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LECTURE 1

SCRATCHES AND GRUNTS

In the Homeric legends it is narrated that when Ulysses left the
land of the Cyclops, after blinding the one-eyed giant Polyphemus,
that unfortunate old giant would sit each morning by the entrance
to his cave and from a heap of pebbles would pick up one pebble
for each ewe that he let pass out of the cave. Then, in the evening,
when the ewes returned, he would drop one pebble for each ewe
that he admitted to the cave. In this way, by exhausting the supply
of pebbles he had picked up in the morning, he was assured that
all his flock had returned in the evening.

The story of Polyphemus is one of the earliest literary references
to the notion of a one-to-one correspondence as the basis of count-
ing. Many illustrations of the principle involved can be given. Thus,
on a somewhat gruesome note, certain American Indians kept
count of the number of enemies slain by collecting the scalp of each
vanquished foe, and certain primitive African hunters, in proving
their manhood, still keep count of the number of wild boars killed
by collecting the tusks of each animal. The young unmarried girls
of the tribe of Masai herdsman who live on the slopes of Mt. Kili-
manjaro used to wear a number of brass rings about their necks
equal to their ages. The English idiom “to chalk one up" arose
from the custom of early bartenders keeping count of a customer’s
drinks by making chalk marks on a slate, and the Spanish idiom
“echai chinas” (“‘to toss a pebble”) arose from the similar custom
of early Spanish bartenders keeping count by tossing pebbles in
the customer’s hood. It is also apparent in the body counting of
some primitive peoples, wherein certain parts of the body are used
to indicate various numbers. It is again apparent in the once wide-
spread use of tally sticks, in which accounts were recorded by ap-
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2 GREAT MOMENTS IN MATHEMATICS (BEFORE 1650)

propriate notches cut in pieces of wood; the tally sticks employed
by the British Exchequer remained legal registers until as late as
1826. The ancient Peruvians maintained population and other
counts on a quipu—a device consisting of a cord with attached
knotted strings of various colors. And, of course, children today
keep count of the days till Christmas or a vacation from school by
checking the days off on a calendar. Almost anyone will, at one
time or another, keep a small tally by ticking off on his fingers.

The oldest extant artifact of mathematical significance is a bone
tool-handle, bearing notches arranged in definite numerical pat-
terns, with a piece of quartz fitted into a narrow cavity at the head
of the handle. Known as the Ishango bone, it was found in 1962
by Jean de Heinzelin at the fishing site of Ishango, on the shore of
Lake Edward in the Democratic Republic of the Congo, and dates
back to the period between 9000 and 6500 B.c. The meaning of
the tally notches can only be d, and there is a d
of opinion among the examining experts.

Quite likely the earliest GREAT MOMENT IN MATHEMATICS OC-
curred when, many thousands of years ago, primitive man began to
keep count of certain collections by making scratches in the dirt or
on a stone. Society had evolved to the point where simple counting
became imperative. A tribe, a clan, or a family had to apportion
food among its members, or had to keep track of the size of a flock
or herd The process was a simple tally method employing the

of and was p the be-
ginning of the science of wrmng.

It seems fair to surmise that in keeping a count of a small collec-
tion, one finger was either raised or turned down per member of
the collection. Tally counts for larger collections could, as indicated
by the examples above, be made by assembling pebbles or sticks,
by making scratches in the dirt or on a stone, by cutting notches
on a bone or in a piece of wood, or by tying knots in a string. Per-
haps later an assortment of grunts was developed as a vocal tally
against the number of objects in small collections. Still later, an
assortment of written symbols (numerals) was evolved to represent
these numbers.

Although this development of early counting is largely conjec-
tural, it is supported by reports of anthropologists in their studies




SCRATCHES AND GRUNTS 3

of present-day primitive peoples and by certain artifacts unearthed
in various parts of the world. It is the way small children of today
begin to keep count.

In the earlier stages of the vocal period of counting, different
grunts (words) were used, for example, for two sheep and two men.
One merely has to recall that in English we still use team of horses,
span of mules, yoke of oxen, brace of partridge, pair of shoes. The
ultimate abstraction of the common property of two, represented
by some sound considered independently of any concrete associ-
ation, probably was a long time in arriving. Our present number
words in all likelihood originally referred to sets of certain concrete
objects, but these connections, except for that perhaps relating five
and hand, are now lost to us.

The relation of certain number words to a concrete tally associ-
ation still lingers in some primitive societies of today. Thus, be-
cause of a peculiar system of counting among a Papuan tribe in
southeast New Guinea, it was found necessary to translate the Bible
passage (John 5:5): “And a certain man was there, which had an
infirmity thirty and eight years” into “A man lay ill one man (20),
both hands (10), S and 3 years.” Again, since primitive peoples
count on their fingers, sometimes the names of the fingers are
actually used by the people as number words. Thus the South
American Kamayura tribe use the word “peak-finger” (middle
finger) as their word for “three,” and “three days” comes out as
‘‘peak-finger days.” Again, the Dene-Dinje Indians of South Amer-
ica, who count by successively folding down the fingers of their
hands, count by the following literal equivalents:

“‘one”’—"'the end is bent” (the little finger is folded)

“two”—"it is bent once more”" (the ring finger is also folded)

“‘three” —‘‘the middle is bent” (the middle finger is also folded)

“four”—‘‘only one remains” (only the thumb is still extended)

“five”—*my hand is ended” or “my hand is dead” (all fingers
and thumb are folded)

“ten”—‘‘my hands are dead”

“four days” —*‘only-one-remains days”

Interesting is the word kononto, for “‘nine,” of the Mandingo tribe
of West Africa; the word literally means “to the one in the belly”—
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a reference to the nine months of pregnancy. The concrete stage in
counting is also evident in the Malay and Aztec tongues, where the
numbers “one,” “‘two,” ‘“‘three” are, literally, “one stone,” “‘two
stones,” “‘three stones.”” Similarly, among the Niués of the Southern
Pacific, the first three number words are, literally, “‘one fruit,”
“two fruits,” “three fruits,” and among the Javanese they are,
literally, “‘one grain,” “two grains,” “‘three grains.”

There are instances where a silent language, in the form of ap-
propriate gestures, may be employed in the one-to-one correspon-
dence used for counting. Thus there is a Papuan body counting
wherein to indicate small numbers one touches the appropriate
part of the body according to the following scheme:

1 right little finger 12 nose

2 right ring finger 13 mouth

3 right middle finger 14 left ear

4 right index finger 15 left shoulder

5 right thumb 16 left elbow

6 right wrist 17 left wrist

7 right elbow 18  left thumb

8 right shoulder 19  left index finger

9 right ear 20 left middle finger
10 right eye 21  left ring finger
11 left eye 22 left little finger

One notes the mirrorlike repetition in reverse, interrupted by *‘nose”
and “mouth” for 12 and 13.

It is common among primitive people, and even among sophisti-
cated people, to accompany verbal counting with gestures. For
example, in some tribes the word “ten” is frequently accompanied
by clapping one hand against the palm of the other, and the word
“six"" is sometimes accompanied by passing one hand rapidly over
the Dther Karl Menmnger says that certain African tribes can be

and ified by observing whether they begin
to count on the left hand or the right hand, whether they unfold
the fingers or bend them in, or whether they turn the palm toward
the body or away from the body.

The Englishman R. Mason has related a charming anecdote
about World War II. A Japanese girl was in India, which at the
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time was at war with Japan. To avoid a possibly embarrassing
situation, her friend introduced her as Chinese to an English resi-
dent of India. The Englishman was skeptical and asked the girl to
count to five on her fingers, which, after some hesitation, she did.
Then:

Mr. Headley burst out delightedly: “There you are! Did you see that?
Did you see how she did it? Began with her hand open and bent her
fingers in one by one. Did you ever see a Chinese do such a thing?
Never! The Chinese count like the English. Begin with the fist closed.
She's Japanese!” he cried triumphantly.

The notion of one-to-one correspondence has long been realized
as the basis for counting finite collections. In an extraordinary
series of articles, beginning in 1874 and published for the most
part in the h ics journals Math ische Annalen and
Journal fiir Math ik, the German ician Georg Cantor
applied the same basic notion to the counting of infinite collections,
and thereby created the remarkable theory of transfinite numbers.
But this is another, and of course much more recent, GREAT MO-
MENT IN MATHEMATICS; it will be properly considered in its own
place in a later lecture.

Exercises
1.1. Explain the Papuan translation of the Bible passage John 5:5
cited in the lecture text.

1.2. Explain how “peak-finger”” became the word for “‘three”
among the Kamayura tribe of South America.

1.3. The Zulus of South Africa use the following equivalents:
“six”—"‘taking the thumb"”
“‘seven”’—*‘he pointed”
Can you furnish an explanation for this?
1.4. The Malinké of West Sudan use the word dibi for “forty.”

The word literally means “a mattress.” Can you give an explanation
for this?
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1.5. In British New Guinea, the number ‘‘ninety-nine” comes
out as “four men die, two hands come to an end, one foot ends,
and four.” Explain this.

1.6. Two sets are said to be equivalent if and only if they can be
placed in one-to-one correspondence. Show that

(a) the set of all letters of the alphabet is equivalent to the set of
the first 26 positive integers;

(b) the set of all positive integers is equivalent to the set of all
even positive integers;

(c) equivalence of sets is reflexive, symmetric, and transitive.

