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FOREWORD

THis is neither a text-book nor a general exposition of mathematics. It is
an explanation of certain extremely useful branches of mathematics, some
of which are little known to non-specialists. Though originally only of
academic interest, they have been developed to tackle problems which
proved unsolvable by the old mathematics. Some general knowledge of
them is essential to the understanding of modern science, almost every
department of which has its own special mathematical technique. This
mathematisation of science is quite a recent phenomenon, for, until about
the close of the nineteenth century, most branches of science were largely
descriptive. It is true that the physical sciences, such as physics and
astronomy, did use a good deal of mathematics, but even in these sciences
one could get along and often make useful contributions without it. In
fact, some of the most significant contributions to these sciences were
made by non-mathematicians. Nowadays, even descriptive sciences, e.g.
biology, zoology, genetics, psychology, neurology, medicine, economics,
philology, etc., have begun to employ elaborate mathematical techniques.
The mathematics used is not always difficult, but it is often unfamiliar
even to people who have had some mathematical training at a university.
This is inevitable because the mathematics used is of recent origin and has
not yet found its way into the school and college curricula.

One consequence of this development is that science is becoming the
exclusive preserve of specialists. This is particularly unfortunate as science
is the agency whereby our society has been changed in the past and will be
changed still more rapidly and profoundly—perhaps within our own life-
time. It is dangerous to let this knowledge remain in the hands of a small
group of specialists, however gifted, for the potentialities of science for
good and evil are infinite. If this danger is to be averted, everyone, in-
cluding you and I, must make a serious effort to understand what con-
temporary scientists are doing; but this understanding is impossible with-
out some insight into the ideas of modern mathematics.

Fortunately, the need for popularising mathematical ideas is now
universally recognised. More than twenty years ago an excellent popularisa-
tion of mathematics appeared in Professor Lancelot Hogben's Mathe-
matics for the Million. This book deals with mathematics as it developed
till about the middle of the eighteenth century. There is need for a similar
popularisation of mathematical ideas that have come into being during
the last two hundred years and are now proving so fruitful in genetics,
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economics, psychology, evolution, efc., as well as in physics, astronomy
and chemistry. The task will probably require many hands, if only for the
reason that no single person can hope to master more than a few branches
of the subject.

In this book I have tried to give a popular and, I hope, a not-too-
inexact exposition of some major mathematical ideas that have been
invented during the past two centuries or so. In explaining these topics, I
have assumed the reader to have some knowledge of elementary mathe-
matics such as could be obtained from any text-book on school algebra
and geometry. I have tried to show how the most fruitful of these newer
ideas arose as a result of man’s impulse to mould his environment accord-
ing to his heart’s desire, and that where this impulse has been lacking
mathematical progress has been stunted.

Although some of the theories explained in this book are still contro-
versial, I have often taken ‘sides’ in presenting the different points of view,
preferring to present things as I see them rather than as they might appear
to an imaginary observer. However, the reader should find the treatment
on the whole sufficiently unbiased for him to judge the issues for himself.

Calcutta JAGHT SINGH
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THE NATURE OF MATHEMATICS

) E learn about the universe around us by experience and observa-
\ ; ‘ / tion on the one hand, and by thought and deductive reasoning
on the other. Although in practice we get most of our knowledge
by continually combining observation with deduction, it is possible sub-
sequently to formulate certain types of knowledge by pure deduction
starting from a set of ‘axioms’—that is, statements accepted as true with-
out proof because we feel that their truth is self-evident. The classic ex-
ample of deductive method is school geometry, where we postulate certain
definitions and axioms concerning points, lines, etc., and deduce a logical
chain of theorems concerning lines, angles, triangles, and so forth. The
great advantage of the deductive method is the certainty of its conclusions.
If there is no fallacy in our reasoning the conclusions must be correct—
unless there is something wrong with our axioms. But the question whether
the axioms chosen at the outset are valid is a difficult one. Certain axioms,
which appear obvious to some, may seem clearly false or at least very
doubtful to others. A familiar example of this kind is Euclid’s axiom that
parallel lines never meet. Mathematicians now recognise that it cannot be
accepted as self-evident even though schoolboys are still taught geometry
as if it were true. Indeed, the examination of the validity of any given
axiom system is such a vexed question that some people propose to cut the
Gordian knot by claiming that ‘pure’ mathematics is merely concerned with
working out the consequences of stated axioms with no reference whatever
to whether there is anything in the real world that satisfies these axioms.
Further support to this view was lent by the profound and penetrating
studies of the foundations of Euclidean geometry towards the close of the
nineteenth century. They revealed that geometrical proofs depend mainly
on diagrams embodying properties which we accept as part of our equip-
ment without including them in the axioms. Consequently an attempt was
made to prove geometrical theorems without using the meanings of geo-
metrical terms—Ilike points and lines—as understood in everyday speech,
but only their relations and properties as explicitly stated in the initial
axioms. It was declared that ‘if geometry is to be deductive, the deduction
must everywhere be independent of the meaning of geometrical concepts,
just as it must be independent of diagrams; only the relations specified in
the axioms employed may legitimately be taken into account.’
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But the insistence that the proof be independent of the meanings of the
terms used, and employ only their mutual relations as explicitly stated in
the basic axioms, did not mean that these terms were to be ‘meaningless’*
—only that they should have no specific reference to any particular thing.
The terms of the axiom system should remain deliberately undefined—
that is, free from association with any specific thing so that they become
pure symbols formally related to one another in certain ways embodied in
the axioms of the system.

There are two advantages in adopting such a procedure. First, by cutting
out all associations that otherwise cling to terms used in the ordinary
meanings of everyday speech, we eliminate the tendency to use meanings
and relations other than those expressly stipulated in our axiom system—
a tendency so prominent in Euclidean proofs. Second, the axiom system
acquires a generality otherwise impossible. For example, it becomes possi-
ble to encompass within the single framework of an axiom system con-
cepts, such as groupt and abstract space, appearing in seemingly unrelated
branches of mathematics. These very valuable gains are not to be despised.
But the systematic draining of all meaning and content from the terms of our
discourse, and thus turning them into pure symbols, means that mathe-
matical proof becomes a sort of game with symbols. In a somewhat over-
simplified form this is the view advocated by some mathematicians. In-
stead of playing-cards, dice, or pawns, bishops, rooks and knights, we
may start with a collection of symbols such as ~, —, X, +, =, efc., and
a set of ‘rules’ or ‘axioms’ according to which they may be combined. We
then proceed to play a game which consists of arranging these symbols to
form ‘meaningless’ expressions according to the given ‘rules’. We could
change the symbols or the rules or both in any arbitrary manner we liked;
the result would always be ‘pure’ mathematics.

Like all games this game of manipulating paper marks, that is, ‘pure’
mathematics, has, according to its present-day exponents, no ostensible
object in view except the fun of playing it and playing it well. If men,
nevertheless, find its results of great practical utility in their daily lives,
that is not its raison d’étre. Its sole function has been and should be merely
to divert the human mind by the ‘elegance’ and *beauty’ of its expressions,
irrespective of their utility. It is, no doubt, possible to argue in favour of
this view. In fact, G. H. Hardy has done so in his charming little book, 4
Mathematician’s Apology. His argument seems to rest on a distinction
between what he calls ‘school’ or ‘Hogben' mathematics, that is both

* This usage of the word must be distinguished from that of everyday speech as a
term of disparagement. The word ‘meaning-free’ comes closer to the sense in which it is
used here.

t See Chapter 7.
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‘trivial’ and ‘dull’ but has considerable practical utility, and ‘serious’
mathematics that alone is the ‘real’ mathematician’s delight despite its
remoteness from everyday life.

It is evident that even those who hold this view cannot boast too
seriously about the uselessness of their work and the ‘meaninglessness’ of
the symbols and rules of their game. They do not go so far as to express
dismay when their work turns out to be useful! Moreover, they are suffi-
ciently sane to allow that a ‘certain sense of fitness of things’ should at any
rate forbid a ‘wild overturning of the law and order established in the
development of mathematics’.

Mathematics is too intimately associated with science to be explained
away as a mere game. Science is serious work serving social ends. To isolate
mathematics from the social conditions which bring mathematicians (even
of the Game Theory school) into existence is to do violence to history.
Hogben and other writers have shown how great mathematical discoveries
and inventions have throughout history been rooted in the social and
economic needs of the times. Most books take us little beyond the eight-
centh century in tracing this connection. A mistaken view has grown up
in certain quarters that modern mathematics, particularly during the last
150 years, is a ‘free creation’ of the human mind, having little or nothing
to do with the technological and social demands of the time. If science and
technology have been able to make use of such mathematical inventions
as, for example, the tensor calculus in Relativity and the matrix theory in
Quantum physics, that in no way influenced their creation. Nevertheless,
as will appear in the sequel, there is a close tie-up between the practice and
theory (which has largely remained mathematical even up to the present
time) of science and technology. Thus, while the empirical practices of the
zighteenth-century mechanical engineers from Savery to Watt led to
Thermodynamics, the ‘pure’ theory of Faraday and Maxwell paved the
way for the practical inventions of Edison and Marconi. As Leonardo da
Vinci remarked, science is the captain and practice the soldiers: both must
march together. One reason why Einstein’s Relativity theory has not yet
advanced very much beyond the stage it reached during the second decade
of the twentieth century may be the fact that it has made no practical
difference in the calculation of the astronomical tables in the Nautical
Almanac. If, at some future date, we are able to undertake interplanetary
voyages, relativity might find a field of applications for want of which it
has languished.

In spite of the ‘game’ theory, mathematics is still largely inspired by
contemporary social, technological and scientific demands, as in the new
‘pure’ mathematics that has been created to deal with the problems of
cosmic rays, stellar dynamics, stochastic processes and cybernetics. The
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present-day needs of science and technology for speedier methods of
calculation by means of electronic machines may well inaugurate as great
a mathematical revolution as the Hindu invention of zero and the posi-
tional system of writing numbers.

Far from despising utility and practical applications, the early pioneers
of modern science and mathematics—men like Huygens, Newton and
Leibnitz,toname only a few—cultivated them mainly for the advancement
of technics. Is it any wonder then that the founders, patrons and some of
the first scientists of such scientific academies as the Italian Academie del
Simento, the English Royal Society or the French Academie des Sciences,
were kings, nobles, courtiers, magnates and city merchants? The idea of a
machine as the demiurge of a new heaven on earth was so uppermost in
their minds that the very first standing committee of the Royal Society
had for its terms of reference the ‘consideration and improvement of all
mechanical inventions’.

What, then, has given rise to the recent idea that mathematics is a game,
a jeu d’esprit or ‘free creation’ of the mind divorced from the practical
problems of daily life? It is the fact that the intimate connection between
mathematics and reality is lost sight of in the abstract logical schemes which
a mathematician constructs, though these always embody certain essential
features abstracted from some sphere of reality. These logical schemes
created by mathematicians do often look like games of manipulating
symbols according to certain rules. This, however, does not mean that
arithmetic, geometry, algebra, the calculus, efc., arose by someone con-
structing these theories as games played according to some rules. Quite the
contrary. They arose as abstractions from concrete applications, though
their subsequent logical formulation may appear like games played with
symbols. The authors of the game theory are, of course, aware of this dis-
tinction between the historical genesis of mathematical knowledge and its
subsequent logical formulation. But when they claim that mathematics is
a game they seem to confuse the means of expressing mathematical truths
and the mathematics itself. (We shall deal with this subtle question more
fully in the last chapter.)
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NUMBER AND NUMBERS

Polyphemus, the poor old giant used to sit every morning near

the entrance to his cave with a heap of pebbles and pick up one
for every ewe that he let pass. In the evening when the ewes returned, he
would drop one pebble for every ewe that he admitted to the cave. In this
way, by exhausting the stock of pebbles that he had picked up in the
morning he ensured that all his flock had returned.

The story is apocryphal, but this is precisely what the primitive shepherd
did with his sheep before he learnt to count them. This also is not very far
from what a modern mathematician does when he wants to compare two
infinite collections, which cannot be counted in the ordinary way. However,
the important difference between the two is that while the former used this
tallying process without knowing what he was doing, like M. Jourdain
speaking prose, the latter uses it with knowledge and insight. He thus ac-
quires certain powers, otherwise unattainable, such as the power to count
the uncountable. We shall see later (in Chapter 5) how the mathematician,
by refining the primitive shepherd’s practice, has succeeded in accom-
plishing this and other seemingly paradoxical feats. Meanwhile, we may
note the theory behind the shepherd’s practice. This theory is based on the
fact that if the individuals of a flock can be matched, one by one, with those
of a heap of pebbles so that both are exhausted together, then the two
groups are equal. If they are not, the one that gets exhausted earlier is the
lesser.

What gives this matching process its great power is that it can be ap-
plied universally to all kinds of aggregates—from collections of ewes and
pebbles to those of belles and braces, apples and angels, or virtues and
vipers. Any two aggregates whatever can be matched so long as the mind
is able to distinguish their constituent members from one another.

Gradually men formed the notion of having a series of standard collec-
tions for matching the members of any given group or aggregate. One such
series consisted of the ten different collections formed by including one or
more fingers of their two hands. All collections, which could, for example,
be matched on the fingers of one hand were ‘similar’ in at least one respect,
however they might otherwise differ among themselves. They were, as we
now say, all equal. These standard collections were then given names—

WHEN Ulysses had left the land of the Cyclops, after blinding
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One, Two, Three . . . etc. This is the social origin of the practice of count-
ing. Thus, when we now say that the number of petals in a rose is five, all
that we mean is that if we start matching the petals one by one with the
fingers of one hand, the members of both the collections are exhausted
simultaneously. By long practice in handling the abstract symbols 1, 2,
3...we are liable to forget that they are only a shorthand way of describ-
ing the result of an operation, viz., that of matching the items of an aggre-
gate with those of some set of standard collections that are presumed to be
known. The process is so habitual that it usually escapes notice. This has
caused endless confusion in the past, when, for long centuries, even learned
men failed to understand the nature of number, particularly when they
began to handle negative and imaginary numbers. If we keep in view the
fact that whole numbers or integers are a mere shorthand for describing
the result of a matching process, in which one of the collections is pre-
sumed to be known, we shall avoid a lot of trouble in understanding the
nature of more sophisticated types of numbers in mathematical literature.

We have seen that originally man formed his standard collections for
counting with the fingers of his hands. In the beginning this sufficed, there
being no occasion to budget for atomic piles, armament races, refugee re-
liefs, or Marshall Aid. But presently, even in the days of the river-valley
civilisations of antiquity, the needs of armies, taxation and trade gave rise
to collections which could hardly be matched on the fingers of the two
hands. What could man do about it? He could use the marks on his
fingers instead of the fingers themselves for the purpose; but even so he
would not have enough of them. But as the matching process was inde-
pendent of the nature of the members constituting the collections, it did
not matter whether he formed them by means of fingers or finger-marks or
anything else. So he conceived the idea of generating a new standard col-
lection from one already known by mentally adding just one more item to
it. And as the process could be repeated indefinitely, he produced an un-
ending succession of standard collections some one of which sufficed to
match any given collection, however large. Thus to the original idea of
matching or tallying was grafted another—that of order—in virtue of
which relative rank is given to each object in the collection. Out of the
union of the two arose the idea of integral number—an unending, ordered
sequence of integers.

