
of their characteristics, or for organizing a financial savings program. We need to study
some example recipes to see how they are constructed, and then we need to practice
writing our own. We need experience in abstracting the essence of real-world situations
and in orgamizing this knowledge into a sequence of steps for getting our tasks done.

Once we have devised a method for doing something, we wish to code it in a computer
language in order to communicate our desires to the machine. Thus, it is necessary to
learn a computer language and to learn to translate the steps of a recipe into commands
that can be carried out by a machine. This book presents a language called Java, which is
easy to learn and quite satisfactory for our example programs.

The combination of creating the recipe and coding it into a computer language is called
programming, and this is the subject of the first part of the book (chapters 1-6). These
chapters give a variety of examples of problem types, their associated solution methods,
and the Java code, the program, required to solve them. Chapter 7 discusses problems
related to scaling up the lessons learned here to industrial-sized programming projects.

While the completion of the programming chapters leads to an ability to create useful
code, the resulting level of understanding will still fall short of our deeper goals. The
programmer’s view of a computer is that it is a magic box that efficiently executes com-
mands; the internal mechanisms may remain a mystery. However, as scholars of computer
science, we must know something of these mechanisms so that we can comprehend why a
machine acts as it does, what its limitations are, and what improvements can be expected.

xix Studyving Academic Computer Science

The second part of the book addresses the issue of how and why computers are able 1o
compute.

Chapter 8 describes machine architecture and the organization of typical computers, It
presents the basic hardware at the core of a computer system. Chapter 9 addresses the
problem of translating a high-level computer language like Java into a lower-level lan-
guage so that a program written in a high-level language can be run on a given architec-
ture, Chapter 10 introduces concepts related to eperating systems; these are the programs
that bridge the gap between the user and the many hardware and software facilities on the
machine. They make it easy for users to obtain the computing services that they want.
Chapter 11 examines a topic of great concern in our networked world, computer security.
As more and more of our lives become documented on machines and the connectivity of
every machine to every other increases, we wonder if our lives will be secure in the new
millennium. The final chapter of this section (12) introduces computer networks and the
many concepts related to machines’ talking to each other.

The final chapters of the book examine the limitations of computers and the frontiers of
the science as it currently stands. Chapter 13 discusses problems related to program exe-
cution time and computations that require long processing times. Chapter 14 describes an
attempt to speed up computers to take on larger problems, the introduction of parallel
architectures. Chapter 15 discusses the existence of so-called noncomputable functions,
and chapter 16 gives an introduction to the field of artificial intelligence.

A great many programs have been developed to illustrate ideas in this book, and you
can obtain them via the Internet. They can be found at Biermann's World Wide Web
page at the Department of Computer Science, Duke University (http:/www.cs.duke.edu/
~awb].

An Approach for Nonmathematical Readers

A problem that arises in the teaching of computer science is that many instructors who
know the field tend to speak in technical language and use too much mathematical nota-
tion for lay people to understand. Then the difficulty in communication leads them to
conclude that ordinary people are not able to understand computer science. Thus, books
and university courses often skirt the central issues of computer science and instead teach
the operation of software packages or the history and sociology of computing.

This book was written on the assumption that intelligent people can understand every
fundamental issue of computer science if preparation and explanation are adequate. No
important topics have been omitted because of “difficulty.” However, tremendous efforts
were made to prune away unnecessary details from the topics covered and to remove
special vocabulary except where careful and complete definitions are given.

Because casual readers may not wish to read every part of every chapter, the book
is designed to encourage dabbling. Readers are encouraged to jump to any chapter at

1

The World Wide Web

World History and Where We Are

We begin by trying to decide what are the three most important events in human history,
Which three occurrences since the beginning of time have had the greatest impact on the
human species? Many might deserve this honor: the evolution of spoken language, the
first use of tools, the discovery of fire, the discovery of the scientific method, the invention
of the printing press, the Industrial Revolution, and so on. One could argue at some
length about what the three greatest events have been. But this book suggests that a sure
contender for the honor is the evolution of the World Wide Web, or more generally, a
worldwide electronic communication network that potentially interconnects billions of
individuals, businesses, governmental and educational institutions, libraries, and political,
social, and religious groups as well as computers, databases, residences, automobiles,
bicyeles, briefeases, or even home appliances.

We know that the World Wide Web has been growing at an exponential rate. We know
that businesses and governmental institutions have been rushing to get connected. We
have seen dramatic steps in communication capabilities as fiber optic cables are stretched
everywhere and earth satellites are deployed to keep us always in range. Almost every
desk in every business has a personal computer, and we can now carry around laptop
computers that communicate easily with the Web, We know we can find almost every
book title in print, every newspaper being published, every airline flight that is scheduled,
every movie title being shown, every university course being taught, and much more by
simply clicking onto the Web and searching for the information. We know we can sit at
home and do our job (at least in some cases or part of the time), participate in clubs, shop
for clothes or a new car, sell specialized products, enter a chat room and share stories
with complete strangers, explore a foreign land, or compete in games with people we have
never met.

Where all of this will lead we do not know. It is both an exciting time and a frighten-
ing time in which to live. Of one thing we can be sure: it is a very good time to try to
understand technology and especially networking. What is it, how does it work, what can

2 Chapier |

it do, what can it not do, how do we use it, and how do we stay safe within its environ-
ment? This chapter gets us started on these issues.

Let’s Create Some Web Pages

We begin our study with an examination of the World Wide Web (WWW). We want to
know what the World Wide Web is, and we want to utilize its resources to help us learn
the many topics on our agenda. The task for this chapter is to learn to create Web pages
and to connect them to the World Wide Web. Our later studies will build from these
beginnings,

Here is text that we want to be able to view on a computer screen and that we want
others on the World Wide Web to see on their screens also.

Alired Nobel’s Legacy
Alired Nobel, a nineteenth-century industrialist, died in 1896 and left a will establishing the Mobel
Foundation. This organization has been awarding, since 1901, annual prizes for
outstanding accomplishments to scholars, literary figures, and humanitarian leaders.
Tha Mobel Prizes are currently given for contributions in six different areas of endeavor.

We give this page the title “The Nobel Prizes.”

If we want this text to become a World Wide Web page, we must add formatting
markers called rags to tell the computer display system how to present the text. The tags
must be written in a language called Hyper Text Markup Language, or HTML. Here is
the text with all the HTML tags included, to tell & computer system how to format the

page.

<HTML>

<HEAD>

<TITLE> The Nobel Prizes </TITLE>

</HEAD>

<BODY>

<Hl> Alfred Hobel's Legacy </Hl1>

<P> Alfred Nobel, a nineteenth-century industrialist, died
in 1896 and left a will establishing the Nobel Foundation.
This organization has been awarding, since 1501, annual
prizes for outstanding accomplishments to scholars,
literary figures, and humanitarian leaders. </P>

<pPp> The Nobel Prizes are currently given for contributions
in six different areas of endeavor. </P>

</BODY>

</HTML>

The World Wide Weh

The markers are easy to understand. There is no deep rocket science here. Each tag is
clearly identifiable by the angled brackets that surround it. Thus, if #1 is a tag name, <H1>
is the tag. This tag refers to some text that begins at the point where <H1> appears and
ends at the tag </u1>. Note that the end tags all have a slant {/) to denote that they mark
an end.

