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Preface

Growth is an omnipresent protean reality of our lives: a marker of evolu-
tion, of an increase in size and capabilities of our bodies as we reach adult-
hood, of gains in our collective capacities to exploit the Earth’s resources
and to organize our societies in order to secure a higher quality of life.
Growth has been both an unspoken and an explicit aim of individual and
collective striving throughout the evolution of our species and its still short
recorded history. Its progress governs the lives of microorganisms as well as
of galaxies. Growth determines the extent of oceanic crust and utility of all
artifacts designed to improve our lives as well as the degree of damage any
abnormally developing cells can do inside our bodies. And growth shapes
the capabilities of our extraordinarily large brains as well as the fortunes
of our economies. Because of its ubiquity, growth can be studied on levels
ranging from subcellular and cellular (to reveal its metabolic and regulatory
requirements and processes) to tracing long-term trajectories of complex
systems, be they geotectonic upheavals, national or global populations, cities,
economies or empires.

Terraforming growth—geotectonic forces that create the oceanic and
continental crust, volcanoes, and mountain ranges, and that shape water-
sheds, plains, and coasts—proceeds very slowly. Its prime mover, the forma-
tion of new oceanic crust at mid-ocean ridges, advances mostly at rates of
less than S5 mm/year, while exceptionally fast new sea-floor creation can
reach about 20 cm/year (Schwartz et al. 2005). As for the annual increments
of continental crust, Reymer and Schubert (1984) calculated the addition
rate of 1.65 km’ and with the total subduction rate (as the old crust is recy-
cled into the mantle) of 0.59 km’ that yields a net growth rate of 1.06 km".

That is a minuscule annual increment when considering that the con-
tinents cover nearly 150 Gm® and that the continental crust is mostly
35-40 km thick, but such growth has continued during the entire Pha-
nerozoic eon, that is for the past 542 million years. And one more, this time
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Figurc v.1

Slow but persistent geotectonic growth. The Himalayas were created by the collision of
Indian and Eurasian plates that began more than 50 million year ago and whose con-
tinuation now makes the mountain chain grow by as much as 1 cm/year. Photo from
the International Space Station (looking south from above the Tibetan Plateau) taken
in January 2004. Image available at https://www.nasa.gov/multimedia/imagegallery
/image_feature_152.html.

vertical, example of inevitably slow tectonic speeds: the uplift of the
Himalayas, the planet’s most imposing mountain range, amounts to about
10 mm/year (Burchfiel and Wang 2008; figure 0.1). Tectonic growth fun-
damentally constrains the Earth’s climate (as it affects global atmospheric
circulation and the distribution of pressure cells) and ecosystemic produc-
tivity (as it affects temperature and precipitation) and hence also human
habitation and economic activity. But there is nothing we can do about its
timing, location, and pace, nor can we harness it directly for our benefit
and hence it will not get more attention in this book.

Organismic growth, the quintessential expression of life, encompasses
all processes by which elements and compounds are transformed over time
into new living mass (biomass). Human evolution has been existentially
dependent on this natural growth, first just for foraged and hunted food,
later for fuel and raw materials, and eventually for cultivated food and
feed plants and for large-scale exploitation of forest phytomass as well as
for the capture of marine species. This growing human interference in the
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biosphere has brought a large-scale transformation of many ecosystems,
above all the conversion of forests and wetlands to croplands and extensive
use of grassland for grazing animals (Smil 2013a).

Growth is also a sign of progress and an embodiment of hope in human
affairs. Growth of technical capabilities has harnessed new energy sources,
raised the level and reliability of food supply, and created new materials
and new industries. Economic growth has brought tangible material gains
with the accumulation of private possessions that enrich our brief lives, and
it creates intangible values of accomplishment and satisfaction. But growth
also brings anxieties, concerns, and fears. People—be it children marking
their increasing height on a door frame, countless chief economists prepar-
ing dubious forecasts of output and trade performance, or radiologists look-
ing at magnetic resonance images—worry about it in myriads of different
ways.

Growth is commonly seen as too slow or as too excessive; it raises con-
cerns about the limits of adaptation, and fears about personal consequences
and major social dislocations. In response, people strive to manage the
growth they can control by altering its pace (to accelerate it, moderate it, or
end it) and dream about, and strive, to extend these controls to additional
realms. These attempts often fail even as they succeed (and seemingly per-
manent mastery may turn out to be only a temporary success) but they
never end: we can see them pursued at both extreme ends of the size spec-
trum as scientist try to create new forms of life by expanding the genetic code
and including synthetic DNA in new organisms (Malyshev et al. 2014)—as
well as proposing to control the Earth’s climate through geoengineering
interventions (Keith 2013).

Organismic growth is a product of long evolutionary process and mod-
ern science has come to understand its preconditions, pathways, and out-
comes and to identify its trajectories that conform, more or less closely, to
specific functions, overwhelmingly to S-shaped (sigmoid) curves. Finding
common traits and making useful generalizations regarding natural growth
is challenging but quantifying it is relatively straightforward. So is measur-
ing the growth of many man-made artifacts (tools, machines, productive
systems) by tracing their increase in capacity, performance, efficiency, or
complexity. In all of these cases, we deal with basic physical units (length,
mass, time, electric current, temperature, amount of substance, luminous
intensity) and their numerous derivatives, ranging from volume and speed
to energy and power.

Measuring the growth phenomena involving human judgment, expec-
tations, and peaceful or violent interactions with others is much more
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challenging. Some complex aggregate processes are impossible to mea-
sure without first arbitrarily delimiting the scope of an inquiry and with-
out resorting to more or less questionable concepts: measuring the growth
of economies by relying on such variables as gross domestic product or
national income are perfect examples of these difficulties and indetermina-
cies. But even when many attributes of what might be called social growth
are readily measurable (examples range from the average living space per
family and possession of household appliances to destructive power of
stockpiled missiles and the total area controlled by an imperial power),
their true trajectories are still open to diverse interpretations as these quan-
tifications hide significant qualitative differences.

Accumulation of material possessions is a particularly fascinating aspect
of growth as it stems from a combination of a laudable quest to improve
quality of life, an understandable but less rational response to position one-
self in a broader social milieu, and a rather atavistic impulse to possess,
even to hoard. There are those few who remain indifferent to growth and
need, India’s loinclothed or entirely naked sadhus and monks belonging to
sects that espouse austere simplicity. At the other extreme, we have com-
pulsive collectors (however refined their tastes may be) and mentally sick
hoarders who turn their abodes into garbage dumps. But in between, in any
population with rising standards of living, we have less dramatic quotidian
addictions as most people want to see more growth, be in material terms or
in intangibles that go under those elusive labels of satisfaction with life or
personal happiness achieved through amassing fortunes or having extraor-
dinarily unique experiences.

The speeds and scales of these pursuits make it clear how modern is
this pervasive experience and how justified is this growing concern about
growth. A doubling of average sizes has become a common experience
during a single lifetime: the mean area of US houses has grown 2.5-fold
since 1950 (USBC 1975; USCB 2013), the volume of the United Kingdom’s
wine glasses has doubled since 1970 (Zupan et al. 2017), typical mass of
European cars had more than doubled since the post-World War Il models
(Citroen 2 CV, Fiat Topolino) weighing less than 600 kg to about 1,200kg
by 2002 (Smil 2014b). Many artifacts and achievements have seen far larger
increases during the same time: the modal area of television screens grew
about 15-fold, from the post-World War Il standard of 30 cm diagonal to
the average US size of about 120 cm by 2015, with an increasing share
of sales taken by TVs with diagonals in excess of 150 cm. And even that
impressive increase has been dwarfed by the rise of the largest individual
fortunes: in 2017 the world had 2,043 billionaires (Forbes 2017). Relative
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A quintessential marker of modern growth: Moore’s law, 1971-2018. Semi-logarithmic
graph shows steady exponential increase from 10 to 10" components per microchip
(Smil 2017a; IBM 2018Db).

2018; Graphcore 2018). As in all cases of exponential growth (see chap-
ter 1), when these gains are plotted on a linear graph they produce a steeply
ascending curve, while a plot on a semilogarithmic graph transforms them
into a straight line (figure 0.2).

This progress has led to almost unbounded expectations of still greater
advances to come, and the recent rapid diffusion of assorted electronic
devices (and applications they use) has particularly mesmerized those
uncritical commentators who see omnipresent signs of accelerated growth.
To give just one memorable recent example, a report prepared by Oxford
Martin School and published by Citi claims the following time spans were
needed to reach 50 million users: telephone 75 years, radio 38 years, TV
13 years, Internet four years, and Angry Birds 35 days (Frey and Osborne
2015). These claims are attributed to Citi Digital Strategy Team-—but the
team failed to do its homework and ignored common sense.

Are these numbers referring to global or American diffusions? The report
does not say, but the total of 50 million clearly refers to the United States
where that number of telephones was reached in 1953 (1878 +75 vyears):
but the number of telephones does not equal the total number of their
users, which, given the average size of families and the ubiquity of phones
in places of work, had to be considerably higher. TV broadcasting did not
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have just one but a number of beginnings: American transmission, and
sales of first sets, began in 1928, but 13 years later, in 1941, TV owner-
ship was still minimal, and the total number of TV sets (again: devices, not
users) reached S0 million only in 1963. The same error is repeated with the
Internet, to which millions of users had access for many years at universi-
ties, schools, and workplaces before they got a home connection; besides,
what was the Internet’s “first” year?

All that is just sloppy data gathering, and an uninformed rush to make
an impression, but more important is an indefensible categorical error made
by comparing a complex system based on a new and extensive infrastruc-
ture with an entertaining software. Telephony of the late 19th century was
a pioneering system of direct personal communication whose realization
required the first large-scale electrification of society (from fuel extraction to
thermal generation to transmission, with large parts of rural America having
no good connections even during the 1920s), installation of extensive wired
infrastructure, and sales of (initially separate) receivers and speakers.

