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Foreword

Peter Denning and Craig Martell have taken on a monumental topic: iden-
tifying and elucidating principles that shape and inform the process of
coercing computers to do what we want them to do and struggling with
the difference between what they actually do (that is, what we told them)
and what we want them to do. Bugs (errors) are examples of the difference.
Bugs are usually a result of inadvertently programming the machine to
do something we did not intend. But errors are not the only source of
bugs. A bug also arises when an unexpected behavior emerges from the
execution of a program in a system. Networks of computers with their
myriad variations in software and interactions are often the source of emer-
gent behaviors. We sometimes speak of a network effect in which a trend
becomes a predominant behavior that reinforces the emergence of some
feature that might not have been envisioned or even intended. This can
happen when an application is put to use in ways that were not anticipated.
Spam and phishing are examples of emergent behaviors with email in large
networks.

Such effects challenge our ability to understand, anticipate, and analyze
complex behaviors arising in large-scale software systems in large-scale net-
works. Even if each component operates within its design parameters, the
system as a whole can give indeterminate results because of unpredictable
interactions among components.

Complex emergent behaviors also arise simply because computing
machines are finite. Digitized information always contains small errors of
representation. Tiny errors can accumulate into catastrophes over billions
of computational steps. A very concrete example of unanticipated results
arises from floating point arithmetic with finite precision. Round-off errors
and other artifacts of handling very large or very small values can lead
to catastrophic results, as William Kahan eloquently demonstrated in his
paper on this topic in a symposium on numerical computation in 2005.!
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These effects teach us that the business of getting computers to do things
on our behalf is both a nontrivial and deeply intellectual exercise. This
book aims to provide insight into some fundamental principles that can
orient our approach to computing in its most general sense.

The authors organize their analysis into eleven chapters, each of which
plays an important role in the panoply of activities we associate with com-
puting. [ think of these as foci for marshaling and organizing resources in
aid of computational outcomes. By computational 1 mean to suggest achiev-
ing particular objectives through the use of computers and their software.
This is intentionally unspecific. Making a computer game work is a com-
putational objective as much as getting a complex, distributed, networked
financial exchange system to work. Despite the disparity of computational
objectives, designers are aided by definite principles for managing and mar-
shaling resources—information representations, communications, com-
puting elements, programs, memory, modeling, analysis, and so forth. I
read that the book’s overall intent is to codify the principles that facilitate
achievement of these objectives. This effort is broad in its scope and depth.

One of the things that makes computing so interesting is the utter gen-
erality of binary representations. We can choose to make the bits mean any-
thing we wish. We can manipulate these bits in myriad ways and choose to
interpret the results in equally diverse fashion. Just as we convert algebraic
word problems into equations that we manipulate according to straightfor-
ward mathematical rules to find answers compatible with the original equa-
tions, so also we write programs to manipulate bits following rules that lead
to a chosen interpretation of the resulting bits. Large-scale simulations, big
data, and complex visual renderings all share the property that they help us
to understand and interpret the bits we manipulate.

One of the reasons [ have been a strong proponent of teaching program-
ming in middle school and high school (and perhaps even earlier) is the
discipline it imposes on organizing thoughts to problem solving. One has
to analyze the problem, break it into manageable parts, figure out what
has to happen for the program to solve the problem (that is, produce the
desired result), then work through the task of writing the program, utilizing
preexisting libraries, if applicable, compiling and running the program, and
verifying that it produces the desired result and nothing else. The last dis-
cipline, which we might call a combination of debugging and verification,
is a skill that is applicable to more than programming. Although I am not
an advocate of making everyone into a programmer, I think it is valuable
for people to learn the skills that are applicable to successful programming
because these skills are broadly applicable to many other problems.
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Programming skills can be put to work dealing with complex system
design and analysis. Here I think we reach a very important area that Den-
ning and Martell emphasize in their chapter on design. Good design has
many useful properties. I am reminded of the remark that “neatness is its
own reward” because you can find things you put away when you need
them. Good design is its own reward because it facilitates understanding
of complexity and ability to evolve and revise the design to achieve new
objectives. In design of the Internet we took a lesson from its predecessor,
the ARPANET, which could not scale up in size. We envisioned the func-
tionality of the system in layers and standardized the interfaces between
the layers. The result was that while keeping these interfaces stable, we were
able to allow for enormous flexibility in the implementation and reimple-
mentation of the layers between the interfaces. The Internet Protocol is a
good example. Designers of applications knew nothing about how Internet
protocol packets were carried—the protocol did not specify. Nor did the
protocol itself depend on what information packet payloads carried—the
meanings of bits in the payload were opaque. One consequence of this
design decision has been that the Internet Protocol has been layered on
top of every new communication system designed since the early 1970s.
Another consequence is that new applications have been placed in the
Internet without changing the networks because the Internet Protocol car-
ried their packets to software at the edges of the Internet. Only the trans-
mitting and receiving hosts needed to know what the payload bits carried
in packets meant. The routers that move Internet Protocol packets do not
depend on the content of the packet payloads.

The role of design cannot be overemphasized in dealing with comput-
ing. Whether it is the hardware, the operating system, the application, the
data, file and directory structures, the choice of language(s), it all comes
down to thinking about design and how the ensemble, the system, will
work. Sometimes one hears the term system engineering too infrequently. I
am a systems person and take some pride in thinking along architectural
lines. How do all the pieces go together? What should be a piece? How does
the design facilitate adaptation to new requirements? Is the design main-
tainable? How hard is it to teach someone else how the design works?