In matching two collections we have hitherto considered them as mere
crowds of individuals without any internal order between themselves. The
concept of number as the characteristic of a class of similar collections
evolved from the practice of matching unordered aggregates (e.g. using
any pebble in Cyclops’ hand for tallying any ewe in the fold) is known as
the cardinal number. However, we can also conceive of ordered aggregates,
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such as soldiers in a battle-array or ewes arranged in a straight file, in
which every element has a rank or place. When we match such ordered
aggregates and conceive of number as the characteristic of a class of
similar ordered aggregates, which exhaust themselves together in a match-
ing process, it is known as the ordinal number. Primitive man used both
these concepts without making any distinction between them. When he
used pebbles like Cyclops, he was using cardinal numbers; but when he
used his fingers he probably used them in a definite order, possibly first
his right-hand thumb, then the index, middle, ring and little fingers. In the
latter case, he was using ordinal numbers. The distinction between the two
types of numbers is somewhat subtle and was not noticed by mathe-
maticians themselves till about the end of the nineteenth century. For-
tunately, it.is of no great importance for all ordinary purposes and may be
ignored. The sole justification for introducing what may appear to some a
pedantic distinction is the importance it assumes in the theory of trans-
finite numbers.*

Now, quite early in life we are taught the technique of adding and
multiplying the integers. Underlying this technique are certain general
laws of addition and multiplication. Though known by high-sounding
names they merely express in symbolic language just one commonplace
fact of everyday e-.perience. That is, that it makes no difference in what
order you add the various sets of objects. Thus whether you buy two books
on the first occasion and three on the second or vice versa, your total
purchase remains the same. We express facts like this by the formula
2 + 3 = 3 + 2. This formula is a particular case of a more general law,
the commutative law of addition, which requires that the sum of any two
integers such as a and b is the same in whatever order we may choose to
add them. In symbols,

a+b=b+a. . . . .
Next, there is the associative addition law, expressed by the equality
@+b+c=a+@+ot. . . . Q

Since multiplication is only reiterated addition, there are naturally-also
corresponding commutative and associative multiplication laws, the counter-
parts of the addition laws. Thus:

ab=b.a . (3), corresponding to (1)

and (ab)c = a(bc) . (4), corresponding to (2)
Finally, we have the distributive law

ab+c)=ab+ac . . . . (9

* See Chapter 5.
t The brackets here simply mean that the numbers within them are to be added first.
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In the following sections we shall see how the number system of integers
can be extended to include other types of numbers like negative, fractional
and irrational numbers. It will also be shown that the above five funda-
mental laws hold equally well for these more complicated types of num-
bers. Further, they remain valid even for sets of symbols which are not
numbers but behave like numbers in some respects. We shall cite several
instances of such sets later.* But the fact that such sets of symbols are
possible has enabled modern mathematicians to make truly amazing feats
of abstraction. We can, for instance, picture a set of ‘elements’ a, b, c,
d . . . about which we assume nothing except that they obey the five
fundamental laws of arithmetic. Starting from this assumption we can
prove a number of theorems about them. These theorems will hold, not
only for numbers—whether integers, fractions or irrationals—but also for
a much wider class of symbols which includes these numbers as a special
case. In other words, we are able to subsume the properties of a vast
variety of elements under one generic form that applies to them all. This
is the method of abstraction which is the very life-breath of modern
mathematics.

Indeed, the main difference between ancient and modern mathematics
is just this. In its relentless drive towards greater abstraction it refuses to
tie up the symbols of its discourse to anything concrete, so it cannot make
much use of the meanings of these symbols. How could it, indeed—since
it refuses to give them any meanings, or at any rate keeps them as meaning-
free as possible? Mathematics thus has to base itself more on the mutual
relations of abstract symbols, as embodied in laws like the five fundamental
laws of arithmetic, than on the meanings of these symbols. That is why
some people call ancient mathematics ‘thing-mathematics’, meaning con-
crete, and modern mathematics ‘relation-mathematics’, meaning abstract.

This difference does not imply that modern mathematicians are cleverer
or more imaginative than their forefathers. It is largely the outcome of
changes that have since occurred in the mode of civilized living. In the
ancient world, where material production was largely for use and barter,
things had not yet become completely metamorphosed into abstract
embodiments of sale or money value. This could occur only with the
change from a productive system for use or barter to a money economy
producing commodities. In such a social system all qualitative differences
between commodities are effaced in money and one begins to think in
terms of their money values as—four talents, four livres or four guineas.
From this it is but a step to think of the number ‘four’ as dropping its
material crutches and coming into its own as an abstract conceptual
symbol for the common quadruplicity of them all. But this is by no means

* See pages 21 and 146.



NUMBER AND NUMBERS 9

the end. A modern mathematician is able to carry on the process of ab-
straction much farther. All that he needs is a system of elements obeying
some scheme of abstract laws like the five laws of arithmetic cited above.

You may wonder whether these abstract schemes about phantom enti-
ties obeying phantom laws are of any use at all. They are indeed. As
science advances, sooner or later a stage is reached when it has to reckon
with what is sometimes called interphenomena, that is, phenomena be-
yond the limit of direct observation. Thus no one can see what actually
happens inside a star, an atom, a gene, a virus, an amacrine cell or an
ultramicroscopic speck of nerve fibre. And yet a scientist must somehow
figure it out if he is to give an intelligible account of perceptible phenomena.
One way of doing it is to adopt some abstract scheme of a mathematician’s
fancy and see where it leads us. It may happen that it enables us to pre-
dict some observable phenomena capable of direct observation. If we do
succeed in observing the predicted phenomena, we may be sure that the
abstract scheme does embody at least some features of the interphenomena
under study. Surprising as it may seem, the method actually works. It is by
the use of such abstract mathematical schemes that scientists have been
able to fathom what happens in the interiors of stars and atoms.

Stars and atoms may seem very remote, but they have now begun to
influence our everyday lives very directly, for their study has revealed new
sources of power which, in the case of atoms, we may use for war or peace
as we may choose. For instance, thanks to these studies we can now
imitate, though in a rudimentary manner, the cosmic processes at work in
the solar interior and construct here on earth those miniature suns, the
H-bombs, which threaten to wipe the human race out of existence. And
yet the same theory which has produced the H-bomb is also potentially
capable of putting, as it were, sunshine on tap for the advancement of
technics, civilisation and life.

As we have seen, early man’s need to compare discrete groups, such as
flocks of sheep, herds of cattle, fleets of vessels and quivers of arrows, gave
rise to the concept of the integer. His other needs had even more fruitful
consequences. For instance, he wanted to know whether the milk-yield of
his cattle was rising or falling, or to make sure that no one encroached on
his field at harvest time. Here he was faced with continuously varying
quantities that could not be counted like the discrete objects of a group,
such as eggs in a basket. Nevertheless, he found a way of reducing the
problem of quantizing these continuous magnitudes to that of counting a
discrete group. Thus, he took a standard yard-stick and counted the num-
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ber of such sticks, which, placed end to end, covered the entire length of the
field from one extremity to the other. The continuous length thereby be-
came a discrete group of equal yard-sticks. Or he took a standard vessel
and poured out of his milk-yield as many vessel-fuls as he possibly could.
The continuous quantity—i.e., milk-yield—was thus changed into a dis-
crete collection of standard-sized vessels. In this way continuous quantity
became discrete and could be counted. But the solution had its awkward-
ness. For, in reducing the length of a field to a discrete group of yard-
sticks or unit-measures, it might happen that a residue was left. For in-
stance, the yard-stick might cover a given length 200 times and then leave
a residue smaller than the yard-stick. What was he to do with it?

There were two ways of handling it, namely to find a unit that leaves no
residue or to ignore it altogether. The first method was used in measuring
time when men divided the duration of daylight into twelve equal hours.
The hour was thus a variable unit, for a duration of one hour at the time
of summer solstice, for instance, was not the same as that at the time of
vernal equinox. At a time when there were no Hours of Employment
Regulations, overtime wages, payment by the hour, erc., this meant no
social inconvenience. It was otherwise with measuring the lengths of fields.
For it would have been necessary to discover by trial and error a unit that
would cover each length exactly without leaving a residue. Even if he
found one it would most probably be of no use for measuring another
length, for which it would be necessary to seek another unit. If, therefore,
residues were to be eliminated by this method, almost every length would
have needed a special unit of its own—very much like Chinese writing,
which has a separate ideograph for every word in its vocabulary. With such
a medley of different units, not only the calculus of lengths would have
been more complicated than Chinese writing but few lengths could have
been compared with each other. A fixed standard of length, as also of
weight and volume, was therefore a prime necessity of social intercourse.
Consequently, while all the early civilisations adopted variable units of
time, the units of lengths, weights and measures were fixed. As early as
2300 B.c. the Sumerian Hammurabi, for example, issued edicts fixing
these standards.

But if these units were to remain invariable, the problem of the residue
had to be solved. Now it would be a mistake to imagine that early man
became ‘residue-conscious’ overnight. Far from it. Actually this residue-
consciousness took whole millennia acoming. Too often and too long men
tried to ignore the residues and were content to make do with approxima-
tions, even ludicrous approximations, such as the value of x = 3 adopted
in the Book of Kings, in Chronicles* and by the Babylonians. Neverthe-

* | Kings vii, 23; 2 Chronicles iv, 2.
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less, the problems of trade and the administration of the vast revenues of
temples, city states and empires, kept in the forefront the mathematical
problem of the residues. Even then our present insight into the nature of
fractional numbers, which were created to solve it, was gained with the
greatest difficulty. The Egyptians, who treated only fractions with the
numerator 1, never understood that fractions were amenable to the same
rules as integers. The Babylonians, who had begun to deal with fractions
as early as 5000 B.c., did not acquire complete mastery of fractional
numbers until 2000 B.c. We can well appreciate their difficulty: they faced
problems unprecedented in human history. To solve them they had to
find their way about in an utterly strange and uncharted domain. No
wonder that, like the early navigators, they often reached their goal by the
_longest and most devious route. And yet it is easy, retrospectively, to state
the residue problem and its solution. The problem of the residue is simply
this:

If the fixed unit yardstick does not happen to go into the length to be
measured an exact number of times, how are we to measure the residue ?
The solution is equally simple. Divide the unit yardstick itself into a
number of aliquot parts and then measure the residue with it. For instance,
the yard may be divided into 3 sub-units, each one foot long, and we may
try to measure the residue with the sub-unit, the foot. It may be that the
new sub-unit will lie along the residue from end to end exactly twice. We
thus have a sub-unit which covers the residue twice and our original unit—
the yardstick itself—thrice. This process gives us a number couple, viz. 2
and 3, which can be used as a measure of the residue. We may write it as
3 as our Hindu ancestors did, or § or 2/3, as in modern text books, or
as (2,3) as some learned people might advocate; it matters little. The
important point is that it is a shorthand for an operation just as the single
integer by itself is a symbolical way of describing the result of a matching
process. A number pair like % or (2,3) says what in ordinary language
would have to be expressed somewhat as follows:

‘If you take a sub-unit that divides the fixed unit, say a yard, exactly
thrice, and use it to span the residue in question, it will go into the residue
exactly twice’.

The problem of measuring residues is, therefore, merely the problem of
finding some sub-unit that will cover exactly both the residue and the fixed
unit. Although, as we shall see later, strictly speaking it is not soluble in
all cases, a solution that is good enough for all practical purposes can
always be found. For, if we take a sufficiently small sub-unit of the original
unit, it will either cover the residue exactly or, at most, leave a remainder
less than the chosen sub-unit. But as the sub-unit can be made as small as
we please, the remainder, if any, will always be smaller still.



12 MATHEMATICAL IDEAS

Having found a way to measure residues or fractions, as they are gener-
ally called, it was necessary to devise methods of adding and multiplying
them. In time, general rules for adding and multiplying fractions were
framed. They are the well-known rules we all learnt at school, viz.:

Addition rule: (a, b) + (c, d) = (ad + be, bd),
Multiplication rule: (a, b)(c, d) = (ac, bd),*

You could, if you were in doubt, even ‘prove’ these rules by strict logic.
All that you need do is to recall the meaning of number pairs (a, ) and
(¢, d) and the way to add or multiply them would be clear. But the point
that is of greater interest is that these two rules for adding and multiplying
fractions show that fractions too obey the same five fundamental laws of
arithmetic as the integers. This too can be proved logically.

* * * *

If you operate with the first three integers 1, 2, 3, you may easily verify
that you can combine them in pairs in 3 X 3 = 9 ways. These nine ways
lead to the nine fractional numbers:

(1, 1, (1,2),(1, 3)
2, 1,(2,2),(2,3)
(,1),3,2.G,3)

Likewise, four integers produce 4 X 4 = 16 fractions and five integers
5 x 5 = 25 fractions. From this you may easily infer that with N integers
you can manufacture N X N = N2 fractions. This would seem to show
that the set of fractional numbers is vastly more numerous than that of
positive integers. But the set of positive integers is a never-ending or
infinite set. If we denote this infinity by the usual symbol oo, the infinity of
fractional numbers would appear to be the much bigger infinity o0 X « =
()% And yet if, in the manner of the Cyclops, you started matching the
infinite set of fractional numbers with the infinite set of integers, both the
sets would be exhausted together—provided one could speak of exhausting
inexhaustible or infinite sets! In other words, the two infinite sets of integers
and rational fractions are exactly ‘equal’. This is, no doubt, paradoxical.
We shall explain this paradox in Chapter 5.

* * * *

If early man noticed that one herd of cattle could be ‘added’ to another
and he thus formed the notion of ‘addition’, he also performed the reverse
* (a, b), (c, d) are here used to denote the fractions a/b, c/d.
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operation—that of taking some cattle out of his herd as, for instance, for
the purpose of bartering them for other goods. This is the origin of ‘sub-
traction’, the inverse of addition. Similarly, multiplication, which is only a
reiterated addition, gave rise to its inverse, ‘division’, a reiterated sub-
traction. At first, these new operations caused him some confusion. For,
while he could always add and multiply any two integers, he could not
always perform the inverse operations. Thus, he could add any two herds
of cattle, but he could not take out, say, fifty cows from a herd of only
forty. Division, too, must have worried him at times, and he must have
often wondered whether a division of, say, seven by two is possible at all.
Like most children beginning to learn arithmetic, he, too, must have felt
that there isn’t a ‘real’ half of seven.

Nevertheless, for two reasons early man had less trouble with division
than with subtraction. First, he could always divide one integer, say 7, by
another, say 2, and supplement the result by adding that the division is not
‘exact’ and leaves a remainder. Second, even if he had to divide a smaller
number, say 5, by a larger, say 7, he could interpret the result as a number
pair (5, 7)—the fractional number that he had already devised for measur-
ing continuous magnitudes. But if he was asked to subtract, say 7 from 5,
he was quite befogged. To make this magic possible, he had to wait for the
rise of a banking system with an international credit structure, such as
came into being in the towns of Northern Italy (particularly Florence and
Venice) during the fourteenth century. The seemingly absurd subtraction
of 7 from 5 now became possible when the new bankers began to allow
their clients to draw seven gold ducats while their deposit stood at five.
All that was necessary for the purpose was to write the difference, 2, on
another side of the ledger—the debit side.

Although the attempt to resolve the difficulties of awkward divisions
and subtractions did lead to the recognition of fractional and negative
numbers, the realisation that they arose from the limitations of the in-
tegral number system itself, and could only be overcome by suitably ex-
tending that system, came much later. Thus, suppose we are given only
the unending sequence of positive integers 1, 2, 3, . . .. We can clearly add
any two of these integers, their sum being itself a positive integer. But we
cannot always perform the inverse operation of subtraction. For instance,
while we can subtract five from seven we cannot subtract seven from five.
If we want to ensure that subtraction of one integer from another be as
freely possible as addition, we must extend the number system of positive
integers to include negative integers, so as to form a doubly unending set
of positive and negative integers:

co.—4,-3,-2,-1,0,1, 2, 3, 4,...
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Only when we operate with such an extended set can we perform the
operation of addition and its inverse subtraction on any two numbers
without any restriction whatsoever. In other words, to make subtraction
universally possible the system of positive integers must be extended to
include negative integers too. This has as a consequence that to every
positive integer, such as @, there corresponds its negative or inverse, —a,
which belongs to the same set and is such that the sum a + (—a) is zero.
This fact may also be expressed by the statement that the equation a + x
= 0 has always a solution x = —a (also belonging to the set). If we con-
sider the particular case of this equation when a = 0, we find that x too
is zero. It therefore follows that the number zero of the set is its own in-
verse. It is called the ‘identity element’ of the set for addition. We call it the
identity element as its addition to any integer leaves the latter unaltered.
If we imagine that the relation between an integer and its inverse is like
that of an object and its mirror image, then the identity element zero is
like the reflecting surface, which is its own image.