Here are some examples of tags. The page title is presented as

<TITLE> The Nobel Prizes </TITLE>

and the heading of the paragraphs on this page is
<Hl> Alfred Wobel’'s Legacy </Hl=>

The first paragraph of the text is typed as

<P> Alfred MWobel ... </P>

You, the designer of the Web page, are telling the computer display system how you
want the page to look. Here is a list of the tags being used and their meanings:

<gTML> The text surrounded by the tags <aTML> and </BTML> constitutes an HTML-
formatted page that is to be displayed.

<HEAD> The text surrounded by <sHEAD> and </HEAD> gives heading information for
this page.

<TITLE> Part of the heading information is the page title. This title will be shown by the
computer system near the page when it is displayed. But this title will not be

on the page.
<oD¥> This tag defines the material to be on the displayed page.
<Hl> This tells the system to create a heading for the material,
<p> This tells the system to create a paragraph.

In all these examples, every begin tag <M> has a complementary end tag </M>, indicating
both the beginning and ending of the text being formatted. In later examples, some begin
tags will not have complementary end tags because the endings will be obvious without
them.

Having designed a page and typed the HTML tags to display it, we would now like
to see the page displaved on a computer screen. The program that will display it is
called a browser. The browser is especially designed to obey the HTML commands and
to put the material we specify on the computer screen. (Two well-known browsers are
Microsoft’s Internet Explorer and Netscape Navigator.) We will type the HTML-
formatted version into a computer file called nobelinfo. html. You should type this into
your own computer using whatever editor that may be provided. [t should be in a directory

Chapter |

Alfred Nobel's Legacy

The Nobel Prizes

Figure 1.1

labeled public_html so that the browser can find it. Also, your computer must be
attached to an Internet server. (You may need to get help from a friend to get started if
you are not sure how to use your particular computer or if you do not know how to
connect to an Internet server.)

Motice that when you use the browser to display your page, it will be formatted exactly
as your HTML commands have stated but not necessarily as vou have typed it. Thus if
you typed two paragraphs but marked only one of them with the <p> and </P> tags,
only one of them will be properly formatted by HTML. The browser follows the rules of
HTML,; it does not copy the way you have typed your text.

Thus, we have achieved a great thing. We have created a page and displayed it with a
browser. This is the same browser that can reference pages from all over the world and
display what other people wanted us to see. Those people have learned HTML and have
used it to present their material to us. We are learning HTML so that we can return the
favor. You can think of your page as an electronic entity sitting in the computer memory
as shown in figure 1.1. Our next job will be to put more entities in that memory.

Now, let’s create another page associated with the first, titled *“Areas for Nobel Prizes.”
Here is the text for this page:

Mobel Prizes are given for outstanding contributions in these areas:

+ Physics

« Chemistry

« Physiology or Medicine
+ Literature

* Peace

+ Economic Science

The World Wide Web

<HTML>

<HEAD>

<TITLE> Areas for Nobel Prizes </TITLE>

</HEAD>

<BODY>

Nobel Prizes are given for outstanding contributions in these areas:

 Physics

 Chemistry

 Physiology or Medicine

 Literature

 Peace

 Economic Science

 Return to main.
</BODY>

< /HTML>

Figure 1.4 shows how the two pages look with their installed links. You should type
them in and make sure the links properly enable you to jump from one page to the other.

This is a nice result. But on more careful thought, it is much more than nice; it is an
incredible, astounding, and world-altering discovery. The two pages compose a web—a
small web, but still 2 web. And this is how the World Wide Web got started. Two pages of
the kind we have made were linked together some years ago. Then more pages were added
by various people and then more. Now there are tens of millions of people and pages all
connected by the means we have shown, and they are changing the world in the manner
we discussed in the first section.

nobelinfo.html nobelareas.html
Alfred Nobel's Legacy Nobal Prizes are given . . .
six different areas Reaturn to main.
The Nobel Prizes Araas for Nobal Prizes

Figure 1.4

Chaprer |

We can make still another change to our pages; we can put in an address to a remote
site. Why not enable the user to click on the words **‘Nobel Foundation™ and see the entry
page (the fome page) of the Nobel Foundation in Stockholm, Sweden? Not only will the
user be able to see our pages but he or she will have a convenient way to jump to the
source documents prepared by the originating organization. So here is another HTML
version of the first page,

<HTML>

<HEAD>

<TITLE> The Hobel Prizes </TITLE>

</HERD>

<BODY>

<Hl> Alfred Nobel’'s Legacy </H1l>

<pP> Alfred Mobel, a nineteenth-century industrialist, died
in 1896 and left a will establishing the <A HREF =
"www.nobel.se"> Nobel Foundation . This organization
has been awarding, since 1901, annual prizes for
outstanding accomplishments to scholars, literary figures,
and humanitarian leaders. </P>

<pP> The Hobel Prizes are currently given for contributions
in six different areas of endeavor.
< /P>

</BODY>

</HTML>

Figure 1.5 shows a symbolic representation of the two pages with installed links.

Suddenly our toy classroom network has jumped to mammoth size because the Nobel
Foundation page has numerous additional links for users to follow. A large number of
pages that are interlinked in this way compose a hyperiext; such entities have been studied
by scientists for years. One can have arbitrarily many links from any page to any others. It
contrasts with the standard notion of a book, which orders all its pages in a simple row.
The psychological, artistic, and pedagogic implications of these two forms of organizing
pages remain issues for research.

As an additional feature, the pages we have created are reachable by anyone on the
Internet if you have placed them in the directory public_html and if your computer
is connected to an Internet server. All that anyone needs to do is use a browser and
go to the address of your home site adding /nobelinfo.html to the end of the address.
For example, Biermann has a Web address of htip;//www.cs.duke.edu/~awb and The
Nobel Prizes information page can be referenced by typing http://www.cs.duke.
edu/~awb/nobelinfo.html into any Web-connecied browser. (Remember that file
nobelinfo.html was typed into directory public_html so that the browser could find it.)

The World Wide Web

To home page for Nobel Foundation

nobelinfo.html nobelareas.html

Alired Nobel's Legacy Nobel Prizes are given . ..

Nobel Foundation —_—

six different areas Return to main.
The Mobel Prizes Areas for Nobel Prizes
Figure 1.5

In order to make these links to distant pages actually work, the browsers that interpret
the HTML and display the text must have a feature not yet discussed. If one has an HREF
that points to another page, the browser must be able to follow that address and obtain
the HTML document to display. This address-following capability is quite complex be-
cause it must send a request across communications networks to foreign computers and
do the retrieval. There is an array of features that browsers must have to enable such
references to succeed. They will not be discussed further here. We will only acknowledge
that they exist, that they are complex, and that the browser must have them,

This concludes an ambitious section of this book. We examined a single page and how
to display it with an ordinary browser. We showed how to construct links between pages
and build a web or network. Finally, we connected our web to the World Wide Web, thus
connecting ourselves to the dragon that is changing the world.

Exercises

1. Identify what, in your opinion, were the three most significant events in the history of
humankind. Justify vour answer.

2. Name a type of business (if you can) that will not be affected by the World Wide Web
in the coming years, Justify your answer.

3. Type in the pages shown in this section and view them with a browser.

4. The first HTML page in this section has three different types of titles. Explain each
one, its function, and where it appears on the display: The Nobel Prizes, Alfred
Nobel's Legacy, and nobelinfo.html.

10 Chapter I

5. Create a home page for yourself using HTML, telling the major things that you would
like the world to know about you. Have a friend view your Web page from a separate
computer to be sure that the addressing conventions are working and that your page is
truly on the Web.