In contrast, Angry Birds or any other inane app can spread in a viral
fashion because we have spent more than a century putting in place the
successive components of a physical system that has made such a diffusion
possible: its growth began during the 1880s with electricity generation and
transmission and it has culminated with the post-2000 wave of designing
and manufacturing billions of mobile phones and installing dense networks
of cell towers. Concurrently the increasing reliability of its operation makes
rapid diffusion feats unremarkable. Any number of analogies can be offered
to illustrate that comparative fallacy. For example, instead of telephones
think of the diffusion of microwave ovens and instead of an app think
of mass-produced microwavable popcorn: obviously, diffusion rates of the
most popular brand of the latter will be faster than were the adoption rates
of the former. In fact, in the US it took about three decades for countertop
microwave ovens, introduced in 1967, to reach 90% of all households.

The growth of information has proved equally mesmerizing. There is
nothing new about its ascent. The invention of movable type (in 1450)
began an exponential rise in book publishing, from about 200,000 vol-
umes during the 16th century to about 1 million volumes during the 18th
century, while recent global annual rate (led by China, the US, and the
United Kingdom) has surpassed 2 million titles (UNESCO 2018). Add to this
pictorial information whose growth was affordably enabled first by lithog-
raphy, then by rotogravure, and now is dominated by electronic displays
on mobile devices. Sound recordings began with Edison’s fragile phono-
graph in 1878 (Smil 2018a; figure 0.3) and their enormous selection is now
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riyu s v.o
Thomas A. Edison with his phonograph photographed by Mathew Brady in April 1878.
Photograph from Brady-Handy Collection of the Library of Congress.
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effortlessly accessible to billions of mobile phone users. And information
flow in all these categories is surpassed by imagery incessantly gathered by
entire fleets of spy, meteorological, and Earth observation satellites. Not
surprisingly, aggregate growth of information has resembled the hyperbolic
expansion trajectory of pre-1960 global population growth.

Recently it has been possible to claim that 90% or more of all the extant
information in the world has been generated over the preceding two years.
Seagate (2017) put total information created worldwide at 0.1 zettabytes
(ZB, 10°') in 2005, at 2 ZB in 2010, 16.1 ZB in 2016, and it expected that
the annual increment will reach 163 ZB by 2025. A vear later it raised its
estimate of the global datasphere to 175 ZB by 2025—and expected that
the total will keep on accelerating (Reinsel et al. 2018). But as soon as one
considers the major components of this new data flood, those accelerating
claims are hardly impressive. Highly centralized new data inflows include
the incessant movement of electronic cash and investments among major
banks and investment houses, as well as sweeping monitoring of telephone
and internet communications by government agencies.

At the same time, billions of mobile phone users participating in social
media voluntarily surrender their privacy so data miners can, without
asking anybody a single question, follow their messages and their web-
clicking, analyzing the individual personal preferences and foibles they
reveal, comparing them to those of their peers, and packaging them to be
bought by advertisers in order to sell more unneeded junk—and to keep
economic growth intact. And, of course, streams of data are produced
incessantly simply by people carrying GPS-enabled mobile phones. Add to
this the flood of inane images, including myriads of selfies and cat videos
(even stills consume bytes rapidly: smartphone photos take up commonly
2-3 MB, that is 2-3 times more than the typescript of this book)—and
the unprecedented growth of “information” appears more pitiable than
admirable.

And this is one of the most consequential undesirable consequences of
this information flood: time spent per adult user per day with digital media
doubled between 2008 and 2015 to 5.5 hours (eMarketer 2017), creating
new life forms of screen zombies. But the rapid diffusion of electronics and
software are trivial matters compared to the expected ultimate achieve-
ments of accelerated growth—and nobody has expressed them more
expansively than Ray Kurzweil, since 2012 the director of engineering at
Google and long before that the inventor of such electronic devices as the
charged-couple flat-bed scanner, the first commercial text-to-speech syn-
thesizer, and the first omnifont optical character recognition.
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In 2001 he formulated his law of accelerating returns (Kurzweil 2001, 1):

An analysis of the history of technology shows that technological change is expo-
nential, contrary to the common-sense “intuitive linear” view. So we won’t experi-
ence 100 years of progress in the 21st century—it will be more like 20,000 years of
progress (at today’s rate). The “returns,” such as chip speed and cost-effectiveness,
also increase exponentially. There's even exponential growth in the rate of expo-
nential growth. Within a few decades, machine intelligence will surpass human
intelligence, leading to The Singularity—technological change so rapid and
profound it represents a rupture in the fabric of human history. The implica-
tions include the merger of biological and nonbiological intelligence, immortal
software-based humans, and ultra-high levels of intelligence that expand outward
in the universe at the speed of light.

In 2005 Kurzweil published The Singularity Is Near—it is to come in 2045, to
be exact—and ever since he has been promoting these views on his website,
Kurzweil Accelerating Intelligence (Kurzweil 2005, 2017). There is no doubt,
no hesitation, no humility in Kurzweil’s categorical grand pronouncements
because according to him the state of the biosphere, whose functioning is a
product of billions of vears of evolution, has no role in our futures, which
are to be completely molded by the surpassing mastery of machine intel-
ligence. But as different as our civilization may be when compared to any
of its predecessors, it works within the same constraint: it is nothing but a
subset of the biosphere, that relatively very thin and both highly resilient
and highly fragile envelope within which carbon-based living organisms
can survive (Vernadsky 1929; Smil 2002). Inevitably, their growth, and for
higher organisms also their cognitive and behavioral advances, are fun-
damentally limited by the biosphere’s physical conditions and (wide as it
may seem by comparing its extremes) by the restricted range of metabolic
possibilities.

Studies of Growth

Even when limited to our planet, the scope of growth studies—from ephem-
eral cells to a civilization supposedly racing toward the singularity—is too
vast to allow a truly comprehensive single-volume treatment. Not surpris-
ingly, the published syntheses and overviews of growth processes and of
their outcomes have been restricted to major disciplines or topics. The great
classic of growth literature, D’Arcy Wentworth Thompson’s On Growth and
Form (whose original edition came out it in 1917 and whose revised and
much expanded form appeared in 1942) is concerned almost solely with
cells and tissues and with many parts (skeletons, shell, horns, teeth, tusks)

Copyrighted materia
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There will be nothing about the growth (the inflationary expansion) of
the universe, galaxies, supernovas, or stars. | have already acknowledged
inherently slow growth rates of terraforming processes that are primarily
governed by the creation of new oceanic crust with spreading rates rang-
ing between less than two and no more than about 20 cm/year. And while
some short-lived and spatially limited catastrophic events (volcanic erup-
tions, massive landslides, tsunami waves, enormous floods) can result in
rapid and substantial mass and energy transfers in short periods of time,
ongoing geomorphic activities (erosion and its counterpart, sedimentary
deposition) are as slow or considerably slower than the geotectonic pro-
cesses: erosion in the Himalayas can advance by as much as 1 cm/year,
but the denudation of the British Isles proceeds at just 2-10 cm in every
1,000 years (Smil 2008). There will be no further examination of these
terraforming growth rates in this book.

And as the book’s major focus is on the growth of organisms, artifacts,
and complex systems, there will be also nothing about growth on subcellu-
lar level. The enormous intensification of life science research has produced
major advances in our understanding of cellular growth in general and
cancerous growth in particular. The multidisciplinary nature, the growing
extent, and accelerating pace of these advances means that new findings are
now reported overwhelmingly in electronic publications and that writing
summary or review books in these fields are exercises in near-instant obso-
lescence. Still, among the recent books, those by Macieira-Coelho (2005),
Gewirtz et al. (2007), Kimura (2008), and Kraikivski (2013) offer surveys of
normal and abnormal cellular growth and death.

Consequently, there will be no systematic treatment of fundamental
genetics, epigenetics and biochemistry of growth, and I will deal with cel-
lular growth only when describing the growth trajectories of unicellular
organisms and the lives of microbial assemblies whose presence constitutes
significant, or even dominant, shares of biomass in some ecosystems. Simi-
larly, the focus with plants, animals, and humans will not be on biochemical
specificities and complexities of growth at subcellular, cellular, and organ
level—there are fascinating studies of brain (Brazier 1975; Kretschmann
1986; Schneider 2014; Lagercrantz 2016) or heart (Rosenthal and Harvey
2010; Bruneau 2012) development—but on entire organisms, including the
environmental settings and outcomes of growth, and I will also note some
key environmental factors (ranging from micronutrients to infections) that
often limit or derail organismic growth.

Human physical growth will be covered in some detail with focus both
on individual (and sex-specific) growth trajectories of height and weight
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(as well as on the undesirable rise of obesity) and on the collective growth
of populations. I will present long-term historical perspectives of popu-
lation growth, evaluate current growth patterns, and examine possible
future global, and some national, trajectories. But there will be nothing on
psychosocial growth (developmental stages, personality, aspirations, self-
actualization) or on the growth of consciousness: psychological and socio-
logical literature covers that abundantly.

Before proceeding with systematic coverage of growth in nature and
society, I will provide a brief introduction into the measures and varieties
of growth trajectories. These trajectories include erratic advances with no
easily discernible patterns (often seen in stock market valuations); simple
linear gains (an hourglass adds the same amount of falling sand to the
bottom pile every second); growth that is, temporarily, exponential (com-
monly exhibited by such diverse phenomena as organisms in their infancy,
the most intensive phases in the adoption of technical innovation, and the
creation of stock market bubbles); and gains that conform to assorted con-
fined (restrained) growth curves (as do body sizes of all organisms) whose
shape can be captured by mathematical functions.

Most growth processes—be they of organisms, artifacts, or complex
systems—follow closely one of these S-shaped (sigmoid) growth curves
conforming to the logistic (Verhulst) function (Verhulst 1838, 1845, 1847),
to its precursor (Gompertz 1825), or to one of their derivatives, most com-
monly those formulated by von Bertalanffy (1938, 1957), Richards (1959),
Blumberg (1968), and Turner et al. (1976). But natural variability as well as
unexpected interferences often lead to substantial deviations from a pre-
dicted course. That is why the students of growth are best advised to start
with an actual more or less completed progression and see which available
growth function comes closest to replicating it.