1.7. Two sets that are equivalent are said to have the same car-
dinal number. Let A be a set of cardinal number o and B a set of
cardinal number 8, where A and B have no element in common.
Then, by o + B, called the sum of o and 3, we mean the cardinal
number of the set A U B. This binary operation on cardinal num-
bers is called addition. Prove that addition of cardinal numbers is
commutative and associative.

1.8. The set C whose elements are all ordered pairs (a,b), where
a is an element of set A and b is an element of set B, is called the
Cartesian product of A and B, and is denoted by A X B. If A has
cardinal number o and B has cardinal number 3, then, by of,
called the product of « and 3, we mean the cardinal number of the
set C = A X B. This binary operation on cardinal numbers is
called multiplication. Prove that multiplication of cardinal num-
bers is commutative, associative, and distributive over addition of
cardinal numbers.

1.9. Show that a set A consisting of five elements contains 25
subsets (including itself and the null set). Generalize to the case of
any finite set A.

1.10. Let A be a set with seven elements and B a set with five
elements. What can be said about the number of elements in the
sets A N B and A U B? Generalize to the case of any two finite
sets A and B.
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Further Reading

MENNINGER, KARL, Number Words and Number Symbols. a Cultural History of
Numbers. Cambridge, Mass.: The M.L.T. Press, 1969.

ZasLAvsKY, CLAUDIA, Africa Counts. Numbers and Patterns in African Culture.
Boston: Prindle, Weber & Schmidt, 1973.



LECTURE 2

THE GREATEST EGYPTIAN PYRAMID

The first geometrical considerations of man must be very ancient
and must have subconsciously originated in simple observations
stemming from human ability to recognize physical form and to
compare shapes and sizes. Certainly one of the earliest geometrical
notions to thus impinge itself on even the least reflective mind
would be that of distance, in particular the concept that the straight
line is the shortest path connecting two points; for most animals
seem instinctively to realize this. Another early notion that would
gradually emerge from the subconscious to the conscious mind
would be that of simple rectilinear forms, such as the triangle and
the quadrilateral. Indeed, it seems almost instinctive in laying out
boundaries first to locate the corners and then to connect the suc-
cessive corners by straight-line walls or fences. In building walls
the notions of vertical, parallel, and perpendicular would gradually
emerge. Many special curves, standing out among the generally
haphazard shapes of nature, would impress themselves on man’s
subconscious mind. Thus the discs of the sun and full moon are
circular, as is an arc of a rainbow and the cross-section of a log.
The parabolic trajectory of a hurled stone, the catenary curve of
a hanging vine, the spiral curve of a coiled rope, and the helical
curve of certain tendrils would similarly be noticed by even the
least observant mind. Certain spiders spin webs that closely ap-
proximate regular polygons. The swelling set of concentric circles
caused by a stone cast into a pond and the attractive flutings on
many shells suggest families of associated curves. Many fruits and
pits are spherical; tree trunks are circular cylinders; conical shapes
appear here and there in nature. Surfaces and solids of revolution,
observed in nature, as among melons, or from work on a potter's

8



THE GREATEST EGYPTIAN PYRAMID 9

wheel, would subconsciously strike an inquisitive mind. Man,
animals, and many leaves possess a bilateral symmetry. The notion
of volume would be encountered every time a container was filled
at the spring or river bank. The conception of space and of points
in space is involved whenever one looks at the stars in the sky at
nighttime. The list is easily extended.

‘This first nebulous acquaintance with many geometrical concepts
may be called subconscious geometry. It was employed by early
peoples, as it is by children today, in their primitive art work.

The second stage in geometry arose when human intelligence
was able to extract from a set of concrete geometrical relation-
ships a general abstract relationship containing the former as par-
ticular cases. One thus arrives at a geometrical law or rule. For
example, in measuring the areas of various rectangles drawn upon
quadrille-ruled paper by counting the number of little squares of
the paper found inside the rectangles, a young grade-school pupil
would soon induce that the area of any rectangle is probably given
by the product of its two dimensions. Again, in measuring, by a
tape measure, the circumferences of a number of wooden circular
discs, the young pupil would induce that the circumference of any
circle is somewhat more than three times the diameter of the circle.

As a more sophisticated example, consider a horizontal wooden
circular disc with an upright nail driven part way into its center,
and a wooden hemisphere of the same radius as the disc with a
nail driven part way into its pole. Now coil a thick cord on the
disc, in spiral fashion from the nail, until the disc is covered, not-
ing the length of cord required to do this. Next coil the same kind
of cord in spiral fashion about the nail in the hemisphere until the
hemisphere is covered, again noting the length of cord required.
In comparing the lengths of the cords used for the disc and for the
hemisphere, it will be found that the latter is always (very closely)
twice the former. From this one could induce that the area of the
hemisphere is twice that of the disc, or that the area of a sphere is
equal to four times the area of one of its great circles—a fact that
was first i blished by Archimedes in the third century
B.c. With such experiments, geometry became a laboratory study.

The labomtory slagc in geometry is known as scientific (or ex-

P or empi I, or ind: ) geometry. As far back as
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history allows us to grope into the past, we find already present a
sizable body of scientific geometry. This type of geometry seems to
have arisen in certain advanced pockets of the ancient Orient (the
world east of Greece) in the fifth to the third millennium B.c., to
assist in engineering, agricultural, and business pursuits, and in
religious ritual.

It is interesting that all recorded geometry prior to 600 B.c. is
essentially scientific geometry. Geometry developed into a large
bundle of rules of thumb, some correct and some only approxi-
ma!ely correct. In a course in the history of mathematics, con-

ion is given to ining the lat 'y nature of
the geometry of the ancient Babylonians, Egyptians, Hindus, and
Chinese. To illustrate, consider an early Chinese formula for the
area of a segment of a circle. The formula is found in the Arith-
metic in Nine Sections, dating from the second century B.c. but,
because of the burning of the books in 213 B.c., believed to be a
restoration of a much earlier work. In Figure 1, let ¢ represent the
chord and s the sagitta* of the circular segment. If from the mid-
point of the arc of the segment one draws secants cutting the ex-
tensions of ¢ so that the extended parts are each equal to half of s,
our eyes tell us that the circular segment is approximately equal in
area to the isosceles triangle formed by the line of ¢ and the two
secant lines. Assuming the areas are actually equal, we find the
old Chinese formula A = s(c + s)/2 for the area of the circular
segment. Applying this to a semicircular segment, it is easily
shown that, in this case, the formula is equivalent to taking = =
3, an approximation of = frequently found in ancient mathe-
matics.

In the Rhind papyrus, an Egyptian work on mathematics dating
back at least to 1650 B.c., we find the area of a circle taken as
equal to that of a square having eight-ninths of the circle’s diam-
eter as a side. It can be shown that this empirical formula is equiv-
alent to taking = = (4/3)% = 3.1604 .

Although most of the baked clay mathematlcal tablets lifted in
Mesopotamia show that the ancient Babylonians took = = 3, a

*The distance from the midpoint of the chord of the segment to the midpoint of
the arc of the segment.
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recently discovered tablet dating from 1900 to 1600 B.c. and un-
earthed in 1936 at Susa, about 200 miles from Babylon, gives the
better estimate of 38 = 3.125.

Many other examples of the scientific nature of very early geom-
etry are known. One is impressed by the amount of geometry that
can be discovered by purely laboratory methods.

If, from the accumulation of examples of scientific geometry
that have come down to us from antiquity, one were to pick an
outstanding instance that might serve as a GREAT MOMENT IN
MATHEMATICS, one could scarcely do better than to settle on Prob-
lem 14 of the Moscow papyrus. The Moscow papyrus, dating back
to approximately 1850 B.c., is a mathematical text containing 25
problems which were already old when the manuscript was com-
piled. The papyrus was purchased in Egypt in 1893 and now re-
sides in a museum in Moscow. In Problem 14 of the papyrus we
find the following numerical example:

“You are given a truncated pyramid of 6 for the vertical height
by 4 on the base by 2 on the top. You are to square this 4, result
16. You are to double 4, result 8. You are to square 2, result 4.
You are to add the 16, the 8, and the 4, result 28. You are to take
one-third of 6, result 2. You are to take 28 twice, result 56. See, it
is 56. You will find it right.”

Now what are we to make of this? Fxrst of all we are to reallze
that, following the custom in i in a
general procedure is being described and the specific numbers em-
ployed are only incidental. Since all the extant Egyptian pyramids
of ancient times are regular square pyramids, we assume that in
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the problem we are given a frustum of a pyramid (a pyramid with
its top cut off by a plane parallel to the base) whose lower base is
a square of side a = 4, whose upper base is a square of side b =
2, and whose altitude is # = 6. We are told, in turn, to find a2 =
(4)(4) = 16, ab = (4)2) = 8, b2 = (2)(2) = 4. We are then told
to obtain the sum a2 + ab + b2 = 16 + 8 + 4 = 28. Next we
are told to find Y32 = Y3(6) = 2. Finally, we are told to compute
the product Y3h(a2 + ab + b2) = (2)(28) = 56. This product,
however, is the volume of the given truncated pyramid found by
the correct formula

V= %h(B, + VBB, + By

for the volume of any frustum of a pyramid with lower base of area
B,, upper base of area B,, and altitude A.