6. Who won the Nobel Prize in Economics in 19827 What was the first year in which this
prize was given? You should be able to answer these questions by following links from
The Nobel Prizes page created in this section.

More HTML

This section describes a few more features of HTML. The reader should examine a
standard reference for a complete description of this language and its many capabilities.
{This section for the most part follows A Beginner's Guide to HTML as it appears at htip://
www.ncsa. uiue.edu/General/Internet/ WWW /HTMLPrimer.html.)

In addition to the unordered list (UL) already described, HTML allows numbering of
list items. This is done with the tag in the expected way:

<0L>

 Physics
 Chemistry
 Econocmics

which will appear on a Web page as a numbered list

1. Physics
2. Chemistry
3. Economics

Another characteristic of lists is that they can be nested. Thus, one can have a list of lists.
We leave the exploration of this idea to the exercises.
One can create a list of definitions with the <pL> tag, as in the following:

<DL>

<DT> HTML

<DD> Hyper Text Markup Language
<DT> WWW

=DD> World Wide Web

</DL>

)

The World Wide Web

This will produce a two-column list on a Web page:

HTML

Hyper Text Markup Language
WiWW

World Wide Web

In the previous section, <H1> was used to create a heading for a section of text. HTML
has additional tags <H2>, <H3>, ..., <H6> which create sequentially lower levels of
headings. Thus, if we wanted to write a section for a Web page about HTML lists that
contains subsections on unordered lists and ordered lists, we might type

<Hl> Lists </Hl>

<P> Thare are two types of lists, unordered lists and
ordered lists. </P>

<H2> Unordered Lists </H2>

<P> Unordered lists have the properties that ... =/p>
<H2> Ordered Lists </HZ>

<P> Ordered lists are also guite useful ... </P>

This would appear on the Web page as

Lists
There are two types of lists, unorderad lists and ordered lists.

Unordered Lists
Unordered lists have the properties that | ..

Ordered Lists
Ordered lists are also guite usaful ...

To make words boldface or italic, use or <I>.

Suppose you wish to type something and be guaranteed that the characters and spacing
you use will be displayed on a Web page. You can use the tag <pRE> to do this, Thus, the
HTML

<PRE>
H H I
H H I
HHHHH I
H H I
H H I
</PRE>

will show on a Web page as

¢

Chapter |

2. Use Microsoft Word to create a document and have it generate your HTML
automatically.

Observing the many changes in lifestyle and capabilities that the World Wide Web is
enabling, we suspect that humankind is entering a new era. One cannot predict what
wonderful things and what new dangers may present themselves in the coming years. But
certainly we are wise to try to understand the World Wide Web so that we will be pre-
pared to profit from its strengths and protect ourselves from its dangers. This chapter has
provided a basis for that understanding by showing how to create a simple two-page web
and how to make it part of the WWW.

We studied the basics of HTML and the use of a browser for viewing HTML pages. In
the next chapter, we will learn that HTML is but a kindergarten-level introduction to
what really can be done. Besides simply displaying a page on a screen, we might like to see
lots of action on the page. Perhaps we would like the page to ask questions and respond to
answers. Or maybe we would like the page to have buttons that can be pushed to activate
actions of one kind or another. It is possible that we would like the page to calculate some
useful numbers or to display little cartoon figures. All of this and more can be done with
the programming language Java, as you will see in the next chapter.

AH! I Se€ A
CBECY MATE ni

2

Watch Out: Here Comes Java

Let’s Put Some Action into Those Web Pages

In chapter I, we studied how to create Web pages and link them to others on the World
Wide Web. Now we want o put some action into these pages. We want them to jump
around, flash bright colors, and compute complicated things. Java is a programming
language that will enable us to do all these things and more.

As a first example, suppose we wish to modify our Nobel Prizes Web pages so that a
user can ask for advice on finding some particularly interesting stories about Nobel prize
winners. We assume the user will read the main page, and we place a question at the
bottom of that page with buttons the user can push to indicate his answer, The question
will be “Would you like to read about a scientist?” The user will be able to push the
appropriate button, Yes or Mo, and then a new question will appear. By answering the
series of questions, the user will get the desired advice. Here is a version of The Nobel
Prizes page with the needed change:

<HTML>

<HEAD>

<TITLE> The Hobel Prizes </TITLE=>

< /HEAD>

<BODY>

<H1> Alfred Hobel's Legacy <H1/>

<P> Alfred Nobel, a nineteenth-century industrialist, died
in 1896 and left a will establishing the <A REF =
“www.nobel.se"> Hobel Foundation. This organization
has been awarding, since 1901, annual prizes for
outstanding accomplishments to scholars, literary figures,
and humanitarian leaders. </P>

18

Chaprer 2

<P> The Nobel Prizes are currently given for contributions
in six different areas of
endeavor.

</p>

<P> If you would like to read an especially interesting
story about a prize winner, you should answer the guestions
below for a suggestion. Then look up the suggested person
on the Mobel Foundation Web pages.

</P>

<APPLET code = "StoryAdvice.class"> </APPLET>

</BODY>

</HTML=>

When this page is presented by the Web browser, the HTML code will cause it to jump
at the step

<APPLET code = "Storyadvice.class">

and to execute a program called an appler, which will do the work of asking the questions,
placing the buttons on the screen, and responding to the button pushes. Here is how the
page will appear, assuming the Java applet has been written carefully, placed in the same
directory as the HTML file, and given the name StoryAdvice.class.

Alfred Nobel's Legacy
Alfred Nobel, a nineteenth-century industrialist, died in 1896 and left a will establishing the Nobel
Foundation. This organization has bean awarding, since 1901, annual prizes for outstanding
accomplishments to scholars, literary figures, and humanitarian leadars,

The Mobel Prizes are currently given for contributions in six different areas of andeavor.

If you would like to read an especially interesting story about a prize winner, you should answer
the guestions below for a suggestion. Then look up the suggested person on the Mobel Foundation
Web pages.

Would you like to read about a scientist?

Advice:

Suppose the user pushes the Yes button. Then a new question will be asked: “Would vou
like to read about Albert Einstein?’ and the user will be able to answer again. The
questions will continue until the program comes to an appropriate point to present
advice. Thus. if the user indicated an interest in a scientist and responded ves to the sug-

19 Here Comes Java

gestion of Albert Einstein, the program might respond that Einstein received the Nobel
Prize in Physics in 1921 and that a brief biography of him is given on the Nobel Foundation
Website.

The point is that HTML code can call a computer program that can be designed to
execute almost any process we can imagine. Thus, our energies will now turn to the issue
of computer programming—what it is and how you do it, That is the subject of this
chapter and of several that follow it.

The Big Deal: Computer Programming

In the old days before computers, iff we wanted to do a job, we had to do the job. But with
computers, we can do many jobs by simply writing down what is to be done. A machine
can do the work. If we want to add numbers, search for a fact, flash bright colors on a
Web page, format and print a document, distribute messages to colleagues, or do other
tasks, we can write a recipe for what is to be done and walk away while a machine obe-
diently and tirelessly carries out our instructions. Our recipe could be distributed to many
computers, and they could all work together to carry out our instructions. Even after we
retire from this life, computers may still be employed to do the same jobs following the
commands that we laid down.

