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Lecture 21

ORDER WITHIN DISORDER

Among the bones of the intricate skeletal structure of the foot is
one lying in the heel just above the talus bone and known as the
astragalus. In man, and in animals with a developed foot, the
astragalus is quite irregular, but in the hoofed animals, like sheep,
goats, and all kinds of deer, the astragalus has a rough symmetry,
being squarish in cross section with two rounded ends, one slightly
convex and the other slightly concave. These bones are solid and
essentially marrowless, hard and durable, somewhat cubical with
edges measuring an inch or less, and, with handling, capable of tak-
ing on a high polish.

It is not uncommon for archaeologists excavating at prehistoric
sites to find sizable collections of astragalus bones of small hoofed
animals, and sometimes collections of small stones of various colors.
It seems reasonable to conjecture that these bones and pebbles may
have been used by prehistoric man as tally-stones or counters, and as
toys for himself and his children. While such a use for astragali in
prehistoric times is only conjectural, there is no doubt that among
the ancient Babylonians and Egyptians, and the Greeks and Ro-
mans of the pre-Christian era, one of the uses of astragali was as chil-
dren’s toys. We are informed that schoolboys played with them every-
where, sometimes by balancing four of the astragali on the knuckles
of a hand, tossing them by a flip of the hand into the air, and then
endeavoring to recapture them as they fell. Also, from Greek vase-
painting, the astragali were sometimes tossed into a ring drawn on
the ground, much as children of today play with marbles. Whether
man adopted the toys of his children or the children copied the man
is impossible to say, but by the First Dynasty in Egypt (about 3500
B.C.), astragali were used in a variety of games, in some of which
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2 GREAT MOMENTS IN MATHEMATICS (AFTER 1650)

“men”’ were moved about on a board according to the fall of a tossed
astragalus bone. There is an Egyptian tomb-painting showing a
nobleman in after-life with a playing board set out before him and
an astragalus delicately balanced on his finger tip prior to being
tossed. Children of today in France and Italy still play games with
astragalus bones, and metallic versions of the bones can be pur-
chased in village shops.

This is not the place to enter into the shadowy history of game-
playing, nor into the cloudy origin of gaming. Did gaming develop
from game-playing, or did it arise from wagering and the drawing of
lots, or from religious divination and the consultation of oracles? In
any case, by approximately 1200 B.c. the cubical marked die had
evolved as a more suitable randomizing agent in games than the astrag-
alus. This idealization occurred simultaneously in different parts of
the world, and it is quite likely that the first primitive dice were made
by rubbing flat the two opposite rounded faces of astragalus bones.
The faces of a die were variously marked by drilling into them numbers
of small shallow depressions with some sort of a circular engraving
tool.

It was natural that gaming, as a game using only dice with no ac-
companying playing board and pieces, should arise and that players
should concern themselves with the chances, or probabilities, of ob-
taining sums with the throw of two or more dice. Thus, although
Greek philosophers of antiquity discussed necessity and contingency
at some length, it is perhaps correct to say that the beginnings of a
study of probability arose in attempts to evaluate the chances in cer-
tain gambling games, particularly the game of dice.

It is hard for historians of the calculus of probability to account
for the extremely tardy conceptual growth of the subject. Of course,
a realization of the equally likely possibilities in dice-throwing would
of necessity be delayed until “honest” dice were made. So long as
astragalus bones, or simple handy pieces of wood, ivory, or stone,
smoothed off and appropriately marked, were used for either play or
divination, the regularity of fall of the different faces would be quite
obscured. Also, long series of trials are needed to calculate empirical
probabilities, and there would have been few persons capable of
keeping a tally of throws and of making the required enumerations.
There seemed little alternative to the feeling that the fall of dice or
astragali was completely controlled by the whimsies of the gods.
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We know that a passion for gaming possessed the Roman Em-
perors and the surrounding leisured rich. It is said, for example,
that Claudius (10 B.c.-A.p. 54) was greatly devoted to dicing and
had even published a book, which unfortunately has not survived,
entitled How to Win at Dice. But a real start in the calculation of
random events did not take place until the Renaissance, when the
ability to write and calculate with numbers had become widespread
and simple algebra had developed.

It seems proper to say that there was no truly mathematical treat-
ment of probability until the latter part of the fifteenth century and
the early part of the sixteenth century, when some of the Italian
mathematicians attempted to evaluate the chances in certain gam-
bling games, like that of dice. Girolamo Cardano (1501-1576), as
was noted in LECTURE 16, wrote a brief gambler’s manual in which
some of the simpler aspects of mathematical probability are involved.
But it is generally agreed that the one problem to which can be
credited the origin of the science of probability is the so-called prob-
lem of the points. This problem requires the determination of the
division of the stakes of an interrupted game of chance between two
supposedly equally skilled players, knowing the scores of the players
at the time of interruption and the number of points needed to win
the game. Fra Luca Pacioli (1445-1509), in his popular Suma* of
1494, was one of the first writers to introduce the problem of the
points into a work on mathematics. The problem was subsequently
discussed by Cardano and Tartaglia (ca. 1499-1557). All these men
arrived at incorrect answers. A real advance was not made until the
problem was proposed, in 1654, to Blaise Pascal, by the Chevalier de
Méré, an able and experienced gambler whose theoretical reasoning
on the problem did not agree with his observations. Pascal became
interested in the problem and communicated it to Pierre de Fermat.
There ensued a remarkable correspondence between these two
French mathematicians,t in which the problem was correctly but
differently solved by each man. It was in this correspondence of 1654
that Pascal and Fermat jointly laid the foundations of the theory of
mathematical probability—a GREAT MOMENT IN MATHEMATICS had
arrived.