Proceeding the other way—taking a few early points of an unfolding
growth trajectory and using them to construct an orderly growth curve
conforming to a specifically selected growth function—has a high prob-
ability of success only when one tries to predict the growth that is very
likely to follow a known pattern that has been repeatedly demonstrated, for
example, by many species of coniferous trees or freshwater fish. But select-
ing a random S-curve as the predictor of growth for an organism that does
not belong to one of those well-studied groups is a questionable enterprise
because a specific function may not be a very sensitive predictive tool for
phenomena seen only in their earliest stage of growth.
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The Book’s Structure and Goals

The text tollows a natural, evolutionary, sequence, from nature to society,
from simple, directly observable growth attributes (numbers of multiplying
cells, diameter of trees, mass of animal bodies, progression of human stat-
ures) to more complex measures marking the development and advances
of societies and economies (population dynamics, destructive powers, cre-
ation of wealth). But the sequence cannot be exclusively linear as there are
ubiquitous linkages, interdependencies, and feedbacks and these realities
necessitate some returns and detours, some repetitions to emphasize con-
nections seen from other (energetic, demographic, economic) perspectives.

My systematic inquiry into growth will start with organisms whose
mature sizes range from microbes (tiny as individual cells, massive in their
biospheric presence) to lofty coniferous trees and enormous whales. I will
take closer looks at the growth of some disease-causing microbes, at the cul-
tivation of staple crops, and at human growth from infancy to adulthood.
Then will come inquiries into the growth of energyv conversions and man-
made objects that enable food production and all other economic activities.
[ will also look how this growth changed numerous performances, efficien-
cies, and reliabilities because these developments have been essential for
creating our civilization.

Finally, I will focus on the growth of complex systems. I will start with
the growth of human populations and proceed to the growth of cities,
the most obvious concentrated expressions of human material and social
advancement, and economies. | will end these systematic examinations
by noting the challenges of appraising growth trajectories of empires and
civilizations, ending with our global variety characterized by its peculiar
amalgam of planetary and parochial concerns, affluent and impoverished
lives, and confident and uncertain perspectives. The book will close with
reviewing what comes after growth. When dealing with organisms, the out-
comes range from the death of individuals to the perpetuation of species
across evolutionary time spans. When dealing with societies and econo-
mies, the outcomes range from decline (gradual to rapid) and demise to
sometimes remarkable renewal. The trajectory of the modern civilization,
coping with contradictory imperatives of material growth and biospheric
limits, remains uncertain.

My aim is to illuminate varieties of growth in evolutionary and histori-
cal perspectives and hence to appreciate both the accomplishments and
the limits of growth in modern civilization. This requires quantitative
treatment throughout because real understanding can be gained only by
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charting actual growth trajectories, appreciating common and exceptional
growth rates, and setting accomplished gains and performance improve-
ments (often so large that they have spanned several orders of magnitude!)
into proper (historical and comparative) contexts. Biologists have studied
the growth of numerous organisms and | review scores of such results
for species ranging from bacteria to birds and from algae to staple crops.
Similarly, details of human growth from infancy to maturity are readily
available.

In contrast to the studies of organismic growth, quantifications of long-
term growth trajectories of human artifacts (ranging from simple tools to
complex machines) and complex systems (ranging from cities to civiliza-
tions) are much less systematic and much less common. Merely to review
published growth patterns would not suffice to provide revealing treat-
ments of these growth categories. That is why, in order to uncover the best-
fitting patterns of many kinds of anthropogenic growth, I have assembled
the longest possible records from the best available sources and subjected
them to quantitative analyses. Every one of more than 100 original growth
graphs was prepared in this way, and their range makes up, 1 believe, a
unique collection. Given the commonalities of growth patterns, this is
an unavoidably repetitive process but systematic presentations of specific
results are indispensable in order to provide a clear understanding of reali-
ties (commonalities and exceptions), limits, and future possibilities.

Systematic presentation of growth trajectories is a necessary precondi-
tion but not the final goal when examining growth. That is why I also
explain the circumstances and limits of the charted growth, provide evolu-
tionary or historical settings of analyzed phenomena, or offer critical com-
ments on recent progression and on their prospects. | also caution about
any simplistic embrace of even the best statistical fits for long-term fore-
casting, and the goal of this book is not to provide an extended platform
for time-specific growth projections. Nevertheless, the presented analyses
contain a variety of conclusions that make for realistic appraisals of what
lies ahead.

In that sense, parts of the book are helpfully predictive. If a century
of corn yields shows only linear growth, there is not much of a chance
for exponentially rising harvests in the coming decades. If the growth effi-
ciency of broilers has been surpassing, for generations, the performance of
all other terrestrial meat animals, then it is hard to argue that pork should
be the best choice to provide more protein for billions of new consumers. If
unit capacities, production (extraction or generation) rates, and diffusion of
every energy conversion display logistic progress, then we have very solid
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ground to conclude that the coming transition from fossil fuels to renew-
ables will not be an exceptionally speedy affair. If the world’s population
is getting inexorably urbanized, its energetic (food, fuels, electricity) and
material needs will be shaped by these restrictive realities dictating the need
for incessant and reliable, mass-scale flows that are impossible to satisfy
from local or nearby sources.

Simply put, this book deals in realities as it sets the growth of everything
into long-term evolutionary and historical perspectives and does so in rig-
orous quantitative terms. Documented, historically embedded facts come
first—cautious conclusions afterward. This is, of course, in contradistinc-
tion to many recent ahistoric forecasts and claims that ignore long-term
trajectories of growth (that is, the requisite energetic and material needs of
unprecedented scaling processes) and invoke the fashionable mantra of dis-
ruptive innovation that will change the world at accelerating speed. Such
examples abound, ranging from all of the world’s entire car fleet (of more
than 1 billion vehicles) becoming electric by 2025 to terraforming Mars
starting in the year 2022, from designer plants and animals (synthetic biology
rules) making the strictures of organismic evolution irrelevant to anticipa-
tions of artificial intelligence’s imminent takeover of our civilization.

This book makes no radical claims of that kind; in fact it avoids mak-
ing any but strongly justified generalizations. This is a deliberate decision
resting on my respect for complex and unruly realities (and irregularities)
and on the well-attested fact that grand predictions turn out to be, repeat-
edly, wrong. Infamous examples concerning growth range from those of
unchecked expansion of the global population and unprecedented famines
that were to happen during the closing decades of the 20th century to a
swift takeover of the global energy supply by inexpensive nuclear power
and to a fundamentally mistaken belief that the growth rate underlying
Moore’s law (doubling every two years) can be readily realized through
innovation in other fields of human endeavor.

The book is intended to work on several planes. The key intent is to
provide a fairly comprehensive analytical survey of growth trajectories in
nature and in society: in the biosphere, where growth is the result of not
just evolution but, increasingly, of human intervention; and in the man-
made world, where growth has been a key factor in the history of popu-
lations and economies and in the advancement of technical capabilities.
Given this scope, the book could be also read selectively as a combination
of specific parts, by focusing on living organisms (be they plants, animals,
humans, or populations) or on human designs (be they tools, energy con-
verters, or transportation machinery). And, undoubtedly, some readers will



1 Trajectories: or common patterns of growth

Growth attracts adjectives. The most common ones have been (alpha-
betically) anemic, arithmetic, cancerous, chaotic, delayed, disappointing,
erratic, explosive, exponential, fast, geometric, healthy, interrupted, linear,
logistic, low, malignant, moderate, poor, rapid, runaway, slow, S-shaped,
strong, sudden, tepid, unexpected, vigorous. Most recently, we should also
add sustainable and unsustainable, Sustainable growth is, of course, a clear
contradictio in adjecto as far as any truly long-run material growth is con-
cerned (I am ignoring any possibilities of migrating to other planets after
exhausting the Earth’s resources) and it is highly doubtful that we can keep
on improving such intangibles as happiness or satisfaction. Most of the
adjectives used to describe growth are qualifiers of its rate: often it is not
the growth per se that we worry about but rather its rate, either too fast or
too slow.

Even a casual news reader knows about the constant worries of assorted
chief economists, forecasters and government officials about securing “vig-
orous” or “healthy” growth of the gross domestic product (GDP). This
clamoring for high growth rates is based on the most simplistic expectation
of repeating past experiences—as if the intervening growth of GDP had
nothing to do with the expected future rate. Put another way, economists
have an implicit expectation of endless, and preferably fairly fast, exponen-
tial growth.

But they choose an inappropriate metric when comparing the outcomes.
For example, during the first half of the 1950s the US GDP growth averaged
nearly 5% a year and that performance translated roughly to additional
$3,500 per capita (for about 160 million people) during those five years. In
contrast, the “slow” GDP growth between 2011 and 2015 (averaging just
2%/year) added about $4,800/capita (for about 317 million people) during
those five vears, or nearly 40% more than 60 years ago (all totals are in
constant-value monies to eliminate the effect of inflation). Consequently,
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in terms of actual average individual betterment, the recent 2% growth has
been quite superior to the former, 2.5 times higher, rate. This is simple alge-
bra, but it is repeatedly ignored by all those bewailing the “low” post-2000
growth of the US or European Union (EU) economies.

Results of the British referendum of June 23, 2016, about remaining in
the EU or leaving it, provided another perfect illustration of how the rate
of change matters more than the outcome. In 94% of the areas where the
foreign-born population increased by more than 200% between 2001 and
2014, people voted to leave the European Union—even though the share
of migrants in those regions had remained comparatively low, mostly less
than 20%. In contrast, most regions where the foreign-born population was
more than 30% voted to remain. As The Economist concluded, “High num-
bers of migrants don’t bother Britons; high rates of change do” (Economist
2016).

Other adjectives used to qualify growth are precisely defined terms describ-
ing its specific trajectories that conform (sometimes almost perfectly, often
fairly closely) to various mathematical functions. Those close, even per-
fect, fits are possible because most growth processes are remarkably regular
affairs as their progress follows a limited array of patterns. Naturally, those
trajectories have many individual and inter- and intraspecific variations for
organisms, and are marked by historically, technically, and economically
conditioned departures for engineered systems, economies, and societies.
The three basic trajectories encompass linear growth, exponential growth,
and various finite growth patterns. Linear growth is trivial to grasp and easy
to calculate. Exponential growth is easy to understand but the best way to
calculate it is to use the base of natural logarithms, a mystery to many. The
principle of finite growth patterns, including logistic, Gompertz and con-
fined exponential growth functions, is, again, easy to understand, but their
mathematical solutions require differential calculus.