An interesting test of a good design is to see whether someone who
is confronted with the system de novo can figure out how to make it do
something new without destroying its previously designed capabilities. In
some ways this is a fairly powerful test of one’s understanding of the pro-
gram or system and its organization. You may not need to know everything
about the system, but you have to know enough to be reasonably sure your
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change has no unintended consequences. This is the meaning of a clean
design—it can be revised with a reasonable sense and likelihood of safety.
I am glad that this book is so strong on design and emphasizes the role of
architecture, and not just algorithms, in design.

There is a great deal more to be said about computing principles, but
that is the point of the book that follows. Keeping these principles in mind
should make the task of designing computing systems a lot more manage-
able. Read on!

Vint Cerf
Woodhurst, VA
April 2014

Note
1. W. M. Kahan, “How futile are mindless assessments of roundoff in floating-point

computations: Why should we care? What should we do? (Extract),” in Proceedings
of the Householder Symposium XVI on Numerical Linear Algebra, p. 17, 2005.
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From Machines to Universal Digitization

The computing machine was the center of attention in the early years of the
computing field (the 1940s through the 1960s). Computation was seen as
the action of machines performing complicated calculations, solving equa-
tions, cracking codes, analyzing data, and managing business processes.
The leaders in those days defined computer science as the study of phe-
nomena surrounding computers.

Over the years, however, this definition made less and less sense. The
computational science movement of the 1980s maintained that compu-
tation was a new way of doing science, alongside traditional theory and
experiment. They used the term “computational thinking” for a mental
practice of inquiry and problem solving, not as a way to build computers.
A decade later, scientists in several fields started finding natural informa-
tion processes in their fields. These included biology (DNA translation),
physics (quantum information®), cognitive science (brain processes), vision
(image recognition), and economics (information flows). The emphasis of
computing shifted from machines to information processes, both artificial
and natural.

Today, with the digitization of nearly everything, computation has
entered everyday life with new ways to solve problems, new forms of art,
music, motion pictures, social networking, cloud computing, commerce,
and new approaches to learning. Computational metaphors are part and
parcel of everyday language with expressions like “My software reacts that
way,” and “My brain crashed and had to be rebooted.”

In response to these changes universities have been designing new prin-
ciples-based approaches to the teaching of computing. The University of
Washington, one of the first at this, developed a course and book on flu-
ency with information technology, now widely used in high schools and
colleges to help students learn and apply basic computational principles.’
The Educational Testing Foundation partnered with the National Science
Foundation to develop a new Advanced Placement curriculum based on
computing principles.® Many people now use the term “computational
thinking” to refer to the use of computational principles in many fields and
in everyday life, not just in computational science.’

As it has matured, the computing field has attracted many followers in
other fields. We know of sixteen books that reached out to explain aspects
of computing for interested nonspecialists.®* Most of the books focus on
individual parts such as information, programming, algorithms, automa-
tion, privacy, and the “guts” of the Internet. We wrote this book to examine
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the field as a whole and offer an account of how all the parts fit together.
Readers will find a coherent set of principles behind all these parts.

In our own experience teaching graduate students who are transitioning
into computer science, we have found that a principles framework is easier
for beginners than a technology framework. Describing the field in terms
of technology ideas was a good approach in the early days when the core
technologies were few. In 1989 the Association for Computing Machinery
listed nine core technologies. In 2005, however, ACM listed about fourteen,
and in 2013 about eighteen. The six-category principles framework does
not redefine the core knowledge of computing, but it does provide a new
way of looking at the field and reducing its apparent complexity.

Origins and Aims

We are often asked about the origins of the six categories of principles.
Author Peter Denning started this project in the 1990s at George Mason
University. He collected a list of potential principle statements from many
colleagues. He discovered seven natural clusters and named them commu-
nication, computation, recollection, coordination, evaluation, design, and
automation.” When we put this book together, we realized that automation
is not a category for manipulating matter and energy; it is instead the focus
of the computing domain of artificial intelligence. In this book we deleted
automation from the set of categories and included it among the comput-
ing domains.

The six categories do not divide the computing knowledge space into
separate slices. They are like windows of a hexagonal kiosk. Each window
sees the inside space in a distinctive way; but the same thing can be seen
in more than one window. The Internet, for example, is sometimes seen as
means for data communication, sometimes as means of coordination, and
sometimes as a means for recollection.

This set of categories satistied our goal to have a framework with a man-
ageable number of categories. Although the list of computing technologies
will continue to grow, and the set of computing domains will enlarge, the
number of categories is likely to remain stable for a long time.

This book is a holistic view of computer science, focusing on the deepest,
most pervasive, principles, “cosmic” principles.!? [t presents computing as
a deeply scientific field whose principles affect every other field as well as
business and industry.

We designed this book for all who use computing science to accom-
plish their objectives. Scientifically educated readers can learn about the
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principles of computing spanning the whole field from algorithms to sys-
tems. A person inside the computing field can find overviews of less famil-
iar parts of this giant field, such as a programmer who wants to learn about
parallel computing. The members of a “computer science for us” class in a
college or university can find help to understand how computing technolo-
gies affect them, such as how networking and the Internet enable social
networks. Budding scientists, engineers, and business entrepreneurs might
tind here a Popular Science-type approach to the whole of computer science.
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1 Computing

Computer science studies phenomena surrounding computers.