Our first extension of the number system is thus the doubly unending
set of positive and negative integers complete with the identity element
Zero.

. —4,-3,-2,—-1,0, 1, 2, 3, 4,...

Such a system of positive and negative integers, including zero, is known
as an integral domain. It is not possible to extend the integral domain any
farther by means of addition and subtraction alore. No matter which two
numbers of the domain we may add or subtract, we shall always end up
with a positive or negative integer belonging to the integral domain. We
may say that the integral domain is closed under addition and subtraction
because the way to further extension of the domain by performing these
two operations is blocked.

Just as we had to extend the system of positive integers to include
negative integers in order to make subtraction universally possible, a
similar consideration with regard to division leads to a further extension
of integers to include rational fractions. For, so long as we work with
integers, we can always multiply any two of them, but the inverse opera-
tion—division—is not always possible. To make division between any two
integers as universally possible as multiplication, we have to extend the
number system to include rational fractions, that is, number pairs devised
to measure residues. In other words, the set of all integers must be ex-
tended to include all rational fractions so that each number a (other than
zero) of the set has an inverse 1/a belonging to the set with respect to
multiplication. We may express the same thing by saying that the equation
ax = | has a solution x = 1/a belonging to the set for all a’s not equal to
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zero. If we consider the particular case of this equation when a = 1, we
find that x is also 1. It therefore follows that the number 1 of the set is its
own inverse. It is called the “identity element”* for multiplication, since
multiplying it by any number leaves the latter unaltered. Such a system
which includes all positive and negative integers as well as fractions is
called a field.

With the construction of the field of rational numbers our second ex-
tension of the number system is in a way complete. It permits us to per-
form on any two numbers of the system not only addition and its inverse,
subtraction, but also multiplication and its inverse, division, and express
the result by a number belonging to the rational field. No further extension
of the field is possible by performing any of these four arithmetical opera-
tions on any two numbers of the rational field. No matter which two
numbers of the rational field we may add, subtract, multiply or divide, we
shall always end up with a number belonging to the rational field. In other
words, the field of rational numbers is closed under all the four arithmetical
operations. But even so the number system still remains incomplete in
some ways. It can be shown that certain magnitudes like the diagonal of a
unit square cannot be measured by rational fractions. To measure the
diagonal we have to find a sub-unit that goes an exact number of times
into the side as well as the diagonal. Suppose, if possible, there is such a
sub-unit which divides the side m times and the diagonal n times. Then the
length of the diagonal is given by the number pair or fractional number
n/m. We may assume that m and » are not both even, for if they were, we
could cancel out the common factor 2 from the numerator and de-
nominator till one of them became odd. Now, the lengths of the two sides
of the square AB, BC, are both equal to unity, and that of the diagonal is
n/m (see Fig. 1). But in a right-angled triangle like ABC,

AB® + BC? = AC.
In other words, 2 = n*/m?
or n® = 2m®.

But it can be proved that no two integers can satisfy this equation unless
they are both even—a possibility which has been expressly excluded by our
hypothesis. It is therefore impossible to find a rational number to measure
the diagonal length AC.

The discovery of magnitudes which, like the diagonal of a unit square,
cannot be measured by any whole number or rational fraction, that is, by
means of integers, singly or in couples, was first made by Pythagoras some
2500 years ago. This discovery was a great shock to him. For he was a

* Note carefully that the number 1 plays the same role with regard to multiplication as
the number zero with regard to addition. (See page 14.)
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number mystic who looked upon integers in much the same reverential
spirit as some present-day physicists choose to regard Dirac’s p, ¢ num-
bers, viz. as the essence and principle of all things in the universe. When,
therefore, he found that the integers did not suffice to measure even the
length of the diagonal of a unit square, he must have felt like a Titan cheated

o] Cc

AE=AB

A B

Fi6. 1—The diagonal and the side of the square
are incommensurable.

by the gods. He swore his followers to a secret vow never to divulge the
awful discovery to the world at large and turned the Greek mind once for
all away from the idea of applying numbers to measure geometrical
lengths. He thus created an impassable chasm between algebra and
geometry that was not bridged till the time of Descartes nearly 2000 years
later.

Nevertheless, there is no great difficulty in measuring the length of the
diagonal by an extension of the process that gave rise to fractions. Suppose
we use the unit stick to measure the diagonal AC of the square. It goes
once up to E and leaves a residue EC (see Fig. 1). Its length is therefore
1 + EC. Now suppose we use a sub-unit which goes into the original
unit ten times, in order to measure EC. We shall find that it will cover EC
four times, leaving again a small residue. This gives us a closer measure of
the diagonal length, viz., 1 + 4/10 plus a second residue. To obtain a still
closer estimate, we try to measure the second residue with a still smaller
sub-unit which divides our original unit into, say, 100 equal parts. We shall
find that it goes into the second residue just once but again leaves a third
residue. Our new estimate is thus 1 + 4/10 4 1/100 plus a small residue.
To measure this last residue, we can again use a still smaller sub-unit, say,
one-thousandth part of the unit, and observe how many times it covers it.
We shall find that it covers it four times and still leaves a residue. The
diagonal length then is 1 + 4/10 + 1/100 + 4/1000 plus a residue.

Now, the important point is that no matter how far we go, the residue
always remains. For suppose, if possible, we were left with no residue when
we began to use a scale equal to, say, a thousandth part of our unit. This
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would mean that a scale that covered the unit 1000 times would cover the
diagonal 1414 times exactly. In other words, it would be measured by the
fraction 1414/1000, but this, as we saw (page 15), is impossible. Thus,
while we may be able to reduce the residue to as small a length as we please
by prolonging this process far enough, we can never hope to abolish it
altogether. How shall we express, then, the length of our diagonal if we
want to do it exactly? We can do so by the never-ending sum:

1 + 4/10 + 1/100 + 4/1000 + 2/10,000 + . ..

Or, if this is too cumbersome, we may use the non-terminating decimal
expression, 1-4142 . . ., which is only an abridged way of writing the same
thing. A still shorter way of writing it would be ‘square root of 2’ or /2,
which means that it is some number whose square is two. Numbers like 4/2
were called ‘irrationals’, as they did not appear to be amenable to reason;
they escaped the number mesh cast by man to trap them. For instance,
take 4/2 itself: if we do not wish to go beyond the first decimal place, the
fraction 1-4 is a little too small, while 1-5 too large. By going to the second
place, we can get a closer mesh, viz., 141 and 1-42. The third decimal place
gives us 1-414 and 1-415, fourth decimal place 1-4142 and 1-4143, and so
on. If we square the end numbers of each of these meshes of the number-
net we have

(1-4)* = 196 <2 < (I:5)?=225;
(1-41)* = 1-9881 <2 < (1-42)* = 2:0164;
(1-414)* = 1999396 <2 < (1-415)* = 2:002225;
(1-4142)* = 199996164 <2 <(1-4143)* = 2-00024449;

We note two properties of the end numbers of this mesh system that we
have created to trap the square root of 2. First, the left-hand end numbers,
viz. 144, 1-41, 1-414, 1-4142 . .. ... ... continually increase or at least
never decrease. Second, no matter how far we go, the square of any
number in the sequence always falls short of 2, though the difference
continually decreases. Similarly the right-hand end numbers, viz. 1-5,
1-42, 14415, 1-4143 . .. ... ... continually decrease or at any rate never
increase. Likewise, the square of any member always exceeds 2, though
the difference continually diminishes the farther we go. We have here a
process whereby we generate two sequences of fractional numbers which
continually approach the square root of 2 from both below and above,
although they never actually reach it. Whatever the degree of precision
required in the estimate, we can always pick up two numbers, one from
each sequence, which are sufficiently close together, and between which
the desired square root lies. Can we, then, say that this hunt for the square
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root of 2 is not as ‘perfect and absolute a blank’ as that of Lewis Carroll’s
crew in the hunting of the Snark ? In other words, can we assert that the
square root of 2 ‘exists’, in spite of the fact that it cannot be expressed as
an ordinary fraction? The question is not entirely academic, for unless
we admit its ‘existence’, our number system is not complete. Qur number
vocabulary is not rich enough to quantize certain magnitudes. Without the
irrationals we should have no numbers for exactly measuring certain
lengths, although we might have increasingly finer sets of approximations.
Voltaire once remarked that if God did not exist, it would be necessary to
invent Him. With still greater justification, the mathematician says that if
the square root of 2 does not exist, it is necessary to invent it, and he invents
it by writing 4/2. It is the unique number towards which the infinite ever-
increasing sequence of fractional numbers 1-4, 1-41, 1-414, 1-4142 . . . con-
tinually tends without ever reaching it. In other words, it is the w/tima
Thule or limit of this sequence which we usually abbreviate as the non-
terminating, non-recurring decimal, 1-4142 . . ..

Now it is no use inventing numbers unless we know how to combine
them by addition, multiplication, ezc. What do we mean by adding two
irrational numbers like 4/2 and 4/3? We defined /2 as the limit of an
infinite never-decreasing sequence of rational fractions, such as:

1-4, 1-41, 1-414, 1-4142, . .. ... ...

Likewise /3 is the limit of another infinite never-decreasing sequence of
fractions, namely:

1-7, 1473, 1-732, 17321 . .. ... ...

The sum of 4/2 and 4/3 is merely the limit of the new infinite never-
decreasing sequence formed by adding the corresponding terms of these
two sequences viz.:
(1-4 + 1-7), (1-41 + 1-73), (1-414 + 1-732), (1-4142 + 1-7321), ... ...
Likewise, the product of 4/2 and 4/3 is the limit of the infinite sequence:
(1-4)(1-7), (1-41)(1-73), (1-414)(1-732), (1-4142)(1-7321), .

Since fractional numbers are subject to the commutative, associative
and distributive laws of arithmetic, so are the irrational numbers like /2
and /3, as they are defined as mere limits of infinite sequences of rational
fractions. For instance, 4/2 + 4/3 is the limit of the sequence

(14 + 1-7), (1-41 + 1-73), (1414 + 1732) .... . (1)
and /3 4+ 4/2 is the limit of
(17 + 1-4), (173 + 1-41), (1732 + 1-414) . . .. )
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Sequences (1) and (2) are obviously identical and consequently so also are
their respective limits. In other words,

V2 + 43 =43+ v2

The addition of irrational numbers to the field of rational numbers
makes what is known as the real number field. 1t is the aggregate of all
integral, fractional and irrational numbers, whether positive or negative.
It is obvious that we can perform any of the four arithmetical operations
on any two of its numbers and express the result as a number belonging to
itself. This means that the real number field is also closed under the arith-
metical operations. It might thus appear that our third extension of the
number system is at last complete. But, as we shall see later, the real
number field too is incomplete in some ways and needs further extension.

* * * *

As we have seen, starting with positive integers, the number domain was
extended to cover the entire set of real numbers by the invention of nega-
tive numbers, fractions and irrationals. We shall see later how the idea of
vectors and complex numbers grew out of real numbers, and that of
quaternions and hypercomplex numbers out of vectors and complex
numbers. With the invention of hypercomplex numbers the art of number-
making seemed to have reached its acme, for any kind of number could be
shown to be a particular case of some hypercomplex number. Wijth the
closing of the field of number-making, mathematicians returned to the
integer from which they had started and opened another. In endeavouring
to discover the essence of the integer they created a new subject—mathe-
matical logic. By the first two decades of the twentieth century, they had
succeeded in creating a mere mathematician’s delight, and that to such a
degree that it was in real danger of becoming what the Americans call
‘gobbledygook’. Fortunately it was rescued from this disaster by the prac-
tice of electronic engineers, who applied it to produce new types of ultra-
rapid automatic calculating machines employing all manner of electrical
apparatus. With the invention of these new electronic devices it was possi-
ble to apply the abstract ideas of mathematical logic to advance the design
of calculating machines far beyond the dreams of early pioneers like
Pascal and Leibnitz or even Babbage.

The reason why mathematical logic has had such great influence on the
art of numerical computation is that the calculus of reasoning is sym-
bolically identical with the calculus of number. Since in logic we deal with
statements or propositions which have some meaning, every such proposi-
tion is either true or false. Let us assign the truth value T = | when the
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proposition is true, and T = O when it is false. Every proposition such as
A will then have a truth value T which may be either zero or one. If we
have another proposition B, we can form a compound proposition from
these two in two ways. First, we may produce a compound proposition S
which is considered true provided either A or B is true. In this case S is the
logical sum of A and B and the process of obtaining it is the analogue of
numerical addition. Second, we may obtain another compound proposi-
tion P which is considered true if, and only if, both A and B are true. P is
known as the logical product of A and B and the process of obtaining it is
the counterpart of arithmetical multiplication.* For example, let A be the
proposition ‘Socrates drank the hemlock’ and B the proposition ‘Voltaire
wrote Gulliver’s Travels’. S, the logical sum of A and B, will then be the
compound proposition:

S Either ‘Socrates drank the hemlock’
or ‘Voltaire wrote Gulliver’s Travels’,

P, the logical product of A and B, will, on the other hand, be the com-
pound proposition:

‘Socrates drank the hemlock’
P and
‘Voltaire wrote Gulliver’s Travels’.

Since we know that in this case A is true and B false, then S will be true
but P false. Consequently when the truth value of A is 1 and of B zero,
that of S will be 1 and of P zero. In the same way we can easily work out
the truth values of S and P, given those of A and B in any other case. In
general, as mentioned earlier, for S to be true only one of the two consti-
tuents A and B need be true, whereas for P to be true both A and B have
to be true. This rule suffices to evaluate the truth values of S and P as we
shall now show.

Suppose both A and B are true so that the truth values of both are one.
Since S is true when either A or B is true, the truth value of S is |. This
leads to the summation rule:

I+ 1=1L

If both A and B are false, then obviously their logical sum S too is equally
false so that the summation rule now is:

0+0=0.

* Sis also known as the disjunction of 4 and B and is written as S = AvB.
P is also known as the conjunction of 4 and B and is written P = A4.B.
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But if only one of the two, viz. A or B, is true, then S is also true, because
S is true when either of them is true. This leads to the summation rules:

O+Il=L1+0=1.
We may summarise these summation rules in the table of logical addition:

Logical Addition
- o |

o o 1
I |

To read the result of the addition of any two truth values, say O and |,
take the row O and the column |; these are easily seen to intersect at 1.
The same rule applies in reading all other tables described in this section.

Consider now the product proposition P. Since P is true only when both
A and B are true, its truth value is | only when that of both A and Bis |.
In every other case P is not true and therefore its truth value is zero. This
leads to the product rules:

IxXI=1L0x1=0,1x0=0,0x0=0,
This may be summarised in the table of logical multiplication:

Logical Multiplication

b4 o |1
(o] O O
| o |1

We shall now show that these tables* of logical addition and multiplica-
tion are very similar to their counterparts of arithmetical addition and
multiplication. Although we use the ten digits, 0, 1, 2, 3,4, 5,6, 7, 8,9 to
write numbers, this is merely due to the physiological accident that we
have ten fingers. If we had had only eight, we might have worked with
only eight digits viz. 0, 1, 2, 3, 4, 5, 6, 7. In that case what we now write as
‘8’, ‘9’ and ‘10’ would be written ‘10°, ‘11’ and ‘12’, respectively. A num-
ber like 123 written in this octonal notation would really be an abbreviation
of 1(8)% + 2(8)' + 3(8)° just as 123 in the decimal notation is a short-
hand for 1(10)® + 2(10)! + 3(10)°. In the octonal notation, therefore, the
number ‘123’ would be 64 + 16 + 3 = 83 in the usual decimal notation.