But before taking a closer look at individual growth functions, their solu-
tions and resulting growth curves, I will devote two brief sections to time
spans and to the figures of merit involved in growth studies. In their short
surveys, | will note both common and less frequently encountered vari-
ables in whose growth we are interested, be it as parents, emplovees, or
taxpavers, as scientists, engineers, and economists, or as historians, poli-
ticians, and planners. These measures include such universal concerns as
the weight and height of growing babies and children, and the growth of
national economies. And there are also such infrequent but scary concerns
as the diffusion of potentially pandemic infections made worse by mass-
scale air travel.
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Time Spans

Growth is always a function of time and during the course of modern
scientific and engineering studies their authors have traced its trajectories
in countless graphs with time usually plotted on the abscissa (horizon-
tal or x axis) and the growing variable measured on the ordinate (verti-
cal or y axis). Of course, we can (and we do) trace growth of physical or
immaterial phenomena against the change of other such variables—we
plot the changing height of growing children against their weight or rising
disposable income against the growth of GDP—but most of the growth
curves (and, in simpler instance, lines) are what James C. Maxwell defined
as diagrams of displacement and what Thompson called time-diagrams:
“Each has a beginning and an end; and one and the same curve may illus-
trate the life of a man, the economic history of a kKingdom... It depicts a
‘mechanism’ at work, and helps us to see analogous mechanisms in dif-
ferent fields; for Nature rings her many changes on a few simple themes”
(Thompson 1942, 139).

Growth of ocean floor or of mountain ranges, whose outcomes are driven
by geotectonic forces and whose examination is outside of this book’s already
large scope, unfolds across tens to hundreds of millions of vears. When deal-
ing with organisms, the length of time span under consideration is a func-
tion of specific growth rates determined by long periods of evolution and,
in the case of domesticated plant and animal species, often accelerated or
enhanced by traditional breeding and, most recently, also by transgenic
interventions. When dealing with the growth of devices, machines, struc-
tures or any other human artifacts, time spans under study depend both on
their longevity and on their suitability to be deployved in new, enhanced
versions under changed circumstances.

As a result, growth of some artifacts that were in use since the antiquity
is now merely of historical interest. Sails are a good example of this reality,
as their development and deployment (excepting those designed and used
for fast yacht racing) ended fairly abruptly during the second half of the
19th century, just a few decades after the introduction of steam engines,
and after more than five millennia of improving designs. But other ancient
designs have seen spectacular advances in order to meet the requirements
of the industrial age: construction cranes and dockyard cranes are perhaps
the best example of this continued evolution. These ancient machines have
seen enormous growth in their capacities during the past two centuries in
order to build taller structures and to handle cargo of increasingly more
voluminous ships.
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Microbes, fungi, and insects make up most of the biosphere’s organisms,
and common time spans of interest in microbiology and invertebrate biol-
ogy are minutes, days, and weeks. Bacterial generations are often shorter
than one hour. Coccolithophores, single-celled calcifying marine algae that
dominate oceanic phytomass, reach maximum cell density in nitrogen-
limited environments in one week (Perrin et al. 2016). Commercially culti-
vated white mushrooms grow to maturity just 15-25 days after the growing
medium (straw or other organic matter) is filled with mycelium. Butterflies
usually spend no more than a week as eggs, two to five weeks as caterpillars
(larval stage), and one to two weeks as chrysalis from which they emerge as
fully grown adults.

In annual plants, days, weeks, and months are time spans of interest. The
fastest growing crops (green onions, lettuces, radishes) may be harvested
less than a month after seeding; the shortest period to produce mature staple
grain is about 90 days (spring wheat, also barley and oats), but winter wheat
needs more than 200 days to reach maturity, and a new vineyard will start
producing only during the third yvear after its establishment. In trees, the
annual deposition of new wood in rings (secondary growth originating in
two cambial lateral meristems) marks an easily identifiable natural progres-
sion: fast-growing plantation species (eucalypts, poplars, pines) may be
harvested after a decade of growth (or even sooner), but in natural settings
growth can continue for many decades and in most tree species it can be
actually indeterminate.

Gestation growth of larger vertebrates lasts for many months (from 270
days in humans to 645 days for African elephants), while months, or even
just days, are of interest during the fastest spells of postnatal growth. That
is particularly the case when meat-producing poultry, pigs, and cattle are
fed optimized diets in order to maximize daily weight gain and to raise their
mass to expected slaughter weight in the shortest possible time. Months
and then years are the normal span of interest when monitoring growth of
infants and children, and a pediatrician will compare age- and sex-specific
charts of expected growth with actual individual growth to determine if a
baby or a toddler is meeting its growth milestones or if it is failing to thrive
fully.

Although the growth of some artifacts—be they sailing ships or con-
struction cranes—must be traced across millennia, most of the advances
have been concentrated in relatively brief growth spurts separated by long
periods of no growth or marginal gains. Energy converters (engines, tur-
bines, motors), machines, and devices characteristic of modern industrial
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civilization have much shorter life histories. Growth of steam engines
lasted 200 years, from the early 18th to the early 20th century. Growth of
steam turbines (and electric motors) has been going on since the 1880s,
that of gas turbines only since the late 1930s. Growth of modern solid-state
electronics began with the first commercial applications of the 1950s but
it really took off only with microprocessor-based designs starting in the
1970s.

Studying the collective growth of our species in its evolutionary entirety
would take us back some 200,000 years but our ability to reconstruct the
growth of the global population with a fair degree of accuracy goes back
only to the early modern era (1500-1800), and totals with small ranges of
uncertainty have been available only for the past century. In a few coun-
tries with a history of censuses (however incomplete, with the counts often
restricted to only adult males) or with availability of other documentary
evidence (birth certificates maintained by parishes), we can recreate reveal-
ing population growth trajectories going back to the medieval period.

In economic affairs the unfolding growth (of GDP, employment, pro-
ductivity, output of specific items) is often followed in quarterly intervals,
but statistical compendia report nearly all variables in terms of their annual
totals or gains. Calendar year is the standard choice of time span but the
two most common instances of such departures are fiscal years and crop
years (starting at various months) used to report annual harvests and vields.
Some studies have tried to reconstruct national economic growth going
back for centuries, even for millennia, but (as I will emphasize later) they
belong more appropriately to the class of qualitative impressions rather
than to the category of true quantitative appraisals. Reliable historical
reconstructions for societies with adequate statistical services go back only
150-200 years.

Growth rates capture the change of a variable during a specified time
span, with percent per yvear being the most common metric. Unfortunately,
these frequently cited values are often misleading. No caveats are needed
only if these rates refer to linear growth, that is to adding identical quantity
during every specified period. But when these rates refer to periods of expo-
nential growth they could be properly assessed only when it is understood
that they are temporary values, while the most common varieties of growth
encountered in nature and throughout civilization—those following vari-
ous S-shaped patterns—are changing their growth rate constantly, from
very low rates to a peak and back to very low rates as the growth process
approaches its end.
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the volume of 42 US gallons (or roughly 159.997 liters) was adopted by the
US Bureau of the Census in 1872 to measure crude oil output, and barrel
remains the standard output measure in the oil industry—but converting
this volume variable to its mass equivalent requires the knowledge of spe-
cific densities.

Just over six barrels of heavy crude oil (commonly extracted in the Middle
Fast) are needed to make up one tonne of crude oil, but the total may be as
high as 8.5 barrels for the lightest crudes produced in Algeria and Malay-
sia, with 7.33 barrels per tonne being a commonly used global average.
Similarly, converting volumes of wood to mass equivalents requires the
knowledge of specific wood density. Even for commonly used species, den-
sities differ by up to a factor of two, from light pines (400 kg/m”) to heavy
white ash (800 kg/m”), and the extreme wood densities range from less than
200 kg/m” for balsa to more than 1.2 t/m” for ebony (USDA 2010).

The history of ubiquitous artifacts illustrates two opposite mass trends:
miniaturization of commonly used components and devices on one hand
(a trend enabled to an unprecedented degree by the diffusion of solid-state
electronics), and a substantial increase in the average mass of the two larg-
est investments modern families make, cars and houses, on the other. The
declining mass of computers is, obviously, just an inverse of their grow-
ing capability to handle information per unit of weight. In August 1969,
the Apollo 11 computer used to land the manned capsule on the Moon
weighed 32 kg and had merely 2 kB of random access memory (RAM), or
about 62 bytes per kg of mass (Hall 1996). Twelve years later, IBM’s first
personal computer weighed 11.3 kg and 16 kB RAM, that is 1.416 kB/kg.
In 2018 the Dell laptop used to write this book weighed 2.83 kg and had
4 GB RAM, or 1.41 GB/kg. Leaving the Apollo machine aside (one-of-a-
kind, noncommercial design), personal computers have seen a millionfold
growth of memory/mass ratio since 1981!

As electronics (except for wall-size televisions) got smaller, houses and cars
got bigger. People think about houses primarily in terms of habitable area but
its substantial increase—in the US from 91 m* of finished area (99 m? total)
in 1950 to about 240 m” by 2015 (Alexander 2000; USCB 2017)—has resulted
in an even faster growth rate for materials used to build and to furnish them.
A new 240 m” house will need at least 35 tonnes of wood, roughly split
between framing lumber and other wood products, including plywood,
glulam, and veneer (Smil 2014b). In contrast, a simple 90 m* house could be
built with no more than 12 tonnes of wood, a threefold difference.

Moreover, modern American houses contain more furniture and they
have more, and larger, major appliances (refrigerators, dishwashers, washing
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machines, clothes dryers): while in 1950 only about 20% of households had
washing machines, less than 10% owned clothes dryers and less than 5%
had air conditioning, now standard even in the northernmost states. In
addition, heavier materials are used in more expensive finishes, including
tiles and stone for flooring and bathrooms, stone Kitchen counters and large
fireplaces. As a result, new houses built in 2015 are about 2.6 times larger
than was the 1950 average, but for many of them the mass of materials
required to build them is four times as large.