—Newell, Simon, and Perlis

Computer science is no more about computers than astronomy is about telescopes.
—Edsger W. Dijkstra

Computing is integral to science, not just as a tool for analyzing data but
also as a method of thought and discovery.

It has not always been this way. Computing is a relatively young disci-
pline. Tt started as an academic field of study in the 1930s with a cluster
of remarkable papers by Kurt Godel (1934), Alonzo Church (1936), Emil
Post (1936), and Alan Turing (1936), who saw the importance of automatic
computation. They laid the mathematical foundations to answer the ques-
tion, “what is computation?” and discussed schemes for implementing
computations. Their seemingly different schemes were quickly found to
be equivalent, as a computation in any one could be realized in any other.
It is all the more remarkable, then, that their models all led to the same
conclusion that certain functions of practical interest, such as whether a
computational algorithm terminates, cannot be answered computationally.

In the time that these men wrote, the terms “computation” and “com-
puters” were already in common use. Computation was taken to be the
mechanical steps followed to evaluate mathematical functions. Computers
were people who did computations. In recognition of the social changes
they were ushering in, the designers of the first digital computer projects all
named their systems with acronyms ending in “-AC,” meaning automatic
computer or some close variant—names such as ENIAC, UNIVAC, EDVAC,
and EDSAC.

At the start of World War II the militaries of the United States and the
United Kingdom became interested in applying automatic computers to
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Figure 1.2

Alan Turing (1912-1954) saw computation as the evaluation of mathematical func-
tions. In 1936 he invented an abstract machine, known now as the Turing machine,
to model function evaluation. His machine consisted of a finite state control unit
traversing an infinitely long tape with symbols written in each square; on each move
the machine reads a single symbol, possibly overwrites with another symbol, moves
one square left or right, and enters a new control state. Turing showed how to build
a Universal Machine that could imitate any other given its description. He argued
that any function that might be called computational could be implemented by one
of his machines. He also demonstrated that there are noncomputable functions, such
a deciding whether a machine halts rather than going into an infinite loop. (Source:
Wikipedia Creative Commons)
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Figure 1.3

After Babbage's failure to build a working Analytical Engine, no one tried to de-
sign a general computing machine for the next 80 years. Then, in the late 1930s,
the militaries of the United States and United Kingdom sought electronic machines
to calculate ballistic firing tables and to crack ciphers. In 1944 the US Army com-
missioned the ENIAC at University of Pennsylvania under the leadership of John
Mauchly and J. Presper Eckert. Its first programmers were Kay McNulty, Betty Jen-
nings, Betty Snyder, Marlyn Wescoff, Fran Bilas, and Ruth Lichterman. The picture
shows Jennings (left) and Bilas operating the ENIAC’s main control panel. At the
time, computers were people and computing was their profession; the electronic
machines were called automatic or electronic computers. Programming consisted of
wiring plugboards. (Source: University of Pennsylvania)

processes, and deserved to be called sciences even if qualified by the term
"artificial.”

Computing’s Paradigm

For three decades after 1962 traditional scientists often questioned the name
computer science. They could easily see an engineering paradigm (design
and implementation of systems) and a mathematics paradigm (proofs of
theorems), but they could not see much of a science paradigm (experimen-
tal verification of hypotheses). Moreover, Simon's protests to the contrary,
they understood science as a way of dealing with the natural world, and
computers looked suspiciously artificial.
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Figure 1.4

Pioneers (A) John Backus (1924-2007) and (B) Grace Hopper (1902-1992) designed
higher-level programming languages that could be automatically translated into ma-
chine code by a compiler. In 1957 Backus led a team that developed FORTRAN, a
language well suited for numerical computations. In 1959 Hopper led a team that
developed COBOL, a language well suited for business records and calculations. Both
languages are still used today. With these inventions, the ENIAC picture of program-
mers plugging wires died, and computing became accessible to many people via
easy-to-use languages. Many thousands of programming languages have since been
invented. (Source: Wikipedia Creative Commons)

The founders of the field came from all three paradigms.' Some thought
computing was a branch of applied mathematics, some a branch of elec-
trical engineering, and some a branch of computational-oriented science.
During the first four decades, the field focused primarily on engineering:
the challenges of building reliable computers, networks, and complex soft-
ware were daunting and occupied almost everyone's attention. By the 1980s
these challenges had largely been met, and computing was spreading rap-
idly into all fields with the help of networks, supercomputers, and personal
computers. During the 1980s computers had become powerful enough that
science visionaries could see how to use them to tackle the hardest “grand
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Figure 1.5

(A) Allen Newell (1927-1992), (B) Alan Perlis (1922-1990), and (C) Herb Simon
(1916-2001) saw computing as a science of phenomena surrounding computers. In
1967 they argued that computer science was a necessary science that studied ev-
erything computational, from computing machines, software, intelligence, informa-
tion, design of systems, graphics, algorithms for solving problems in other fields, and
much more. Simon went further and argued that studies of phenomena surrounding
man-made artifacts—sciences of the artificial—were just as much science as tradi-
tional sciences. (Source: Wikipedia Creative Commons)

challenge” problems in science and engineering. The resulting “compu-
tational science” movement involved scientists from many countries and
culminated in the US Congress adopting the High-Performance Computing
and Communications (HPCC) Act of 1991 to support research on a host of
grand challenge problems.