What notation we choose for writing numbers, whether decimal,

* With the help of these tables you may readily verify that the symbols O, 1, though
not numbers in the ordinary sense, yetobeytheﬁvuftmdamenulhw:ofmthmem
mmofamof ‘elements’ other than numbers satisfying the laws of
aril
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octonal or any other, is arbitrary. In principle we are free to make any
choice we like. Of all the possible choices the simplest, though not the
most familiar, is the binary notation in which we work with only two
digits 0 and 1. It is remarkable that we can express any number whatever
in the binary notation, using only these two digits. Thus, the number two
would be written in the binary notation as 10, three as 11, four as 100,
five as 101, six as 110 and so on. For 10 in the binary notation is
(2)' + 0(2)° = 2 in the decimal notation. Likewise, 110 in the binary nota-
tion is 1(2)* + 1(2)* + 0(2)° =4 + 2 + 0 = 6 in the decimal notation.
A binary ‘millionaire’ would be a very poor man indeed, for the figure
1,000,000 in the binary scale is a paltry:

12)* + 0Q)F + 02)* + 0Q2) + 02 + 02)* + 02)° = (2)* = 64

in the decimal notation. Nevertheless, the binary notation is potentially as
capable of expressing large numbers as the decimal or any other system.
The only difference is that it is a bit lavish in the use of digits. Thus the very
large number of grains of wheat which the poor King Shirman* was in-
veigled into promising his sly Grand Vizier as a reward for the latter’s
invention of chess could, in the binary notation, be expressed simply as a
succession of sixty-four ones:

111, 111, 111, 111, 111, 111, ... sixty-four times.

In the decimal notation of everyday use we should need twenty digits to
write it.
The rules of ordinary addition and multiplication in the binary notation
are
040=0;04+1=1;140=1;141=10.

If we remember that while adding one to one, we get a ‘one’ which should
be ‘carried’ to the next place, we can summarise the addition rules in the
table of arithmetical addition:

Arithmetical Addition
+ 01
0 01
1 1 1

* The allusion here is to the well-known legend of the Grand Vizier who asked for
one grain of wheat in the first square of a chessboard, two in the second, four in the
third, eight in the fourth, sixteen in the fifth and so on till the sixty-fourth square. The
poor king never suspected till it was too late that the total number of grains required to
fill the board in this manner would exceed the total world production of wheat during
two millennia at its present rate of production!
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Similarly, the rules of ordinary multiplication are:
0x0=0;0x1=0;1%x0=0;1x1=1.

They too can be summarised in a similar table of arithmetical multiplica-
tion:
Arithmetical Multiplication

X 01
0 00
1 01

A glance at the tables of logical and arithmetical addition shows that they
are identical. So also are those of logical and arithmetical multiplication.
Now the ideal calculating machine must be such that with an initial
input of data it turns out the final answer with as little human inter-
ference as possible until the very end. This means that after the initial
insertion of the numerical data the machine must not only be able to
perform the computation but also be able to decide between the various
contingencies that may arise during the course of the calculation in the
light of instructions also inserted into it along with the numerical data at
the beginning. In other words, a calculating machine must also be a
logical machine capable of making a choice between ‘yes’ and ‘no’, the
choice of adopting one or other of two alternative courses open to it at
each contingency that may arise during the course of the computation. It
is because of the formal identity of the rules of the logical and arithmetic
calculi (in the binary notation) that the apparatus designed to mechanise
calculation is also able to mechanise processes of thought. That is why the
binary system is superior to other systems in both arithmetic and logic.
Another advantage of the binary system is this. A calculating machine
can operate in only two ways. First, it may consist of a device which
translates numbers into physical quantities measured on specified con-
tinuous scales—such as lengths, angular rotations, voltages, efc. After
operating with these quantities it measures some physical magnitude which
gives the result.* Second, it may consist of a device which operates with
numbers directly in their digital form by counting discrete objects such as
the teeth of a gear-wheel, or discrete events such as electrical pulses. Such,
for instance, is the case with the ordinary desk calculating machines like
the Brunsviga and Marchant. Naturally, the accuracy of the first type

* For example, a product xy may be evaluated by converting the logarithm of
numbers x,y into lengths on a slide rule. We first read the length corresponding to
the logarithm of the number x and add to it the length corresponding to that of
number y. We then read the number corresponding to the combined lengths to obtain

the product xy.
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depends on the accuracy of the construction of the continuous scale, and
that of the second on the sharpness with which the discrete set of events,
such as wheel teeth or electrical pulses, can be distinguished from one
another. Since it is easier to distinguish a set of discrete events than to
construct a fine continuous scale, the latter type, viz. the digital machine,
is preferable for highly accurate work. Further, since it is easier to dis-
tinguish between two discrete events than ten, digital machines constructed
on the binary scale are superior to those on the decimal scale. In other
words, the structure of the ideal machine should be a bank of relays each
capable of two conditions—say, ‘on’ and ‘off’; at each stage the relays
must be able to assume positions determined by the position of some or
all of the relays of the bank at a previous stage. This means that the machine
must incorporate a clocking arrangement for progressing the various stages
by means of one or more central clocks.

Now, as Norbert Wiener has remarked, the human and animal nervous
systems, which too are capable of the work of a computation system, con-
tain elements—the nerve cells or neurons—which are ideally suited to act
as relays:

‘While they show rather complicated properties under the influence of
electrical currents, in their ordinary physiological action they conform
very nearly to the “all-or-none” principle; that is, they are either at rest,
or when they ‘““fire” they go through a series of changes almost independent
of the nature and intensity of the stimulus.” This fact provides the link
between the art of calculation and the new science of Cybernetics, recently
created by Norbert Wiener and his collaborators.

This science (cybernetics) is the study of the ‘mechanism of control and
communication in the animal and the machine’, and bids fair to inaugurate
a new social revolution likely to be quite as profound as the earlier In-
dustrial Revolution inaugurated by the invention of the steam engine.
While the steam engine devalued brawn, cybernetics may well devalue
brain—at least, brain of a certain sort. For the new science is already
creating machines that imitate certain processes of thought and do some
kinds of mental work with a speed, skill and accuracy far beyond the capacity
of any living human being.

The mechanism of control and communication between the brain and
various parts of an animal is not yet clearly understood. We still do not
know very much about the physical process of thinking in the animal
brain, but we do know that the passage of some kind of physico-chemical
impulse through the nerve-fibres between the nuclei of the nerve cells
accompanies all thinking, feeling, seeing, efc. Can we reproduce these
processes by artificial means ? Not exactly, but it has been found possible
to imitate them in a rudimentary manner by substituting wire for nerve-
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fibre, hardware for flesh, and electro-magnetic waves for the unknown
impulse in the living nerve-fibre. For example, the process whereby flat-
worms exhibit negative phototropism—that is, a tendency to avoid light—
has been imitated by means of a combination of photocells, a Wheatstone
bridge and certain devices to give an adequate phototropic control for a
little boat. No doubt it is impossible to build this apparatus on the scale
of the flatworm, but this is only a particular case of the general rule that
the artificial imitations of living mechanisms tend to be much more lavish
in the use of space than their prototypes. But they more than make up for
this extravagance by being enormously faster. For this reason, rudimentary
as these artificial reproductions of cerebral processes still are, the thinking
machines already produced achieve their respective purposes for which
they are designed incomparably better than any human brain.

As the study of cybernetics advances—and it must be remembered that
this science is just an infant barely ten years old—there is hardly any limit
to what these thinking-machines may do for man. Already the tech-
nical means exist for producing automatic typists, stenographers, multi-
lingual interpreters, librarians, psychopaths, traffic regulators, factory-
planners, logical truth calculators, etc. For instance, if you had to plan a
production schedule for your factory, you would need only to put into a
machine a description of the orders to be executed, and it would do the
rest. It would know how much raw material is necessary and what equip-
ment and labour are required to produce it. It would then turn out the
best possible production schedule showing who should do what and when.

Or again, if you were a logician concerned with evaluating the logical
truth of certain propositions deducible from a set of given premises, a
thinking machine like the Kalin-Burkhart Logical Truth Calculator could
work it out for you very much faster and with much less risk of error than
any human being. Before long we may have mechanical devices capable of
doing almost anything from solving equations to factory planning. Never-
theless, no machine can create more thought than is put into it in the form
of the initial instructions. In this respect it is very definitely limited by a
sort of conservation law, the law of conservation of thought or instruction.
For none of these machines is capable of thinking anything new.

A ‘thinking machine’ merely works our what has already been thought
of beforehand by the designer and supplied to it in the form of instruc-
tions. In fact, it obeys these instructions as literally as the unfortunate
Casabianca boy, who remained on the burning deck because his father
had told him to do so. For instance, if in the course of a computation the
machine requires the quotient of two numbers of which the divisor hap-
pens to be zero, it will go on, Sisyphus-wise, trying to divide by zero for
ever unless expressly forbidden by prior instruction. A human computer
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would certainly not go on dividing by zero, whatever else he might do. The
limitation imposed by the aforementioned conservation law has made it
necessary to bear in mind what Hartree has called the ‘machine-eye view’
in designing such machines. In other words, it is necessary to think out in
advance every possible contingency that might arise in the course of the
work and give the machine appropriate instructions for each case, because
the machine will not deviate one whit from what the ‘Moving Finger’ of
prior instructions has already decreed. Although the limitation imposed
by this conservation law on the power of machines to produce original
thinking is probably destined to remain for ever, writers have never ceased
to speculate on the danger to man from robot machines of his own crea-
tion. This, for example, is the moral of stories as old as those of Famulus
and Frankenstein, and as recent as those of Karel Capek’s play, R.U.R.,
Olaf Stapledon’s First and Last Men.

It is true that as yet there is no possibility whatsoever of constructing
Frankenstein monsters, Rossum robots or Great Brains—that is, artificial
beings possessed of a ‘free will’ of their own. This, however, does not
mean that the new developments in this field are without danger to man-
kind. The danger from the robot machines is not technical but social. It
is not that they will disobey man but that if introduced on a large enough
scale, they are liable to lead to widespread unemployment.
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THE CALCULUS

are really in a state of perpetual flux and change, is probably as old

as human civilisation. This knowledge formed the basis of philo-
sophical speculations about flux and change which preceded the mathe-
matical formulations by whole millennia. Long before Greek civilisation,
the mystical view of change, that nothing really exists but only flux or
flow—a view revived more recently in Bergson’s Creative Evolution—had
evolved from commonplace observations. But the mathematics (as op-
posed to the mysticism of flux) originated during the second half of the
seventeenth century, when mathematicians began to study the problem of
change.

Speaking of the mathematics of flux, Leibnitz, who shares with Newton
the honour of inventing it, said, ‘My new calculus . . . offers truth by a kind
of analysis and without any effort of the imagination—which often suc-
ceeds only by accident; and it gives us all the advantages over Archimedes
that Vieta and Descartes have given us over Apollonius.’ This claim was no
exaggeration, for the calculus proved to be the master key to the entire
technological progress of the following three centuries. What then is this
calculus of Newton and Leibnitz which has had such momentous conse-
quences ?

Mathematically, the calculus is designed to deal with the fundamental
problem of change, viz. the rate at which anything changes or grows. You
cannot even begin to answer questions like this unless you know what it is
that changes and how it changes. What you need, in fact, is a growth
function—that is, a correlation of its growth against the flow of time. But
growth and flow are rather vague terms and must first be given precise
mathematical expression. Take first the flow of time. Our daily perception
of events around us, not to speak of the physiology of our own bodies,
makes us aware of what we call the flow of time. This means that every one
of us can arrange the events that we perceive in an orderly sequence. In
other words, we can tell which of any two events perceived occurred earlier
and which later. By means of physical appliances, such as a watch, we
can even say how much earlier or later. This enables us to particularise or
‘date’ the events by a number—the number of suns, moons or seconds that
have elapsed since a certain beginning of time. This is the commonsense

THE knowledge that things, in spite of their apparent permanence,
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way of reckoning time, which both Newton and Lcibnitz took for granted.

Now about growth. Here again, to fix ideas we may think of something
concrete that grows, e.g. the weight of a newly born baby. We could say
something about its growth if we weighed it on a number of different
occasions. If we ‘dated’ the occasions we should get a succession of num-
ber pairs, one number denoting the date of weighing and the other the
corresponding weight on that date. This table of number pairs, i.e. the
weight and its corresponding date, is, in fact, the growth function—the
mathematical representation of what we have called the correlation of
growth against the flow of time.

We must first somehow infer the growth function of changing phenomena
before the calculus can be applied, and our guide in this matter is mostly
experience. Historically, the first phenomenon to be studied by the calculus
was the motion of material bodies, such as that of a stone rolling down a
hillside. Galileo inferred the growth function of roliing stones from study-
ing its laboratory replica. He allowed balls to roll down inclined planes
and observed the distances travelled by them at various times or ‘dates’
such as at 1, 2, 3, ... minutes after the commencement of the roll. If we
repeat his experiment we may, for example, find the following table of
corresponding number pairs:

Time () in seconds: 0,1,23,4,5,...
Distance rolled (y) in feet: 0, 1, 4, 9, 16, 25, . ..

It is clear that we may replace this table by the formula y = 3, which is
called the growth function of the distance. The problem that the calculus
is designed to handle is as follows. Knowing the growth function of the
distance the ball rolls, can we discover how fast it moves ? In other words,
what is its speed ?

It is obvious that the ball does not travel with the same speed during the
whole course of its motion. The speed itself continually grows. The calculus
seeks to derive the growth function of the speed, knowing that of the
distance, and thus to give us a formula which enables us to obtain the speed
at any given time. Suppose we wish to find its speed at the time denoted by
t = 2. Take any other time close to ¢ = 2 but slightly later, say z = 2-1.
The distances travelled in these two times are (2)* and (2-1)? units of dis-
tance (say feet), respectively, for the distance rule, y = 12, applies equally
when ¢ is a fraction. The distance travelled during the time interval from
t = 2to t = 2-1is therefore (2:1)* — (2)%. Hence, the average speed during
the interval of time from 2 to 2-1, or 0-1 units of time (say seconds) is
@1 — ¢

01
of the ball at the time 7 = 2 for all ordinary purposes; but if someone in-

= 4-1 feet per second. We could regard it as the actual speed
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sisted that it was only an average during the interval taken and not the
actual speed at r = 2, we should have to concede the point. To satisfy our
opponent, we might calculate the average speed during still shorter inter-
vals of time, say, that during the intervals (2, 2-01), (2, 2-001), (2, 2-0001),
... -.. In exactly the same way as before, we find that the respective
averages during these shorter intervals are 4-01, 4001, 4-0001, ..., ...
feet per second. This shows that the average continually approaches 4 as
we successively shorten the interval used for averaging. More precisely, we
can make it come as close to 4 as we like provided only we take a sufficiently
small interval of time for calculating the average. This value 4 is then the
limit of the average—it is a sort of terminal point or bound below which
the average can never fall. We are, therefore, justified in taking this limit
as the actual speed at ¢ = 2. If we try to work out the speed at other times
suchast=1,3,4,5,...inthe same way, we findittobe 2, 6, 8, 10, . ..
respectively. Thus the table of corresponding values of speed at various
times is:

Time () in seconds: 1,2,3,4,5, ...

Speed (v) in feet per second: 2, 4, 6, 8, 10, . ..

This suggests the formula v = 2t for the growth function of speed.