The increasing mass of American passenger cars has resulted from a com-
bination of desirable improvements and wasteful changes (figure 1.2). The
world’s first mass-produced car, Ford’s famous Model T released in Octo-
ber 1908, weighed just 540 kg. Weight gains after World War I (WWI) were
due to fully enclosed all-metal bodies, heavier engines, and better seats: by
1938 the mass of Ford’s Model 74 reached 1,090 kg, almost exactly twice
that of the Model T (Smil 2014b). These trends (larger cars, heavier engines,
more accessories) continued after World War I (WWII) and, after a brief
pause and retreat brought by the oil price rises by the Organization of the
Petroleum Exporting Countries (OPEC) in the 1970s, intensified after the
mid-1980s with the introduction of sport-utility vehicles (SUVs, account-
ing for half of new US vehicle sales in 2019) and the growing popularity of
pick-up trucks and vans.

In 1981 the average mass of American cars and light trucks was 1,452 kg;
by the year 2000 it had reached 1,733 kg; and by 2008 it was 1,852 kg (and
had hardly changed by 2015), a 3.4-fold increase of average vehicle mass in
100 years (USEPA 2016b). Average car mass growth in Europe and Asia has

I'IH“I T 1.4

The bestselling American car in 1908 was Ford Model T weighing 540 kg. The best-
selling vehicle in 2018 was not a car but a truck, Ford’s F-150 weighing 2,000 kg.
Images from Ford Motor Company catalogue for 1909 and from Trucktrend.
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been somewhat smaller in absolute terms but the growth rates have been
similar to the US rise. And while the worldwide car sales were less than
100,000 vehicles in 1908, they were more than 73 million in 2017, roughly
a 700-fold increase. This means that the total mass of new automobiles sold
globally every year is now about 2,500 larger than it was a century ago.

Time is the third ubiquitous basic unit. Time is used to quantify growth
directly (from increased human longevity to the duration of the longest
flights, or as time elapsed between product failures that informs us about
the durability and reliability of devices). More importantly, time is used as
the denominator to express such ubiquitous rates as speed (length/time,
m/s), power (energy/time, J/s), average earnings (money/time, $/hour), or
national annual gross domestic product (total value of goods and services/
time, $/year). Rising temperatures are encountered less frequently in growth
studies, but they mark the still improving performance of turbogenerators,
while growing total luminosity of illumination informs about the wide-
spread, and intensifying, problem of light pollution (Falchi et al. 2016).

Modern societies have been increasingly concerned about immaterial
variables whose growth trajectories describe changing levels of economic
performance, affluence, and quality of life. Common variables that the
economists want to see growing include the total industrial output, GDP,
disposable income, labor productivity, exports, trade surplus, labor force par-
ticipation, and total employment. Affluence (GDP, gross earnings, disposable
income, accumulated wealth) is commonly measured in per capita terms,
while the quality of life is assessed by combinations of socioeconomic vari-
ables. For example, the Human Development Index (HDI, developed and
annually recalculated by the United Nations Development Programme) is
composed of three indices quantifying life expectancy, educational level,
and income (UNDP 2016).

And in 2017 the World Economic Forum introduced a new Inclusive
Development Index (IDI) based on a set of key performance indicators that
allow a multidimensional assessment of living standards not only accord-
ing to their current level of development but also taking into account the
recent performance over five vears (World Economic Forum 2017). There is
a great deal of overlap between HDI for 2016 and IDI for 2017: their rank-
ings share six among the top 10 countries (Norway, Switzerland, Iceland,
Denmark, Netherlands, Australia). Perhaps the most interesting addition to
this new accounting has been the quantifications of happiness or satisfaction
with life.

Small Himalayan Bhutan made news in 1972 when Jigme Singye Wang-
chuck, the nation’s fourth king, proposed to measure the kingdom’s pro-
gress by using the index of Gross National Happiness (GNH Centre 2016).
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Turning this appealing concept into an indicator that could be monitored
periodically is a different matter. In any case, for the post-WWII US we
have a fairly convincing proof that happiness has not been a growth vari-
able. Gallup pollsters have been asking Americans irregularly how happy
they feel since 1948 (Carroll 2007). In that year 43% of Americans felt very
happy. The measure’s peak, at 55%, was in 2004, the low point came after
9/11 at 37%, but by 2006 it was 49%, hardly any change compared to more
than half a century ago (47% in 1952)!

Satisfaction with life is closely connected with a number of qualitative
gains that are not easily captured by resorting to simple, and the most com-
monly available, quantitative measures. Nutrition and housing are certainly
the two best examples of this reality. As important as it may be, tracing the
growth of average daily per capita availability of food energy may deliver
a misleadingly reassuring message. Dietary improvements have lifted food
supply far above the necessary energy needs: they may have delivered a
more than adequate amount of carbohydrates and lipids and may have
satisfied the minimum levels of high-quality protein—but could still be
short of essential micronutrients (vitamins and minerals). Most notably,
low intakes of fruit and vegetables (the key sources of micronutrients)
have been identified as a leading risk factor for chronic disease, but Siegel
et al. (2014) showed that in most countries their supply falls below recom-
mended levels. In 2009 the global shortfall was 22% with median supply/
need ratios being just 0.42 in low-income and 1.02 in affluent countries.

During the early modern era, the rise of scientific methods of inquiry
and the invention and deployment of new, powerful mathematical and
analytical tools (calculus during the mid-17th century, advances in theoret-
ical physics and chemistry and the foundations of modern economic and
demographic studies during the 19th century) made it eventually possible
to analyze growth in purely quantitative terms and to use relevant growth
formulas in order to predict long-term trajectories of studied phenomena.
Robert Malthus (1766-1834), a pioneer of demographic and economic stud-
ies, caused a great of concern with his conclusion contrasting the means of
subsistence that grow only at a linear rate with the growth of populations
that proceeds at exponential rates (Malthus 1798).

Unlike Malthus, Pierre-Francois Verhulst (1804-1849), a Belgian math-
ematician, is now known only to historians of science, statisticians, demog-
raphers, and biologists. But four decades after Malthus’s essay, Verhulst
made a fundamental contribution to our understanding of growth when
he published the first realistic formulas devised explicitly to express the
progress of confined (bounded) growth (Verhulst 1838, 1845, 1847). Such
growth governs not only the development of all organisms but also the
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improving performance of new techniques, diffusion of many innovations
and adoption of many consumer products. Before starting my topical cov-
erage of growth phenomena and their trajectories (in chapter 2), I will pro-
vide brief, but fairly comprehensive, introductions into the nature of these
formal growth patterns and resulting growth curves.

Linear and Exponential Growth

These are two common but very different forms of growth whose trajecto-
ries are captured by simple equations. Relatively slow and steady would be
the best qualitative description of the former, and increasingly rapid and
eventually soaring the best of the latter. Anything subject to linear growth
increases by the same amount during every identical period and hence the
equation for linear growth is simple:

N1=Nr_|+kt

where a quantity at time t (N) is calculated by enlarging the initial value
(No) by the addition of a constant value Kk per unit of time, t.

Analysis of a large number of stalagmites shows that these tapering col-
umns of calcium salts created on cave floors by dripping water often grow
for millennia in a near-linear fashion (White and Culver 2012). Even a rela-
tively fast growth of 0.1 mm/year would mean that a stalagmite 1 meter
tall would grow just 10 cm in thousand years (1,000 mm + 1,000x0.1). The
plotted outcome of its linear growth shows a monotonously ascending line
(figure 1.3). This, of course, means that the growth rate as the share of the
total stalagmite height will be constantly declining. In a stalagmite growing
at 0.1 mm/year for 1,000 years it would be 0.01% during the first year but
only 0.009% a millennium later.

In contrast, in all cases of exponential growth the quantity increases by
the same rate during every identical period. The basic functional depen-
dence is

N¢=Nn(1 +r)t

where r is the rate of growth expressed as a fraction of unity growth per unit
time, for example, for a 7% increase per unit of time, r=0.07.

This exponential growth can be also expressed—after a trivial multiplica-
tive unit-of-timekeeping adjustment—as

Nt — Nne"

where e (e=2.7183, the base of natural logarithms) is raised to the power
of rt, an easy operation to do with any scientific hand-calculator. We can
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of machines have been often linear, including the average power of Ameri-
can cars since the Ford Model T in 1908, maximum thrust and bypass ratio
of jet engines since their origin, maximum train speed and boiler pressure
of steam locomotives (since the beginning of regular service in 1830), and
maximum ship displacements.

And sometimes simple linear growth is an outcome of complex interac-
tions. Between 1945 and 1978, US gasoline consumption had followed an
almost perfectly linear course—and after a brief four-year dip it resumed
a slower linear growth in 1983 that continued until 2007 (USEIA 2017b).
The two linear trajectories resulted from an interplay of nonlinear changes
as vehicle ownership soared, increasing more than seven times between
1945 and 2015, while average fuel-using efficiency of automotive engines
remained stagnant until 1977, then improved significantly between 1978
and 1985 before becoming, once again, stagnant for the next 25 years (USEPA
2015).

Some organisms, including bacteria cultivated in the laboratory and
voung children, experience periods of linear growth, adding the same
number of new cells or the same height or the same mass increment, dur-
ing specific periods of time. Bacteria follow that path when provided with
a limited but constant supply of a critical nutrient. Children have spells
of linear growth both for weight and height. For example, American boys
have brief periods of linear weight growth between 21 and 36 months of
age (Kuczmarski et al. 2002), and the Child Growth Standards of the World
Health Organization (WHO) indicate a perfectly linear growth of height
with age for boys between three and five years, and an almost-linear trajec-
tory for girls between the same ages (WHO 2006; figure 1.4).

Exponential Growth
Exponential growth, with its gradual takeoff followed by a steep rise, attracts
attention. Properties of this growth, formerly known as geometric ratio or
geometric progression, have been illustrated tfor hundreds of years—perhaps
for millennia, although the first written instance comes only from the year
1256—Dby referring to the request of a man who invented chess and asked
his ruler-patron to reward him by doubling the number of grains of rice (or
wheat?) laid on every square. The total of 128 grains (27) is still trivial at the
end of the first row; there are about 2.1 billion grains (2*') when reaching
the end of the middle, fourth, row; and at the end, it amounts to about 9.2
quintillion (9.2x 10"") grains.