Today, there seems to be an agreement that computing exemplifies sci-
ence and engineering and that neither science nor engineering characterizes
computing. What then does characterize computing? What is the paradigm
of computing?

The leaders of the field struggled with the paradigm question ever since
the beginning. Along the way, there were three waves of attempts to unify
views. The first, led by Newell, Perlis, and Simon (1967), argued that com-
puting was unique among all the sciences in its study of information pro-
cesses. Simon called computing a science of the artificial (1969), implicitly
agreeing with the common belief that computations are not natural pro-
cesses. A catchphrase of this wave was that “computing is the study of phe-
nomena surrounding computers.”

The second wave focused on programming, the art of designing algo-
rithms that produced useful information processes. In the early 1970s,



8 Chapter 1

Figure 1.6

(A) Donald Knuth (b. 1938) and (B) Edsger Dijkstra (1930-2002) considered program-
ming to be at the heart of computing. Around 1970 they argued that the processes
of designing and analyzing algorithms are at the center of everything computer sci-
entists do. To them, a master programmer was a master computer scientist. Unfortu-
nately, this noble view was lost by the late 1990s; governments defined programmers
as low-level coders. (Source: Wikipedia Creative Commons)

computing pioneers Edsger Dijkstra and Donald Knuth took strong stands
favoring algorithms analysis as the unifying theme. A catchphrase of this
wave was “computer science equals programming.” In recent times this
view has foundered because the field has expanded well beyond program-
ming, and because public understanding of a programmer became so nar-
row (a coder).

The third wave came as a result of the Computer Science and Engineer-
ing Research Study (COSERS), led by Bruce Arden (1983) and funded by
the National Science Foundation in the 1970s. It defined computation as
the automation of information processes in engineering, science, and busi-
ness. Its catchphrase was “computing is the automation of information
processes.” Although its final report successfully explained many esoteric
aspects to the layperson, its central view did not catch on.

An important aspect of all three definitions was the positioning of the
computer as the focus of attention. The computational science movement
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Figure 1.9

Nobel Laureates (A) Ken Wilson (1936-2013), a physicist, and (B) David Baltimore (b.
1938), a biologist, were at the forefront of computational science, which held that
computing was a new way of thinking and discovery in science. In the mid-1980s
Wilson popularized the notion of “grand challenge” problems in science that could
be solved by computational methods, and he advocated highly parallel supercom-
puters to do the job. In the 1990s Baltimore popularized the notion that biology had
become the study of information processes embedded into cells and all life processes.
Computer scientists were at first reluctant to be involved but have since embraced
computational science and have started a science renaissance in computing. (Source:
Wikipedia Creative Commons)

scientists would have described the field by naming its core technologies:
algorithms, data structures, numerical methods, programming languages,
operating systems, networks, databases, graphics, artificial intelligence, and
software engineering. This is a deeply technological interpretation of the
field. The principles interpretation used here emphasizes the fundamental
laws that empower and constrain the technologies.

The principles of computing fall into six categories: communication,
computation, coordination, recollection, evaluation, and design (Denning
2003, Denning and Martell 2004)” (see figure 1.10.). These categories are all
concerned with manipulating matter and energy to produce intended com-
putations. Table 1.1 defines and illustrates them, and notes which chapters
of this book focus on them.
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Figure 1.10

Each category of principles is a perspective on computing: a window into the com-
puting knowledge space. (There is no significance to ordering of the category names
around the sides of the hexagon.) The categories are not mutually exclusive. For
example, the Internet can be viewed from the perspectives of a communication sys-
tem, a coordination system, or a storage system. Most computing technologies use
combinations of principles from all six categories; each category has its own weight
in the mixture, but they are all there. These categories also represent mental perspec-
tives people develop about computing. Some people see computing as computation,
others as data, networked coordination, or automated systems. The framework can
broaden people’s perspectives about what computing really is.

There is more to computing than a set of principles and the core tech-
nologies that build on them. Computing protessionals do the daily work as
members of communities that specialize in many computing domains (see
figure 1.11). In addition to their knowledge of computing principles, com-
puting professionals are expected to be competent in four core practices:
programming, systems thinking, modeling, and computational thinking.
A practice is a skill set embodied through continuous practice and inter-
actions with customers. A practitioner’s skill can be rated as beginner,
advanced beginner, competent, proficient, or expert. A beginning program-
mer, for example, would be focused on language syntax, getting programs
to compile, and finding bugs; an expert programmer would be able to build
large systems, solve complex systems problems, and mentor junior pro-
grammers. Principles and practices are in constant interaction. People put
computing principles to work through skilled action; new principles are
occasionally discovered from common practices people have developed.
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Figure 1.11

Computing as a whole depends on both principles and practices. The core technolo-
gies are pervasive tools used by practitioners to carry out their work in numerous
computing domains. This book concentrates on the principles and their uses in sev-
eral key domains, leaving core technologies and practices to other books. The prin-
ciples are either mechanics—laws and recurrences—or design wisdom—accumulated
knowledge about what works or does not work—to build computing systems that are
dependable, reliable, usable, safe, and secure.

The communities in which computing people and their customers
gather are called computing domains. There are dozens of domains. ACM
(the Association for Computing Machinery) recognizes no less than 42
domains of professional interest to its members (Denning 2001, 2011), and
there are many more under the heading of “computing applications.” The
next chapter examines four domains of high contemporary interest—secu-
rity, artificial intelligence, cloud computing, and big data.