*More completely, Summa de arithmetica, geometria, proportioni e proportionalitd.
tThis correspondence appears in D. E. Smith, A Source Book in Mathematics.
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Blaise Pascal was born in 1623 in the French province of Auvergne
and very early showed exceptional ability in mathematics. When only
12 he discovered, entirely on his own, many of the theorems of ele-
mentary plane geometry. At 14 he took part in the informal weekly
sessions of a group of mathematicians from which the French Acad-
emy eventually arose in 1666. At 16 he discovered, among other
things, his singularly rich “mystic hexagram” theorem* of projective
geometry. A few years later he invented and constructed the first add-
ing machine and began to apply his unusual talents to physics and
mechanics. In 1648 he wrote a comprehensive, but now lost, treatise
on projective geometry.

This astonishing and precocious activity came to a sudden halt in
1650, when, suffering from fragile heaith, Pascal decided to abandon
his work in mathematics and science and to devote himself to reli-
gious meditation. Three years later, however, he transitorily returned
to mathematics, at which time he wrote his Traité du triangle arith-
métique, which, as we shall shortly see, played an important part in
the matter that concerns us in the present lecture. He conducted a
number of experiments on fluid pressure, which led to the invention
of the hydraulic press, and, in 1654, carried on the historic corre-
spondence with Fermat that laid the foundations of the mathemati-
cal theory of probability.

Then, late in 1654, Pascal received what he felt to be a strong in-
timation that his renewed activities in mathematics and science were
displeasing to God. The divine hint occurred when his runaway
horses dashed to their deaths over the high parapet of the bridge at
Neuilly, and his own life was miraculously preserved only by the last
minute breaking of the traces. Morally fortified by a reference to the
accident written on a small piece of parchment henceforth carried
next to his heart, he dutifully returned to his religious contemplations.

It was only once again, in 1658, that Pascal reverted to mathe-
matics. While suffering from excruciating toothache, some geometri-
cal ideas occurred to him, and his teeth forthwith ceased to ache. In-
terpreting this as a sign of divine will, he assiduously applied himself
for eight days expanding his ideas, producing a fairly complete ac-
count of the geometry of the cycloid curve.

*The three points of intersection of the three pairs of opposite sides of any hexagon
inscribed in any conic are collinear.
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Pascal’'s famous Provincial Letters and his Pensées, both dealing
with religious matters and read today as models of early French lit-
erature, were composed toward the close of his brief life. He died in
Paris, after a lingering and complicated illness, in 1662 at the pa-
thetically young age of 39.

Pascal has been called the greatest “might-have-been” in the his-
tory of mathematics. Possessing such remarkable talents and such
keen geometrical intuition, he should have produced a great deal
more. Unfortunately, much of his life was spent suffering the rack-
ing physical pains of acute neuralgia and the distressing mental
torments of religious neuroticism.

In contrast to the short, disturbed, tortured, and only spasmodi-
cally productive life of Blaise Pascal, Pierre de Fermat’s life was
moderately long, peaceful, enjoyable, and almost continuously pro-
ductive. Fermat was born at Beaumont de Lomagne, near Toulouse,
in 1601(?), as the son of a well-to-do leather merchant. He received
his early education at home, as did Pascal.

In 1631, Fermat was installed at Toulouse as commissioner of re-
quests, and in 1648 was promoted to the post of King’s councilor to
the local parliament at Toulouse. In this latter capacity he spent the
rest of his life discharging his duties with modesty and punctilious-
ness. While thus serving as a humble and retiring lawyer, he devoted
the bulk of his leisure time to the study and creation of mathematics.
Although he published very little during his lifetime, he was in scien-
tific correspondence with many of the leading mathematicians of his
day, and in this way considerably influenced his contemporaries.

Fermat enriched so many branches of mathematics with so many
important contributions that he has been called the greatest French
mathematician of the seventeenth century. We have seen in our pre-
ceding lecture that he was an independent inventor of analytic geom-
etry; in the present lecture we shall see how he helped lay the foun-
dations of the mathematical theory of probability, and in our next
lecture we shall see that he contributed noteworthily to the early
development of the calculus. But of all his varied contributions to
mathematics, by far the most outstanding is his founding of the
modern theory of numbers, a field in which he possessed extraordi-
nary intuition and an awesomely impressive ability, putting him
among the top number theorists of all time.