The key characteristic of advanced exponential growth are the soaring
additions that entirely overwhelm the preceding totals: additions to the
last row of the chessboard are 256 times larger than the total accumulated
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Figure 1.4
Graphs of expected height-for-age growth (averages and values within two standard

deviations) for boys and girls 2-5 years old. Simplified from WHO (2006).

Copvrighted material



Trajectories 17

at the end of the penultimate row, and they represent 99.61% of all added
grains. Obviously, undesirable exponential growth may be arrested, with
various degrees of effort, in its early stages, but the task may quickly become
unmanageable as the growth continues. When assuming an average rice
grain mass of 25 milligrams, the grand total (all too obviously not able to
fit any chessboard) would equal about 230 Gt of rice, nearly 500 times more
than the grain’s global annual harvest—which was just short of 500 Mt in
2015.

Over long periods even minuscule growth rates will produce impossible
outcomes and there is no need to invoke any cosmic time spans—referring
back to antiquity will do. When imperial Rome reached its apogee (in the
second century of the common era), it needed to harvest about 12 Mt of
grain (much of it grown in Egypt and shipped to Italy) in order to sustain
its population of some 60 million people (Garnsey 1988; Erdkamp 2005;
Smil 2010¢). When assuming that Rome would have endured and that its
grain harvest would have grown at a mere 0.5% a year its total would have
now reached about 160 Gt, or more than 60 times the world’s grain harvest
of 2.5 Gt in 2015 used to feed more than 7 billion people.

Linear scale is a poor choice for charting exponential growth whose
complete trajectory often encompasses many orders of magnitude. In order
to accommodate the entire range on a linear y axis it becomes impossible to
make out any actual values except for the largest order of magnitude, and
the result is always a J-curve that has a nearly linear section of relatively
slow gains followed by a more or less steep ascent. In contrast, plotting
constant exponential growth on a semilogarithmic graph (with linear x
axis for time and logarithmic y axis for the growing quantity) produces a
perfectly straight line and actual values can be easily read off the y axis even
when the entire growth range spans many orders of magnitude. Making a
semilog plot is thus an easy graphic way of identifying if a given set of data
has been a result of exponential growth. Figure 1.5 compares the two plots
for such a phenomenon: it charts the growth of one of the key foundations
of modern civilization, the almost perfectly exponential rise of global crude
oil consumption between 1880 and 1970.

The fuel’s commercial production began on a negligible scale in only
three countries, in Russia (starting in 1846) and in Canada and the US
(starting in 1858 and 1859). By 1875 it was still only about 2 Mt and then,
as US and Russian extraction expanded and as other producers entered the
market (Romania, Indonesia, Burma, Iran), the output grew exponentially
to about 170 Mt by 1930. The industry was briefly slowed down by the
economic crisis of the 1930s, but its exponential rise resumed in 1945 and,
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Growth of annual global crude oil consumption, 1880-1970: exponential growth plot-
ted on linear and semilog scales. Data from Smil (2017b).

propelled by new huge Middle Eastern and Russian discoveries, by the mid-
1970s the output was three orders of magnitude (slightly more than 1,000
times) higher than 100 years previous.

Temporary periods of exponential growth have not been uncommon in
modern economies, where they have marked the rise of domestic product
in such rapidly developing nations as Japan, South Korea, and post-1985
China, and where they characterized annual sales of electronic consumer
goods whose mass appeal created new global markets. And, of course, fraud-
ulent investing schemes (Ponzi pyramids) are built on the allure of the
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temporary exponential rise of make-believe earnings: arresting exponen-
tial growth in its early stages can be done in manageable manner, sudden
collapse of Ponzi-like growth will always have undesirable consequences.
Progress of technical advances has been also often marked by distinct expo-
nential spells, but when the exponential growth (and its perils) became a
major topic of public discourse for the first time it was in relation to rising
sizes of populations (Malthus 1798).

That famous work—An Essay on the Principle of Population—by Thomas
Robert Malthus had precedents in the work of Leonhard Euler, a leading sci-
entist of the 18th century who left Switzerland to work in Russia and Prussia
(Bacaér 2011). In Berlin, after his return from Russia, Euler published—
in Latin, at that time still the standard language of scientific writing—
Introduction to Analysis of the Infinite (Euler 1748). Among the problems
addressed in the book was one inspired by Berlin’s 1747 population census
which counted more than 100,000 people. Euler wanted to know how large
such a population, growing annually by one thirtieth (3.33% a year), would
be in 100 years. His answer, determined by the use of logarithms, was that
it could grow more than 25 times in a century: as P,=P, (1 +71)", the total in
100 years will be 100,000x(1+1/30)' or 2,654,874. Euler then proceeded
to show how to calculate the annual rate of population increase and the
doubling periods.

But it was Malthus who elevated the powers of exponential growth to
a major concern of the new disciplines of demography and political econ-
omy. His much-repeated conclusion was that “the power of population is
indefinitely greater than the power in the earth to produce subsistence for
man” because the unchecked population would be rising exponentially
while its means of subsistence would be growing linearly (Malthus 1798, 8):

Taking the population of the world at any number, a thousand millions, for
instance, the human species would increase in the ratio of—1, 2, 4, 8, 16, 32,
64, 128, 256, 512, etc. and subsistence as—1, 2, 3, 4, 5,6, 7, 8, 9, 10, etc. In two
centuries and a quarter, the population would be to the means of subsistence as
512 to 10: in three centuries as 4096 to 13, and in two thousand years the differ-
ence would be almost incalculable, though the produce in that time would have
increased to an immense extent.

Charles Darwin illustrated the process with references to Malthus and Lin-
naeus and with his own calculation of the consequences of unchecked ele-
phant breeding (Darwin 1861, 63):

There is no exception to the rule that every organic being increases at so high a
rate, that if not destroyed, the earth would soon be covered by the progeny of
a single pair. Even slow-breeding man has doubled in twenty-five years, and at
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Figure 1.6
Predictions of growth of US air travel (in billions of passenger-kilometers) based on the

period 1930-1980 (top, the best fit is quartic regression) and 1930-2015 (bottom, the
best fit is a logistic curve with the inflection year in 1987). Data from various annual
reports by the International Civil Aviation Organization.

built. This example of a sobering contrast between early rapid advances of
a technical innovation followed by inevitable formation of sigmoid curves
should be recalled whenever you see news reports about all cars becoming
electric by 2025 or new batteries having impressively higher energy densi-
ties by 2030.

But the final, inescapable power of this reality may seem inapplicable in
those cases where exponential growth has been underway for an extended
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period of time and when it keeps setting new record levels. More than a
few normally rational people have been able to convince themselves—by
repeating the mantra “this time it is different”—that performances will keep
on multiplying for a long time to come. The best examples of these, often
collective, delusions come from the history of stock market bubbles and I
will describe in some detail just two most notable recent events, Japan’s pre-
1990 rise and America’s New Economy of the 1990s.

Japan’s economic rise during the 1980s provides one of the best exam-
ples of people who should know better getting carried away by the power
of exponential growth. After growing 2.6 times during the 1970s, Nikkei
225 (Japan’s leading stock market index and the country’s equivalent of
America’s Dow Jones Industrial) increased by 184% between January 1981
and 1986, added 43% in 1986, nearly 13% in 1987, almost 43% in 1988,
and a further 29% in 1989 (Nikkei 225 2017). Between January 1981 and
December 1989, Nikkei 225 had more than quintupled, the performance
corresponding to average annual exponential growth of 17% for the decade
and 24% for its second half. Concurrently, Japan’s GDP kept on growing at
an annual rate surpassing 4%, as the yen’s exchange rate strengthened from
¥239/USS in January 1980 to ¥143/US$ by December 1989.

A sobering denouement had to come, and in chapter 6 I will trace that
swift post-1989 unfolding. But exponential growth is a potent delusion-
maker, and in 1999, 10 vears after the Nikkei's peak, I was thinking about
the Japanese experience as we were waiting to claim our rental car at San
Francisco airport. Silicon Valley was years into its first dotcom bubble, and
even with advance reservations people had to wait for the just-returned cars
to get serviced and released again into the halting traffic on the clogged
Bayshore freeway. Mindful of the Japanese experience, I was thinking
that every year after 1995 might be the last spell of what Alan Greenspan
famously called irrational exuberance, but it was not in 1996 or 1997 or
1998. And even more so than a decade earlier, there were many economists
ready to assure American investors that this spell of exponential growth was
really different, that the old rules do not apply in the New Economy where
endless rapid growth will readily continue.

During the 1990s, the Dow Jones Industrial Average—driven by Ameri-
ca’s supposedly New Economy—posted the biggest decadal gain in history
as it rose from 2,810 at the beginning of January 1990 to 11,497 at the end
of December 1999 (FedPrimeRate 2017). The performance corresponded to
annual exponential growth of 14% during the decade, with the peak gains
of 33% in 1995 and 25% in 1996. Continuation of that growth pointed to a
level around 30,000 by 2010. And the Nasdaq Composite Index—reflecting
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the rising computing and communication capabilities and, above all, the
soaring performance of speculation-driven Silicon Valley companies—did
even better during the 1990s: its exponential growth averaged almost 26%
annually between April 1991, when it reached 5,000 points, and March 9,
2000, when it peaked at 5,046 points (Nasdaq 2017).

Even some normally cautious observers got swept away by this. Jeremy
Siegel, at the Wharton School of Business, marveled: “It's amazing. Every
year we say it can’t be another year of 20 percent-plus (gains)—and then
every year it's 20 percent-plus. I still maintain we have to get used to lower,
more normal returns, but who knows when this streak is going to end?”
(Bebar 1999). And the boosters made money by wholesaling the impos-
sible: one bestseller saw an early arrival of Dow Jones at 40,000 (Elias 2000),
another forecast the unstoppable coming of Dow 100,000 (Kadlec and
Acampora 1999). But the end came and, again, it was fairly swift. By Sep-
tember of 2002, Dow Jones was down to 9,945, a nearly 40% decline from
its 1999 peak (FedPrimeRate 2017), and by May 2002 Nasdaq Composite
fell nearly 77% from its March 2000 peak (Nasdaq 2017).