Let us pause a moment to consider, assuming our interpretation
of Problem 14 is correct, the remarkableness of the above. The
ancient Babylonians knew that the area of a trapezoid (which can
be regarded as a truncated triangle) is given by the product of its
altitude and half the sum of its two bases. Analagous to this, the
ancient Babylonians took the volume of a frustum of a pyramid as
the product of the altitude of the frustum and half the sum of the
areas of its two bases, or, in the notation introduced above,

v="1n +By.

Now, though it is natural to conjecture that this formula yields the
volume of the frustum, the formula is incorrect. To find the volume
of the frustum we expect, of course, to multiply the altitude k by
some sort of mean or average of the areas B, and B,. But the
arithmetic mean of B, and B,, namely, ¥2(B, + B,), is not cor-
rect. What one needs here (and which is not at all obvious) is the
heronian mean of B, and B, namely,

%(Bl + VBB, + By).
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The ancient Egyptian author of Problem 14 of the Moscow papyrus,
somehow or other and unlike the ancient Babylonians, made the
correct conj Surely this induction is a truly piece
of empirical work in geometry. So remarkable did it seem to Eric
Temple Bell that he named Problem 14 of the Moscow papyrus
“the greatest Egyptian pyramid”; to Bell, the induction involved
in the problem is far more remarkable than the actual physical
construction of any of the massive stone pyramids of Egyptian
antiquity still standing today. It was a GREAT MOMENT IN MATHE-
MATICS.

Exercises

2.1. (a) Follow through the empirical procedure, described in
the lecture text, leading to the old Chinese formula for the area of
a segment of a circle.

(b) Show that applying the formula to a semicircular segment is
equivalent to taking = = 3.

(c) Derive a correct formula for the area of a circular segment in
terms of the chord ¢ and the sagitta s of the segment.

2.2. (a) Show that the ancient Egyptian method of finding the
area of a circle is equivalent to taking = = (4/3)4 = 3.1604 ... .

(b) Form an octagon from a square of side 9 units by trisecting
the sides of the square and then cutting off the four triangular
corners. The area of the octagon looks, by eye, to differ very little
from the area of the circle inscribed in the square. Show that the
area of the octagon is 63 square units, whence the area of the
circle cannot be far from that of a square of 8 units on a side.
There is evidence, in the form of a crudely drawn figure accom-
panying Problem 48 of the Rhind papyrus, that the Egyptian
formula for the area of a circle may have been arrived at in this
way.

2.3. On an old Babylonian baked clay tablet lifted at Susa in
1936, the ratio of the perimeter of a regular hexagon to the cir-
cumference of the circumscribed circle is given as 57/60 +
36/3600. Show that this leads to 3¥s as an approximation of 7.
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2.4. The idea of ging is in irical work. Thus
we find, in the Rhind papyrus, the area of a quadrilateral having
successive sides a, b, ¢, d given by

- (459 (49

(a) Show that, actually, the formula above gives too large a re-
sult for all nonrectangular quadrilaterals.

(b) If the Egyptian formula above is assumed correct, show that
the area of a triangle would be given by half the sum of two sides
multiplied by half the third side. We find this incorrect formula
for the area of a triangle in an extant deed from Edfu dating some
1500 years after the Rhind papyrus.

2.5. Interpret the following, found on a ian tablet be-
lieved to date from about 2600 B.c.:

**60 is the circumference, 2 is the sagitta, find the chord.

“Thou, double 2 and get 4, dost thou not see? Take 4 from 20,
thou gettest 16. Square 20, thou gettest 400. Square 16, thou
gettest 256. Take 256 from 400, thou gettest 144. Find the square
root of 144. 12, the square root, is the chord. Such is the proce-
dure.”

2.6. The Sulvasatras, ancient Hindu religious writings dating
from about 500 B.c., are of interest in the history of mathematics
because they embody certam geometrical rules for the construction
of altars and show an with the Py theorem.
Among the rules furnished there appear empmcal solutions to the
circle-squaring problem which are equivalent to taking d =
(2 + V2)s/3 and s = 13d/15, where d is the diameter of the circle
and s is the side of the equivalent square. These formulas are equiva-
lent to taking what values for x?

2.7. If m and n are two positive numbers, we define the arith-
metic mean, the heronian mean, and the geometric mean of m and
ntobe A = (m+ n)/2, H= (m + Jymn + n)/3, G = Vmn.
Show that A= H = G, the equality signs holding if and only if
m=n.
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2.8. Assuming the familiar formula for the volume of any pyra-
mid (volume equals one-third the product of base and altitude),
show that the volume of any frustum T of a pyramid is given by
the product of the height of T and the heronian mean of the two
bases of 7.

2.9. Let a, b, and k denote the lengths of an edge of the lower
base, an edge of the upper base, and the altitude of a frustum T of
a regular square pyramid. Dissect T into: (1) a rectangular paral-
lelepiped P of upper base b2 and altitude &, (2) four right tri-
angular prisms A, B, C, and D each of volume b(a — b)h/4, (3)
four square pyramids E, F, G. and H each of volume (a — b)?h/12.
Now obtain the formula

V = h(a?+ ab + b2)/3

for the volume of 7.

2.10. Consider the dissected frustum T' of Exercise 2.9. Hori-
zontally slice P into three equal parts each of altitude 4/3 and
designate one of these slices by U. Combine A, B, C, D into a
rectangular parallelepiped Q of base b(a — b) and altitude 4, and
horizontally slice Q into three equal parts of altitude #/3. Replace
E, F, G, H by a rectangular parallelepiped R of base (@ — b)? and
altitude #/3. Combine one slice of P with one slice of Q to form a
rectangular parallelepiped V of base ab and altitude 4/3. Combine
one slice of P, two slices of Q, and R to form a rectangular paral-
lelepiped W of base a? and altitude 4/3. The volume of T is then
equal to the sum of the volumes of the three rectangular paral-
lelepipeds U, V, W. Using this fact find the formula of Exercise
2.9 for the volume of 7. It has been suggested that the procedure
in Problem 14 of the Moscow papyrus may have been obtained in
this fashion.

Further Reading

GiLLINGS, R. J., Mathematics in the Time of the Pharaohs. Cambridge, Mass.:
The M.LT. Press, 1972.

NEUGEBAUER, OTTO, The Exact Sciences in Antiquity, 2nd ed. New York:
Harper & Row, 1962.



LECTURE 3

FROM THE LABORATORY INTO THE STUDY

It was about 600 B.c. that geometry entered a third stage of
Histori of ics are i in ac-
crediting this further advancement to the Greeks of the period,
and the earliest pioneering efforts to Thaies of Miletus, one of the
“seven wise men" of antiquity. Thales, it seems, spent the early
part of his life as a merchant, becoming wealthy enough to devote
much of his later life to study and some travel. He visited Egypt
and brought back with him to Miletus knowledge of Egyptian
accomplishments in geometry. His many-sided genius won him a
putation as a , engineer, business man,
hilosoph h ician, and . He is the first in-
dividual known by name in the history of mathematics, and the
first individual with whom deductive geometrical discoveries are
associated. He is credited with the following elementary results:

. A circle is bisected by any diameter.

. The base angles of an isosceles triangle are equal.

. Vertical angles formed by two intersecting lines are equal.

. Two triangles are congruent if they have two angles and one
side in each respectively equal.

5. An angle inscribed in a semicircle is a right angle.

BWN =

Now all five of the results above were undoubtedly known long
before Thales’ time, and all five are easily arrived at in a lab-
oratory. So the value of these results is not to be measured by
their content, but rather by the belief that Thales supported each
of them by some logical reasoning instead of by intuition and
experiment. Take, for example, the third result, which, in the
laboratory, would easily be verified by cutting out a pair of vertical

16
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angles with scissors and applying one of the angles to the other.
Thales, however, probably reasoned out the result much as we do
today in a beginning geometry class. In Figure 2, we want to show
that angle x = angle y. Now angle x is the supplement of angle z;
also, angle y is the supplement of angle z. Therefore, since things
equal to the same thing are equal to one another, it follows that
angle x = angle y. The desired result has been obtained by a
small chain of deductive reasoning, stemming from a more fun-
damental result. This type of geometry is known as demonstrative
(or deductive, or systematic) geometry, and was considerably
developed by the Greeks from 600 B.c. on. These early Greeks
removed the establishment of geometrical, and similarly all math-
ematical, results from the laboratory into the study. This conscious
and deliberate effort was certainly a GREAT MOMENT IN MATH-
EMATICS, and, if tradition is correct, Thales of Miletus was the
original motivator.

Just why, of all the peoples of the time, the Greeks decided
that geometrical facts must be assured by logical demonstration
rather than by lat ion is i referred to
as the Greek mystery. Scholars have tried to furnish explanations
of the Greek mystery, and though no one explanation by itself
seems wholly satisfying, it may be that all of them together are

The most ly given ion finds the reason
in the pecuhar mental bias of the Greeks of classical times toward
In one is with
z
x y

FiG. 2
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inevitable conclusions that follow from assumed premises, and the
empirical method affords only a measure of probability in favor
of a given result. It is deducti ing that philosophers find
to be their indispensable tool, and so the Greeks naturally gave
preference to this method when they began to consider geometry.