Fermat died in Castres (or perhaps Toulouse), quite suddenly, in
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1665. His tombstone, originally in the Church of the Augustines in
Toulouse, was later moved to the local museum.

Let us now turn to the problem of the points, the solutions of which
by Pascal and Fermat, in their correspondence of 1654, commenced
a sound mathematical study of probability. An illustrative case dis-
cussed by the two French mathematicians was that in which one
seeks the division of the stakes in a game of chance between two
equally skilled players A and B where player A needs 2 more points
to win and player B needs 3 more points to win. We first consider
Fermat's solution to the problem, since it is the simpler and more
direct of the two; and then Pascal’s solution, which perhaps is more
refined and more capable of generalization.

Inasmuch as it is clear, in the illustrative example, that four more
trials will decide the game, Fermat let a indicate a trial where A wins
and b a trial where B wins, and considered the 16 possible permuta-
tions of the two letters a and b taken 4 at a time:

aaaa aaab abba bbab
baaa bbaa abab babb
abaa baba aabb abbb
aaba baab bbba bbbb

The cases where a appears 2 or more times are favorable to A; there
are 11 of them. The cases where b appears 3 or more times are favor-
able to B; there are 5 of them. Therefore the stakes should be divided
in the ratio 11:5. For the general case, where A needs m points to
win and B needs n, one writes down the 217~ ! possible permuta-
tions of the two letters 2 and b taken m + n — 1 at a time. One then
finds the number « of cases where a appears m or more times and
the number B of cases where b appears n or more times. The stakes
are then to be divided in the ratio o : 8.

Pascal solved the problem of the points by utilizing his “arithmetic
triangle,” an array of numbers discussed by him in his Traité du tri-
angle arithmétique, which, though not published until 1665, was
written in 1653. He constructed his “‘arithmetic triangle” as indi-
cated in Figure 1. Any element {in the second or a following row) is
obtained as the sum of all those elements of the preceding row lying
just above or to the left of the desired element. Thus, in the fourth
row,
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BS=15+10+6+3+1.

The triangle, which may be of any order, is obtained by drawing a
diagonal as shown in the figure. The student of college algebra will
recognize that the numbers along such a diagonal are the successive
coefficients in a binomial expansion. For example, the numbers
along the fifth diagonal, namely 1, 4, 6, 4, 1, are the successive co-
efficients in the expansion of (@ + b)*. The finding of binomial co-
efficients was one of the uses to which Pascal put his triangle. He
also used it for finding the number of combinations of n things taken
r at a time, which he correctly stated to be

C(n, r) =nl/rl(n — r),
where n! is our present-day notation* for the product
nin—1D{n—2) - (@)

1 6 21 56 126 252

FiG. 1

*The symbol n!, called factorial n, was introduced in 1808 by Christian Kramp
(1760-1826) of Strasbourg, who chose this symbol so as to circumvent printing diffi-

culties incurred by a previously used symbol. For convenience one defines 0! = 1.
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One can easily show that the elements along the fifth diagonal are,
respectively,

c4, 49 =1, C(4, 3) = 4, C(4, 2) = 6,
C4, 1) =4, CH#0 =1

Since C(4, 4) is the number of ways to obtain 4 a's, C(4, 3) is the
number of ways to obtain 3 a’s, etc., it follows that the solution of
the illustrative problem of the points is given by

[C(4, 4) + C(4, 3) + C@, 2]:[C4, 1) + C(4, 0)]
=1+ 4+ 6):(4+ 1) = 11:5.

In the general case, where A needs m points to win and B needs n,
one chooses the (m + n)th diagonal of Pascal’s arithmetic array.
One then finds the sum o of the first n elements of this diagonal and
the sum 8 of the last m elements, The stakes are io be divided in the
ratio o : 8.

There are many relations involving the numbers of the arithmetic
triangle, several of which were developed by Pascal. Pascal was not
the originator of the arithmetic triangle, for such an array had been
anticipated several centuries earlier by Chinese and Persian writers
and had been considered by a number of Pascal’s European prede-
cessors. It is because of Pascal’s development of many of the tri-
angle’s properties and because of the applications which he made of
these properties that the array has become known as Pascal's tri-
angle. In Pascal’s treatise on the triangle appears one of the earliest
acceptable statements of the method of mathematical induction.

Pascal and Fermat, in their historic correspondence of 1654, re-
flected upon other problems related to the problem of the points,
such as the division of stakes where there are more than two players,
or where there are two unevenly skilled players. With this work by
Pascal and Fermat, marking a GREAT MOMENT IN MATHEMATICS,
the mathematical theory of probability was well launched. In 1657,
the great Dutch genius Christiaan Huygens (1629-1695) wrote the
first formal treatise on probability, basing his work on the Pascal-
Fermat correspondence. This was the best account of the subject un-
til the posthumous appearance, in 1713, of the Ars conjectandi of
Jacob Bernoulli (1654-1705), which contained a reprint of the earlier
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treatise by Huygens. After these pioneering efforts, we find the sub-
ject carried forward by such men as Abraham De Moivre (1667-
1754), Daniel Bernoulli (1700-1782), Leonhard Euler (1707-1783),
Joseph Louis Lagrange (1736-1813), Pierre-Simon Laplace (1749-
1827), and a host of other contributors.