A great many of the computing domains interact with other fields out-
side of computing. In an analysis of how computing interacts with the
three great domains of science—physical, life, and social sciences—Paul
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Rosenbloom found two kinds of interactions: implementation and influence
(Rosenbloom 2004, Denning and Rosenbloom 2009, Rosenbloom 2012).
Implementation means that something from one domain is used to create
or build something in the other. Influence means that something in one
domain affects the behavior of something in the other. Implementation
and influence can be single- or bidirectional. Rosenbloom built the chart
of table 1.2 to demonstrate the rich set of interactions between computing
and all of science in all these dimensions. He included a column for com-
puting in his chart. He did this simply because computing is constantly
implementing and influencing itself through the interactions among the
many computing domains. There can be no question about the pervasive
influence of computing throughout science.

Where Does Computing Fit in Science?

Because computing is so pervasive in its influence in science, and because
no other scientific field is directly concerned with information, Rosen-
bloom came to the conclusion that computing qualifies as the fourth sci-
entific domain.

What is so special about computing’s approach to information? Informa-
tion traditionally means facts that add to knowledge when communicated.
[t is an old concept, studied for centuries in philosophy, mathematics, busi-
ness, the humanities, and the sciences. Science is concerned with discov-
ering facts, fitting them together into models, using the models to make
predictions, and turning validated predictive models into technologies.
Scientists record all they have learned in the structure called the “scientific
body of knowledge” for future use. Information has always played a strong
role in the sciences.

Computing differs in two ways from the other sciences in its approach
to information. First, computing emphasizes the transformation of infor-
mation, not simply its discovery, classification, storage, and communica-
tion. Algorithms not only read information structures, they modify them.
Moreover, humans constantly modity information structures—such as in
the web—with transformations for which we yet have no computational
models. Purely analytic methods cannot help us understand the dynamics
of these information structures. The experimental methods of science are
needed to make progress.

The second difference is that the structures of computing are not just
descriptive, they are generative. An algorithm is not just a description of a
method for solving a problem, it causes a machine to solve the problem.
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response times of complicated networks of servers when many parallel jobs
compete for their services.

Chapter 10 is concerned with design, how to plan and organize comput-
ing systems that are dependable, reliable, usable, safe, and secure. Chapter
11, a case study of the Internet, is about how we mobilize other principles
to build a vast, reliable data communication network of links and hosts.

We have included a bibliography at the end of the book. The bibliog-
raphy contains selected items that have inspired us; they are not meant
to be historically complete summaries of literature. If you find someone's
name in the text, you will also find at least one bibliographical item by that
person.

Conclusions

Computing as a field has matured and exemplifies good science as well as
engineering and mathematics. The science is essential to the advancement
of the field because many systems are so complex that experimental meth-
ods are the principal means to make discoveries and understand limits.
Computing is now seen as a broad field that studies information processes,
natural and artificial.

The great principles framework reveals a rich set of principles on
which all computation is based. These principles support many comput-
ing domains and a large number of domains within the physical, life, and
social sciences.

Computing is not a subset of the physical, life, or social sciences. None
of those domains is fundamentally concerned with the nature of informa-
tion processes and their transformations. Yet this knowledge is now essen-
tial in all the other domains of science. The computing sciences may well
be the fourth great domain of science.
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Biology is an information science.

—David Baltimore

Computation is a third way of doing science, besides theory and experiment.
—Kenneth Wilson

Science and applications of science are bound together as the fruit of the tree which
bears it.

—Louis Pasteur

The action of computing comes from people, not principles. Computing
people have organized into numerous communities of practice, which we
call computing domains. Each domain is centered on a technology or an
application of technology. For example, the security domain is centered
on security technologies and the privacy domain on applications of secu-
rity technologies to safeguard personal information. The members of these
domains share similar concerns, skill sets, methods, and interactions with
other communities. They are empowered and constrained by computing
principles. The great principles framework would be incomplete without
the computing domains (Rosenbloom 2012) (see figure 2.1).

Numerical aerodynaric simulation is an example of a domain. Computer
scientists have long collaborated with aeronautics engineers on the design
of aircraft. Starting in the 1980s, aircraft companies turned to numerical
simulation to design wings and fuselages for efficient, nonturbulent air
flows. The traditional methods of wind tunnels and test flights were no
longer practical for the size and complexity of aircraft. With new algo-
rithms running on massively parallel supercomputers, engineers were able
to design new aircraft that would fly safely on the first flight. The Boeing
777 was the first aircraft completely designed numerically. The teams of
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The six categories of the great principles framework (bottom) are all concerned with

managing matter and energy to produce intended computations. In contrast, com-
puting domains (fop) are communities of practice; their people mobilize computing
principles to support solutions to their problems, breakdowns, and interests (dashed
arrows). The domains also feature strong interactions between computing and other
fields. Their work adds principles to computing and to their own fields.
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aeronautics and computing people developed a new field, computational
fluid dynamics, which computed the complex movements of flowing air.
They designed computational methods based on 3D grids to solve equa-
tions from fluid dynamics in the regions of space around an airframe. They
exploited a category of fast multigrid algorithms, which solved very large air-
frames in minimal time on hypercube-connected parallel processors (Chan
and Saad 1986, Denning 1987). These teams also developed new methods
of refining grids dynamically to add precision in zones of rapid change of
air pressure or speed. Some of these methods were recognized as new prin-
ciples of computing. As a result, computational methods became a perma-
nent part of fluid dynamics.