Another explanation of the Greek mystery lies in the Hellenic
love of beauty, as is manifest in their art, their writing, their

p and their archi Now appreciation of beauty is an
intellectual as well as an emotional experience, and from this point
of view the orderliness, the consistency, the completeness, and the

iction found in deducti are very satisfying.

A still further explanation of the Greek mystery has been found
in the slave-based nature of Greek society in classical times. The
privileged class was supported by a large slave class that ran the
businesses, managed the industries, took care of the households,
and did both the technological and the unskilled work of the time.
This slave basis naturally fostered a separation of theory from
practice and led members of the privileged class to a preference for
deduction and abstraction and a disdain for experimentation and
practical application.

Finally, the 1 ion may lie in the ping
economic and political changes that occurred at the time. The Iron
Age had been ushered in, the alphabet had been invented, coins
were introduced, and geographic discoveries were made. The world
was ready for a new type of civilization, and this new civilization
made its appearance among the more forward-looking and imag-
inative people in the trading towns that sprang up along the coast
of Asia Minor and later on the mainland of Greece, in Sicily, and
on the Italian shore. These trading towns were largely Greek

Under a ping of men
began to ask why as well as how. Now empirical processes are
quite adequate for the question how, but they do not suffice to
answer inquiries of why, and attempts at demonstrative methods
were bound to assert themselves, with the result that the deductive
feature, which modern scholars regard as a fundamental char-
acteristic of math came into p

But whatever may be the true explanation of the Greek mystery,
it must be conceded that the Greeks of classical times converted
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geometry into something vastly different from the collection of
empirical rules handed down by their predecessors. Moreover, the
fact that the first deductive thinking was done in the field of
geometry instead of algebra inaugurated a tradition in mathematics
that was maintained until quite recent times.

It must not be thought that the Greeks shunned all preliminary
empirical and experimental methods in mathematics, for it is
probably quite true that few, if any, significant mathematical facts
have ever been found without some preliminary empirical work of
one form or another. Before a mathematical statement can be
proved or disproved by deduction, it must first be conjectured, and
a conjecture is nothing but a guess made more or less plausible by
intuition, observation, analogy, experimentation, or some other
form of empirical p di Deduction is a incing formal
mode of exposition, but it is hardly a means of discovery. It is a
set of complicated machinery that needs material to work upon,
and the material is usually furnished by empirical considerations.
Even the steps of a deductive proof or disproof are not dictated to
us by the deductive apparatus itself but must be arrived at by trial
and error, experience, and shrewd guessing. Indeed, skill in
the art of good guessing is one of the prime ingredients in the
makeup of a worthy mathematician. What is 1mportant here is
that the Greeks insisted that a conj or
mathematical statement must be followed up with a rigorous
proof or disproof by deduction and that no amount of verification
by experiment is sufficient to establish the statement.

To succeed in geometry, either as a creator or simply as a
problem-solver, one must be willing to experiment, to draw and
test innumerable figures, to try this and to try that. Galileo (1564-
1642), in 1599, attempted to ascertain the area under one arch of
the cycloid curve* by balancing a cycloidal template against
circular templates of the size of the generating circle. Because of a
slight flaw in his platform balance, he incorrectly concluded that
the area under an arch is very nearly, but not exactly, three times
the area of the circle. The first published mathematical demon-

*A cycloid is the curve traced by a fixed point on the circumference of a circle
that rolls, without slipping, along a straight line.
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stration that the area is exactly three times that of the generating
circle was furnished, in 1644, by his pupil, Evangelista Torricelli
(1608-1647), with the use of early integration methods.

Blaise Pascal (1623-1662), when a very young boy, ‘“‘discovered”
that the sum of the angles of a triangle is a straight angle by a
simple experiment involving the folding of a paper triangle.

Archimedes (287?-212 B.c.), in his treatise Method, has described
how he first came to realize, by mechanical considerations, that
the volume of a sphere is glven by 4:13/3 where r is the radius of
the sphere. But Archi i would not
permit him to accept his mechanical argument as a proof, and he
accordingly supplied a rigorous demonstration.

By actually constructing a right circular cone, three times filling
it with sand and then emptying the contents into a right circular
cylinder of the same radius and height, one would conjecture that
the volume of a right circular cone is one-third the product of its
altitude and the area of its circular base.

Many first-rate conjectures concerning maxima and minima
problems in the calculus of variations were first obtained by soap-
film experiments.

One should not deprecate experiments and approaches of this
kind, for there is no doubt that much geometry has been “dis-
covered” by such means. Of course, once a geometrical conjecture
has been formulated, one must, like Archimedes, establish or refute
it by i ing, and thus settle the matter
one way or the other. Many a geometrical conjecture has been
discarded by the outcome of just one carefully drawn figure or
by the examination of some extreme case.

A very fruitful way of making geometrical conjectures is by the
employment of analogy, though it must be confessed that many
conjectures so made are ultimately proved false. An astonishing
amount of space geometry has been discovered via analogy from
similar situations in the plane, and in the geometry of higher
dimensional spaces analogy has played a very successful role.

There is a pedagogical principle based on the famous law pithily
stated by biologists in the form: “Ontogeny recapitulates phy-
logeny,” which simply means that, in general, “the individual
repeats the development of the group.” The pedagogical principle
is that, at least in broad outline, a student should be taught a
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subject pretty much in the order in which the subject developed
over the ages. Take geometry, for example. We have seen that
historically geometry progressed through three stages—first sub-
conscious geometry, then scientific geometry, and finally de-
monstrative geometry. The pedagogical principle claims, then,
that geometry should first be presented to young children in its
subconscious form, probably through simple art work and simple
observations of nature. In this manner the young pupils will
subconsciously become aware of a large number of geometrical
concepts, such as distance, angle, triangle, quadrilateral, vertical,
perpendicular, parallel, straight line, circle, spiral, sphere, cyl-
inder, cone, and so on. Then, somewhat later, this subconscious
basis should be evolved into scientific geometry, wherein the pupils
induce a i array of ical facts through experi-
ion with and ightedge, with ruler and pro-
tractor, with scissors and paste, with simple models, and so on.
Still later, when the student has become sufficiently sophisticated,
geometry can be d d i deducti

in its e, or
form, and the advantages and disadvantages of the earlier process
can be pointed out.

The weakest part of this geometrical study program in our
schools today seems to lie in the second, or scientific, stage of
geometry. Not enough time is spent on this stage. There is much
to be said for empirical, or experimental, geometry. The time
spent here solidifies the students’ grasp of many geometrical
concepts. It shows them the lmportance and essential necessity

of preliminary in ics, at the same
tlme pomtmg out the shortcommgs when the work is not followed
up by rigorous i What the need in

order to make this phase of geometrical learning more extended
and more valnable is a good collectlon of simple but significant
ive and easily con-
structed models The assembling of a booklet of such experiments
is highly ded to anyone i in the venture.

Exercises

3.1. The Hindu mathematician Aryabhata the Elder wrote early
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in the sixth century. His work is a poem of 33 couplets called the
Ganita. Following are translations of two of the couplets:

The area of a triangle is the product of the altitude and half the
base; half of the product of this area and the height is the volume
of the solid of six edges.

Half the circumference multiplied by half the diameter gives
the area of the circle; this area multiplied by its own square root
gives the volume of the sphere.

Show that in each of these couplets Aryabhata is correct in two
dimensions but wrong in three. We note that Hindu mathematics
remained empirical long after the Greeks had introduced the
deductive feature.

3.2. There are two versions of how Thales, when in Egypt,
evoked admiration by calculating the height of a pyramid by
shadows. The earlier account, given by Hieronymus, a pupil of
Aristotle, says that Thales determined the height of the pyramid
by measuring the shadow it cast at the moment a man’s shadow
was equal to his height. The later version, given by Plutarch, says
that he set up a stick and then made use of similar triangles.
Both versions fail to mention the very real difficulty, in either case,
of obtaining the length of the shadow of the pyramid—that is, the
distance from the shadow of the apex of the pyramid to the center
of the base of the pyramid.

The unaccounted-for difficulty above has given rise to what has
become known as the Thales puzzle: Devise a method, based on
shadow observations and similar triangles and independent of
latitude and specific time of day or year, for determining the
height of a pyramid. (There is a neat solution employing two
shadow observations spaced a few hours apart.)

3.3. Assuming the equality of alternate interior angles formed
by a transversal cutting a pair of parallel lines, prove the following:

(a) The sum of the angles of a triangle is equal to a straight
angle.

(b) The sum of the interior angles of a convex polygon of n sides
is equal to n — 2 straight angles.

3.4. Assuming the area of a rectangle is given by the product of
its two di i blish the fa ing chain of
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(a) The area of a parallelogram is equal to the product of its
base and altitude.

(b) The area of a triangle is equal to half the product of any side
and the altitude on that side.

(c) The area of a right triangle is equal to half the product of its
two legs.

(d) The area of a triangle is equal to half the product of its
perimeter and the radius of its inscribed circle.

(e) The area of a trapezoid is equal to the product of its altitude
and half the sum of its bases.

(f) The area of a regular polygon is equal to half the product of
its perimeter and its apothem.*

(g) The area of a circle is equal to half the product of its circum-
ference and its radius.