The recipes that we are discussing will, of course, be coded as programs. The prepa-
ration and writing of them is called programming, which implements a kind of “work
amplification™ that s revolutionizing human society. Programming enables a single
person to do a finite amount of work—the preparation of a computer program—and to
achieve, with the help of a computer, an unbounded number of results. Thus, productivity
is no longer simply a function of the number of people working; it is a function of the
number of people and the number of machines working.

There is even more good news: computers are relatively inexpensive, and the cost to buy
one is continually decreasing. Machines with 64,000-word memories and | microsecond
instruction times cost $1 million four decades ago. Now we can buy a machine with
roughly one thousand times the memory and speed for about $1.000. For the cost of one
month of a laborer’s time, we can purchase a machine that can do some tasks faster than
a thousand people working together.

Object-Oriented Programming

To cash in on this obvious bonanza, we need to learn to program. But we want not only
to program but to program well, and that leads to a long list of concerns that we consider
in this book. Specifically, we want to be sure our programs are correct and that we

21

Here Comes Jara

public void SetStop(P x)
{
Java code

}
etc.

Another analogy might be a lawn mower. Data here consist of Location, Direction,
IsRunning (true/false), FuelLevel, 0ilLevel, and ThrottleSetting. Some methods
are StartEngine, StopEngine, SetSpeed, GoForward, GoBackward, Turnleft, and
TurnRight. The process of using the mower might involve executing some of these verbs
(methods). One could go into more detail, but this is sufficient to illustrate a LawnMower
class:

public class LawnMower

{

Data Location, Direction, IsRunning, ... ;

public wvoid StartEngine()

1{
Java code

}
public void StopEngine()
{

Java code

ete.

Exercises

1. Pick some nontrivial object and design a class for it. Note that it should include both
data and functionality.

2. Data and function names may not be unique to a particular class. Think of a data item
that might be suitable for both an electronic organ and a lawn mower.

3. Why would a method like print or report be useful with almost any class you can
imagine?

Here Comes Java

yes
Would you like to read
about a scientist?
no
Figure 2.1
Would you like o read
about Albert Einslein?
yos
Would you lika to read
about a sclentist?
no
Wiould you prefer to read
about a great humanitarian?
Figure 2.2

Following through the decision tree, we can trace a sample interaction. Assuming the
user is interested in humanitarians, the path through the tree proceeds as follows:

Asking for Advice on an Interesting Story

Decision tree question: Would you like 0 read about a scientist?

Response: Mo

Decision tree question: Would you prefer to read about a great humanitarian?

Response: Yes

Decision tree advice: You might be interested in Aung San Suu Kyi, who won the Peace Prize in 1991,

This tree asks only two sequential questions before arriving at a decision. But it is easy to
envision a large tree that asks many questions and recommends a wide variety of stories
at the end of the path. It is also clear that this type of tree can be used to give advice on
almost any subject from medical treatment to fortune-telling. Figure 2.4 shows an exam-
ple of a medical advice decision tree.

Chapter 2

Good. He received the
Nobel Prize in Physics
In 1821.

Would you ke to read
about Albart Einslein?

Another interesting story
is of the developrnant of
the DNA model. See the
Hobal Prize in Madicing

a'/ i

Would you like o read for 1082,

You might be interested
in Aung San Suu Kyi, who
won the Peace Prize in 1991.

3
[

Would you prafer 1o resd
about a great humanitaran?

A great story is the bicgraphy
of Aleksandr Solzhenitsyn,
who won the Prize in
Literature in 1970,

]

Figure 2.3

Another example is a game-playing tree. This can be illustrated by the simple game
Nim, which has the following rules. The first player can place one, two, or three X's at the
left end of a horizontal ladder; then the opponent can place one, two, or three O's in the
next sequential squares. This chain of moves repeats again and again, filling the ladder
from left to right, with the winner being the one to place a mark in the last square. An
example for a ladder of seven squares is shown in figure 2.5, The first player might make
three X's (fig. 2.5b). Then, suppose the second player makes two O's (fig. 2.5¢). The first
player could win by placing two more X's (fig. 2.5d).

Figure 2.6 shows a decision tree that will play the role of the second player for a Nim
ladder of length 7.

Ordinarily we think of trees as emerging from the ground and spreading their branches
toward the sky. The trees in this chapter move from left to right so they will be casier 1o
program. The processing of the tree begins at the lefimost box, or roet nede, and proceeds
along a path toward the right. At each decision node, the user of the tree is asked a ques-
tion, and the answer given serves to select the next branch to be followed. The path pro-
ceeds toward the right until a final feaf node is encountered that has no outward branches.
This leal node will contain a message giving the result of the sequence of decisions, and it
will terminate processing.

Such decision trees are applicable to a multitede of information-processing tasks, includ-
ing advice giving, classification, instruction, and game-playing activities. Our task in this

25 Here Comes Java

| recommend
yes trying aspirin. >
Are they mild
and infrequent?
m You should consult
your doctor. —
headaches
Do they occur
oftan? Y >
morni
stomach aches nd
What is your When do these evaningl Do you usa
medical problem? Ly occur? > w ” —
after
Are you under-
going anxiety at -
coughing this time?
and
sneezing
How long has
this been going
on?
Figure 2.4

chapter is to write programs that contain such trees, lead a user down the correct paths,
and print the results. The ability to design and program such trees is a powerful skill with
many applications.

Reality Check

The discussion of decision trees showed an important part of the analysis required to
program certain kinds of problems. Note that no mention of a computer or of a pro-
gramming language was required. One implication is that a large part of computer pro-
gramming 15 actually problem solving, that is, analyzing a problem and mapping out a

26

Chaprer 2

(a) start
() start | X X X
(e} start | X X X o o
(d) start | X X X 8] O
|
Figure 2.5
X
What is your 0 The board is XX. |
move? play Q. The board
is XXO. Your mova?
200(

Figure 2.6

The board is XXX. |
play O. The board
is X0, Your move?

Chapter 2

ml.setText("H e 1 1 o World!1");
mZ.setText("This is a simple Java test.");
add(ml});

add{m2) ;

}

What does this applet do? It displays the following text on a Web page (the text will be
inside rectangular boxes on the screen):

Hello Warld!

This is a simple Java test.

Having the computer carry out the instructions in the program is called running or
executing the program. The program will run on your computer only if you first translate
the Java into executable form. Such translation is called compiling, and it can be done by
calling a Java translator called a compiler. The usual way to do the translation is to use
the command javac, but your machine may have a different way of doing this. Thus, for
our example code, we must type

javac HelloWorld.java

The result is a file called #HelloWorld.class, which will appear automatically in your
current directory, presumably your public_html directory. This is the file that is exe-
cuted by the browser from your HTML page. We study compilation in detail in chapter 9.

We use Java version 1.1 here, but later versions of Java should be compatible, How-
ever, if vour browser processes only earlier versions of Java, the code shown here may not
work. In order to properly face up to the issue of versions (or ““dialects™) and compilers,
you may have to get some help in adapting to vour specific situation. Computer science,
like many disciplines, has an oral tradition, and some of the most important facts are
passed on only by word of mouth. You may be able to get along without such help, but
learning is usually easier and more fun if you can find it.

To get the maximum benefit from this chapter, you should type in and run some of the
programs given here and observe their behaviors. For instance, we have told you how the
previous example will print when run. Try out the program and see if you can get things
to work the same way.

This program seems very simple, but many details related to its form and execution
need to be understood. These include the composition of the program in terms of state-
ments, the order of execution of the statements, and their meaning and structure. We will
go through that in detail. However, look at the program and the output it produces. You
can probably guess at what changes the program would require to have it print

30

Chapier 2

TextField class and that we have named them m1 and m2. Note that this statement, like
most Java statements, ends with a semicolon.