Computing domains are numerous. The Association for Computing
Machinery (ACM) recognizes 42 domains of direct professional interest to
its members, and there are dozens of additional application areas and col-
laborations with other fields (Denning and Frailey 2011). In this chapter we
examine four computing domains—security, artificial intelligence, cloud
computing, and big data—within a framework that analyzes four factors:

e Who is involved in the domain

* What domain problems, concerns, and interests are taken care of in the
domain

e What computing principles are mobilized for the domain

* How domains have generated new principles for computing as well as the
other participating fields

This kind of analysis can reveal other principles that could improve a design.
It can help other domain participants understand the advantages and limi-
tations of what computing offers them. It could also expose connections
between technologies, which might be exploited for future innovations.
Before turning to the examples, it is worthwhile to take a closer look at
the relationship between the computing domains and the great principles
framework. This understanding will help with the analysis of the domains.

Domains and Principles

There are two basic, useful strategies for representing a field's body of
knowledge. One enumerates the domains of the field, the other its prin-
ciples. These different interpretations of the same knowledge space create
different possibilities for actions. For this chapter, we use the term domain
to mean a technology domain, namely a domain centered on a particular
technology.
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Educators use the term body of knowledge (BOK) to mean an organized
description of the knowledge of a field. Educators often work with a BOK
to design curricula that cover the essential knowledge of their field. The
ACM offered its first computing BOK in 1968. It provided updates in 1989,
2001, and 2013. ACM listed nine core domains in 1989 (Denning et al.
1989), fourteen in 2001 (ACM Education Board 2001), and eighteen in
2013 (ACM Education Board 2013). They are core domains because all the
other domains depend on their technologies in some way.

A principles framework, as in this book, is orthogonal to a domain-
oriented framework. The same principle may appear in several domains,
and a particular domain relies on several principles. The set of active prin-
ciples (those used in at least one technology) evolves much more slowly
than the technologies.

Although the two styles of framework are different, they are strongly
connected. To visualize the connection, imagine a two-dimensional matrix.
The rows are the topics from a domain-oriented framework, and the col-
umns are the categories of principles. The interior of the matrix is the
knowledge space of the field (see figure 2.2).

With this picture, we can say that the technology-oriented BOK enumer-
ates the knowledge by rows of the matrix, whereas the principles-oriented
BOK enumerates by columns. They see the same knowledge—from differ-
ent perspectives and interpretations.

Imagine someone who wants to enumerate all the principles involved
with a technology. That person can analyze the technology domain for its
principles in each of the six categories—which corresponds to reading the
principles from the row of the matrix (see figure 2.3). That is what we will
do with the four example domains in the following sections.

The principles framework opens new inquiries. For example, someone
could enumerate all the technologies that employ a particular principle or
category of principles (see figure 2.4).

Security

Security as a domain has a long, rich history in computer science. Even
in the earliest days, when batch processing was the norm, users were con-
cerned about data entrusted to the machine. Was the machine in a physi-
cally secure place? Was the memory cleared before a new job was loaded?
Could an operator’s mistake or hardware failure lose data?

With the first multiprogrammed, time-sharing systems around 1960,
operating system designers got heavily involved in information protection.
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Figure 2.4

The technologies of coordination can be identified by reading the knowledge matrix
down the coordination column. Almost all computing domains, including the six
illustrated here, employ coordination principles.

freedoms be lost (Garfinkel 2001). In 1999 there were palpable fears of net-
work collapse from the “Y2K” problem caused by encoding years with two
digits instead of four. After that many people slowly awoke to the vulner-
abilities of information networks and to the challenges of securing them.
Experts in many countries began predicting devastating cyber attacks that
could ruin economies and even endanger civilization (Schneier 2004, 2008,
Clark 2012).

The people, problems, and computing principles of the security domain
are displayed in table 2.1.

Artificial Intelligence

The idea of machines performing human intellectual tasks dates back
five centuries. Blaise Pascal built a mechanical calculator in 1642. Charles
Babbage proposed the Difference Engine in 1823 to calculate navigation
and other arithmetic function tables automatically. In the late 1800s the
“mechanical Turk” was a convincing hoax appearing to be an expert chess-
playing automaton (Standage 2003). Indeed, many of the ideas that have
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Table 2.1
Security Domain

Who Members Operating system designers, network
engineers, cyber operators, military defense,
law enforcement, forensics investigators,
homeland security, public policy officials,
diplomats, privacy advocates

What Breakdowns, Controlled sharing, memory protection, file
problems, protection, access control, information flow,
concerns trusted systems, secret communications,

authentication, signatures, key distribution,
preventing inference through data correlation
Computing Communication Cryptography, secrecy, authentication
principles Computation One-way functions, cryptographic
complexity, hashing, formal verification
Recollection Access control, error confinement,
information flow, multilevel secure storage,
reference monitors
Coordination Key distribution, zero knowledge proofs,
authentication protocols, signature protocols
Evaluation Performance and throughput of protocols,
criteria for secure systems
Design Open design, least privilege, fail-safe defaults,
psychological acceptability, end-to-end
designs, layered functions, virtual machines

Principles Information assurance practices, intrusion
from other detection, biometric ID, forensic rules of
fields evidence, inference from statistical databases

become the basis of artificial intelligence (Al) predated most of computer
science (Russell and Norvig 2010).