It is fascinating, and at the same time somewhat astonishing, to
contemplate that mathematicians have been able to develop a sci-
ence, namely the mathematical theory of probability, that estab-
lishes rational laws that can be applied to situations of pure chance.
This science is far from being impractical, as is attested by experi-
ments performed in great laboratories, by the existence of highly
respected insurance companies, and by the logistics of big businesses
and of war. About this science of probability, the eminent French
mathematician Pierre-Simon Laplace remarked that, though it
started with the consideration of certain lowly games of chance, it
rose to become one of the most important areas of human knowledge.
The great British mathematical-physicist, James Clerk Maxwell
(1831-1879), claimed that it is the ‘“‘mathematics for practical
men.” And the English logician and economist William Stanley
Jevons (1835-1882) said it is “the very guide of life and hardly can
we take a step or make a decision without correctly or incorrectly
making an estimate of probability.”

Exercises

21.1. Find the division of the stakes in a game of chance between
two equally skilled players A and B where

(a) A needs 1 more point to win and B needs 4 more points to win,
using Fermat’s enumeration method.

(b) A needs 3 more points to win and B needs 4 more points to
win, using Pascal’s triangle method.

21.2. Show that

(@) C(n, r) = n¥V/ri(n — r)!
b)C(n,n—r)=C(nr)
&Cnr)=Cn—1,r)+Cn—1,r — 1).

21.3. (a) Show that the coefficient of a"~"b" in the expansion of
(a + b)Y isC(n, r).
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(b) Show that C(n, 0) + C(n, 1) + C(n, 2) + -+ + C(n,n) =
21

21.4. Establish the following relations, all of which were devel-
oped by Pascal, involving the numbers of the arithmetic triangle.

(a) Any element (not in the first row or the first column) of the
arithmetic triangle is equal to the sum of the element just above it
and the element just to the left of it.

(b) Any given element of the arithmetic triangle, decreased by 1,
is equal to the sum of all the elements above the row and to the left of
the column containing the given element.

(c) The mth element in the nth row is C(m + n — 2,n — 1).

(d) The element in the mth row and nth column is equal to the
element in the nth row and mth column.

(e) The sum of the elements along any diagonal is twice the sum
of the elements along the preceding diagonal.

(f) The sum of the elements along the nth diagonal is 27!,

(g) Show that C(n, r) appears at the intersection of the (» + 1)st
diagonal and the (r + 1)st column of the arithmetic triangle.

Further Reading

BeLr, E. T., Men of Muthematics. New York: Simon and Schuster, 1937.

Davip, F. N., Games, Gods and Gambling. New York: Hafner, 1962,

SmitH, D. E., A Source Book in Mathematics. New York: Dover, 1958.

TopHUNTER, 1., A History of the Mathematical Theory of Probability from the
Time of Pascal to that of Lapluce. New York: Chelsea, 1949.



LECTURE 22

MOVING PICTURES VERSUS STILL PICTURES

The prime stimulus to the invention of new mathematical pro-
cedures is the presence of problems whose solutions have evaded
known methods of mathematical attack. Indeed, the continual ap-
pearance of unsolved problems constitutes the life blood that main-
tains the health and growth of mathematics. In our previous lecture
we saw an example of this—it was an elusive problem, the so-called
problem of the points, that led to the creation of the field of math-
ematical probability.

In earlier lectures we have seen that the problem of finding certain
areas, volumes, and arc lengths gave rise to summation processes
that led to the creation of the integral calculus. In the present lecture
we shall see that the problem of drawing tangents to curves and the
problem of finding maximum and minimum values of functions led
to the creation of the differential calculus. Each of these creations
certainly constitutes a GREAT MOMENT IN MATHEMATICS.

It is interesting that, whereas the origins of the integral calculus
go back to classical Greek times, it is not until the seventeenth cen-
tury that we find significant contributions to the differential cal-
culus. Not that there was no prior attempt at drawing tangents to
curves and no prior employment of maximum and minimum con-
siderations. For example, the Greeks of antiquity were able to draw
tangents to circles and to the conic sections. Apollonius, in his Conic
Sections, treated normals to a conic as the maximum and minimum
line segments drawn from a point to the curve, and other maximum
and minimum considerations can be found in the works of the an-
cient Greeks. Again, many centuries later, something of a more gen-
eral approach to drawing tangents to curves was given by Gilles Per-
sone de Roberval (1602-1675). He endeavored to consider a curve as

1



12 GREAT MOMENTS IN MATHEMATICS (AFTER 1650)

generated by a point whose motion is compounded from two known
motions. Then the resultant of the velocity vectors of the two known
motions gives the tangent line to the curve. For example, in the case
of a parabola, we may consider the two motions as away from the fo-
cus and away from the directrix. Since the distances of the moving
point from the focus and the directrix are always equal to each
other, the velocity vectors of the two motions must also be of equal
magnitude. It follows that the tangent at a point of the parabola bi-
sects the angle between the focal radius to the point and the perpen-
dicular through the point to the directrix (see Figure 2). This idea of
tangents was also held by Evangelista Torricelli (1608-1647), and an
argument of priority of invention ensued between Roberval and Tor-
ricelli. Attractive as the method is, however, it seems quite limited in
application.