After the data portion of the class, we see the definition of our only method. The
method has its own header:

public void init()

The key point here is that the method is named init (every applet must have a method
named init, for “initialize ") Normally the programmer gets to choose the names for the
methods that are to be written, but this method is required. The body of this method is
enclosed in opening and closing braces, as was the body of the whole class,

Our method declaration starts with the statements

ml = new TextField(60);
m2 = new TextField(60);

This actually creates the TextField data objects m1 and m2 that we declared. The new
causes the objects to be created. The 60 in the parentheses says to make the field large
enough to hold 60 characters.

The lines

ml.setText("H & 1 1 o World!");
m2,.setText|{"This is a simple Java test.");

use the setText method of the TextField class to put actual text into the TextFields.
The text is enclosed in quotation marks and will appear exactly as typed in. Normally in
Java the number of spaces is not important. Within quotation marks every space has sig-
nificance. Note that the m1. on the first of these lines shows that setText is to be applied
to m1, not m2. Similarly, m2. identifies the TextField m2.

The object.verb{dara) syntax appears everywhere in Java programs, so you should
become comfortable with it. It means do to ohject what verb says, using dara. Returning
to the organ example, suppose there are two declared organs, orl and or2. Suppose the
method PlayNote needs one piece of data, the note to be played. Here is a sequence of
Java commands that will play some notes on the two organs:

orl.PlayNote("C");
orl.PlayNota("D");
orl.PlayNote("E");
or2.PlayNote("A");
orl.PlayNote("F");

This sequence will play three sequential notes on the first organ or1, one note on or2, and
then a last note on orl. Note that the verb must be appropriate for (defined for) the object
being addressed. Thus we would not expect anything sensible to result from

L

Here Comes Java

orl.StartEngine();

because the verb StartEngine was defined for lawn mowers, not organs,

Our program will be a big disappointment if we do all this work and we never see the
TextFields. We must tell the system to put them on the screen so we can see them. The
last two statements do this. However, these statements do not say where to put the two
TextFields. They will appear as two long rectangles that can contain text (up to 60
characters each, in this example.) The add statements give only minimal instructions as to
where to put the TextFields. We specify that m1 should come first, followed by m2. Note
that this still leaves the browser a lot of freedom, and much depends on how big the dis-
play is. All we can specify with add is the order of placement, left to right and top to
bottom, just as one would write English text on a piece of paper. (Java has more detailed
ways of controlling the layout of objects on a screen. These are rather complicated, so
most of them are omitted from this book.)

The first line of our example Java program,

import java.awt.*;

tells the system that we expect to include several optional Java features. For now, just use
this as specified.

Exercises

1. The display after the example Java program suggested what the output of the program
might look like with a typical browser. What might it look like with an extra-wide
browser window?

2. What might it look like i the order of the add statements were reversed?

Program Execution

The computer functions by executing statements in order. It first finds the init method,
and within that, it executes the first statement, the second, and so forth. It always executes
statements in order unless special statements require it to do something else. Our example

program is finished when it has executed the second add statement.

Statement Meaning and Structure

Having just gone through a simple Java program once, we need to go back and look at
some things in more detail. The statement

32

Chapier 2

Command syntax

ml=new TextField(60);

Programmer's choice

Figure 2.7

ml = new TextField{&0);

has two parts (figure 2.7): the command syntax, which specifies exactly what ordering of
characters is necessary for the command, and some data or keywords that the program-
mer has inserted. The command new tells the computer to create a new object named m1.
The placement of the object name followed by the equals sign followed by the command
new followed by the kind or type of object, with details, followed by a semicolon are all
requirements for using the new command. This format is the syntax of the command.
[tems must be in exactly that order, and everything must be spelled correctly.

Three things are chosen by the programmer. The first is the object name, m1. Once
chosen, it must be used consistently. The object type or class, here TextField, was also a
choice of the programmer, but it was the only object provided by Java that would do what
we required. Finally, the 60 was a choice of the programmer, specifying how big to make
TextField. This 60 is essentially data to the statement.

The following version of the init method will not work correctly because of various
erTors:

Public Void Imit() o
{ fi2
ml = new TextField("sixty"): 3
m2 new TextField(60);: o4
ml.setText("H e 1 1 o World!); -
m2.setText("This is a simple Java test.") fi B
please add(ml); AT
add m2; /f 8
} P9

I. This line is wrong because the words each start with a capital letter rather than the
correct form, which here is all lowercase letters.
2. The second line and ninth lines are correct, containing the opening and closing braces,

respectively.

3

Here Comes Java

f.
7.
8.

. This line is wrong because it specifies the length of TextField with a string "sixty"

instead of a number as required.

. This line is missing the equals sign.
. This line is missing the closing quotation mark between the exclamation point and the

closing parenthesis.

This line is missing the statement-ending semicolon.
please seems polite but is syntactically incorrect.
This line is missing the parentheses around m2.

Most programming languages require perfect syntax, although a few allow some flexibil-
ity. Languages of the future may be less demanding.

If the command syntax is correct, the program will carry out the commands regardless

of what is included as data. Thus, the following program will run, but maybe not as you
hoped:

import java.awt.®;

public class HelloWorld extends java.applet.Applet

{

}

TextField ml,m2;

public wvoid init()
{
ml = new TextField(60);
m2 new TextField(60);
ml.setText("C#Ta-%% gwerty 496");
m2.setText ("Please ignore the nonsense above."):
add(mz2) ;
add(ml);

]

When this is run, we will get:

Please ignore the nonsense above.
CHTa-%% qwerty 496

Not only will it spew out the nonsense characters we typed in but since we have re-
versed the order of the add statements, the last remaining logic of the program has been
destroyed because above should now be below.

The machine has no basis on which to judge the correctness of the data and will obe-

diently carry out the instructions without regard to what is being manipulated. The com-
puter will do precisely what you say even though that may not be what you want.

35 Here Comes Java

linehd = new TextField(70);
lineB = new TextField(70);
lineC = new TextField(70);

lineA.EEtText‘ "i""‘i’i‘i"‘"“'ti’i’i’iititti****tit**ii’*i’*"];-

lineB.setText("Great Ideas in Computer Science™);
lineC.setTaxt (" *r arrdrtddrddhdarddhdabbddhrdhbann)
add({lined);

add({lineB);

add({linelC);

}

You should now be able to write a program that will print almost anything,
Exercises

1. If you were to write another applet similar to the HelloWorld applet, which word(s) in
the header would you have to change?

2. What would happen to the output of the HelloWorld applet if the add statements
were omitted?

3. What syntax errors can you identify in the following statement?

m2.setText ("My favorite movie is "Star Wars," Episode 4");

Interactive Programs and Buttons

As you probably know from using a Web browser or other programs or computer games,
many programs are interaciive. That is, the program behavior—exactly what it does—
depends on what you do with your mouse or type on vour kevboard. In other words, the
same program will not always do the same thing. What it does depends on what you do,
what data you provide, what you click on, and so forth. An example is the Mobel Prize
stories advice-giving program that we described previously,

One of the fundamental actions in operating a Web browser is using the mouse to place
the cursor on a button displayed on a screen and pressing the left side of the mouse. This
is called “clicking a button”. Which button vou click affects what the browser does and
what it shows you. Since this is so important to most applets (including our example), the
next programming example will show you how to create and utilize buttons.