3.5. Assuming (1) a central angle of a circle is measured by its
intercepted arc, (2) the sum of the angles of a triangle is equal to
a straight angle, (3) the base angles of an isosceles triangle are
equal, (4) a tangent to a circle is perpendicular to the radius
drawn to the point of contact, establish the following chain of
theorems:

(a) An exterior angle of a triangle is equal to the sum of the two
remote interior angles.

(b) An inscribed angle in a circle is measured by one-half its
intercepted arc.

(c) An angle inscribed in a semicircle is a right angle.

(d) An angle formed by two intersecting chords in a circle is
measured by one-half the sum of the two intercepted arcs.

(e) An angle formed by twa intersecting secants of a circle is
measured by one-half the d of the two i arcs.

(f) An angle formed by a tangent to a circle and a chord through
the point of contact is measured by one-half the intercepted arc.

(g) An angle formed by a tangent and an intersecting secant of
a circle is measured by one-half the difference of the two intercepted
arcs.

*The apothem of a regular polygon is the perpendicular from the center to any
one of its sides.
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(h) An angle formed by two intersecting tangents to a circle is
measured by one-half the difference of the two intercepted arcs.

3.6. Show empirically, by a simple experiment involving the
folding of a paper triangle, that the sum of the angles of a triangle
is a straight angle.

3.7. To trisect a central angle AOB of a circle, someone suggests
that we trisect the chord AB and then join these points of tri-
section with O. While this ion may look hat rea-
sonable for small angles, show, by taking an angle almost equal to
180°, that the construction is patently false.

3.8. Two ladders, 60 feet long and 40 feet long, lean from
opposite sides across an alley lying between two buildings, the feet
of the ladders resting against the bases of the buildings. If the
ladders cross each other at a distance of 10 feet above the alley,
how wide is the alley?

Find an approximate solution from drawings. An algebraic
treatment of this problem requires the solution of a quartic equa-
tion. If @ and b represent the lengths of the ladders, c the height
at which they cross, and x the width of the alley, one can show
that

(a2 — x2)"12 + (b2 — x2)~12 = ¢,

3.9. Let F, V, E denote the number of faces, vertices, and edges
of a p For the , cube, tri prism,
pentagonal prism, square pyramid, pentagonal pyramid, cube with
one corner cut off, cube with a square pyramid erected on one
face, we find V — E + F = 2. Do you feel that this formula holds

for all polyhedra?

3.10. There are convex polyhedra all faces of which are triangles
(for instance, a tetrahedron), all faces of which are quadrilaterals
(for instance, a cube), all faces are pentagons (for instance, a
regular dodecahedron). Do you think the list can be continued?

3.11. (a) Consider a convex polyhedron P and let C be any point
in its interior. We can imagine a suitable heterogeneous distribution
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of mass within P such that the center of gravity of P will coincide
with C. If this weighted polyhedron should be thrown upon a
horizontal floor, it will come to rest on one of its faces (since
otherwise we would have perpetual motion). Show that these
i yield a h for the geometﬂcal
proposition: “Given a convex polyhedron P and a point C in its
interior, then there exists a face F of P such that the foot of the
perpendicular from C to the plane of F lies in the interior of F.”
(b) Give a ical proof of the ition of part (a).

3.12. Consider an ellipse with semiaxes a and b. If a = b the
ellipse becomes a circle and the two expressions

P=x(a+b) and P' = 2x(ab)"?

each becomes 2ma, which gives the perimeter of the circle. This
suggests that P or P' may give the perimeter E of any ellipse.
Discuss.

3.13. If the inside of a race track is a noncircular ellipse, and
the track is of constant width, is the outside of the track also an
ellipse?

3.14. The three almudes of a triangle are concurrent. Are the
four altitudes of a h ?

3.1S. F in three-space that are analogs of the
following theorems in the plane.

(a) The bisectors of the angles of a triangle are concurrent at
the center of the inscribed circle of the triangle.

(b) The area of a circle is equal to the area of a triangle the
base of which has the same length as the circumference of the
circle and the altitude of which is equal to the radius of the circle.

(c) The foot of the altitude of an isosceles triangle is the mid-
point of the base of the triangle.

Further Reading

VAN DER WAERDEN, B. L., Science Awakening, tr. by Arnold Dresden. New
York: Oxford University Press, 1961; New York: John Wiley, 1963 (paperback ed.).



LECTURE 4

THE FIRST GREAT THEOREM

One of the most attractive, and certainly one of the most famous
and most useful, theorems of elementary geometry is the so-called
Pythagorean theorem, which asserts that “in any right triangle
the square on the hypotenuse is equal to the sum of the squares
on the two legs.” If there is a theorem whose birth merits inclusion
as a GREAT MOMENT IN MATHEMATICS, the Pythagorean theorem
is probably the prime candidate, for it is perhaps the first truly
great theorem in mathematics. But when we come to consider
the origin of the theorem, we find ourselves treading on anything
but solid ground. Although legend has ascribed the famous theorem
to Pyth i tury ination of cunei baked
clay tablets excavated in Mesopotamia has revealed that the ancient
Babylonians of over a thousand years prior to Pythagoras’ time
were aware of the theorem. Knowledge of the theorem also appears
in some ancient Hindu and Chinese works that may go back to the
time of Pythagoras, if not earlier. These non-Hellenic and possibly
pre-Hellenic references to the theorem, however, contain no proofs
of the relationship, and it may well be that Pythagoras, or some
member of his renowned fraternity, was the first to furnish a
logical demonstration of the theorem.

Let us pause for a moment to say something about Pythagoras
and his semimystical brotherhood. Pythagoras is the second person
to be mentioned by name in the history of mathematics. Peering
through the mythical haze of the past, we gather that Pythagoras
was born about 572 B.c. on the Aegean island of Samos, not far
from Miletus, the home of the illustrious Thales. Being about
fifty years younger than Thales and living so near to him, it may
be that Pythagoras studied under the older man. At any rate, he

26
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appears, like Thales, to have sojourned at one time in Egypt, and
then to have indulged in more ive travel, probably going as
far as India. Returning home after two years of wandering, he
found Samos under the tyranny of Polycrates and much of Ionia
under Persian d and di he mi d to the
Greek seaport of Crotona, located in the boot of southern Italy.
There he founded the famous Pythagorean school, which, in addi-
tion to being an academy for the study of philosophy, mathematics,
and natural science, developed into a closely knit brotherhood with
secret rites and observances. In time the political power and aristo-
crauc tendencies of the brotherhood became so great that the

ic forces of hern Italy the buildings of the
school and caused the society to disperse. According to report,
Pythagoras fled to Metapontum, where he died, maybe through
murder by his pursuers, at the advanced age of 75 or 80. The
brotherhood, although scattered, continued to exist for at least two
more centuries.

The Pythagorean philosophy, smacking of Hindu origin, rested
on the assumption that the whole numbers are the cause of the
various qualities of man and matter; in short, the whole numbers
rule the universe qualitywise as well as q ywise. This concept
and exaltation of the whole numbers led to their deep study; for,
who knows, maybe by unveiling the intricate properties of the
whole numbers man might be able, to some degree, to guide or
ameliorate his own destiny. Accordingly numbers, and, because of
their intimate connection with geometry, geometry too, were as-
siduously studied. Because the teaching of Pythagoras was entirely
oral, and because of the custom of the brotherhood to refer all
discoveries back to the revered founder, it is now difficult to know
just what mathematical findings should be credited to Pythagoras
himself, and which to other members of the fraternity.

Returning to the GREAT MOMENT IN MATHEMATICS under con-
sideration, it is natural to wonder as to the nature of the proof
Pythagoras might have given of the great theorem named after
him. There has been much conjecture on this, and it is generally
felt that the proof was probably a dissection type of proof like the
following. Let a, b, ¢ denote the legs and the hypotenuse of the
given right triangle, and consider the two squares of Figure 3, each
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having @ + b as its side. The first square is dissected into six
pieces, namely, the two squares on the legs and four right triangles
congruent to the given triangle. The second square is dissected
into five pieces, namely, the square on the hypotenuse and again
four right triangles congruent to the given triangle. By subtracting
equals from equals, it now follows that the square on the hypotenuse
is equal to the sum of the squares on the legs.

To prove that the central piece of the second dissection is actually
a square of side ¢, we need to employ the fact that the sum of the
angles of a right triangle is equal to two right angles. But this
fact for the general triangle has been attributed to the Pythago-
reans. Since a proof of this general fact requires, in turn, a knowl-
edge of some properties of parallels, the early Pythagoreans are
also credited with the development of that theory.

Perhaps no theorem in all of mathematics has received more
diverse proofs than has the Pythagorean theorem. In the second
edition of his book, The Pythagorean Proposition,* E. S. Loomis
has collected and classified 370 demonstrations of this famous
theorem.

*Ann Arbor, Mich.: private printing, Edward Brothers, 1940. Reprint available
from The National Council of Teachers of Mathematics, Washington, D.C.
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Two areas, or two volumes, P and Q, are said to be congruent
by addition if they can be dissected into corresponding pairs of
congruent pieces. They are said to be congruent by subtraction if
corresponding pairs of congruent pieces can be adjoined to P and Q
to give two new figures that are congruent by addition. There are
many proofs of the Pythagorean theorem which achieve their end
by showing that the square on the hypotenuse of the right triangle
is congruent either by addition or subtraction to the combined
squares on the legs of the right triangle. The proof sketched above,
and thought perhaps due to Pythagoras, is a congruency-by-sub-
traction proof.