We could treat the speed function in exactly the same way as we have
treated the distance function. In other words, we could now enquire how
fast does the speed change or what is the acceleration of the ball. We pro-
ceed in the same manner as before by taking an instant of time, say 2-1,
very close to the instant 2. The speed changes from 2(2) to 2(2:1) so that
the average increase in speed—or the acceleration—is

22 -20) _,
e1-2 _~

We get the same result no matter how close to 2 we choose the second
instant of time for averaging the increase in speed. We may, therefore, re-
gard this average acceleration as the actual acceleration at ¢ = 2. If we try
to work out in the same manner the acceleration at other instants of time,
suchast =1, 3,4,. .., we find that it remains 2 all the time. Consequently,
the table of corresponding values of acceleration at various times is:

Time () in seconds: 0, 1, 2, 3,4, ...
Acceleration (@):  2,2,2,2,2,...

This suggests the formula @ = 2, which means that acceleration remains 2
at all instants of time. In other words, the ball rolls with uniform accelera-
tion.

Although the calculus was originally devised to calculate time rates of
change like speeds and accelerations of moving bodies. its technique is
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equally applicable to all sorts of rates of change. In everyday life we usually
come across time rates, such as interest, speed, acceleration, growth, etc.,
but whenever we have one variable quantity, y, depending on another
variable, x, we may enquire about the rate of change of y per unit change
of x. Thus the irrigation engineer is interested in the hydraulic pressure, y,
that the dam surface has to endure at any given depth, x, below the water
surface. Here, although the water pressure is assumed to remain static
everywhere, we may, nevertheless, legitimately enquire how fast the water
pressure rises with increasing depth. In other words, we may wish to de-
termine the rate of change of pressure per unit change of depth.

Whenever we have a pair of magnitudes, y and x (such as hydraulic
pressure and depth, freight or fare payable and distance of journey, income
tax and income, efc.), so related that the measure of one depends on that
of the other, the former is said to be a function of the latter. Symbolically,
we denote this dependence by the expression y = f(x), where fis only a
shorthand for ‘depends on’.

Now since dependence like so many other relations, such as friendship,
is a reciprocal relation, we could equally regard the measure of x as de-
pending on that of y. Thus, if y is a function of x, then equally x is some
function F of y. The function F(y) is called the inverse of f(x). For in-
stance, if y = 3x — 6, then x = y/3 + 2. Hence the inverse of y, y = f(x)
= 3x — 6 is the same as x = F(y) = y/3 + 2. Although, strictly speak-
ing, either variable may be expressed as a function of the other, in most
situations it is more natural to regard the variation of one as independent
of and, in a way, ‘controlling’ that of the other. For instance, in the above-
mentioned illustrations it is more natural to consider income tax as a
function of income, railway freight as a function of distance, or hydraulic
pressure as a function of depth, rather than the other way about. Income
tax, railway freight and hydraulic pressure are therefore dependent
variables, as they do, in a real way, depend on income, distance and depth,
respectively. It is true that there are some cases in which it may not be
quite obvious which of the two variables should be treated as independent,
but in such cases we may make any choice to suit our convenience.

In most cases the dependence between the two variables y, x is far too
complicated to be reduced to a formula. For example, the bitterness of
Swift’s satire or the pungency of Carlyle’s invective may, perhaps, if they
could be measured, be functions of the amount of bile secreted by their
livers at the times of writing. But if so, no formula can be devised to ex-
press this dependence. In science, however, we mostly deal with functional
dependences which can be reduced to a formula. For a closer peep into the
working of nature, where we also come across dependences far too com-
plex to be trapped in the neat expression of a single formula, mathematicians
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during the last century or so have been obliged to consider functional
dependences, which may be expressed by a series of formulae instead of by
a single formula. As an instance of such a function we may cite the rela-
tion between pressure, y, and volume, x, of a gas at constant temperature.
For ordinary pressures such as could be applied in the time of Boyle, the
formula, y = constant/x, usually known as Boyle's law, expresses this de-
pendence. For other ranges of pressure such as are now possible, different
formulae have to be used. The functional relation between pressure and
volume of a gas is thus a multi-formula function. The same is true of most
laws of nature.

Now, whatever y and x may be, and whatever the formula or formulae
expressing their dependence, we may want to know the rate of change of
one per unit increase of the other. Suppose y = f(x) is a functional rela-
tion between any dependent variable y and an independent variable x.
Let us calculate the rate of change of f(x) per unit change of x . In general,
this rate will itself vary and depend on the particular value of x chosen.
Suppose we want it for x = 2, then, as in the case of time when we were
discussing speed above, we choose a short range of the independent vari-
able lying between 2 and 2 + A, h being a small number. If the independent
variable varies from 2 to 2 + A, the dependent variable y will change from
f(2) to f(2 + h). The net change of its value over the range (2, 2 + h) is
S(2 + h) — f(2). The average rate of change over this range is, therefore,

fQ+RH—fQ)
h

If h is reasonably small, we may take this average rate as the actual rate of
change of f(x) at x = 2. But if someone insisted that this is only an average
and not the actual rate, we should have to accept the validity of his objec-
tion. To avoid such an objection, we say that the actual rate of change of
y at x = 2 is the limit of the average rate of change of y per unit change
of x, when the interval of x, over which it is averaged, is decreased in-
definitely. The idea is exactly analogous to that of speed, with x substituted
for ¢. This limit is known as the differential co-efficient or derivative of y
with respect to x at x = 2, and is usually written as (Z—i) , or f'(2).
x=2
We could do to f(x) what we did to f(x), that is, we could enquire what
is the rate of change of f'(x) with respect to x at the value x = 2—or at
any other value, for that matter. It is similarly the limit of the average
rate of change:
fQ+hH—1Q)

h )
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as h tends to zero. This limit is the differential co-efficient or derivative of
f'(x) with respect to x at x = 2. Since f"(x) itself was derived from f(x)
by the same process, we may also call the limiting value of (1) the second
differential coefficient or derivative of f(x) with respect to x at x = 2. We
d?
denote it by (Ey) , or f"(2). There is no reason why we should
x=2
stop here. We could repeat the process to derive successively the third,
fourth . . . differential coefficients of f(x) for any specific value of x, such
as 2. This successive generation of differential coefficients is no mere free

FiG. 2—As Q travels along the graph line to coincide with P, P
takes the position of the tangent P7. The angle ¢ becomes the angle 6.

In the limit therefore, g = tan 6,

creation of the curious mind. The railroad engineer has to employ second
derivatives to calculate the curvature of the line he constructs. He needs a
precise measure of the curvature to find the exact degree of banking re-
quired to prevent trains from overturning. The automobile designer
utilises the third derivative in order to test the riding quality of the car he
designs, and the structural engineer has even to go to the fourth derivative
in order to measure the elasticity of beams and the strength of columns.

It is not difficult to see how the first and higher order derivatives arise
naturally in problems like these. Suppose the curve APQC represents the
railway line. (See Fig. 2.) Before the calculus can be applied we must
somehow represent it algebraically, that is, by some functional formula.
This is done by taking any two perpendicular reference lines XOX” and
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YOY through a point of origin O and indicating the position of any point
P by its distances (x, y) from these reference lines or ‘axes’. The distances,
x, y, are called co-ordinates. Now if we consider any point P on the line
and measure its co-ordinates (x, y), we find that y is usually some function
of x, such as y = f(x).

This equation gives the variation of y due to a change of x. At any
point P(x,, y,) of the line the value of y, is f(x,). At another point
Q(xy + h, yo + d) very close to P and also on the railway line, the value
of yis f(x, + h). Hence the change in y is f(x, + A) — f(x,), or the length
QR = d. The average rate of change of y per unit change of x is

[ +h) —flx) _d_ QR
h " h PR

If the angle QPR is denoted by ¢, the ratio QR/PR is known as the slope
or gradient of the line PQ, and is written as tan ¢, which is short for tangent
of the angle ¢. It follows, therefore, that the average rate of change of y
at P with respect to x is the gradient or slope of the chord joining P to
another point Q of the line very close to P. If we diminish A, the average
rate of change of y during the interval (x,, x, + /) approximates more and
more closely to the actual value of the instantaneous rate at P. The latter
has already been defined as dy/dx. On the other hand, as 4 diminishes and
Q approaches P along the graph line, the chord line PQ becomes a tangent
to it at P, that is, the straight line PT which just grazes it. Hence the value
of dy/dx at P measures the gradient or slope of the tangent to the curve at
P.

d
In symbols, & tan 6.
dx

Now, at any point P the direction of the line is along the tangent PT.
At another point Q on the line it is along the tangent Q7" at Q. (See Fig.
3.) The measure of its bend as we travel from P to Q along the line is
therefore the angle between the two tangents at P and Q. The rate of its
bend or curvature is the ratio:

total bend
length of the curved line PQ

This is, of course, the average curvature along the whole length of the
arc PQ. If we want its precise curvature af the point P, we must, as before,
find the limit of this ratio as the length of the arc PQ is indefinitely de-
creased by bringing Q infinitely close to P. In other words, we have to
differentiate the angle 6 of the tangential direction at P with respect to the
length PQ of the arc. But, as we have seen already, tan 6§ is dy/dx. It is,
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o _—t /!' X

FiG. 3—The total bend of the line as we move from P to Q is the angle between the two
tangents at P and Q, that is, 8" — 6.

therefore, inevitable that in the process of differentiation of the angle 6
we should encounter second derivatives.

As we saw, the problem of calculating instantaneous speed and accelera-
tion of moving bodies ar any given instant of time from the mathematical
formula connecting the distance (y) travelled and the time (7) of their fall
or flight, gave rise to the differential calculus. The inverse problem of
calculating the distance travelled, given a mathematical formula connect-
ing speed or acceleration with time, led to the development of the Integral
Calculus.

Suppose a particle moves with speed v which is given by the relation
v = t. What is the distance, s, travelled during the time interval from say
t =1to t =67 If the speed had been uniform we could have got the
desired distance by multiplying the uniform speed by the duration of the
time interval during which it was maintained. But in the problem before
us the speed does not remain the same even for two consecutive instants.
How are we to apply the rule which is valid for a static speed to
calculating the distance travelled when it is no longer so?

Essentially this is a problem of reconciling irreconcilables, of finding a
method of resolving the inherent conflict between change and permanence.
This conflict is universal—between the ever-changing material world and
the static, permanent or quasi-permanent forms and categories that we
invent and impose upon the world to understand it. Newton and Leibnitz
were the first to devise a practical way of resolving this conflict in the case
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of moving bodies. The method proposed was simple in principle—once it
was discovered. They divided the duration of motion into a large number
of sub-intervals during each of which its velocity was assumed not to
change. The rule for static speed could now be applied for each sub-
interval separately and the distance derived by summing all the distances
travelled in each sub-interval.

Suppose, for instance, we divide the interval of time from r =1 to
t = 6 into any number, say 10, of equal sub-intervals, each of duration
6—1

10
1+% 1+% 1+4 ..., 1+ % between the times =1 and 1 = 6.
Consider now the first sub-interval from the initial instant 1 =1 to
t =1 + %. Since the speed v is given by the formula v = t the speeds at
the beginning and end of the first sub-interval were 1 and (1 + 4) res-
pectively. The distance travelled during the first sub-interval is, therefore,
greater than 1(4) but less than (1 4+ 4)4. Similarly the limits between which
the distances travelled during the second, third, fourth, ... and tenth
sub-intervals lie, can be calculated. We tabulate these limits below:

= } second, by taking nine intermediate point-instants 1 + 4,

Sub-interval Lower limit of the Upper limit of the
of time distance travelled distance travelled
First 1) (1 4+
Second I+ a1+ Hd
Third I+ HAd) a1+ Hd)
Fourth a1+ Hd) 1+ 9HAd
Fifth 1+ 9D 1+ Had
Sixth a1+ Hd a1+ 9Hd
Seventh 1+ P a1+ Hd
Eighth 1+ HD 1+ HA
Ninth 1+ Hd I+ 9@
Tenth 1+ HdH 1+ 303

Total = 5 S

Let 5, and S, be the sums of the lower and upper limits of distances travelled
during the ten sub-intervals. If we add up the ten terms shown in the above
table of lower and upper limits we get,

s=H10+(1+2+3+...94}
= §(10 + 4 = 1625;

S;=H10+(1+2+3+4...104}
= 3(10 + &) = 18-75.

The actual distance travelled, therefore, lies between 16-25 and 18-75 feet.
It is not an exact answer but good enough for rough purposes. To improve
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the precision of our answer, we have to shorten further the sub-intervals
by dividing the original interval # = 1 to # = 6 into a larger number of
sub-intervals, say, 100 instead of 10 so that the duration of each sub-

6—-1 1
interval now is 00— 20° The only snag is that the calculation is longer
but not different in principle. If we denote by s, and S, the corresponding
sums of lower and upper limits for the distance travelled during these

shorter sub-intervals, we find that

Sy =26{100 + (1 +2 4+ 3+ ... 99} = 17-37;
and, Sy = 764100 4+ (1 + 2 4- 3 4 ... 100)a%s} = 17-63.

This gives us still closer limits within which the actual distance travelled
must lie, viz. 17-37 and 17-63. If we repeat the calculation by dividing the
interval into 1000 sub-intervals, the corresponding sums s, and S, will be
found to be

s,=th‘§1000+(l + 2+ 3 +...999)zds} = 17-48;
and, S,= ¥65{1000 + (1 +2+3+...1000)rh}= 17-51.

These are even closer limits for the actual distance travelled during the
interval (1, 6). We may tabulate the successive values of the upper and
lower limits:

5, = 16:250 S, = 18750

s, = 17-375 S, = 17-625

53 = 17-4875 S; = 17-5125

s, = 17-49875 S, = 17-50125.

From the above table, we may infer that the sums of lower limits or, for
short, lower sums s,, S, 5y, . . . continually increase while the upper sums
S1, Sy, S, . .. continually decrease. Moreover, the difference between the
two corresponding lower and upper sums continually decreases so that
both sums approach the same limit as the number of sub-intervals is in-
definitely increased. This common limit of the two sums which, as we may
guess, is 17-5, is the actual distance travelled. It is also known as the in-
tegral of speed with respect to time over the interval (1, 6). We denote it
by the symbol

L} [
j’ vdt, or J tdt, as v=1.
1 1

In this, the integral sign f is only a distorted form of S, short for sum, to
remind us that it is really a limiting sum.

If we look at the speed-time graph (Fig. 4), the line O DC will represent
the relation s = . We can use this graph to simplify the calculation of the
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speed integral. Suppose we divide the time interval (1, 6) represented by
the segment AB of the time-axis Ot into any number of equal sub-intervals.
Consider now any such sub-interval, say, LM. At the instant of time repre-
sented by the point L, the speed is given by LP and at M by M Q. The dis-
tance actually travelled during the sub-interval LM, therefore, lies between
the lower limit, LM.LP, and the upper limit, LM .MQ, since distance
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= time X speed. These limits are obviously the areas of the two rectangles,
LPQ’M and LP’QM. As we increase the number of sub-intervals, the sub-
interval LM diminishes indefinitely. The areas of the two rectangles be-
tween which the actual distance travelled lies approximate more and more
closely to the area of the trapezium LPQM. But as the total distance
travelled during the interval (1, 6) is the sum of all such areas, it is naturally
represented by the area of the trapezium ABCD. Now the area of the
trapezium ABCD—

= A OBC — A OAD

= HOB)(BC) — HOA)XAD)

= H(6)(6) — H1X1)

= }6* — 1%) = 17-5.