Here Comes Java

What are you going to do when the light is

GREEN YELLOW RED
Figure 2.8
if (cause == b3)
{
m2.setText("You must stop.");
}
}

Figure 2.8 shows what you should see when this program is first run. Then, if you press
the GREEN button, the applet displays

Keep on rolling.

in the lower TextField. If you press the YELLOW button, the display is
Stop if you can!

in the TextField, and if you press the RED button, you see

Yiou must stop.

With a high-level look at the code, you will see that we now have a second method. Before
we had only init. For interactive applets, we require a method named actionPerformed.
This new method is executed whenever an on-screen button is pressed with the mouse.

Before we track down the changes and additions to the rest of the program, let’s look at
this new methed in detail. The method header,

public woid actionPerformed(ActionEvent event)

is required and will be utilized unchanged in future programs. The body of the method is
enclosed in braces and starts with

Object cause = event.getSource();

38

Chaprer 2

This statement assigns to the variable cause the identity of the object that causes this
method to be executed. In this case, it tells which one of the three buttons was pressed.
The remaining lines of the method use this information to place the correct message into
the TextField:

if (cause == bl)

{
m?.setText("Keep on rolling.™);
}
if (cause == b2)
{
m2.setText ("Stop if you canl");
}
if (cause == b3)
{
m2.setText | "You must stop.");
}

We'll give the details for this kind of statement later, but you should find it plausible, from
looking closely at this, that if button b2, the YELLOW button, is pressed, the message Stop if
you can! is put into the TextField m2.

Let’s move back to the init routine and sec what changed there, Three Buttons and
two TextFields are set up as in our first program:

ml = new TextField(80);

ml.setText("What are you going to do when the light is");
bl = new Button({"GREEN");

b2 = new Button("YELLOW");

b3 = new Button("RED"};

m2 = new TextField(80);

These are then positioned on the screen with a series of five add statements;

add(ml);
add(bl);
add(b2});
add(b3);
add(m2) ;

They tell the browser to first show the TextField ml, then follow that with the three
Buttons, bl., b2, and b3. Note that these three buttons were coded to show GBREEN,
YELLOW, and RED, respectively. Last in the add series is the TextField m2.

39

Here Comes Java

What is totally new for the init method when writing an interactive applet is the
following sequence of lines;

bl.addActionListener(this);
b2.addActionListener(this);
b3.addActionListener (this);

These use the addActionListener method of the Button class to register the three
buttons so that the executing applet watches to see when they are pressed. 1f we had other
buttons in our program but did not register them like this, then pressing one of those other
buttons would have no effect.

There are two other modifications to our original program that need to be mentioned.
The class header

public class TrafficLight extends java.applet.Applet
implements ActionListener

now includes implements ActionListener at the end. This tells Java that this class will
deal with the actions directly. (This could have been dealt with in a separate class. That

might be desirable in a much more complicated program.) In addition, we have had to
add the line

import java.awt.event.®;

near the beginning. This tells Java we need to use the interactive features of the language.
Don’t Panic

We have now looked at two Java programs in a fair amount of detail without trying to
explain everything. Even so, the amount of syntax and detail may feel overwhelming.
What is important here is that you understand the broad strokes. Even experienced pro-
grammers, when dealing with a new language, copy whole sections of code from a pre-
vious program unchanged and then make a few selected changes to “bend” the program
to their needs.

When writing your first Java programs, you would do well to start by copying an
example that does almost what you want your program to do. Get the example program
working without making any of your modifications. Make your modification only when
the example is working as was intended. That will ensure that you have copied everything
correctly.

Later, we'll explain more of the items that we glossed over, and you will get used to
using some of the Java features. Things will become much more comfortable than they
are now.

40

Reading and Storing Data

Chapier 2

Exercises

1. How would our TraffieLight program perform if we omitted the following line?
b2.addActionListener(this);

2. Write a Java program that answers a question about the country you live in. First, it
should ask, “What would vou like to know about country name here?” Then it should
have buttons with labels such as “population,” “total area,” and so forth. When a user
pushes one of the buttons, the answer will appear in a TextField provided.

In the previous section we introduced the concept of data—the information being manipu-
lated by the program. We also showed how to set up buttons to select which data we
wanted to print. Examples of data so far have been in the form of text strings such as
“Hello World® and *Stop if you can!® You may have wondered if the program
could print only data that had been put into the program by the programmer. The answer
is no; the programmer does not have to anticipate all possible data a program might want
to print and include it in the code. In this section we show how to get your program to
collect such data from the keyboard: it will read the keystrokes from typed input and
store the data in computer memory. This can be an important part of making a program
interactive.

Before introducing the new statement to read data, it is necessary to talk about loca-
tions in memory. Such locations are like pigeonholes or containers with names where
information can be stored and then retrieved when needed. For example, you might like
to have a place in memory where a sequence of characters can be stored, and you might
choose to name it positionl. You could then store data in that location and use the data
in various ways. You could instruct the machine to write the data into positionl or to
copy the data from positionl to some other location,

positionl| |

The correct way to indicate in the Java language that such a memory location is to be
set up is with a declaration. To store a collection of characters that we call a string, this
declaration takes the form

String positionl;

Chapter 2

positionl is & String variable and getText gets String information. (We have used
assignments in our previous examples, to set up Button and TextField.)
Following is a simple example using the getText method and a string variable:

import java.awt.®*;

import java.awt.event.*;

public class DupThree extends java.applet.Applet
implements ActionListener

TextField ml, m2, m3, md4, m5;
Button bl;
String message;

public void init ()
{
ml = new TextFPield(80);
m2 = new TextField(80);
m3 = new TextField(80);
md = new TextField(80);
mS5 = new TextField(80);:
bl = new Button("button®);
ml.setText("Please enter some text below; then press button.”);
add(ml);
add(m2);
add(bl);
add(m3);
add(md);
add(m5);
bl.addActionListener(this);

public void actionPerformed(ActionEvent event)
{
message = m2.getText();
m3.setText(message);
md .setText(message);
m5.setText (message);

Let’s look at this in some detail. Our declarations

44

Chapter 2

We then respond to this prompt and type something, say, What a great day! into the
next TextField. Then we wait expectantly, but nothing happens. The computer has been
told to watch for a press of Button bl. So we must press the button. This activates the
actionPerformed method.

We now look at that portion of the program:

public void actionPerformed{ActionEvent ewvent)

{
message = mZ.getText();
m3.setText ({message);
md . setText (message) ;
mS . setText (message);
}

This is particularly simple because there is only one button and the program does not
have to determine which button was pressed. We go right into the statement

message = m2.getText();

The getText method reads the message we typed into TextField m2 and makes it
available to the program. We assign this to the variable message. This means that
whatever was typed into TextField now resides in a memory location named message,
that is, the variable message. Now that this information is safely tucked away in the
computer’s memory, we can make use of it in subsequent statements. The statement

m3.setText (message);

employs the method setText and puts text into TextField m3, in effect printing it out.

Motice that two different forms of setText are employed. If quotation marks are
used, the characters between the quotes are printed. Thus, with ml.setText("Please
enter ..."); the characters Please enter ... are printed (without guotation marks). We
also specified the string vanable message, however, and m3.setText (message) ; uses
no quotation marks. It means treat message as a variable and print its contents. The
contents of message are whatever was assigned to it in the previous statement. We had
assumed that what a great day! had been typed in. This means TextField m3 now
contains What a great day! The next two statements,

md . setText (message);
m5.setText (message) ;

do the same things for TextFields m4 and m5 (figure 2.10). In other words, whatever is
typed into the program is duplicated three times: thus the name bupThree was chosen for

the applet.