Another method of constructing tangents to certain curves was
given by René Descartes in the second part of his La géométrie of
1637. Though he applied his method to a number of different

directrix

\ N\

Fic. 2
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curves, including one of the quartic ovals named after him,* the
method is restricted to algebraic curves and, even at that, too often
leads to forbidding algebra.

None of the methods above has general application, nor does any
of them contain the procedure of differentiation. The first really
marked anticipation of differentiation stems from ideas set forth by
Fermat in 1629, though not much publicized until some eight or
nine years later. Kepler had observed that the increment of a func-
tion becomes vanishingly small in the neighborhood of an ordinary
maximum or minimum value. Fermat translated this fact into a pro-
cess for determining such a maximum or minimum. In brief his
method is this. If f(x) has an ordinary maximum or minimum at x,
and if e is very small, then the value of f(x + e) is almost equal to
that of f(x). Therefore, we tentatively set f(x + e) = f(x) and then
make the equality correct by letting e assume the value zero. The
roots of the resulting equation then give those values of x for which
f(x) is a maximum or a minimum.

Let us illustrate and clarify this procedure by considering Fer-
mat’s first example—to divide a quantity into two parts such that
their product is a maximum. Fermat used Viéte's notation, where
constants are designated by upper-case consonants and variables by
upper-case vowels. Employing this notation, let B be the given quan-
tity and denote the desired parts by A and B — A. Forming the
product

(A +E)B—(A+ E)]
and equating it to A(B — A) we have
AB—A)=A+EXB—A—E)
or
BE — 2AF — E*= 0.
After dividing by F, one obtains
B—24—F=0.
*A Cartesian oval is the locus of a point whose distances, r; and r,, from two fixed

points satisfy the relation r; + mry; = a, where m and a are constants. The central
conics will be recognized as special cases.
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Now setting £ = 0 we obtain 24 = B, and thus find that the re-
quired division demands that the two parts each be half of B.

Although the logic of Fermat’s exposition leaves much to be de-
sired, it is seen that his method is equivalent to setting

. f&+ k) — fx)
im—— =0,
h—0 h

that is, to setting the derivative of f(x) equal to zero. This is the
customary method for finding ordinary maxima and minima of a
function f(x), and is sometimes referred to in our elementary text-
books as Fermat s method. Fermat, however, did not realize that the
vanishing of the derivative of f(x) is only a necessary, but not a suffi-
cient, condition for an ordinary maximum or minimum. Also, Fer-
mat’s method does not distinguish between a maximum and a
minimum value.

Fermat also devised a general procedure for finding the tangent at
a point of a curve whose Cartesian equation is given. His idea is to
find the subtangent for the point, that is, the segment on the x-axis
between the foot of the ordinate drawn to the point of contact and
the intersection of the tangent line with the x-axis. The method
employs the idea of a tangent as the limiting position of a secant
when two of the points of intersection of the secant with the curve
tend to coincide. Using modern notation the method is as follows.
Let the equation of the curve (see Figure 3) be f(x,y) = 0, and let us
seek the subtangent ¢ of the curve for the point (x, y) of the curve. By
similar triangles we easily find the coordinates of a near point on the

tangent to be
[x+e,y (1 +%)].

This point is tentatively treated as if it were also on the curve, giving

e esfi+2)] =0
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/—‘ S, y)=20

(x. y)

F1G. 3

The equality is then made correct by letting e assume the value zero.
We then solve the resulting equation for the subtangent ¢ in terms of
the coordinates x and y of the point of contact. This, of course, is
equivalent to setting

a general formula that appeared later in 1652, naturally without the
modern notation, in the work of René Francois Walter de Sluze
(1622-1685), a canon in the Church who wrote numerous tracts in
mathematics. Fermat, using his method, found tangents to the
ellipse, cycloid, cissoid, conchoid, quadratrix, and folium of Des-
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cartes. Let us illustrate the method by finding the subtangent at a
general point on the folium of Descartes:

x3 + y3 = nxy.

Here we have

(x+e)3+y3(l+—j—)3—ny(x+e)(1+%):0.

or

3 3y3
e(3x2+——m——ny)+e2(3x+%—nt—y)

3
+e3(1+y—3):0.
t

Now, dividing by e and then setting e = 0, we find

_ -y
! 3x2—ny

Another man who played a part in anticipating differentiation was
Isaac Barrow. Barrow was born in London in 1630 and completed
his education at Cambridge University. He was a man of high aca-
demic caliber, achieving recognition in mathematics, physics, as-
tronomy, and theology. He was also renowned as one of the best
Greek scholars of his day. He was the first to occupy the Lucasian
chair at Cambridge, from which he magnanimously resigned in 1669
in favor of his great pupil, Isaac Newton, whose remarkable abilities
he was one of the first to recognize and acknowledge. He died in
Cambridge in 1677.