We may therefore write rrdl = ¥6* — 1%,
1

From this we may readily infer that the distance travelled during any
f
interval (f,, t,) is the definite integral J tdt = ¥(t] — 13).
]
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We can further generalise this result. Instead of working with the speed-
time graph s = #, we may start with the graph of any function y = f(x),
and enquire what is the area enclosed by the graph line BC, the two ordin-
ate lines AB, DC and the segment 4D on the x-axis, where OA is any
length x, and OD any other length x,. (See Fig. 5.) As before, we divide
the segment 4D into any number of equal sub-intervals. Take any sub-
interval LM. The area LPQM enclosed by the arc PQ of the curve evi-
dently lies between the areas of the inner rectangle LPQ’M and the outer
rectangle LP'QM. As we increase the number of these rectangles ia-
definitely, the areas of the two rectangles approximate more and more
closely to the area LPQM enclosed by the small arc PQ of the graph line.
But the sum of the areas of inner rectangles like LPQ’M is the exact
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analogue of the lower sum, and that of the outer rectangles like LP'QM
that of the upper sum we constructed earlier while integrating the speed
graph v = t. These two upper and lower sums tend to a common limit as
the number of sub-intervals is indefinitely increased. This common limit is

&
the integral j 1f(x)dx. Obviously, this integral is also the measure of the
zg

area ABCD enclosed by the graph line BC as each of the inner and outer
rectangles approximates, more and more closely, to the actual area LPQM
under an elementary arc PQ of the graph line.

1
Now although we have defined the definite integral Lo f(x)dx as the

area of the curve ABCD, it is not the only possible interpretation that can
be given to it. The essential idea behind it is that it is a limiting sum of an
infinite series of terms. It thus comes to pass that whenever we have to
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add up an infinite number of values of a function corresponding to an
infinite number of values of its independent variable, the definite integral
plays an indispensable role. For instance, when the hydraulic engineer
constructing a dam wants to ascertain the total water pressure likely to
be exerted on the whole face of the dam, he divides the entire dam surface
into an infinite number of point-bits. As the pressure at any arbitrary
point-bit of the dam surface can be calculated, the calculation of the whole
pressure on the dam surface is a summation problem and therefore amen-
able to integration.

Here pressure is a function of the depth of the point-bit below the water
surface. It is the same with other problems facing the bridge engineer, the
architect and the electrician in the calculations, respectively, of moments
of inertia, centres of gravity of solids and surfaces, magnitudes of electro-
magnetic fields, etc. In all these problems the value of a quantity such as
mass, moment, hydraulic pressure, electric or magnetic forces, is given at
each of an infinite number of points in a region or space and it is desired
to calculate their sum.

It is often inconvenient to calculate such limiting sums directly. The
calculation is greatly simplified by the use of a theorem which links inte-

z
gration with differentiation. As we have seen, the integral j JS(x)dxis the
o

area enclosed by A DCB (Fig. 5). If we treat x, in this integral as a variable,
the integral itself becomes a function of x,. Let us call it F(x,). Then

Fx,) = j:f(x)dx.

What is the differential coefficient of F(x,)? According to the rule we have
established, it is the limit of

F(x, + h) — F(x))
h

as h tends to zero. Now F(x,) is the area AQPB (Fig. 6) and F(x, + h) is
the area 4AQ'P’B (Fig. 6). The difference is the area QQ’P’P or approxi-
mately QQ’.PQ = h.f(x,). The smaller 4 is, the more nearly is the area
PQQ’P’ equal to h. f(x,) and hence as h tends to zero, the limiting value of

F(x; + h) — F(x}) _ h.f(x,)
h T h

= f(xy), is f(xy).

dF d (a1
In other words, i d_x_,jx,. S(x)dx = f(x,).
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That is, the differential coefficient of the integral of a function is the func-
tion itself. Thus differentiation and integration are inverse operations like
multiplication and division. Just as multiplying a number by another and

Y

e X

FiG. 6—F(x,) is the area AQPB, and F(x, + h)the area AQ'P’B. The
difference, therefore, is the area QQ°P’P which is approximately
QQ’ PQ. or f(x,).h. The rate of change of area under the curve at P
is the value of f(x) at P.

then dividing the product by the same factor leaves the number unchanged,
so integrating a function f(x) and then differentiating the integral leaves
the function as it was before.

The great power of the calculus depends on this fundamental theorem,
for, in our study of nature we often assume a formula for the rate of growth

of one variable per unit change of the independent variable, and we then
want to know if the formula really works. For instance, in his study of
motion Newton assumed that the temporal rate of change of velocity of
a moving body, that is, its acceleration, is equal to F/m, where F is the
force applied to it and m is its mass. He applied this formula to a wide
class of phenomena, from the motion of the pendulum to that of the moon.
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This formula always led to an equation in which occurred the rates of
change or the differential coefficients. Thus, in the case of the motion of
the pendulum bob, it led to the equation dv/dt = F/m.

Now, if we assume that the circular arc that the bob describes is small,
we may consider it as oscillating along the straight line BC instead of the
arc BAC (see Fig. 7). Let its distance in any position P be x from the
central position O’. The force F acting on it in this position is that part or
component* of the tension of the string holding the bob, which acts
along the direction of its motion, that is, the direction O’B. It can be
shown that this component is —mg. x/l, where [ is the length of the string
and mg the weightt of the bob. Newton’s formula, therefore, leads to the
equation

dvjdt = —gx/I.

But as we know, v itself is dx/dt, so that the equation of the motion of the
pendulum bob is

b_d(E) o g

dt  di\dt) dt 1
or, d*x/dr* = —gx/l . . . . (D

Such an equation in which differential coefficients of the dependent variable
with respect to the independent variable occur is known as a differential
equation. All that Newton’s famous laws of motion and gravitation do is
to set up a system of one or more differential equations essentially of the
type written above. The motion of the body or system of bodies is then
known, if we can ‘solve’ the differential equations, that is, find x as a
function of ¢ so that it satisfies them.

If we consider the solution of any differential equation such as (1) we
shall find that it is indeterminate in one respect. You will recall that in
formulating it, we merely used Newton’s law and took no account of the
initial position from where the bob is let go. This means that the differential
equation is indifferent to its initial position.} No matter where the bob is,
one and the same differential equation (1) results, and yet what motion it
actually executes must also depend on its initial position. Thus its motion
when it is released at B is not the same as when it is released at P. In the
one case it oscillates between B and C and in the other between P and Q
(see Fig. 7). It therefore follows that the differential equation defines no

* See Chapter 4 for a fuller explanation of the component of a force.

t Weight, by the way, is the product of mass m and the acceleration g of gravity, the
acceleration with which everything when released falls towards the surface of the earth.

$ The assumption is still made that the arc BC is small and can be identified with the
chord BC.
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particular motion of the bob but the whole class of its possible motions
corresponding to all its initial positions.

The precise solution of the equation therefore involves the choice of that
particular solution out of this class which fits the prescribed initial condi-
tion. Here the initial condition is specified by a single magnitude denoting
the position of the bob just at the commencement of its motion. But in
more complicated cases there are usually many initial conditions which
have to be specified by several magnitudes. Take, for instance, Lord
Kelvin’s theory of the transmission of signals in a submarine cable,
whereby he established the theoretical feasibility of an Atlantic cable long
before trans-oceanic cablegram became an accomplished fact.

In this case, not only is the differential equation more complicated but the
initial conditions too are more numerous. The reason is that we need to
know the state of the cable before one of its ends is suddenly connected
to a battery terminal, and not merely at one particular point but all along
its length. In other words, the initial conditions also include boundary
conditions—that is, the initial state of affairs prevailing all over the
boundary or surface of the cable.

From what has just been said it follows that even if we are somehow able
to solve a differential equation, we must adjust it to suit the given initial
conditions. A vast amount of new mathematics created during the past
200 years is merely the outcome of this search in physics and astronomy
for solutions of differential equations satisfying prescribed initial condi-
tions. After a prodigious number of special solution functions had been
invented, it was found that in many cases a differential equation along
with its accompanying set of initial conditions is equivalent to an integral
equation, in which the unknown variable x appears under an integral sign
instead of a sign of derivation. It is thus possible to reformulate certain
physical problems in terms of integral rather than differential equations.
The great advantage of such reformulation is that the passage from simpler
to more difficult problems is not attended with any serious increase in
complication as is the case with differential equations.

There are, however, phenomena in which the initial state of a system
does not suffice to determine its subsequent evolution. Thus, the evolution
of an elastic system is not always determined by its initial state alone but
by all its previous states. The past is not completely obliterated and an
ancestral influence of a sort controls the shape of things to come. For in-
stance, the type of motion a pendulum bob executes depends solely on the
initial position from where it is released no matter what oscillations it
might have executed earlier, but if you try to twist an elastic wire, the
result will largely depend on how and how many times it had been twisted
before. It is because of this hereditary or ancestral influence that materials
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sometimes fatigue and break down under comparatively minor straiss,
whereas earlier they could have stood up to much heavier strains.

Such hereditary phenomena require a new mathematical instrument
called the integro-differential equation, in which the unknown function x
appears under a sign of both integration and derivation. It can be shown
that such an equation is equivalent to an infinite number of ordinary
differential equations, and this is the reason why they apply to hereditary
phenomena. For the initial state which was determined earlier by a few
magnitudes has now to be broadened to include the whole infinity of past
states. It has, therefore, to be specified by an appropriate choice of an
infinite number of magnitudes.

Now, if we view the elastic system atomistically, and thus consider an
extremely large number of ordinary differential equations regulating the
motions of an extremely large number of particles, each with its own set of
initial conditions, we may disregard the hereditary feature which experi-
ence seems to require. But as an infinity of differential equations is mathe-
matically intractable, it has to be replaced by a single integro-differential
equation which is equivalent to this infinite set.

It is needless to add that it is easier to write equations, whether differ-
ential, integral or integro-differential, than to solve them. Only a small
class of such equations has been solved explicitly. In some cases, when, due
to its importance in physics or elsewhere, we cannot do without an equa-
tion of the insoluble variety, we use the equation itself to define the func-
tion, just as Prince Charming used the glass slipper to define Cinderella as
the girl who could wear it. Very often the artifice works; it suffices to iso-
late the function from other undesirables in much the same way as the
slipper sufficed to distinguish Cinderella from her ugly sisters.

(The following section may be omitted on first reading)

So far we have considered only functions which depend on a single
independent variable x. This assumes that variation in a magnitude ()
can be explained by the variation in a single independent variable x. But
in most situations, where we have to explain the variation of a magnitude
(»), this assumption is simply not true. As a rule a dependent variable y is
influenced by several independent variables simultaneously. Even in the
simple case cited earlier, of the pressure of a gas enclosed in a cylinder, it
is rather an over-simplification to say that pressure depends on volume,
because in actual fact it also depends very materially on temperature too.
In this case this extra dependence on temperature does not cause much
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inconvenience, for we can study the functional relationship between pres-
sure and volume by keeping the temperature constant. But in many cases
this device merely produces an abstract schema too far removed from
reality.

For example, in econometrics the price of a commodity is considered to
be a function of a whole host of variables, such as the incomes of various
social groups, prices of other competing goods, production costs, the
nature of the commodity itself (e.g. a necessity or a luxury), and the
seasonal effects in the case of what are called ‘anchovy goods’, which are
goods with very heavy supply-fluctuations, such as the catch of fish, which
in one year may be a hundredfold that of another year. An econometric
law which correlates one magnitude with another single variable under the
ceteris paribus condition (other factors remaining the same) can never be
actually tested, as the ‘other factors’ do not, in fact, remain the same. Nor
would it be of much use even if it were ‘true’ in some imaginary market
where other factors were assumed to remain the same. But long before
econometricians felt the need for a calculus of multi-variate functions, that
is functions depending on more than one independent variable, mathe-
maticians had begun to create one in an attempt to study fluid motions.

Just as Newton was led to the notion of differential coefficients in his
studies of the motion of projectiles and heavenly bodies, so also Euler was
led to the notion of partial differential coefficients in applying Newton's
equations of ordinary dynamics to fluid motion. In ordinary dynamics the
projectile (or heavenly body) is considered to be a particle whose velocity
is a function of the single independent variable time. But a fluid cannot be
treated as a mere particle. It has bulk which cannot be disregarded even in
an abstract schematic treatment. Moreover, a fluid in general not only
varies in velocity from point to point in space at any one instant, but
also from moment to moment of time at any one point.

A fluid motion, say on the Earth, has therefore two aspects: a geographic
aspect and an historic aspect. When we consider the former, we fix our
attention on a particular instant ¢ of time and wish to study the velocity of
a fluid particle as a function of its geographic position. In the latter we
rivet our attention on a specified particle of the fluid and study its velocity
as a function of time. A combination of both the aspects, that is, con-
sideration of the velocity of a fluid particle as a function of both space and
time simultaneously, will give an actual picture of the fluid flow as a whole.
In this way we are led to the notion of a multivariate function; that is, a
function depending on more than one variable. Such, for instance, is the
case with the velocity of a fluid particle, as it is a function not only of time
but also of the position co-ordinates of the particle in question.

To illustrate the idea of the partial differential coefficient to which Euler
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was led by a study of fluid motions, let us consider a function y which
depends on two independent variables x;,, x,, simultaneously:

y = f(xh xt)'

Consider first x,. Since y is a function of x,, x, only, that is, it depends on
only x,, Xy, any change (small or otherwise) in its value can arise only on
account of a change in x, or x, or both. In science, whenever we have to
investigate a phenomenon which depends on more than one cause (e.g.
agricultural yield, which among other things is a function of the qualities
of both manure and seed), we disentangle the complex field of influence of
the two factors by studying the influence of each in isolation from the
other. Once we have studied the effect of the causes singly, we can give
due weight to each when the isolates are put back into their natural inter-
relations.

This method is appropriate in the case under consideration. To begin
with, we make a small change dx, in the value of x, only, making no change
in that of x,. What change would it cause in the value of f(x,)? As we have
seen, the derivative df/dx,, is the rate of change of f(x,) oryper unitchange
of x;. That is, for every unit change of x;, the corresponding change in f
or y is dfjdx,. Hence for asmall change dx, in the value of x, the corres-
ponding change in f or y would be the product:

(e

Note carefully that f is a function of x, as well as x,; but as we have
assumed no change in the value of x, we must express this fact somehow
in our notation. This is done by writing df/dx, instead of df/dx, so as to
remind us that the other variable, x,, is not to be changed and is therefore
to be treated as if it were a constant. The quanuty ¢f/éx, 1s known as the
partial derivative of f with respect to x,. Hence the change in f or y cor-
responding to a small change in x,, x, remaining unchanged, is (g ) dx,.

1

We now study the change in f (or y) corresponding to a small change in
the value of x; while no change is made in the value of x,. A similar argu-
ment shows that it is:

What then is the change in f (or ) if both x,, x, are changed simul-
taneously ? We may assume that it is the sum of the changes induced by
the small changes in x, and x, acting singly. It may not be an accurate
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assumption to make when the changes in x; and x, are combined to pro-
duce a new complex, but it is quite good, for all practical purposes, if the
changes in x,, X, are infinitesimally small. We therefore conclude that a
small change in the value of y, induced by the joint operation of small
changes x, and x, in the values of x; and x,, is the sum of the changes in-
duced by them singly. In other words,

of of
dy = ——dx, + ~—dx,.
4 Ex,dx‘ T ox, .

In obtaining his equations of motion of fluid flow Euler merely made
use of an extension of this theorem, viz. a small change in any function
f(xy, X;, X, 1) of four independent variables x;, x,, X3, and time ¢ is given
by the sum:

o of of of
df——a—xldxl + a—x’dx,+-a—;’dx,+a—tdt.

With the help of this theorem and the application to a small volume
of fluid element the second law of Newton—viz., that the product of the
mass and rate of change of velocity in any direction is equal to the resultant
of forces (including fluid pressures) acting thereon in that direction, Euler
obtained equations of motion connecting the partial differential coefficients
(or rates of change) of velocities with respect to the three spatial co-
ordinates and the time. In addition, he obtained another partial
differential equation—the equation of continuity—from the consideration
that the mass of any moving fluid element under consideration remains
constant.