45

Here Comes Java

| Please entar some text below; then press button, |

[What a great day!]

[What a great day! [

| What a great day! |

[What a great day! |

Figure 2.10

A few more points about variables are in order. The names of the places in memory, the
variable names, can be almost anything as long as they begin with an alphabetic letter,
include only alphabetic and numeric characters, and are properly declared. For example,
the names a17 and c82i could be used, but variable names like taxe$, 4sale, and
short-cut are invalid.

MNames must follow two additional rules. First, they must not contain spaces. Second,
there is a set of reserved words for the Java system that may not be used as names. Some
examples are if, import, public, class, extends, implements, and veoid. These
are all parts of the Java language, and we would confuse the system if we chose
those as names. You might have to consult a Java manual for a complete list of reserved
words.

An important point is that storage positions should not be used until something is
loaded into them, as is done in the DupThree example by the assignment statements.
Then, the variable will continue to hold that information unless it is replaced, possibly
by some other assignment statement. If a variable is used at the left side of a subsequent
assignment statement, whatever earlier information was contained in it is lost forever,
replaced by the new information being assigned.

Exercises
1. Write Java statements to declare variables, using your choice of names, to store your
name and address.

2. Design and write a Java program that prompts you for and reads in your first
name and then your last name. Then have the program display them in the opposite
order.

46

Chaprer 2

3. Design and write a Java program that is similar to the previous one but which contains
two buttons labeled “First-First” and “Last-First.” Design the program so that when
the “First-First™ button is pressed, the names are displayed in the input order. If the
“Last-First” button is pressed, then the last name is displayed before the first name.

A Number-Guessing Game

In order to allow the ideas introduced in the previous section to “settle in,” we'll go right
to another program, which will enable us to play a game. The basic idea of the game is
that one person selects a number between 1 and 100, and the other person tries to guess,
as quickly as possible, what the “secret” number is. After each guess, the person with the
secret number responds with “The secret is higher than the guess,” “The secret is lower
than the guess,” or “That is the right answer.” The program keeps track of everything
and implements the details of the game.
The code is as follows:

import awb.*; // See Appendix for a discussion of this software.
import java.awt.*;
import java.awt.event.*;

public class AboveBelow extends java.applet.Applet
implements ActionListener

TextField ml, m2:

IntField il; // This is not standard Java. See Appendix.
Button bl, b2;

int secret, guess;

public void init ()
{
ml = new TextField(80);
ml.setText ("Enter number between 0 and 100; then push
SECRET.");
il = new IntField(40); // See Appendix.
m2 = new TextField(80);
bl = new Button("SECRET");
b2 = new Button(“"GUESS");
add{ml);
add({bl};
add{il);
add(b2);
add{m2);

Here Comes Java

bl.addActionListener(this);
b2.addhctionListener|{this);

}
public wvoid actionPerformed|ActionEvent event)
{
Object cause = event.getSource();
if (cause == bl)
{
secret = il.getInt();
il.setInt(); // extension of awb.*
ml.setText|"Now, enter your guess below; then press GUESS5.");
¥
if (cause == b2)
{
guess = il.getInt(};
if (guess == secret)
{
m2.setText (| "You've got itl");
}
if (guess < secret)
{
il.setInt();
m2.setText{"The number is greater than " + guess);
}
if (guess > secret)
{
il.setInt():
me.setText("The number is less than " + guess);
}
}
}

First, the big picture., We have a class named AboveBelow with some declarations in
the body, followed by the required init method and then the actionPerformed method,
which is required for any interactive applet. Our declarations include two TextFields,
two Buttons, an IntField, and an int. The latter two are new. An IntField is a refine-
ment of, and looks and behaves very much like, a TextField but is designed to deal with
numeric data rather than strings. This is a special feature introduced by this book and

49

Here Comes Java

Maow, enter your guess balow; then press GUESS.

[SECRET | |] [[cuess]

Figure 2.12

tity of the button. The first if will not find a match, since the GUESS button is b2, The
following if statement does find a match:

if (cause == b2)
{
guess = il.getInt();

This causes the assignment statement to get the number 30 that John entered into the
IntField. So the memory location guess contains 50. There are now three logical
possibilities.

1. John hit it right on the money. The game is over.

2. John's guess is less than the secret number. The computer should tell him that so he
can try again.

3. John's guess is greater than the secret number. The computer should report that and let
him try again,

Here are the three if statements that accomplish this:

if (guess == secret)
{
me.setText("You've got itl");
}
if (guess < secret)
{
il.setInt();
m2.setText("The number is greater than " + guess);
}
if (guess > secret)
{

il.setInt{);
m2,setText("The number is less than " + guess);

51 Here Comes Java

In programming, you can see

y those notations come to life!
Do you have experience
I

with formal notations?

Studying Java will help you.
You will learn one notation
wall,

Figure 2.14

Without any strategy, for example, random guessing, it could take up to 100 tries. With a
binary search strategy, what is the maximum number of guesses it would take if the secret
number were between 1 and 1,0007)

Exercises
I. Come up with another guessing strategy for the number game. Is it better or worse
than binary search?

2. Design a similar game program, using words rather than numbers. The secret and
the guesses would all be strings. Describe how the program would work, but do not
attempt to write a program.

3. What guessing strategy might yvou use for a word-oriented game?
4. Compare how you use a telephone book to the strategy vou came up with in exercise 3.

Programming Decision Trees

Let’s begin by programming the simplest possible tree. one with only one branching
node (figure 2.14). We studied in the previous sections how to make the machine print
these kinds of messages and how to have it read the user’s answers. We also introduced,
without serious explanation, the if statement, which allowed us to do or not do something
depending on the answer to the if clause. We need (o explore the if statement and its
if-else variant more carefully,

In general, the i£-else statement has the following form:

if (some true/false expression)

1{
Java code A

Chapier 2

}

else
{

Java code B

}

In actual code, the true/false expression might be something like cause == b1, which we
saw in a previous program. [t is asking if cause is equal to bl or, in effect, is the button
that was pressed Button b1? The answer to that is either true or false (yes or no). The
way the if-else statement works is that if the outcome of the question is true, then Java
code A is executed. If the outcome is false, then Java code B is carried out instead. Here
Java code A and Java code B are sequences of Java statements. These sequences with
their enclosing braces are called compound statements, which are more carefully defined
later.

A simplified variant, called the if statement, is just like the if-else statement but
drops the “else” clause. In this case, if the result of the true/false question is true, the
statements right after the i are executed. If the result is false, nothing is executed. The
form is

if (some true/false expression)

{

Java code A

We are now able to write the computer program for this simple decision tree:

import java.awt.*;
import java.awt.event.*;

public class SimpTree extends java.applet.Applet
implements ActionListener

TextField mQuery, mMANSwer;
Button b¥es, bNo;

public void init()

{
mQuery = new TextField(70);
mQuery.setText("Do you have experience with formal notations?");
bYes = new Button("Yes"):
blo = new Button("Mo");

a3

Here Comes Java

mAnswer = new TextField(70);
bYes.addActionListener(this);
blo.addActionListener(this);
add(mQuery);

add(b¥es); i
add(bHo) ;

add({mAnswer) ;

public void actionPerformed(ActionEvent event)

{
Object cause = event.getSource();
if (cause == bYes)
{
mAnswer.setText ("In programming, you can see
H
else // must have been the No button
{
mAnswer .setText ("Studying Java will help you
}
}

}

As you can see, the solution for this ultrasimple case is almost identical to our
TrafficLight program except that we only have two buttons, Let's go through this

code:

import java.awt.*;
import java.awt.event.¥;

public class SimpTree extends java.applet.Applet
implements ActionListener

TextField mQuery, mAnswer;
Button bYes, bHNo:

We use the standard import statements and then have a class header that names the
class simpTree, says it is a special case of an applet, and states that the “listener” for
any buttons is implemented in this class. Then we declare the TextFields mQuery and

manswer and the Buttons bYes and bio.