In 1956 John McCarthy organized a workshop at Dartmouth with help
from Claude Shannon and Nathaniel Rochester. Their workshop gave birth
to the field of artificial intelligence. Their founding vision was that “every
aspect of learning or any other feature of intelligence can in principle be
so precisely described that a machine can be made to simulate it.” This
appeared plausible because so many intelligent tasks appeared to be fol-
lowing algorithms, and the brain itself appeared to be an electrical network
capable of executing algorithms. Herbert Simon predicted that by 1967 a
computer would be world chess champion, a computer would discover and
prove an important new mathematical theorem, and many theories in psy-
chology would be embodied in computer programs. His first dream was
achieved 30 years late, and the other two have yet to be achieved.
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Alan Turing (1950) crystalized many of the seeds of modern Al: the Tur-
ing test, machine learning, and even the idea that we might “grow” an
intelligent machine through stages of development, like a child. Turing
realized that “intelligence” is so ill defined that he could make no progress
with the question of when a machine might be intelligent. His imitation
game (the Turing test) asks not whether a machine has intelligence but
instead whether it behaves intelligently. He predicted that by the year 2000
machines would be able to fool 70 percent of determined human interroga-
tors for at least five minutes. That dream also has yet to be achieved.

Turing's behavioral focus was adopted into the founding dream of Al. By
the 1970s, however, it became the brunt of sharp criticism. Many Al projects
set out to design “expert systems,” which would perform as well as human
experts in many domains such as medical diagnosis. Hubert Dreytfus (1972,
1992) maintained that expert behavior was beyond the capability of rule-
based machines. He was initially ridiculed, but time seems to have proved
him right. Only a handful of expert systems worked competently, and none
approached genuine experts. John Searle (1984) attacked the notion that
conventional computing machines are capable of intelligence; he described
a rule-based machine that might appear to carry on conversations in Chi-
nese but did not embody any sort of understanding of Chinese. He attacked
"strong Al”—the notion that the mind is a product of machine behavior—
and favored “weak Al”—that simulations might imitate a behavior without
any resemblance to the way a brain generates the behavior. Terry Wino-
grad and Fernando Flores (1987) argued that Al was based on philosophical
assumptions that could not explain or lead to intelligence.

By the mid-1980s it was clear to many that the initial dreams of Al were
not going to be achieved any time soon. The research funding agencies
began to withhold funds and to demand deliverable results. Many research-
ers did a lot of soul searching about the weaknesses of their field. Al pioneer
Raj Reddy called that dark time the period of “Al winter.”

A new field of AI emerged from that introspection. The focus shifted
from trying to model the way the human mind works to simply building
systems that could take over human cognitive work. Automated cognition
systems need not work the same way the human mind works; they do not
even need to mimic a human solving a problem. The field simultaneously
adopted a strong emphasis on experimental methods to validate whether
proposed automations were useful, reliable, and safe (Russell and Norvig
2010, Nilsson 2010). Recent publicity-garnering triumphs include the IBM
Deep Blue chess program beating World Chess Champion Garry Kasp-
arov in 1997, Google’s driverless car in 2010, and IBM's Watson computer
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winning the TV game Jeopardy in 2011. The methods used in these pro-
grams were highly effective but did not resemble human thought or brain
processes. Moreover, the methods were specialized to the single purpose
and did not generalize.

Many researchers in computer science, cognitive science, medical sci-
ence, and psychology continue to study how the brain works and how it
generates a mind. The fascination with the singularity (Kurzweil 2005) and
the Brain Activity Map Project (announced in 2013) are signs that this line
of inquiry maintains its allure.

The reborn Al field has been so successful that it has raised a new set of
concerns. In Race against the Machine, Erik Brynjolfsson and Andrew McAfee
(2012) document how waves of automation are edging out knowledge-work
jobs, just as mechanical automation in the previous century had edged out
many manual labor jobs. Examples of knowledge automation abound: call
centers, voice menu systems, online purchasing, online banking, govern-
ment services, publishing, news distribution, music publishing, advertis-
ing, surveillance, terrorist hunting, and much more. The authors worry that
we are sliding toward a society with too few jobs to sustain the population
of workers and insufficient resources for public agencies to serve the jobless.

The people, problems, and computing principles of the artificial intel-
ligence domain are displayed in table 2.2.

Cloud Computing

Cloud computing is a modern buzzphrase that hides a rich tradition of infor-
mation sharing and distributed computing. It refers to networks of comput-
ing devices that give economies of scale by hiding the locations of servers
and data stores. The term “cloud” came into use in the late 1990s, probably
from a practice of showing “the network” as a cloud in technical and mar-
keting presentations.

The idea of building systems that could share computing power among
many users cheaply was embodied into MIT Project MAC in the mid-1960s.
MAC was an acronym for “multiple-access computer” and sometimes for
“man and computer.” Project MAC built Multics, a powerful multiplexed
system that distributed the expense of memory, disk, and CPU over a large
community so that the cost of computing for any one user would be very
small. J. C. R. Licklider, the visionary who supplied the initial inspiration,
thought that computing power could be supplied like a utility: anyone
could plug a terminal into a wall-socket (Licklider 1960).