Barrow’s most important mathematical wotk is his Lectiones op-
ticae et geometricae, which appeared in the year he resigned his
chair at Cambridge. The preface to the treatise admits indebtedness
to Newton for some of the material of the book, probably the parts
dealing with optics. It is in this book that we find a very near ap-
proach to the modern process of differentiation, utilizing essentially
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the so-called differential triangle which we find in our present-day
calculus textbooks. Let it be required to find the tangent at a point P
on the given curve represented in Figure 4. Let Q be a neighboring
point on the curve. Then triangles PTM and PQR are very nearly
similar to one another, and, Barrow argued, as the little triangle
becomes indefinitely small, we have

RP/QR = MP/TM.

Let us set QR = e and RP = a.* Then if the coordinates of P are x
and y, those of Q are x — e and y — . Substituting these values in

Y

x, y)

FiG. 4

*]t is to be noted that a and e are the Ay and Ax of present-day treatments, whence
the ratio a/e becomes dy/dx whene — 0.



18 GREAT MOMENTS IN MATHEMATICS (AFTER 1650)

the equation of the curve and neglecting squares and higher powers
of both e and a, we find the ratio a/e. We then have

OT = OM — TM = OM — MP(QR/RP) = x — y(e/a),

and the tangent line is determined. Barrow applied this method of
constructing tangents to the curves:

(a) xX(x? + y2) = r2y? (the kappa curve),

(b) x3 + y3 = 3 (a special Lamé curve),

(c) x3 + y3 = rxy (the folium of Descartes, but called la galande
by Barrow),

(d) y = (r — x)tan(wx/2r) (the quadratrix),

(e) y = r tan(wx/2r) (a tangent curve).

As an illustration, let us apply the method to the curve (b). Here we
have

x—el+(y—aP=r,
or
x?— 3x% + 3xe? —e? + y? — 3y2a + 3ya? — a3 =13,

Neglecting the square and higher powers of e and a, and using the
fact that x> + y3 = r3, this reduces to

3x2e + 3y%a = 0,
from which we obtain
a‘e = — xi/y?.

This ratio a/e is, of course, our modern dy/dx, and Barrow's dubi-
ous procedure can easily be made rigorous by use of the theory of
limits.

With the work of Fermat, Barrow, and some of their contem-
poraries, a process of differentiation had been evolved and applied
to the resolution of a number of maxima and minima problems and
to the construction of tangents to many curves. What more in the
development of the differential calculus remained to be done? There
still remained the creation of a general symbolism with a systematic
set of formal analytical rules for the calculation of derivatives, and
also a consistent and rigorous redevelopment of the foundations of
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the subject. It is precisely the first of these, the creation of a suitable
and workable calculus, that was furnished by Newton and Leibniz,
working independently of one another. The redevelopment of the
fundamental concepts on an acceptably rigorous basis had to out-
wait the period of energetic application of the subject, and was the
work of the great French analyst Augustin-Louis Cauchy (1789-
1857) and his nineteenth-century successors. This story, which is
another GREAT MOMENT IN MATHEMATICS, will be told in a later lec-
ture,

The first to publish a general and workable differential calculus
was the great German mathematician and philosopher Gottfried
Wilhelm Leibniz (1646-1716). In the journal Acta eruditorum* of
1684, in an article entitled “A new method for maxima and minima
as well as tangents, which is not restricted by fractional or irrational
quantities, and a remarkable type of calculus for this,” Leibniz
published a concise exposition of his differential calculus, the for-
mulation of which he says dated from 1676. In spite of several ob-
scure points and some careless errors, the paper proved to be a land-
mark in the further advancement of mathematics. The notation of
the differential calculus and many of the general rules for calculat-
ing derivatives that are in use today were given by Leibniz in this
paper. Leibniz wrote as follows:

Let an axis AX [see Figure 5, which is Leibniz’s figure simplified and
slightly augmented] and several curves VV, WW, YY, ZZ be given, of
which the ordinates VX, WX, YX, ZX, perpendicular to the axis, are
called v, w, y, z respectively. The segment AX cut off from the axis is
called x. Let the tangents be VB, WC, YD, ZE, respectively intersect-
ing the axis at B, C, D, E. Now some arbitrarily selected segment is
called dx, and the line segment which is to dx as v (or w, ory, or z) is
to XB (or XC, or XD, or XE) is called dv (or dw, or dy, or dz), for the
difference of these v (or w, or y, or z).

Leibniz then goes on to derive a number of familiar differentiation
rules, such as:

(1) If a is a constant, then da = 0.

*This journal was founded in 1682 by Leibniz and Otto Mencke, with Leibniz serv-
ing as editor-in-chief.
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(2) d(ax) = a dx.
QB)dw—y+z)=dw —dy + d.
(4) d(x") = nx""'dx (n a natural number).

) d(1/xn) = — 19%.
xn+]

(6) d(*Vxm) = 5 Wobdx,
(7) d(vy) = vdy + ydv.