Now, since velocity at any point has three components, say (4, v, W),
along the three co-ordinate axes, it is obvious that the above-mentioned
equations would involve partial differential coefficients of three separate
functions (u, v, w) with respect to x, y, z and ¢. It is possible in many cases
to merge the search for the three separate functions, u, v, w, satisfying these
equations into the search for a single function called the velocity-potential
function, @, of four independent variables x, y, z, ¢ satisfying the same
equations. But the equations by themselves do not specify the velocity-
potential function uniquely. They are satisfied by a far more general class
of functions of which the potential function @ is just one. To narrow down
further the margin of indeterminateness we have to make use of boundary
conditions which the velocity potential must satisfy. What this means may
be explained by an example.

Suppose we consider the flow of water in a canal between two parallel
banks. In this case the velocity potential @ must not only satisfy the
Eulerian equations of motion and continuity referred to above but also
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the further condition that at the boundary of the fluid (that is, at the bank)
the velocity component perpendicular to the bank is zero. In other words,
@ must satisfy the boundary condition that the fluid flow at the bank is
parallel to it and that no particle flows past it, which could happen only if
the banks were breached. Thus, if the Eulerian equations of motion and
continuity are the slippers that isolate our ®@-Cinderella from the undesir-
able members of its family, the boundary condition is the censor that for-
bids the banns should a relation attempt to masquerade as @-Cinderella
by wearing the slippers. Unfortunately it has not been possible to discover
a @-Cinderella who could wear the slippers and satisfy the censor in the
general case of fluid motions. And yet Euler had made the slippers rather
loose, since he disregarded an important property of real fluids, viz. their
viscosity.* Seventy years later Navier and Stokes made them much tighter
by adding what may be called the viscous terms to the three Eulerian equa-
tions of fluid motion. That made matters more difficult.

Largely owing to the great inherent difficulties of the subject. hydro-
dynamical theory was obliged to make a number of simplifying assump-
tions and thus became more a study of ‘perfect’ or ‘ideal’ fluids than that
of actual fluids in the real world. This was natural. But unfortunately the
next step—that of proceeding to a more realistic state of affairs by em-
broidering variation from the ideal on the theory—was long delayed. As a
result the theoretical development of fluid mechanics did not lead to such
perfect harmony between theory and observation as in other branches of
mathematical physics such as optics, electricity, magnetism, thermo-
dynamics, etc.

For instance, soon after the formulation of the Eulerian equations of
fluid motion a paradox, known as D’Alembert’s paradox, emerged. The
paradox arose because hydrodynamical theory seemed to prove that any
body completely immersed in a uniform, steady stream of fluid would
experience no resistance whatever—a result quite contrary to experience.
D’Alembert’s paradox was not an isolated case where plausible hydro-
dynamical argument led to a conclusion contradicted by physical observa-
tion. Before long it appeared that classical hydrodynamical theory was
replete with paradoxes which it was unable to rationalise. Such, for in-
stance, were Kopal’s paradoxes, paradoxes »f airfoil theory, the reversi-
bility paradox, the rising bubble paradox, the paradox of turbulence in
pipes, Stokes’ paradox, the Eiffel paradox, the Earnshaw paradox, the
DuBuat paradox, erc.

The emergence of such a multitude of paradoxes clearly showed that
hydrodynamical theory did not conform to experimental reality. One

* We commonly call liquids like tar or treacle viscous as they exhibit a tendency to
resist change of shape.
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consequence of this failure was particularly unfortunate. It made hydro-
dynamics increasingly abstract, academic and removed from actuality.
The engineers, who felt that the mathematicians had left them in the
lurch by producing hydrodynamical results largely at variance with reality,
began to create a new science of their own. This science of hydraulics was
designed to give approximate solutions to real problems. But, lacking a
sound theoretical foundation, hydraulics rapidly degenerated into a morass
of empirical and semi-empirical formulae. So, by the close of the nine-
teenth century, both the mathematicians engrossed in ‘pure’ theory devoid
of fresh physical inspiration, and the engineers absorbed in accumulating
experimental data without adequate rationalisation by deductive theory,
seemed each to have reached blind alleys of their own.

With further progress thus blocked, it was now time to think of a way
out. Naturally the very first question that arose was to consider whether
these paradoxes were due to the neglect of viscosity or to some more
serious flaw deep in the fundamental assumptions of traditional hydro-
dynamics. We shall examine this basic question of the foundations of
hydrodynamics a little more fully. To begin with, let us take viscosity.

It will be recalled that hydrodynamical theory considered ideal fluids of
zero viscosity rather than real fluids which show more or less tendency to
resist change of shape. But this is only part of the story. The complete
story is that in deriving the equations of fluid motion we must make one of
two approximations. Either we neglect viscosity, which leads to Euler’s
equations for a so-called non-viscous fluid, or we neglect compressibility
and assume that fluid density remains constant to obtain Navier-Stokes’
equations for an incompressible fluid. Can we attribute the paradoxes of
hydrodynamics solely to one of these two approximations? The answer is
no, because it can be shown that many of the paradoxes are not due to one
or other of these two approximations. But even if it were shown that they
were, there seems to be no way of avoiding them, for even with these
simplifying approximations the mathematical problem in most cases is
quite involved if not intractable. Besides, these approximations have to be
made because we do not actually know how viscosity acts in a fluid under
rapid compression. Without them hydrodynamical theory, therefore,
would have to stop almost at the very threshold. How are we then to
rationalise hydrodynamical paradoxes?

Birkhoff has recently shown that there can be no simple answer to this
difficult question. What is required is a profound analysis of the entire
body of mathematical, logical and physical assumptions (tacit or other-
wise) of hydrodynamical theory in the light of experimental data, for, as
Birkhoff has demonstrated, hydrodynamical paradoxes are not solely due
to the single ‘unjustified’ neglect of viscosity. They are equally due to
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faulty physical and logical assumptions underlying hydrodynamical
reasoning. Take, for instance, the rising bubble paradox. If we consider a
small air bubble rising in a large mass of water under its own buoyancy,
conditions of symmetry* require that it should rise vertically. And yet in
most cases it ascends in a vertical spiral instead. This paradox arises be-
cause of the assumption that ‘symmetric causes produce symmetric effects’.
But as Birkhoff rightly suggests, the symmetric effects that symmetric
causes produce need not necessarily be stable. If they happen to be un-
stable, a slight deviation would tend to multiply and the symmetry in
effects would be too short-lived to be noticeable: the observed effects
therefore would be non-symmetric. In other words, while exact symmetric
causes would, no doubt, produce exact symmetric effects, nearly symmetric
causes need not produce nearly symmetric effects if they happen to be
unstable. Hence before we can legitimately use the arguments of symmetry,
we must first show that symmetric effects deduced are stable. But a demon-
stration of the stability of a mathematical problem is far more intricate
than the deduction itself. It therefore happens that the deduction is often
made before its stability can be proved. This leaves only one alternative,
viz., to make use of the symmetric argument but to test the stability of
deduction in practice—that is, by experiment. This is one illustration of the
way in which deductive theory must be interwoven with experimental
practice if hydrodynamics is to be freed from paradox.

Another cause of paradox is the assumption that small causes produce
small effects. Since every physical experiment is actually affected by in-
numerable minute causes, we should be quite unable to predict the result
of a single such experiment if we did not continually make this assumption;
and yet it is not universally true. An obscure fanatic’s bullet—as at
Sarajevo—may precipitate a global war, a slight fault in the earth’s crust
may cause a devastating earthquake or a deep-sea explosion, and a single
mutation in a gene may alter the entire genetic mould of an individual or
even a race. In the limited field of fluid mechanics there are cases where
arbitrarily small causes do produce significant effects which cannot be
neglected. For instance, a small change in viscosity (though not a small
change in compressibility) may drastically affect fluid flow. This is because
in Navier-Stokes’ equations of fluid motion viscosity is the coefficient of
the highest order derivative appearing in the equations. Now in systems
of differential equations, the presence of arbitrarily small terms of higher
order can entirely change the behaviour of the solutions. It is not always the
case that as the coefficient of a term in an equation tends to zero, its solu-
tion tends to the solution obtained by deleting that coefficient. It may also

* Under surface tension the air bubble will be spherical and there is no cause which
does not operate symmetrically through the centre of the bubble.
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happen that as this coefficient tends to zero the solution suffers an abrupt
change of nature at some stage. Thus, for example, in the equations of
motion of a sphere through a fluid, a minute change in the value of the
viscosity coefficient from a small value of 1075 to 0-5 x 107% causes a
sudden and radical change in the nature of the whole solution, resulting
in Eiffel’s paradox.

We must therefore learn to discriminate between ‘right’ and ‘wrong’ ap-
proximations. The only way we can do so is boldly to use them in our
deductive theory but to rest the conclusions so derived by experiment. If
any of its conclusions is contradicted by physical observation, we should
have to examine all the approximations made to discover those at fault.
This is the only way we can proceed and even then we may not always be
able to overcome the trouble. For it is quite possible for a paradox to
arise because roo many approximations have been assumed* and it is
almost impossible to say which of them was ‘wrong’.

These considerations show that hydrodynamical paradoxes are due to
over-free use of approximations, non-rigorous symmetry considerations
and physical over-simplifications. But this does not mean that we can
rescue hydrodynamical theory by supplanting mathematical deduction by
the more ‘physical’ reasoning so popular with practical engineers—quite
the contrary. For recent developments in fluid mechanics have shown that
mathematics is not just a useful device for presenting results whose broad
outlines were suggested by physical intuition, as Archimedes and Newton
used geometry to present results derived by ‘analytical’ or ‘fluxion’ methods.
In many cases mathematical deduction gives correct results verified by later
experiments which physical intuition is not only unable to derive but
would, in fact, straightway reject as grossly absurd. The moral of all this is
that what we need to build (that is, a paradox-free fluid mechanics) is a
happy blend of the practice of the hydraulic engineer with the deductive
theory of the mathematician—a complete interpenetration of deductive
theory and practical experience at all levels. It is fortunate that during the
past fifty years, mainly as a result of the impetus provided by the needs of
aviation, this gap between hydrodynamical theory and experiment has been
progressively bridged by just such a happy blend.

* * * *

Lewis Mumford has divided the history of the Western machine civilisa-
tion during the past millennium into three successive but over-lapping and
interpenetrating phases. During the first phase—the eotechnic phase—
trade, which at the beginning was no more than an irregular trickle, grew
to such an extent that it transformed the whole life of Western Europe. It

* This is the case with the Earnshaw paradox.
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is true that the development of trade led to a steady growth of manufacture
as well, but throughout this period (which lasted till about the middle of
the eighteenth century) trade on the whole dominated manufacture. Thus
it was that the minds of men were occupied more with problems connected
with trade, such as the evolution of safe and reliable methods of naviga-
tion, than with those of manufacture. Consequently, while the two ancient
sources of power, wind and water, were developed at a steadily accelerating
pace to increase manufacture, the attention of most leading scientists,
particularly during the last three centuries of this phase, was directed to-
wards the solution of navigational problems. The chief and most difficult
of these was that of finding the longitude of a ship at sea. It was imperative
that a solution should be found as the inability to determine longitudes led
to very heavy shipping losses. Newton had tackled it, although without
providing a satisfactorily practical answer. In fact, as Hessen has shown,
Newton's masterpiece, the Principia, was in part an endeavour to deal with
the problems of gravity, planetary motions and the shape and size of the
earth, in order to meet the demands for better navigation. It was shown
that the most promising method of determining longitude from observa-
tion of heavenly bodies was provided by the moon. The theory of lunar
motion, therefore, began to absorb the attention of an increasing number
of distinguished mathematicians of England, France, Germany and
America.

Although more arithmetic and algebra were devoted to Lunar Theory
than to any other question of astronomy or mathematical physics, a
solution was not found till the middle of the eighteenth century, when suc-
cessful chronometers, that could keep time on a ship in spite of pitching
and rolling in rough weather, were constructed. Once the problem of
longitude was solved it led to a further growth of trade, which in turn in-
duced a corresponding increase in manufacture. A stage was now reached
when the old sources of power, namely wind and water, proved too ‘weak,
fickle, and irregular’ to meet the needs of a trade that had burst all previous
bounds. Men began to look for new sources of power rather than new trade
routes.

This change marks the beginning of Mumford’s second phase, the
palaeotechnic phase, which ushered in the era of the ‘dark Satanic mills".
As manufacture began to dominate trade, the problem of discovering new
prime movers became the dominant social problem of the time. It was
eventually solved by the invention of the steam engine. The discovery of
the power of steam—the chief palaeotechnic source of power—was not the
work of ‘pure’ scientists; it was made possible by the combined efforts of
a long succession of technicians, craftsmen and engineers from Porta,
Rivault, Caus, Branca, Savery and Newcomen to Watt and Boulton.
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Although the power of steam to do useful work had been known since
the time of Hero of Alexandria (A.D. 50), the social impetus to make it the
chief prime mover was lacking before the eighteenth century. Further, a
successful steam engine could not have been invented even then had it not
been for the introduction by craftsmen of more precise methods of
measurement in engineering design. Thus, the success of the first two en-
gines that Watt erected at Bloomfield colliery in Staffordshire, and at
John Wilkinson's new foundry at Broseley, depended in a great measure
on the accurate cylinders made by Wilkinson's new machine tool with a
limit of error not exceeding ‘the thickness of a thin six pence’ in a diameter
of seventy-two inches. The importance of the introduction of new precision
tools, producing parts with increasingly narrower ‘tolerances’, in revolu-
tionising production has never been fully recognised. The transformation
of the steam engine from the wasteful burner of fuel that it was at the
time of Newcomen into the economical source of power that it became in
the hands of Watt and his successors seventy years later, was achieved as
much by the introduction of precision methods in technology as by Black’s
discovery of the latent heat of steam.

A natural consequence of the introduction of higher standards of re-
finement in industry and technology was that mathematical language itself
became increasingly exact, subtle, fine, intricate and complex. The greatest
change in this direction occurred in the language of the infinitesimal
calculus, as the reasoning on which its technique had been based was
shockingly illogical.

The methods of calculus were accepted, not because their reasoning was
logically impeccable, but because they ‘worked’—that is, led to useful re-
sults. For instance, in calculating the ‘fluxion’, or—as we now say—the
differential coefficient of x?, the founders of the calculus would substitute
x + 0 for x in a term like x?, expand the resultant expression (x + 0)? as
if the zero within the brackét was a non-vanishing quantity, and then let
0 disappear in the final step. In other words, they believed that there
existed quantities known as the ‘infinitesimals’, or ‘fluxions’, which could
be treated as zero or non-zero according to the convenience of the mathe-
matician.

This glaring illogicality of the calculus did not escape unnoticed. It was
exposed with masterly skill by a non-mathematician, Bishop Berkeley, the
famous idealist philosopher. While the mathematicians, with unerring
instinct, ignored the attack and went on piling formulae upon formulae
like Ossa upon Pelion, these methods brought the mathematicians into
bad repute. Swift’s caricature of the mathematicians of Laputa and his
denunciation of them as ‘very bad reasoners’ was possibly inspired by
Berkeley's withering critique of the ‘fluxions’. In his L'Homme Aux
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Quarante Ecus, Voltaire, too, had a dig at the analysts when he remarked
that a ‘geometer shows you that between a circle and a tangent you can
pass an infinity of curved lines but only one straight line, while your eyes
and reason tell you otherwise.’

It is true that some gifted mathematicians of the eighteenth century had
realised that although the calculus towered over mathematics like a
colossus, its feet were made of clay. Thus, D’Alembert neatly epitomised
the whole situation when he remarked that ‘the theory of limit is the true
metaphysics of the differential calculus’. Lagrange, another eminent
mathematician of the same century, tried, though unsuccessfully, to cut
the Gordian knot by jettisoning the infinitesimals, ‘fluxions’ and ‘limits’ as
so much useless lumber, and by representing all functions as sums of a
power series—that is, a non-terminating series like g, + a,x + a; x*+ . . ..
No doubt, in this way he escaped the mysterious infinitesimals which
were both zero and not zero at the same time, but he thereby ran
into another difficulty, no less serious—that of summing an infinite
series.