The ARPANET, which started operation in late 1969, supported the util-
ity ambition. It was designed for resource sharing—users anywhere in the
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Table 2.2
Artificial Intelligence Domain

Who Members Al experts, Al practitioners, artificial lifers,
planners, singularity followers, chess players,
Jeopardy enthusiasts, Bayesian learners,
machine learners, biologically inspired
designers, cognitive scientists, human factors
designers, psychologists, economists, law
enforcers, roboticists

What Breakdowns, Automation of cognitive tasks, design and
problems, experimental evaluation of heuristics,
concerns evolutionary computing, genetic computing,

neural computing, pattern recognition,
automatic classification, speech recognition,
natural language translation, artificial brains,
superhuman intelligence, autonomous
systems such as drones and cars

Computing Communication Noisy-channel model

principles Computation Heuristic algorithms, classification, Bayesian
inference, machine learning, searching large
state spaces, models of intelligence
Recollection Memory models, sparse distributed memory,
neural network retrieval, locality learning
algorithms
Coordination Training protocols, coordination theory
Evaluation Experimental methods for evaluating
heuristics; precision, recall, accuracy
Design Storage of large data sets for use in
supervised and unsupervised experiments
Principles Brains generate minds, speech act theory,

from other linguistics, neuroscience, statistical inference
fields

network could connect with any host and use its services. No one had to
replicate a shared service. The ARPANET designers soon realized that shared
services would be sought by name rather than location and that location-
independent addressing would be the only way to hide the many address-
ing conventions of local networks containing the services. Vint Cerf and
Bob Kahn invented the TCP/IP protocols (1974) to exchange messages
between any computers in the Internet knowing only their IP addresses
but not their physical locations. The ARPANET standardized on the TCP/IP
protocol in 1983.

In 1984, the ARPANET adopted the Domain Naming System (DNS), an
online database that mapped symbolic host names to their IP addresses; for
example “gmu.edu” maps to “129.174.1.38.” This added another level of
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gene data into genome maps. Tony Chan and Yousef Saad (1986) demon-
strated that one of the first parallel architectures, the hypercube, was opti-
mal for a large class of numerical algorithms, called multigrid algorithms,
used in solving mathematical models applied to very large data spaces.
Jeffrey Dean and Sanjay Ghemawat (2008) designed MapReduce, a new
method for mobilizing thousands of parallel processors to solve very large
data-processing problems.

Large data sets have always been a concern for businesses. They store
data on customers, inventory, manufacturing, and accounting—every-
thing companies need to operate while big and international. IBM became
wealthy in the data-processing markets in the 1930s, many years before
electronic computers, selling business machines such as card sorters and
retrievers. In the 1950s IBM joined a growing number of computer com-
panies that offered electronic data processing. IBM generated considerable
publicity in 1956 when it introduced the first hard disk storage system,
RAMAC 305. IBM claimed businesses could move warehouses of file cabi-
nets on to a single disk and process the data with amazing speed. As data
stores grew, the designers focused on methods to organize the data for
fast access and easy maintenance. The two chief competing methods were
the Integrated Data System (Bachman 1973) and the Relational Database
System (Codd 1970, 1990). The IDS was simple, fast, and pragmatic in its
approach to managing large sets of files while hiding the file structure and
location on the disks. The RDS was based on the mathematical theory of
sets; it had a clean conceptual model but took many years to perfect and
achieve the kinds of efficiency seen in IDS. Starting in the 1970s, there has
been an active community of researchers who meet annually to discuss
issues in very large databases (VLDB).

Beginning in the 1950s, computing researchers helped librarians to
organize data for fast retrieval of documents. Libraries were early users of
these information retrieval systems. They developed search systems that
could deal with fuzzy queries such as “find documents about information
retrieval” but without necessarily containing the text string “information
retrieval.” Today’s Internet is a large unstructured store in which keyword
retrieval is very fast but imprecise and information retrieval is difficult
(Dreyfus 2001).

The Gartner Group defined the modern “big data” domain in terms of
four V’s: problems with large volumes of data, which arrive at high velocity,
are in a large variety of formats, and whose veracity is important to decisions
based on it. As of 2014, data science courses, centers, and curricula were
popping up at universities and research labs. The people involved are from
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Table 2.4
Big Data Domain

Who Members Business, government agencies, enterprise
designers, scientific data collectors, statisticians,
large systems modelers

What Breakdowns, Finding correlated items in very large data sets,
problems, computational complexity, privacy issues,
concerns interence, forensics of data recovery,

information retrieval
Computing Communication  Reliable transmissions from thousands of
principles sensors to repositories, detecting if data have
been corrupted, altered, or lost, detecting if
data has been placed in illegal jurisdictions

Computation Computational complexity of algorithms for
data analysis
Recollection Storage, replication, error control, testing

whether data still exist, testing for physical
location of data, forensics data recovery from
very large stores

Coordination Map-Reduce computing

Evaluation Predicting completion times of large searches
and analyses in very large networks

Design Replication of data, indexing data, structuring
tor optimal retrieval
Principles Natural language processing, statistic inference,
from other mood inference, crowdsourcing, forensics
fields practices

many disciplines including analysts from operations research and statistics,
architectures from computer science and information systems, and visual-
izers from modeling and simulation. The associated “data science” domain
is concerned with the scientific basis for analysis and processing of very
large data sets.

The people, problems, and computing principles of the big data domain
are summarized in table 2.4.

Conclusion

The great principles framework is a useful way to identify bundles of prin-
ciples making up a technology. It is also useful to identify computing prin-
ciples that underpin computing domains, in which people from computing
and other fields interact to solve persistent problems of concern in their
communities.
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