(8) d(v/y) =M_
y2

This is Leibniz’s differential calculus, which makes differentiation
an almost mechanical operation, whereas previously one had to go
through the limiting procedure in each individual case. Further-

w Y
/\Y
o
dw
w 4
dx
y
w
B A|C X dx E|l X X\ D
X
\" z

Fic. §
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more, Leibniz had introduced a fortunate, well-devised, and highly
satisfying symbolism. The differential calculus had been invented.*

Leibniz had a happy knack for choosing convenient symbolism.
Not only did he give us our present-day supple notation of the dif-
ferential calculus, but in 1675 he introduced the modern integral
sign, as a long letter S derived from the first letter of the Latin word
summa (sum), to indicate the sum of Cavalieri's indivisibles.
Though the invention of our symbolism of the differential calculus is
to be credited solely to Leibniz, the invention of the calculus itself
must be shared with the preéminent British mathematician and
physicist Isaac Newton (1643-1727). As a matter of fact, Newton
devised his fluxional calculus, as he called it, earlier than Leibniz
had devised his differential calculus, but he did not publish his work
until 1687. This delay of publication by Newton led to the greatest
quarrel on priority of discovery in the history of mathematics.

The facts of the case are these. Newton developed his fluxional
calculus as early as 1665, with the initial intention that it be applied
to problems in physics, and only a few close colleagues knew of his
creation. Many years later, in a letter to Leibniz sent via Henry
Oldenburg, the secretary of the British Royal Society, Newton
briefly and somewhat obscurely described his method, whereupon
Leibniz, who by that time had already developed his own method, in
a reply described his calculus to Newton. There the interchange of
correspondence ceased. In the following years, Leibniz’s differential
calculus spread, by word of mouth, among the leading mathemati-
cians of continental Europe, who applied it to many different prob-
lems with outstanding success. But not until 1684 did Leibniz ac-
tually put his invention into print, in the paper cited above and with
no mention of Newton’s corresponding achievement. Consequently
Newton mentioned, in a scholium in his great scientific treatise
Philosophiae naturalis principia mathematica of 1687, the exchange
of letters that had earlier taken place. Thereupon contemporaries
and successors of Newton and Leibniz started a priority quarrel,
with accusations and counteraccusations of plagiarism, that often
became highly undignified and degenerated into a political dispute

*We are not here concerned with any epistemological distinction between discovery
and invention.
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between England and Germany. So great was the English national
pride that, a century or so after the quarrel, the English mathemati-
cians steadfastly stuck to Newtonian terminology and symbolism,
much to the detriment of British mathematics. Historical research
has concluded that Newton and Leibniz, traveling different routes,
each on his own arrived at essentially the same goal, and therefore
the two men are to be regarded as independent inventors of the dif-
ferential calculus.

Newton’s approach to the calculus was a physical one. He con-
sidered a curve as generated by the continuous motion of a point. It
follows that the abscissa and the ordinate of the generating point
are, in general, changing quantities. He called a changing quantity a
Sluent (a flowing quantity), and its rate of change he called the flux-
ion of the fluent. If a fluent, such as the ordinate of the point
generating a curve, is represented by y, then the fluxion of the fluent
is represented by y. In modern notation we see that this is equivalent
to dy/dt, where t represents time. The fluxion of y is denoted by y,
and so on, for higher-ordered fluxions. On the other hand, the
fluent of y is denoted by the symbol y with a small square drawn
about it, or sometimes by y. Newton also introduced another con-
cept, which he called the moment of the fluent; it is the infinitely small
amount by which a fluent increases in an infinitely small time
interval o. Thus the moment of the fluent x is given by the product
xo. Newton remarked that we may, in any problem, neglect all terms
that are multiplied by the second or higher power of o, and thus ob-
tain an equation between the coordinates x and y of the generating
point of a curve and their fluxions x and y.

As an illustration of Newton’s method, let us consider an example
given by Newton in his work Method of Fluxions and Infinite Sertes,
written in 1671 but not published until 1736, nine years after he had
died. Here Newton considers the cubic curve

x3—ax?2+axy —y*=0.
Replacing x by x + X0 and y by y + yo, we get
x3 + 3x20) + 3x(i0)? + (x0)?
— ax? — 2ax(x0) — a(xo0)?
+ axy + ay(xXo) + a(xo)(yo) + ax(yo)
— y3 = 3y¥yo) — 3y(yo)? — (yo)® = 0.
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Now, using the fact that x3 — ax2 + axy — y3 = 0, dividing the re-
maining terms by o, and then rejecting all terms still containing o as
a factor, we find

3x2% — 2axx + ayx + axy — 3yZy = 0.

If, in the last equation, we should divide by x and then solve for y/x,
we would find

y/% = (3x2 — 2ax + ay)/(3y? — ax).
Of course, in our modern notation,
y/% = (dy/dt)/(dx/dt) = dy/dx.

The rejection of terms containing the second and higher powers of
o was much criticized by some of Newton's contemporaries. Newton
later justified the process by introducing the notion of uitimate
ratios, which is a primitive conception of the limit idea.