Figures 4 and S suggest two congruency-by-addition proofs of
the Pythagorean theorem, the first given by H. Perigal in 1873%
and the second by H. E. Dudeney in 1917. Figure 6 suggests a
congruency-by-subtraction proof said to have been devised by
Leonardo da Vinci (1452-1519).

It is interesting that any two equal polygonal areas are congruent
by addition, and the dissection can always be effected with straight-
edge and compasses. On the other hand, in 1901, Max Dehn
showed that two equal polyhedral volumes are not necessarily con-
gruent by either addition or subtraction. In particular, it is im-
possible to dissect a regular tetrahedron into polyhedral pieces that
can be reassembled to form a cube. Euclid, in his Elements (ca.
300 B.c.), occasionally employs dissection methods to establish
equivalence of areas.

The elegant proof of the Pythagorean theorem given by Euclid
in Proposition 47 of Book I of his Elements depends upon the dia-
gram of Figure 7, sometimes referred to as the Franciscan's cowl,
or as the bride’s chair. A précis of the proof runs as follows:
(AC)? = 2 A JAB = 2 A CAD = ADKL. Similarly, (BC)? =
BEKL. Therefore (AC)2 + (BC)? = ADKL + BEKL = (AB).

High school teachers sometimes show their students the curious
proof of the Pythagorean theorem given by the Hindu mathema-
tician and astronomer Bhaskara, who flourished around 1150. It
is a dissection proof in which the square on the hypotenuse is cut
up, as indicated in Figure 8, into four triangles, each congruent to

*This was a rediscovery, for the dissection was known to Tabit ibn Qorra (826-901).
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Fic. 4

Fic. §

the given right triangle, plus a square with side equal to the dif-
ference of the legs of the given right triangle. The pieces are easily
rearranged to give the sum of the squares on the two legs. Bhaskara
drew the figure and offered no further explanation than the word
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FiG. 6

“Behold!” Of course, a little algebra supplies a proof. For, if ¢ is
the hypotenuse and a and b are the legs of the given right triangle,

c2 = 4(ab/2) + (b — a)? = a® + b2

Perhaps a better “behold” proof of the Pythagorean theorem
would be a dynamical one on movie film wherein the square on the
hypotenuse is continuously transformed into the sum of the squares
on the legs by passing through the stages indicated in Figure 9.

Bhaskara also gave a second di of the Pyth
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theorem by drawing the altitude on the hypotenuse. From similar
right triangles in Figure 10 we have

¢/b = b/m and c¢/a = a/n,

or

cm = b*andcn =
Adding, we get
a?+ b2 =c(m+n)=ck

This proof was rediscovered in the seventeenth century by the En-
glish mathematician John Wallis (1616-1703).

A few of our country’s presidents have been tenuously connected
with mathematics. George Washington was a noted surveyor,
Thomas Jefferson did much to encourage the teaching of higher
mathematics in the United States, and Abraham Lincoln is said to
have learned logic by studying Euclid's Elements. More creative
was James Abram Garfield (1831-1881), the country’s twentieth
president, who in his student days developed a keen interest and
fair ability in elementary mathematics. It was in 1876, while he
was a member of the House of Representatives, and five years be-
fore he became President of the United States, that he indepen-
dently discovered a very pretty proof of the Pythagorean theorem.
He hit upon the proof in a mathematics discussion with some other
members of Congress, and the proof was subsequently printed up
in the New England Journal of Education. Students of high school

FiG. 10
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geometry are always interested to see the proof, which can be pre-
sented immediately after the formula for the area of a trapezoid
has been covered. The proof depends upon calculating the area of
the trapezoid of Figure 11 in two different ways—first by the for-
mula for the area of a trapezoid (as the product of half the sum of
the parallel sides and the perpendicular distance between these
sides) and then as the sum of three right triangles into which the
trapezoid can be dissected. Equating the two expressions so found
for the area of the trapezoid, we find (see Figure 11)

(a + b)(a + b)/2 = 2[(ab)/2] + ¢2/2
or
a? + 2ab + b? = 2ab + ¢,
whence
a? + b2 =2

Since a trapezoid, as pictured, exists for any right triangle of legs
a and b and hypotenuse c, the Pythagorean theorem has been estab-
lished.

Like many other great theorems, the Pythagorean theorem has
received numerous extensions. Even in Euclid's time certain gen-
eralizations of the theorem were known. For example, Proposition
31 of Book VI of the Elements states: In a right triangle the area
of a figure described on the hypotenuse is equal to the sum of the
areas of similar figures similarly described on the two legs. This
generalization merely replaces the three squares on the three sides
of the right triangle by any three similar and similarly described
figures. A more worthy generalization stems from Propositions 12
and 13 of Book II. A combined and somewhat modernized state-
ment of these two propositions is: In a triangle, the square of the
side opposite an obtuse (acute) angle is equal to the sum of the
squares on the other two sides increased (decreased) by twice the
product of one of these sides and the projection of the other side
on it. That is, in the notation of Figure 12.

(4B)? = (BC)? + (CA)* £ 2(BC)(DC),
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the plus or minus sign being taken according as angle C of triangle
ABC is obtuse or acute. If we employ directed line segments we
may combine Propositions 12 and 13 of Book II and Proposition 47
of Book I (the Pythagorean theorem) into the single statement: If
in triangle ABC, D is the foot of the altitude on side BC, then

(AB)? = (BC)? + (CA)? — 2ABCYDC).

Since DC = CA cos BCA, we recognize this last statement as
essentially the so-called law of cosines, and the law of cosines is

indeed a fine ization of the Pyth, theorem.
b
a
a b
Fre. 11
c
4 D
c

A B A B
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But perhaps the most remarkable extension of the Pythagorean
theorem that dates back to the days of Greek antiquity is that given
by Pappus of Alexandria (ca. A.n. 300) at the start of Book IV of
his Mathematical Collection. The Pappus extension of the Pythag-
orean theorem is as follows (see Figure 13): Let ABC be any tri-
angle and CADE, CBFG any parallelog descril
on sides CA and CB. Let DE and FG meet in H and draw AL ami
BM equal and parallel to HC. Then the area of parallelogram
ABML is equal to the sum of the areas of parallelograms CADE
and CBFG. The proof is easy, for we have CADE = CAUH =
SLAR and CBFG = CBVH = SMBR. Hence CADE + CBFG =
SLAR + SMBR = ABML. 1t is to be noted that the Pythagorean
theorem has been generalized in two directions, for the right tri-
angle in the Pythagorean theorem has been replaced by any tri-
angle, and the squares on the legs of the right triangle have been
replaced by any parallelograms.

The student of high school geometry can hardly fail to be inter-
ested in the Pappus extension of the Pythagorean theorem, and
the proof of the extension can serve as a nice exercise for the stu-
dent. Perhaps the more gifted student of geometry might like to
try his hand at ishing the further ion (to thi pace)
of the Pappus extension: Let ABCD (see Figure 14) be any tetrahe-
dron and let ABD-EFG, BCD-HIJ, CAD-KLM be any three tri-
angular prisms described externally on the faces ABD, BCD, CAD
of ABCD. Let Q be the point of intersection of the planes EFG,
HI. KLM, and let ABC-NOP be the triangular prism whose edges
AN, BO, CP are translates of the vector QD. Then the volume of
ABC-NOP is equal to the sum of the volumes of ABD-EFG, BCD-
HIJ, CAD-KLM. A proof analogous to the one given above for the
Pappus extension can be supplied.

We give finally, without proof, a three-space analogue of the
Pythagorean theorem that is often referred to as de Gua's theorem. *

*Named after J. P. de Gua de Maives (1712-1785), who presented the propo-
sition to the Paris Academy of Sciences in 1783. The theorem, however, had been
known to Descartes (1596-1650) and his contemporary J. Faulhaber (1580-1635).
It is a special case of a more general theorem that Tinseau had presented to the
Paris Academy of Sciences in 1774.
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We first formulate some definitions. A tetrahedron having a trihe-
dral angle all face angles of which are right angles is called a tri-
dron, and the tril angle is called the right
angle of the tetrahedron. The face opposite the right angle is called
the base of the tetrahedron. De Gua’s theorem may now be stated
as follows: The square of the area of the base of a trirectangular
tetrahedron is equal to the sum of the squares of the areas of its
other three faces. We leave the matter of proof to any enterprising
reader.
With the mounting interest in space exploration and the possi-
bility of life in other parts of the universe, suggestions have ap-
peared from time to time concerning the construction on the earth
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of some enormous device that would indicate to possible outside
observers that there is intelligence on our planet. The most favored
device seems to be a mammoth configuration illustrating the
Pythagorean theorem, built on the Sahara Desert, the Steppes of
Russia, or some other vast area. All intelligent beings must be
acquainted with this remarkable and certainly nontrivial theorem
of Euclidean geometry, and it does seem difficult to think of a
better visual device for the purpose under consideration.