Chapter 2

Mext is the init method that initializes things, that is, it sets up everything so that it is
ready to go. Only the body of init is shown in the following:

mQuery = new TextField(70);
mQuery.setText("Do you have experience with formal notations?");
bYes = new Button("Yes");

bMo = new Button("Ho");
mAnswer = new TextField(70):
bYes.addActionListener(this);
bMo.addhctionListener(this);
add (mQuery);

add(bYes);

add(bNo);

add (mAnswer) ;

The first two lines create and put text into the mQuery TextField, The next two state-
ments create buttons labeled Yes and Mo, Next we create the TextField where we will
eventually place our “answer.” The addactionListener statements register the two
buttons to be listened for. Finally the four add statements place on the screen the query
TextField first, then the two Buttons, and then the TextField that will contain the
ANSWET.

When this applet is run, the init method will result in a display such as the one
shown in figure 2.15. Pressing one of the two buttons, either Yes or No, will cause the
actionPerformed method to be started up. Let's look at the body of that routine:

Object cause = event.getSource();
if (cause == b¥es})
{
mAnswer.setText
{"In programming, you can see those notations come to lifel™);

| Do you have experience with formal notations?]

fYes | | No |

Figure 2.15

56

Chaprer 2

We'll tackle more complicated decision trees later, but first we need to deal with some
points of grammar for Java programming,

Grammar and Style

By now you have probably noticed that (almost) all statements are terminated by a
semicolon { ;). Let’s systematically go through the various kinds of statements we have
encountered, Statements invoking methods for various classes end with semicolons.
Examples are

mpuery.setText("Do you have experience with formal notations?");
and
add (mQuery);

Note also that when invoking a method, parentheses, [), are always included after the
name of the method. There may or may not be something between the parentheses. Declara-
tions are statements ending with semicolons. For example,

Button bYes, biNo;

Assignment statements, which always include an equals sign (=) end with a semicolon, as
shown in the next example:

mAnswer = new TextField(70);

The exception, so far, is the if statement, which itself is not ended in a semicolon but
normally includes one or more statements within the braces that are terminated by semi-
colons. Method and applet definitions consist of a header and then statements enclosed in
braces. The closing brace for such definitions 1s not followed by a semicolon.

We also spoke earlier of compound statements. These are just collections of one or
more statements enclosed in braces. The compound statement itself is not terminated in a
semicolon but the statements inside are.

The example programs vou have seen so far also follow fairly rigid style rules, that is,
the formatting, specifically the indentation, is done carefully and systematically. Just like
an outline of a report, indentation reflects the logical structure of a program. As we stated
carlier, the distribution of spaces and statements on a line is usually of little consequence
to the Java compiler. But it is extremely important to human readers. Since it is very
important that programmers fully understand the programs they are working with, any
formatting that improves readability is, in practice, a big benefit.

For now, the indentation rules can be summarized by saying that all lines within braces
are indented. With every opening brace, the degree of indentation moves one unit to the

I8

Chapter 2

TextField mQuery, mAnswer;
Button bY¥Yes, bHNo;
int myLocationj;

public woid init()

{
mQuery = new TextField(70);
mQuery.setText("Would you like to read about a scientist?");
bYes = new Button("Yes");
bWo = new Button("Ho");
myLocation = 0;
mAnswer = new TextField(70);
b¥es.addActionListener(this);
bio.addActionListener(this);
add (mQuery);
add({b¥Yes);
add(bNo);
add {mAnswer) ;

public void actionPerformed(ActionEvent event)
{

Object cause = event.getSource();

if (myLocation == ()

{
if {cause == bYes)
{
myLocation = 1;
mQuery.setText("Would you like to read about Einstein?");
}
if (cause == bHNo)
{
myLocation = 2;
mQuery.setText(*Would you prefer a humanitarian?");
}
}
else if (myLocation == 1)

{

59

Here Comes Java

if (cause == b¥es)
{
myLocation = 3;
mAnswer.setText("He received the Physies Prize in 1921.");
}
if (cause == hMNo)
{
myLocation = 4;
mAnswer.setText("See the Prize in Medicine, 1962.%):
}
}
else if (myLocation == 2)

{
if (cause == bYes)

{

myLocation = 5;

mAnswer.setText("Look up the Peace Prize, 1991.%);
}
if (cause == bHo)
{

myLocation = 6;

mAnswer .setText("Try the Literature Prize, 1370.7);
}

Motice that the class header, declaration, and the init method are almost unchanged
from our previous decision tree implementation. The additional declaration statement

int myLocation:

sets up an integer variable that will help us keep track of where in the decision tree we
have last been. That variable will utilize the node numbers shown in figure 2.18. The two
different lines in the init method are

mluery.setText("Would you like to read about a scientist?");

myLocation = 0;

Since the question here is different, the setText statement contains the new question. We
also set the value of myLocation to zero to show that we have been at the root node. This

Here Comes Java

<gtatement> ==> <name> = <name>;

Finally, we apply the rule that says <name> can be replaced by a sequence of characters
beginning with a letter.

<statement> ==> <npame> = address;
Or the last step could have been done differently to obtain
<statement> ==> <pame> = "Hello, my name is Oscar.";

This assumes we have a variable named address and that someone would be interested
in inserting "Hello, my name is Oscar." into a program. To complete the process, we
need to replace <name> in each case using the rule that says a name is a string of alpha-
numeric symbols that begins with a letter. So, the following is consistent:

<statement> ==> heading = address;
<statement> ==> message = "Hello, my name is Oscar.";

Again it assumes that both heading and message are valid siring variable names.
Take a Deep Breath ...

Let’s step back and see what we have accomplished. We have a series of rules that col-
lectively describe (a portion of) the Java language syntax. We started with a syntactical
element, in this case a <statement> and then by a series of substitutions ended up with
two syntactically correct Java statements. We did that with very simple substitutions and
by selecting rules that matched our needs. Wherever we had something in angle brackets,
<> we looked for a rule that allowed us to replace that item either with a more detailed
description using the angle bracket notation or with actual code. When we were done, we
had produced actual code for statements.

So, in addition to developing a notation that describes the syntax of Java, we have
illustrated a merhod for generating symractically correct Java statements,

If this seems a bit arbitrary and random, it is, because we were just trving to illustrate
the process. Normally, you have a Java statement or program for which you want to
verify the syntax. That is what the Java compiler does when compiling your programs,
and it lets vou know when it is unhappy with your syntax.

More Rules

To fully illustrate this technique, we need to spell out a few more rules and then verify
some actual code. For now, we will skip much of what pertains to integers and arith-
metic. Also, since we have already presented rules that include the items <class> and
<string-method>, we will defer detailed examination of these.