Newton considered two types of problems. In the first type we are
given' a relation connecting some fluents, and we are asked to find a
relation connecting these fluents and their fluxions. This is what we
did above, and is, of course, equivalent to differentiation. In the sec-
ond type we are given a relation connecting some fluents and their
fluxions, and we are asked to find a relation connecting the fluents
alone. This is the inverse problem and is equivalent to solving a dif-
ferential equation. Newton made numerous and remarkable appli-
cations of his method of fluxions. He determined maxima and min-
ima, tangents to curves, curvature of curves, points of inflection,
and convexity and concavity of curves, and he applied his theory to
numerous quadratures and to rectification of curves. In the integra-
tion of some differential equations he showed extraordinary ability.

The creation of the differential calculus marks a watershed, or
turning point, in the history of mathematics. The new mathematics
inspired by this great invention differs markedly from the old mathe-
matics that had been largely inherited from the ancient Greeks. The
older mathematics appears static while the newer appears dynamic,
so that the older mathematics compares to the still-picture stage of
photography while the newer mathematics compares to the moving-
picture stage. Again, the older mathematics is to the newer as anat-
omy is to physiology, wherein the former studies the dead body and
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the latter studies the living body. Once more, the older mathematics
concerned itself with the fixed and the finite while the newer mathe-
matics embraces the changing and the infinite.

Needless to say, the creation of the differential calculus was a truly
GREAT MOMENT IN MATHEMATICS, and, to be fair to all involved, we
perhaps should assign it to the period running from the initiatory ef-
forts of Fermat in 1629 through the epoch-making work of Newton
and Leibniz consummated over fifty years later. We shall have more
to say about the calculus in our next lecture.

Exercises

22.1. Apply Roberval's method to the drawing of tangents to (a)
an ellipse, (b) a hyperbola.

22.2. Following is Descartes’ method of drawing tangents (see
Figure 6). Let the equation of the given curve be f(x, y) = 0 and let
(x;, ¥1) be the coordinates of the point P of the curve at which we
wish to construct a tangent. Let Q, having coordinates (x,, 0), be a
point on the x-axis. Then the equation of the circle with center Q
and radius QP is

(x — x)2 + y2 = (x; — x) + y,2

Eliminating y between this equation and the equation f(x, y) = 0
yields an equation in x leading to the abscissas of the points where
the circle cuts the given curve. Now determine x; so that this equa-
tion in x will have a pair of roots equal to x,. This condition fixes Q
as the intersection of the x-axis and the normal to the curve at P,
since the circle is now tangent to the given curve at P. The required
tangent is the perpendicular through P to PQ.

Construct, by Descartes’ method, the tangent to the parabola
y? = 4x at the point (1,2).

22.3. Show that the slope of the tangent to the curve y = f(x) at
the point having abscissa x; is given by f'(x,), where f'(x) denotes
the derivative of f(x).

22.4. Find the slope of the tangent at the point (3, 4) on the circle
x2+ y2 = 25by:
(a) Fermat's method,
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{b) Barrow’s method,
(¢) Newton's method of fluxions,
(d) the method taught in calculus classes today.

22.5. The following procedure is known as the four-step rule, or
ab initio process, for finding the derivative of a given function y =
Sfx).

I. Iny = f(x), replace x by x + Ax, letting y become y + Ay.

II. Subtract the original relation to obtain

Ay = f(x + Ax) — f(x).
III. Divide both sides by Ax, to obtain

Ay  flx + Ax) — f(x)
Ax Ax )

flx y} =20

(I|,y1.) P

\ (xz. 0)

Fic. 6
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IV. Take the limit of both sides as Ax — 0 to obtain
& _ by

im =~ | Slx + Ax) — f(x)
dx  ars0Ax  armo Ax )

Using the four-step rule, obtain the following differentiation
rules:

(a) If y = a, where a is a constant, then dy/dx = 0.

(b) If y = ax, then dy/dx = a.

(¢c) fy =v — w + z, where v, w, z are functions of x, then

dy/dx = dv/dx — dw/dx + dz/dx.

(d) fy = x*, where n is a natural number, then dy/dx = nx"~!,
(e) If y = uv, then dy/dx = u(dv/dx) + v(du/dx).
(f) fy = u/v, then

(g) If y = 1/x", where n is a natural number, then dy/dx = —
n/x"*1,

22.6. If y = uv, where u and v are functions of x, show that the
nth derivative, y, of y with respect to x is given by

nin—1)
2

Yy = uy® + g’y + "yln=2)
n(n — 1)}(n — 2)
u

" (n —3) e (n)
3 v + + ulnly,

+

This is known as Leibniz's rule.

22,7, If s = f(¢), where s represents the distance a body has
traveled along a straight-line path in time z, show that ds/dt
measures the velocity and d2y/de? the acceleration of the body at
time ¢.

22.8. Show that at an ordinary (turning-point) maximum or
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minimum of a differentiable function y = f(x) we must have
dy/dx = 0. Show that, though this is a necessary condition, it is not
a sufficient condition.
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