In 1971 Nicaragua issued a series of stamps paying homage to
the world's ‘““ten most important mathematical formulas.” Each
stamp features a particular formula accompanied by an appropriate
illustration and carries on its reverse side a brief statement in
Spanish concerning the importance of the formula. One of the
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stamps in the series honors the Pythagorean relation “a? + b2 =
¢2." It must be pleasing to scientists and mathematicians to see
these formulas so honored, for these formulas have certainly con-
tributed far more to human development than did many of the
kings and generals so often featured on stamps.

Exercises

4.1. Prove that two having a base and
equal altitudes have equal areas by showing them to be either con-
gruent by addition or congruent by subtraction. (This is the method
employed by Euclid in Proposition 35 of Book I of his Elements.)

4.2. Show that any triangle is congruent by addition to the
equivalent rectangle having for length a longest side of the tri-
angle.

4.3. Fill in the details of the dissection proof of the Pythagorean
theorem thought perhaps to have been given by Pythagoras.

4.4. Complete the details in the dissection proof of the Pythag-
orean theorem credited to: (a) H. Perigal, (b) H. E. Dudeney, (c)
Leonardo da Vinci.

4.5. (a) There are reports that ancient Egyptian surveyors laid
out right angles by constructing 3-4-5 triangles with a rope divided
into 12 equal parts by 11 knots. Show how this can be done.

(b) Since there is no documentary evidence to the effect that the
Egyptians were aware of even a particular case of the Pythagorean
theorem, the following purely academic problem arises: Show,
without using the Pythagorean theorem, its converse, or any of its
consequences, that the 3-4-S triangle is a right triangle. Solve this
problem by means of Figure 1S, which appears in the Chdu-pei,
the oldest known Chinese mathematical work, which may date
back to the second millennium B.c.

4.6. Supply a proof of the three-space analogue of the Pappus
extension of the Pythagorean theorem.
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4.7. The edges issuing from the right angle of a trirectangular
tetrahedron are called the legs of the tetrahedron, and the perpen-
dicular from the vertex of the right angle to the base is called the
altitude of the tetrahedron.

(a) Prove that the sum of the squares of the reciprocals of the
legs of a trirectangular tetrahedron is equal to the square of the
reciprocal of the altitude of the tetrahedron.

(b) Prove de Gua’s theorem.

4.8. ish the following ization of the Pyth.
theorem given by Tabit ibn Qorra: If triangle ABC is any tri-
angle, and if B’ and C' are points on BC such that sAB'B =
4AC'C = 4A, then (4B)? + (AC)* = BC(BB' + CC').

Show that when &£ A is a right angle this theorem becomes the
Pythagorean theorem.
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4.9. What is the Pythagorean relation for a right spherical tri-
angle of legs @ and b and hypotenuse ¢, where a, b, and c are angu-
lar measurements?

4.10. State and prove the converse of the Pythagorean theorem.
(This is Proposition 48, the final proposition, of Book I of Euclid's
Elements.)

Further Reading

Bourvaskil, Equivalent and Equidecomposable Figures. tr. by A. K. Henn
and C. E. Watts. Boston: D. C. Heath, 1963.

Heatn, T. L., History of Greek Mathematics, 2 vols. New York: Oxford Uni-
versity Press, 1931.

Loowis. E. S.. The Pythagorean Proposition. 2nd ed. Ann Arbor, Mich.: pri-
vately printed, Edwards Brothers, 1940.




LECTURE 5

PRECIPITATION OF THE FIRST CRISIS

The first numbers we encounter as we grow up from early child-
hood are the so-called natural numbers, or positive integers: 1, 2,
3, ... . These numbers are abstractions that arise from the process
of ing finite collections of objects. S hat later we realize
that the needs of daily life require us, in addition to counting indi-
vidual objects, to measure various quantities, such as length,
weight, and time. To satisfy these simple measuring needs, frac-
tions are required, for seldom will a length, to take an example,
appear to contain an exact integral number of a prechosen linear
unit. For some measurements, such as recording very low tempera-
tures, the zero and negative integers and the negative fractions
are found convenient. Our number system has been widened. But,
if we define a rational number as the quotient of two integers,
P/q, g # 0, then this system of rational numbers, since it contains
all the integers and all the fractions, is quite sufficient for all our
practical measuring purposes.

Now the rational numbers have a simple geometrical representa-
tion. Mark two distinct points O and I (see Figure 16) on a hori-
zontal straight line, I to the right of O, and choose the segment
OI as 2 unit of length. If we let O and [ represent the numbers 0
and 1, respectively, then the positive and negative integers can be
represented by a set of points on the line spaced at unit intervals
apart, the positive integers being represented to the right of O and
the negative integers to the left of O. The fractions with denomi-
nator ¢ may then be represented by the points that divide each of
the unit intervals into g equal parts. For each rational number,
then, there is a unique point on the line. To the early mathema-
ticians it seemed evident, as indeed it seems to anyone today who

3
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has not yet been initiated into the deeper mysteries of the number
line, that all the points on the line are in this way used up; ordi-
nary common sense seems to indicate this to us.

It must have been a genuine mental shock for man to learn that
there are points on the number line not corresponding to any ratio-
nal number. This discovery was certainly one of the greatest achieve-
ments of the early Greeks, and it seems to have occurred some time
in the fifth or sixth century B.c. among the ranks of the Pythagorean
brotherhood. A truly GREAT MOMENT IN MATHEMATICS had arisen.

In particular, the Pythagoreans found that there is no rational
number corresponding to the point P on the number line (see Fig-
ure 17) where the distance OP is equal to the diagonal of a square
having a unit side. Later, many other points on the number line
were found not corresponding to any rational number. New num-
bers had to be invented to correspond to such points, and since
these numbers cannot be rational numbers (that is, ratio num-
bers), they came to be called irrational numbers.

Since, by the Pythagorean theorem, the length of a diagonal of
a square of unit side is V2, in order to prove that the point P above
cannot be represented by a rational number, it suffices to show
that V2 is irrational. To this end, we first observe that, for a posi-
tive integer s, s2 is even if and only if s is even. Now suppose, for
the purpose of argument, that v2 is rational, that is, that V2 = p/q,
where p and g are relatively prime integers.* Then

or

*Two integers are relatively prime if they have no common positive integral
factor other than unity. Thus 5 and 18 are relatively prime, whereas 12 and 18 are
not relatively prime.
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Since p? is twice an integer, we see that p2, and hence p, must be
even. Put p = 2r. Then the last equation becomes

4r2 =242,
or
w =g,

from which we conclude that g2, and hence g, must be even. But
this is impossible since p and g were assumed to be relatively prime.
Thus the assumption that V2 is rational has led to an impossible
situation, and the assumption must be abandoned.

This proof of the irrationality of V2 is essentially the traditional
one reported by Aristotle (384-322 B.c.). According to Plato (427-
347 B.c.), after V2 had been shown to be irrational, Theodorus of
Cyrene (ca. 425 B.c.) showed that V3, V5, V6, V7, V8, V10, V11,
V12, V13, V14, V15, V17 are also irrational.

The discovery of the existence of irrational numbers upset another
intuitive belief held by the early Greeks. Given any two line seg-
ments, common sense seemed to dictate that there must be some
third line segment, perhaps very, very small, that can be marked
off a whole number of times into each of the two given segments.
Indeed, almost anyone today who has not yet learned otherwise
intuitively feels the same way. But take as the two segments a side
s and a diagonal d of a square. Now if there exists a third segment
t that can be marked off a whole number of times into s and d we
would have s = gt and d = pt, where p and g are positive integers.
But d = sV2, whence pr = q¢V2. That is, p = gV2, or V2 = p/q,
a rational number. Contrary to intuition, then, there exist incom-
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line that is, line having no
unit of measure.

Let us sketch an alternative, geometrical, demonstration of the
irrationality of V2 by showing that a side and diagonal of a square
are incommensurable. Suppose the contrary. Then, according to
this supposition, there exists a segment AP (see Figure 18) such
that both the diagonal AC and the side AB of a square ABCD are
integral multiples of AP; that is, AC and AB are commensurable
with respect to AP. On AC lay off CB, = AB and draw B,C, per-
pendicular to CA. One may easily prove that C,B = C;B, = AB,.
Then AC; = AB — AB, and AB, are commensurable with respect
to AP. But AC, and AB, are a diagonal and a side of a square of
dimensions less than half those of the original square. It follows
that by repeating the process enough times we may finally obtain a
square whose diagonal AC, and side AB, are commensurable with
respect to AP, and AC,, < AP. This absurdity proves the theorem.

One notes that each of the above proofs of the irrationality of V2
employs the indirect, or reductio ad absurdum, method of proof.
The eminent English mathematician G. H. Hardy (1877-1947)
has made a delightful remark about this type of proof. In the game
of chess a gambit is any maneuver in which a pawn or a piece is
sacrificed in order to obtain an advantageous attack. Hardy pointed
out that reductio ad absurdum “is a far finer gambit than any
chess gambit: a chess player may offer the sacrifice of a pawn or a
piece, but a mathematician offers the game.”* Reductio ad ab-
surdum emerges as the most stupendous gambit conceivable.