The way out of the difficulty was first pointed out by a French mathe-
matician, Cauchy, who, during the second decade of the nineteenth century,
set out to purge the calculus of all its illogicalities, loose methods of reason-
ing, and premises of doubtful validity. He thus virtually introduced a
‘New Look’ that has come to stay in mathematical reasoning. New Look
was suspicious of all arguments based on vague analogies and geometric
intuition. So it began to examine more precisely all those vague notions
and concepts which had hitherto been taken for granted. Take, for in-
stance, the idea of mathematical limit which we explained earlier. The
founders of the calculus thought they knew what they meant by a limit.
In ordinary language, we use it to mean a sort of a terminal point or a
bound that may not or cannot be passed. Thus, the Phoenician navigators
considered the Pillars of Hercules as the /imit of navigation, because in
those days few ships that sailed beyond them ever returned. When mathe-
maticians began to define speed ar an instant as the limit of the average
speed when the time interval over which it is averaged tends to zero, they
pictured it in much the same manner as the Phoenicians thought of the
Pillars—as a sort of barrier past which the average cannot go. But this
explanation of the limit notion, though it may be a good enough start, is
not sufficient. For, while the mathematical meaning of limit is vaguely sug-
gested by its linguistic usage, it is not precisely defined thereby. Cauchy
gave the first genuinely mathematical defin'tion of limit, and it has never
required modification. The need for it had oeen realised earlier by many,
butitcame into being nearly 150 years after mathematicians had been man-
ipulating with limits. So if you do not get it right first reading, do not
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be disappointed. It took the mathematicians themselves the best part of a
century to frame it.

To grasp the idea underlying Cauchy’s definition of a limit, let us con-
sider once again the distance function y = 12 by which we introduced the
limit notion, but to give greater generality to our results we shall make our
symbols y and ¢ meaning-free. That is, we shall no longer think of y as
distance and ¢ as time but let them denote any two variables whatever re-
lated by the same functional formula. It would help in this abstraction if
we changed the notation a little and worked with the formula y = x*
instead of y = r%. Earlier we defined dy/dx at x = 2 as the limit of

@+ By — @
<eih-2 - - - O

when 4 tends to zero. Here the expression (1) is really a function of 4 as it
depends on the value of /4 taken. For any given value of / (except & = 0%),
we can calculate the corresponding value of (1) by substituting it for / in the
expression (1). In fact, if we simplify this expression, we find that it is

4+4h+h—4 (@+hh
h - R

for any value of h other than zero.

This shows that if we assume A successively to be -1, -01, -001, -0001,
..., the corresponding values of (1) are 4-1, 4-01, 4-001, 4-0001, ...
respectively.

We thus conclude that the limit of (1) is 4 as & is indefinitely decreased.
This may seem to suggest that the limiting number 4 is a sort of barrier
point beyond which the value of (1) cannot pass. Actually this is not always
true. Thus if we assign & a succession of negative and positive values
-1, —-1, -01, —-01, -001, —-001, -0001, —-0001, . . . we obtain for (1) the
values 4-1, 3-9, 4-01, 3-99, 4-001, 3-999, 4-0001, 3-9999, . . ..

Here even though the value of (1) continually crosses the barrier num-
ber 4 backward and forward, nevertheless it keeps on coming closer and
closer to 4. We are, therefore,still justified in calling 4 as the limit of (1).
The essential idea of the limit is not that it is a sort of impassable terminal
but that it is a point of continually closer and closer approach. For this
purpose it is, of course, necessary that we should be able to make the
value of (1) approach as near its limiting value 4 as we like by making /4
sufficiently small. But what is even more important is that once we have so

* For h = 0, the formula gives the meaningless expression 0/0. Division by zero is a
taboo in mathematics as it leads to no result. For instance, if you had hundred rupees
you could issue ten cheques of Rs. 10 each in all. But if you issued cheques of zero value,
you could issue any number of them for all the difference it would make to your bank
balance.

4+ h
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brought the value of (1) within any arbitrarily chosen small range of close-
ness to its limiting value, it should continue to remain as close, if not closer,
for all other numerically smaller values of h. Thus, suppose we wish the
value (1) to differ from its limiting value 4 by less than an arbitrarily small
number, say, ¢. In order that the difference
@4+h—4

may remain numerically less than &, all that we need do is to make 4 less
than ¢. So long as we keep h smaller than ¢ the difference between 4 and the
actual value of the expression (1) will never exceed &. In other words, the
value of (1) always lies between 4 — £ and 4 + & for all values of / less than &.

In general, we say that a function f(x) tends to a limit / as x tends to
zero, if we can keep f(x) as close to / as we like by keeping x sufficiently
close to zero. This means that given any arbitrarily small number £ another
small number & depending on ¢ alone can be found such that the differ-
ence ! — f(x) always remains numerically below ¢ as long as x stays be-
low 4. In other words, if you wish to imprison all the values of f(x) with-
in the two corners of a number mesh of any given degree of narrowness—
no matter how small—round the number /, you have to devise another
number mesh round zero within which the value of x must remain con-
fined. We usually denote the narrowness of the number mesh round / by
&, where ¢ is any arbitrarily small number we care to nominate.

In the same way we could examine if f(x) tends to a definite limit, say,
L when x tends to any other value, say, x = a. The examination may be
done in steps as follows. In the first place, we nominate an arbitrarily
small number to specify the narrowness of the number mesh round L
within which we wish to trap all values of f(x). Let it be &. This means that
we wish to confine all values of f(x) within the number mesh L — ¢, L +¢.

The second step is to discover what restriction should be imposed on
the values of x in order to confine f(x) within L — &, L + &. This means
that we are to examine whether we can discover another small number
depending on &, such that if we confine x to the number mesh, (a— 4,
a + &) round a, the function f(x) remains within (L — &, L + ¢). If this
condition is satisfied, we say f(x) tends to L as x tends to a.

This is Cauchy’s famous ‘epsilon-delta’ definition of limit; he defined
it in purely arithmetical terms and thus freed it from vague associations
with its counterpart of everyday speech.

L] * L] .

The motive force of modern mathematics is abstraction: in fact, ab-
straction is power and the reason is this. Whenever we treat some real
problem mathematically, whether in physics, astronomy, biology or the
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social sciences, there is only one way in which we can proceed. We must
first simplify it by having recourse to some sort of an abstract model or
replica representing those features of reality considered most essential for
the problem in question. Take, for instance, Eddington’s famous elephant
problem. Here an elephant weighing two tons slides down a grassy hill-
side of 60° slope. How long did he take to slide down? If we strip the
problem of its ‘poetry’ (Eddington’s word), that is, if we make an abstract
mathematical model embodying its essential features, all that we have is a
‘particle’ sliding down an ‘inclined plane’. Here ‘particle’ is a mathematical
abstraction, which just retains that essential property of material bodies
we call ‘ponderosity’ or ‘inertia’ common to them all. Similarly, ‘inclined
plane’ is a geometrical abstraction of hillsides embodying its essential
feature ‘steepness’.

Abstract mathematical models of this kind not only simplify the real
problem by retaining only the bare essentials without those encumber-
ances, the irrelevant details which complicate matters and make it in-
tractable, but also apply to a much wider class of problems than the
original. This explains the paradoxical statement sometimes made: the
more modern mathematics departs from reality (that is, grows abstract)
the closer it comes to it. For no matter how abstract it may appear, it is in
the ultimate analysis an embodiment of certain essential features abstracted
from some sphere of reality.

Now an important group of problems in the most varied fields of science
may be reduced to the consideration of systems changing with time.
We have already given instances of it—the motion of material bodies such
as stones and elephants rolling down grassy hill-sides, and the changing posi-
tions of planets in the sky. Other instances of this kind are: in biology, the
development of a population or the growth of an organism; in astronomy,
the changing luminosity of variable stars; in economics, the varying de-
mands and prices of a market; in actuarial science, the changing number of
claims for payment on an insurance company; in telephone theory, the
changing incidence of telephone calls, etc. In any of these problems we
may imagine an abstract mathematical model where ‘something’ changes
with time. In some problems, such as the development of a biological
population or the growth of insurance claims, this ‘something’ changes at
discrete moments and in whole numbers. That is, it jumps from one whole
number to another.* In others, such as the positions of planets in the sky
or the growth of a biological organism, the essential feature of the change
is that it takes place incessantly by small degrees.

* For instance, if the population of a species is, say, 10 at any given moment, it cannot
possibly attain fractional values like 10-5 or 9-2 at any other time. The birth and death
of its individuals can only alter it in whole numbers and at discrete moments.
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There are thus two main kinds of mathematical models. In the one de-
signed for handling continuous processes, this ‘something’, or the
dependent variable (), changes continuously with time. In the other, de-
signed for treating discontinuous processes, it jumps discontinuously. We
could, in fact, carry the process of abstraction still farther and consider a
set of related variables—a dependent variable y depending on an inde-
pendent variable x which need not necessarily represent time. The applica-
tion of the fundamental laws of the process usually leads to one or more
differential, integral or integro-differential equations. The question then
arises whether such equations can be solved. In many cases it can be proved
that there is a unique solution, provided it is assumed that y is a continuous
function of x. It is, therefore, important to examine under what conditions
a function is continuous.

Our naive intuitive idea of a continuous function is this. It is continuous
when its graph can be drawn without ever lifting the pencil from paper. If
the graph jumps at any particular point, the function is discontinuous at
that point. Consider, for instance, a rocket fired vertically upwards with an
initial speed of, say 440 feet per second. Suppose further that the rocket
carries an explosive charge, which on explosion during the course of its
ascent is enough to impart to it instantaneously a further vertical speed of
88 feet per second. If the charge explodes, say five seconds after the initial
start, the speed function (y) will be given by the formulae

y = 440 — 32x, . . . .
for all x up to and equal to 5,
and, y = 528 — 32x, . . . . 2

for all values exceeding 5 till the vertical ascent of the rocket ceases.

If we draw its graph, it will be represented by the line AB for the values
of x lying between 0 and 5. (See Fig. 8.) At x = 5 the rocket charge ex-
plodes and increases its speed instantaneously by 88 feet per second. The
speed graph is now represented by the parallel line CD for values of x
exceeding 5. The speed function as a whole is, therefore, represented by
the two lines AB and CD. At the point B we have to lift the pencil to draw
it. This shows that the speed function is discontinuous at B.

We can make this notion of continuity more rigorous, if abstract, by
disregarding the graph of the function and considering only the functional
relation between y and x. If we are considering a range of values of x from
0 to 5, formula (1) applies. Hence if x tends to 5 from below, that is, by
always remaining less than 5, y tends to 440 — 32(5) = 280. On the other
hand, if x tends to 5 from above, that is, by remaining always more than
5, formula (2) applies and the value of y tends to 528 — 32(5) = 368.
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There is thus a hiatus at x = 5. If we approach from below y tends to 280,
while if we approach it from above it tends to 368. This is merely a mathe-
matical translation of the physical fact that at the instant x = 5 the speed
of the rocket jumped by 88 feet per second due to the instantaneous ex-
plosion of the charge during its ascent.

Whenever we have a function whose value tends to two different limits
as x tends to any given value g from above and below, the function is said
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FiG. 8—The speed function of the rocket Jumpus at B to C and is therefore discontinuous
at x = 3.

to be discontinuous at x = a. We thus have three values of a function at
any point x = g: its actual valueat x = gand the two limits as x approaches
a from two sides—above and below. The function is continuous at x = a
if and only if all three are equal. If any two happen to differ, the function
is discontinuous at x = a.

All ordinary functions defined by one or more formulae are generally
continuous except, possibly, for some isolated values. Thus, for instance,
the speed function cited above was continuous everywhere except at
x = 5. Is it possible to have functions defined by regular mathematical
formulae, which are discontinuous everywhere throughout the range of the
independent variable? The earlier mathematicians would have unhesi-
tatingly replied no. We now know better. Suppose we have a function
y = f(x) defined by the following two formulae for all values of x in the
range (0, 1):

¥y = f(x) = 0, whenever x is a rational fraction;
and
¥ = f(x) = 1, whenever x is an irrational fraction.

Thus for x = 4, y is zero; but for x = /% y is unity.

Such a function is everywhere discontinuous. For, take any value of x
such as x = 4. Within any range round 4 no matter how small, there are
any number of rational and irrational values. Thus in the range (3 — %%,
% + ¥ds), the value 4 + wd%v is rational and 4 + svobys is irrational.
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For the rational values of x in the range, f(x) will be zero while for its
irrational values f(x) = 1.

The function f(x) therefore continually oscillates between 0 and 1
however narrow the range of values of x round x = 4 we may choose. It
cannot, therefore, tend to any limit as x tends to 4. But there is nothing
in the above argument special about x= 4. What has been shown about
the limiting behaviour of f(x) when x approaches 4 holds equally for any
other value of x in the interval (0, 1) for which we have defined the func-
tion f(x). The function f(x) is therefore discontinuous everywhere. It gives
us an absolute discontinuity.

If we have functions which are discontinuous somewhere as well as
everywhere, what about their differential coefficients at these points of dis-
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FiG. 9—Here f(x) is discontinuous. As x approaches A the
graph line suddenly jumps from Q to R. At this point no
single line which can be regarded as a tangent to the graph
line as a whole can be drawn. The derivative of f(x), therefore,
does not exist at A.

continuity ? Clearly a discontinuous function can have no differential co-
efficient at a point of discontinuity. For, if we draw the graph of the
function (see Fig. 9), there will be a sudden jump at a point of discontin-
uity, so that it is impossible to draw a tangent to it at that point. But since
the slope or gradient of the tangent is the measure of the differential co-
efficient, the latter cannot exist if the tangent cannot be drawn. If the
tangent cannot be drawn at a point of discontinuity, can it be drawn at all
points of continuity ? Not necessarily. Examine, for instance, a continuous
curve like the one drawn in Fig. 10. It is continuous everywhere even at the
kinky point Q. But no tangent can be drawn to the graph as a whole at Q.
For the portion of the graph to the right of Q, the tangent at Q is QT, for
that on the left, Q7". Since there is no unique tangent to the graph at Q,
the differential coefficient cannot exist although the graph is continuous.

It might appear that Q is an exception and that in general a continuous
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function is bound to have a tangent everywhere except possibly at a few
isolated points. This, however, is one instance where our geometric in-
tuition leads us astray. For we can construct functions which, though con-
tinuous for every value of the independent variable, have no derivative for
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Fi1G. 10—The graph line suddenly turns turtle at Q Although the graph line is clearly
continuous at Q, no single tangent can be drawn to it there. Hence the derivative of
f(x) does not exist at Q.
any value whatever. If we draw the graph of any such function, it will be a
continuous line at no point of which we can draw a tangent. Every point
on the graph will thus be a kink like the point Q in Fig. 9. That is why it is
impossible to draw it on paper.

* * L] *

A similar attempt was made to rigourise and refine the theory of inte-
gration. The refinement, no doubt, made it more abstract, complex and
subtle, but it was worthwhile. It paved the way for a much wider generalisa-
tion of the theory of integration, which has been extensively applied. We
shall deal with this generalisation and its applications in Chapter 6.

To understand the refinement, let us recall the essential steps in the
calculation of the speed integral y = ¢ over the time interval (1, 6). First,
we divided the interval (1, 6) into a large number of equal sub-intervals.
Second, we multiplied the duration or length of each sub-interval by the
lower and upper limits of the speed function in that sub-interval. We thus
obtained the lower and upper limits within which lay the actual distance
travelled during that sub-interval. Third, we added the products corre-
sponding to all these sub-intervals and formed two sums, the lower sum s
and the upper sum S, between which lay the total actual distance travelled.
Fourth, we computed the limits of s and S as the number of sub-intervals
was indefinitely increased. This common limiti—the speed integral over
time—was then the actual distance travelled.
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