Exponential growth has been common in many cases of technical
advances and, as I will show in chapter 3, in some instances it has persisted
for decades. The maximum power of steam turbines is a perfect example of
this long-lasting exponential growth. Charles Algernon Parsons patented
the first design in 1884 and almost immediately built a small machine—
which can be seen in the lobby of the Parsons Building at Trinity College
in Dublin—with power of just 7.5 kW, but the first commercial turbine was
10 times larger as the 75 kW machine began generating electricity in 1890
(Parsons 1936).

The subsequent rapid rise brought the first 1 MW turbine by 1899, a
2 MW machine just three years later, the first 5 MW design in 1907, and
before WWI the maximum capacity reached 25 MW with the turbine
installed at the Fisk Street station of the Commonwealth Edison Co. in
Chicago (Parsons 1911). Between the year of the first commercial 75 KW
model in 1890 and the 25 MW machine of 1912, maximum capacities of
Parsons steam turbines were thus growing at an annual compounded expo-
nential rate of more than 26%, doubling in less than three years. That was
considerably faster than the growth of early steam engine capacities during
the 18th century, or the rated power of water turbines since the 1830s when
Benoit Fourneyron commercialized his first designs.

And some performances advance exponentially not by a constant
improvement of the original technique but by a series of innovations, with
the next innovation stage taking off where the old technique reached its
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limits: individual growth trajectories are unmistakably S-shaped but their
envelope charts an exponential ascent. The history of vacuum tubes, briefly
reviewed in chapter 4, is an excellent example of such an exponential enve-
lope spanning nearly a century of advances. In chapter 4 (on the growth
of artifacts), I will also look in detail at perhaps the most famous case of
modern exponential growth that has been sustained for 50 vears, that of
the crowding of transistors on a silicon microchip described by Moore’s law
that has doubled the number of components every two years.

And before leaving the topic of exponential growth, this is an apposite
place to note a simple rule for calculating the doubling period of quanti-
ties subject to it, be they cancerous cells, bank accounts or the processing
capacity of computers, or, in reverse, to calculate a growth rate by using the
known doubling time. Exact results are obtained by dividing the natural
logarithm of 2 (that is 0.693) by the prevailing growth rate (expressed as a
fraction of one, e.g. 0.1 for 10%), but a quite good approximation is divid-
ing 70 by the growth rate expressed in percent. When the Chinese economy
was growing at 10% a year, its doubling period was seven vears ; conversely,
the doubling of components on a microchip in two years implies an annual
exponential growth rate of about 35%.

Hyperbolic Growth

Unbounded, and hence on Earth always only temporary, exponential
growth should not be mistaken (as it sometimes is) for hyperbolic growth.
While exponential progress is characterized by an increasing absolute rate
of growth, it remains a function of time as it approaches infinity; in con-
trast, hyperbolic growth culminates in an absurdity as a quantity grows
toward infinity in a finite time interval (figure 1.7). This terminal event is,
of course, impossible within any finite confines and a moderating feedback
will eventually exert a damping effect and terminate the hyperbolic pro-
gress. But when starting at low rates, hyperbolic trajectories may be sus-
tained for relatively long periods of time betore their progression stops and
another form of growth (or decline) takes over.

Cailleux (1951) was the first to note what he called the surexpansion, the
fact that the global population was growing at an ever-increasing rate, the
process made possible by an accelerated evolution of civilizations: “Ainsi est-il
normal de lier la surexpansion humaine a la présence de I'Esprit” (Cailleux
1951, 70). This process fits a quasi-hyperbolic equation: P=a/(D-t)M where a,
D and M are constants. Meyer and Vallee (1975, 290) thus concluded that the
growth of human population, “far from tending ‘naturally’ toward an equi-
librium state...exhibits a unique characteristic, that of self-acceleration.”
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Figure 1.7
Hyperbolic growth curve in comparison with exponential growth.

But only temporarily, as the projection of this growth would eventually lead
to infinite population. Von Foerster et al. (1960, 1291) had actually calcu-
lated that “Friday, 13 November, A.D. 2026” will be the doomsday when
the “human population will approach infinity if it grows as it has grown in
the last two millennia.” Obviously, that could never happen, and just a few
vears after von Foerster et al. published their paper the annual growth of
global population peaked and a transition to a new trajectory began.

Even so, Hern (1999) argued that global population growth had shown
striking parallels with malignant growth because some cancers also display
decreasing doubling times of cell proliferation during their most invasive
phase. Starting the count 3 million years ago, he calculated that by 1998 the
human population had undergone 32.5 doublings, with the 33rd (reaching
8.59 billion) to be completed in the early 21st century. When adding biomass
of domestic animals to the anthropomass, the 33rd doubling was already
completed. Some malignant tumors cause death of the host organism after
37-40 doublings, and (assuming the trend continues) the 37th doubling of
the human population will be reached in a few hundred years.

Nielsen’s (2015) analysis of world population growth showed that there
were actually three approximately determined episodes of hyperbolic growth
during the past 12,000 vears: the first one between 10,000 and 500 BCE, the
second one between 500 and 1200 CE, and the third one between 1400 and
1950, in total accounting for about 89% of total growth over the past 12
millennia. The first two transitions (500 BC to 500 CE and 1200-1400) were
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And, obviously, even if the best seeds are planted and when the crop
receives optimum nutrients, moisture, and protection against weeds and
pests, the maximum yield remains limited by light intensity, length of the
growing period, minimum temperature tolerated by the species, and the
vulnerability to many kinds of natural catastrophes. As I will show in chap-
ter 2 (in the section on crop growth), many regions of previously rising
productivities now have diminished returns with intensive inputs of fertil-
izers and enhanced irrigation and their yield trajectory has been one of
minimal gains or outright stagnation. Clearly, there is no universal, super-
exponential progression toward superior harvests. Human ingenuity has
brought more impressive gains when it did not have to reckon with the
complexities of organisms whose life cycles are determined by assorted
environmental constraints. Technical advances provide the best examples
of self-accelerating development following hyperbolic growth trajectories,
and the maximum unit power of prime movers and top travel speeds offer
accurately documented illustrations.

The maximum unit power of modern prime movers (primary sources
of mechanical power) shifted first from less than 1,000 W for steam engines
in the early 17th century, to water turbines (between 1850 and 1900), and
then to steam turbines, whose record ratings now surpass 1 GW (figure 1.8).

Fige.c ..o

Relay growth of the largest stationary prime mover capacities (Smil 2017b). Overlap-
ping logistic growth of unit ratings of steam engines, water turbines, and steam turbines
produces a temporary hyperbolic growth trend with nearly seven-order-magnitude gain
in 300 years.
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Further extension could be made by including rocket engines deployed
only for brief periods of time: power of the Saturn C § rocket that launched
the Apollo mission to the Moon was about 2.6 GW (Tate 2012). Similarly,
maximum travel speeds increased from endurance running (10-12 km/h
sustained by messengers) and riders on good horses (average speed
13-16 km/h) to fast sailing ships (mid-19th century clippers averaging
around 20 km/h with top speeds above 30 km/h), trains (maxima of around
100 km/h reached before 1900), to commercial airplanes powered by recip-
rocating engines (speeds rising from 160 km/h in 1919 to 550 km/h in
1945) and, finally, to jetliners (more than 900 km/h since the late 1950s).

In both instances, the accelerating growth has been achieved by the
relay phenomenon as the overlapping logistic (self-limiting) curves pro-
duce an impressively ascending envelope. Obviously, this relay cannot con-
tinue because it would eventually produce impossibly high growth rates,
be it of unit power or speed.. As has been the case with global population
growth, a temporary hyperbolic envelope will be eventually transformed to
a logistic trajectory. In fact, this has already been the case when technical
advances are considered in practical, realistic terms and not as sequences of
maximum performances.

Obviously, constructing the maximum speed envelope by overlapping
logistic curves of speeds for horses, sailing ships, trains, cars, airplanes, and
rockets shows a progression of transportation modes that is not sequentially
substitutable. High-volume urban transport progressed from horse-drawn
vehicles to motorized road vehicles and subways but it will not progress to
jet-powered flight. The opposite is true, as the average speed of urban traffic
has declined in almost every major city since the 1960s, and just its dou-
bling would be impossible even if every vehicle was part of a synchronized,
automated urban system (unless all crossroads were eliminated, infrastruc-
turally an impossible transformation in existing cities). The average speed
of rapid trains has increased only marginally since their first deployment in
1964 and, once again, it is a very safe bet that billions of people traveling by
train will not do so in a decade or two in a supersonic hyperloop fashion.

The typical speed of large container ships (30-40 km/h) is not radically
higher than the typical speed of the 19th-century clippers; of course, their
cargo capacities are orders of magnitude apart, but there has been no hyper-
bolic growth of speeds in ocean shipping, and there is no realistic prospect
that this fundamental mode of transport that enabled modern economic
globalization will enter a new age of radically increased speeds. The cruising
speed of the latest Boeing 787 (913 km/h) is nearly 7% lower than the cruis-
ing speed of the company’s first commercial jetliner, Boeing 707, in 1958
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(977 km/h). Again, there is no realistic prospect that billions of passengers
will be soon casually traveling at supersonic speeds. The seemingly hyper-
bolic envelope of maximum performances tells us little about the actual tra-
jectories of speeds that have created modern economies by moving billions
of people and billions of tonnes of raw materials, foodstuffs, and finished
products.