An interesting encounter with an irrational number arose in
ancient times when Greek geometers tried to construct a regular
polygon of five sides. They had easily succeeded in constructing
regular polygons of three and four sides, namely, an equilateral
triangle and a square, and, of course, the construction of a regular
polygon of six sides presented no difficulty. But the construction of
a regular polygon of five sides—that is, a regular pentagon—is
quite another matter. Success would be assured if one can con-
struct an angle of 36°, inasmuch as twice this angle, or 72°, is the

*G. H. Hardy, A Mathematician's Apology. New York: Cambridge University
Press, 1941, p. 34.
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central angle subtended by one side of a regular pentagon inscribed
in a circle. Since, in an isosceles triangle each of whose base angles
is twice the vertex angle of the triangle (see Figure 19), the base
angles are 72° and the vertex angle is 36°, the problem is reduced
to the construction of such an isosceles triangle. Let AC in Figure 19
bisect the base angle OAB. Then OC = AC = AB and triangle
BAC is similar to triangle AOB. Taking OA = 1 and setting
AB = x, we then have, in turn,

AB/BC = OA/AB, x/(1 —x) = 1/x, x> + x — 1 = 0.

1t follows that x = (V5 — 1)/2. The construction of this x is an
easy matter, and is indicated in Figure 20, where OA = 1 and
MO = 1/2, and, consequently, AM = V5/2 and

AB=AN=AM —-MN= (V5 - 1)/2=x.
The construction of the inscribed regular pentagon now easily
follows.

When a line segment OB (like OB in Figure 19) is divided by a
point C such that the longer segment OC is a mean proportional
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between the shorter segment CB and the whole segment OB, that
is, when

CB/0C = OC/0B,

the Greeks said that the line segment OB is divided into golden
section. We found above that if x represents either of the ratios
CB/OC or OC/OB, then x = (V5 — 1)/2. This number, or some-
times its reciprocal

y=1/x=(5+1)/2 =1618,

is called the golden ratio, and this ratio seems to occur ubiquitously
in nature and elsewhere.

We shall comment on the occurrences of the golden ratio in
nature later on, in LECTURE 15. We here remark that psychological
tests tend to show that to most people the rectangle that appears
most pleasing to the eye is the one whose ratio of width to length
is the golden ratm x. Thls rectangle, which is called the galden

is fi | in an art technique known as *
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symmetry,” which has been intensively studied by Jay Hambidge
and others. The golden ratio and the golden rectangle have been
observed in Greek architecture and Greek pottery, and have been
applied to p painting, hif desi| fi
design, and type display. A number of artists, such as the well-
known American painter George Bellows, have extensively used
the principles of dynamic symmetry in their work.

A fundamental difference between rational and irrational num-
bers became manifest after the invention of decimal fractions. It is
easily shown that any rational number possesses either a terminat-
ing or a repeating decimal expansmn and conversely, any termin-
ating or ing decimal exp a rational number.
For example: 7/4 = 1.75, 47/22 = 2. 1363 where the bar over the
63 means that the decimal segment 63 is endlessly repeated. It
follows that the decimal expansion of an irrational number is non-

inating and ing, and ly, any noi inati
and peating decimal i some irrational
number.

The distinction between the decimal expansions of rational and
irrational numbers is very useful in establishing certain properties
of these numbers. Suppose, for example, we wish to show that
there exists a rational number between any two distinct positive
irrational numbers. Denote the two irrational numbers by a and
b,0 < a < b, and let their decimal expansions be

a=ag.aay... and b =by.bb, ... .

Let i be the first value of n for whicha, # b, (n =0, 1,2, ...).
Then

c=bo.bby... b

is a rational number between a and b.

A real number is called simply normal if all ten digits occur with
equal frequency in its decimal representation, and it is called
normal if all blocks of digits of the same length occur with equal
frequency. It is believed, but not known, that @, e, and V2, for
example, are normal To obtain stati id of the
supposed normalcy of the above numbers, their decimal expansions
have been carried out to great numbers of decimal places.
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In 1967, British mathematicians, working with a computer,
carried the decimal expansion of V2 to 100,000 places. In 1971,
Jacques Dutka, of Columbia University, found V2 to over one
million places—after 47.5 hours of computer time, the electronic
machine ticked off the decimal expansion of V2 to at least 1,000,082
correct places, filling 200 pages of tightly spaced computer print-
out, each page containing 5000 digits. This is the longest approxi-
mation to an irrational number ever computed.

Exercises

S.1. (a) Fill in the details of the geometric proof of the irration-
ality of V2 sketched in the lecture text.

(b) Draw a 60°-30° right triangle; mark off the longer Ieg. from
the 30° angle vertex, on the hy draw a perpendi to
the hypotenuse from the dividing point. Using this figure, formulate
a geometrical proof of the irrationality of V3.

5.2. (a) Prove that the straight line through the points (0, 0)
and (1, V2) passes through no point, other than (0, 0), of the
coordinate lattice.

(b) Show how the coordinate lattice may be used for finding
rational approximations of V2.

5.3. If p is a prime number and n an integer greater than 1, show
that Vp is irrational.

5.4. (a) Show that log,(2 is irrational.

(b) Generalize part (a) by showing that log,b is irrational if a
and b are positive integers, @ > 1, and one of them contains a
prime factor not contained in the other.

5.5. (a) Show that the sum of a rational and an irrational num-
ber is an irrational number.

(b) Show that the product of a rational and an irrational number
is an irrational number.

5.6. (a) The symbol of the Pythagorean brotherhood was the
pentagram, or five-pointed star formed by the five diagonals of a
regular pentagon. Prove that each of the five sides of a pentagram
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divides into golden section the two sides of the pentagram that it
intersects.

(b) Let point G divide line segment AB in golden section, where
AG is the longer segment. On AB mark off AH = GB. Show that
H divides AG in golden section.

(c) Show that if a square is cut off one end of a golden rectangle,
the remaining piece is a golden rectangle.

(d) Show that 5/8 overestimates the golden ratio x = 5 - 1)/2,
with an error which is less than 3 percent.

(e) If x is the golden ratio (V5 — 1)/2, show that

-1 1
T1+x 1
l+1+:«:

x

5.7. (a) Construct, with straightedge and compasses, a regular
pentagon given one side of the pentagon.

(b) Construct, with straightedge and compasses, a regular
pentagon given one diagonal of the pentagon.

(c) Construct, with straightedge and compasses, a regular poly-
gon of 15 sides.

(d) Suppose r and s are relatively prime positive integers and
that a regular r-gon and a regular s-gon are constructible with
straightedge and compasses. Show that a regular rs-gon is also
so constructible.

(e) Establish Proposition XIII, 10, of Euclid’s Elements: A side
of a regular pentagon, of a regular hexagon, and of a regular
decagon inscribed in the same circle constitute the sides of a right
triangle.

5.8 (a) Prove that the decimal expansion of a rational number
is either terminating or repeating.

(b) Prove that a terminating or repeating decimal
represents some rational number.

(c) Find the rational number having 3.239 for its decimal ex-
pansion.

5.9. (a) Show that

0.101001000100001 ... ,
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where the number of 0's between successive 1's increases each time
by one, is an irrational number.
(b) Show that

0.12345678910111213 ... ,

in which the decimal expansion consists of the successive positive
integers, is an irrational number.

5.10. (a) Prove that between any two distinct rational numbers
there are infini many rational

(b) Prove that between any two distinct rational numbers there
are infinitely many irrational numbers.

(c) Prove that between any two distinct irrational numbers there
are infinitely many rational numbers.

(d) Prove that between any two distinct irrational numbers there
are infinitely many irrational numbers.

Further Reading

HAMBIDGE, JAY, The Elements of Dynamic Symmetry. New York: Dover Pub-
lications, 1967.

HeTh, T. L.. History of Greek Mathematics, 2 vols. New York: Oxford Uni-
versity Press, 1931.

Huntiey, H. E.. The Divine Proportion. a Study in Mathematical Beauty.
New York: Dover Publications, 1970.



LECTURE 6

RESOLUTION OF THE FIRST CRISIS

The discovery of irrational and of i
itudes caused iderab ion in the Py
ranks. First of all, it seemed to deal a mortal blow to the
Pythagorean philosophy that all depends upon the whole numbers—
after all, how does an irrational number, like V2, depend on the
whole numbers if it cannot be written as the ratio of two such
numbers? Next, it seemed contrary to common sense, for it was
strongly felt intuitively that any magnitude could be expressed by
some rational number. The geometric counterpart was equally
startling, for, again contrary to intuition, there exist line segments
having no common unit of measure. But the whole Pythagorean
theory of proportion and similar figures was built upon the seem-
ingly obvious assumption that any two line segments are commen-
surable, that is, do have some common unit of measure. A large
portion of geometry that the Pythagoreans had felt was established
suddenly had to be scrapped as unsound because the proofs were in-
valid. A serious crisis in the foundations of mathematics was
precipitated. So great was the “logical scandal” that, according to
report, efforts were made for a while to keep the matter secret, and
one legend has it that the Pythagorean Hippasus of Metapontum
perished at sea for his impiety in disclosing the secret to outsiders, or
(according to another version) was banished from the Pythagorean
community and a tomb erected for him as though he were dead.
Let us see, by way of an example, haw the early Pythagoreans
believed they had established a basic prop ing areas of
triangles.

THEOREM. The areas of two triangles having the same altitude are
to one another as their bases.

S3
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