The same is, inevitably, true about other envelopes of growing techni-
cal capabilities. The largest rockets may produce gigawatts of power during
very brief periods of takeoff, but that is irrelevant as far as actual capacities
of myriads of machines energizing modern civilization are concerned. Most
electric motors in our appliances have power that is smaller than that deliv-
ered by a well-harnessed horse: washing machines need 500 W, a well-fed
horse could easily sustain 800 W. The typical, or modal, capacity of steam
turbines in large electricity-generating stations has been fairly stable since
the 1960s, with units of 200-600 MW dominant in new plants fired by coal
or natural gas, and with turbogenerators larger than 1 GW reserved mostly
for the largest nuclear stations. And the power of typical road vehicles has
gone up slightly only because they got heavier, not because they need to be
more powerful to go from red light to red light or to cruise within posted
speed limits on highways, for which a motive power of ~11 kW/t of vehicle
weight is sufficient for 100 km/h travel on level roads (Besselink et al. 2011).
Again, a synthetic rising trajectory is composed of disparate progressions
that do not imply any unified rising trend of ever-ascending substitutions.

And there is no shortage of historical examples of technical advances
that do not show any automatic, tightly sequenced acceleration of perfor-
mance. Steelmakers continued to rely on open-hearth furnaces for nearly a
century after they perfected their use, and the hard-wired rotary-dial tele-
phone changed little between its adoption during the 1920s and the intro-
duction of the push-button design in 1963 (Smil 2005 and 2006b). And
there is no doubt about the long-term trajectory of hyperbolic growth on
the Earth: it must either collapse or it must morph into a confined progres-
sion which might become a part of a homeostatic coexistence of humanity
and the biosphere including an eventual upper limit on the information
content in the external memory (Dolgonosov 2010).

Confined Growth Patterns
These are, above all, the trajectories of life: the biosphere’s mass of recy-

clable nutrients allows for an enormous variety of specific genetic expres-
sions and mutations but it puts fundamental limits on the performance
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of primary production (photosynthesis) and hence on the accumulation
of secondary production (heterotrophic metabolism of organisms ranging
from microbes to the most massive mammals). These limits unfold through
intra- and interspecific competition of microorganisms, plants and ani-
mals for resources, through predation and viral, bacterial and fungal infec-
tions, and all multicellular organisms are subject to intrinsic growth limits
imposed by apoptosis, programmed cell death (Green 2011).

No tree grows to heaven but neither does any artifact, structure or pro-
cess, and confined (or constrained) growth patterns characterize the devel-
opment of machines and technical capabilities as much as they describe
the growth of populations and expansion of empires. And, inevitably, all
diffusion and adoption processes must conform to that general pattern:
no matter if their early trajectory shows rapid or slow progress, it is even-
tually followed by a substantial slowdown in growth rate as the process
asymptotically approaches saturation and often reaches it (sometimes after
many decades of diffusion) only a few percent, even only a fraction of a
percent, short of the maximum. No households had electricity in 1880 but
how many urban dwellings in Western cities are not connected to the grid
today?

Given the ubiquity of phenomena exhibiting confined growth, it is
not surprising that many investigators sought to fit them into a variety of
mathematical functions. The two basic classes of trajectories of bounded
growth are those of S-shaped (sigmoid) growth and of confined exponen-
tial growth. Scores of papers describe original derivations and subsequent
modifications of these curves. There are also their extensive reviews (Banks
1994; Tsoularis 2001) and perhaps the best overview is table S1 in Myhrvold
(2013) that systematically compares equations and constraints for more
than 70 nonlinear growth functions.

S-shaped Growth

S-shaped functions describe many natural growth processes as well as the
adoption and diffusion of innovations, be they new industrial techniques
or new consumer items. Initially slow growth accelerates at the J-bend and
it is followed by a rapid ascent whose rate of increase eventually slows
down, forming the second bend that is followed by a slowing ascent as the
growth becomes minimal and the total approaches the highest achievable
limit of a specific parameter or a complete saturation of use or ownership.
By far the best known, and the most often used function of the S-shaped
trajectory is the one expressing logistic growth,
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Unlike with exponential (unbounded) growth, whose rate of increase
is proportional to the growing quantity, relative increments of logistic
(limited) growth decrease as the growing quantity approaches its maximum
possible level that in ecological studies is commonly called carrying capac-
ity. Such growth seems to be intuitively normal:

A typical population grows slowly from an asymptotic minimum; it multiplies
quickly; it draws slowly to an ill-defined and asymptotic maximum. The two ends
of the population-curve define, in a general way, the whole curve between; for
s0 beginning and so ending the curve must pass through a point of inflection, it
must be an S-shaped curve. (Thompson 1942, 145)

The origins of the formally defined logistic function go back to 1835
when Adolphe Quetelet (1796-1874; figure 1.9), Belgian astronomer and
at that time Europe’s leading statistician, published his pioneering analysis
Sur 'homme et le développement de ses facultés, ou Essai de physique sociale in

] IH“I: 0 as*

Adolphe Quetelet and Pierre-Francois Verhulst. Steel engravings from the author’s
collection of 19th-century images.
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In his 1845 paper, Verhulst assumed that the checks to further popula-
tion growth would be proportional to the size of the excess population
(population surabondante), and when he used this growth function to derive
the ultimate limits of Belgian and French populations he set them, respec-
tively, at about 6.6 and 40 million to be reached before the end of the
20th century. But in his last paper on population growth he concluded that
the barriers to population growth are proportional to the ratio between the
excess population and the total population (Verhulst 1847). That change
resulted in a larger ultimate population or, as the asymptotic value became
eventually known, in higher carrying capacities (Schtickzelle 1981).

Essentially, Verhulst’s equation captures the shifting dominance between
two feedback loops: a positive feedback loop (FBL) initiates growth that is
eventually slowed down and brought into balance by a negative teedback
that reflects the limits to growth prevailing in the finite world. As Kunsch
(2006, 35) put it, logistic growth “is described as combining exponential
growth embodied in (+) FBL, and goal-seeking growth, embodied in a (-)
FBL.” In that sense, Verhulst’s function, with two feedback loops compet-
ing for dominance, can be seen as the very foundation of feedback-based
systems dynamics developed by Jay Forrester at the Massachusetts Institute
of Technology during the 1950s and 1960s (Forrester 1971) and applied by
the study supported by the Club of Rome on the global Limits to Growth
(Meadows et al. 1972).

This key systemic concept of constrained growth (a high density of organ-
isms being the proximate constraining factor and resource availability
being the complex causative driver) has been very useful when conceptual-
izing many natural, social, and economic developments involving series of
feedbacks but its mechanistic application can result in substantial errors.
Verhulst’s original population forecasts are the earliest illustrations of such
errors because population maxima are not preordained by any specific
growth function but depend on changing a nation’s, and ultimately the
planet’s, productive potential through scientific, technical, and economic
development. How long such higher, evolving, maxima can be sustained
is another matter. Verhulst eventually raised his Belgian population maxi-
mum by the year 2000 from 6.6 to 9.5 million—but by the end of the
20th century the Belgian and French populations were, respectively, at
10.25 and 60.91 million: for Belgium that was about 8% higher than Ver-
hulst’s adjusted maximum, but for France the error was 52%.

Although the second half of the 19th century saw an explosion of
demographic and economic studies, Verhulst’s work was ignored and it was
rediscovered only during the 1920s and became influential only during the



Trajectories 37

1960s (Cramer 2003; Kint et al. 2006; Bacaér 2011). This was not the only
instance of such forgetting: Gregor Mendel’s fundamental experiments in
plant genetics done during the 1860s were also ignored for nearly half a
century (Henig 2001). Could the neglect of Verhulst’s work be ascribed to
Quetelet’s reservations about his pupil’s contributions published in the
older man’s eulogy after the younger man’s premature death in 1849? Udny
Yule had a better explanation: “Probably owing to the fact that Verhulst
was greatly in advance of his time, and that the then existing data were
quite inadequate to form any effective test to his views, his memories fell
into oblivion: but they are classics on their subject” (Yule 1925a, 4).

The next appearance of logistic function (without using that name)
was to quantify the progress of autocatalytic reactions in chemistry. While
catalysis denotes the increasing rate of a chemical reaction caused by the
presence of an additional element (notably, one of heavy metals) or a com-
pound (often in minute quantities), autocatalysis describes a reaction that is
catalyzed by its own products. Autocatalytic processes—reactions showing
rate acceleration as a function of time followed by eventual saturation—are
essential for the growth and maintenance of living systems and without
them abiotic chemistry could not have given rise to replication, meta-
bolism, and evolution (Plasson et al. 2011 Virgo et al. 2014).

After Wilhelm Ostwald (1853-1932, a leading chemist of the pre-
WWI era) introduced the concept in 1890 (Ostwald 1890) it was quickly
realized that the progress of the process follows a logistic function: the con-
centration of one reagent rises from its initial level, first slowly then more
rapidly, but then, limited by the supply of the other reagent, it slows down
while the concentration of the second reagent declines to zero. In 1908
T. Brailsford Robertson (1884-1930), an Australian physiologist at the Uni-
versity of California, noted that comparing the curve for monomolecular
autocatalytic reaction with the increase of body weight of male white rats,
“the resemblance between the curve of growth and that of an autocatalysed
reaction is at once obvious” (figure 1.12)—but comparing the curve for
autocatalyzed monomolecular reaction with the one showing the increase
in body weight of a man showed that the latter trajectory has two super-
imposed curves (Robertson 1908, 586).

Both are sigmoid curves but Robertson did not mention Verhulst. Three
years later, McKendrick and Kesava Pai (1911) used the function, again with-
out naming Verhulst, to chart the growth of microorganisms, and in 1919
Reed and Holland (1919) made a reference to Robertson (1908) but did use
the term logistic in their growth curve for the sunflower. That example of
plant growth became later widely cited in biological literature on growth.
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Robertson’s (1908) comparison of the progress of an autocatalytic reaction with body
weight increase of male white rats.

Observed growth of Helianthus height between planting and the 84th day
follows closely a four-parameter logistic function with the inflection point
falling on the 37th day (figure 1.13).

In 1920 the logistic function reappeared in demography when Raymond
Pearl and Lowell Reed, professors at Johns Hopkins University, published
a paper on the growth of the US population (Pearl and Reed 1920), but
only two years later they briefly acknowledged Verhulst’s priority (Pearl and
Reed 1922), Much like Verhulst in the mid-1840s, Pearl and Reed used the
logistic function to find the maximum population of the US supportable by
the country’s agricultural resources (Pearl and Reed 1920, 285):

The upper asymptote... has the value 197,274,000 roughly. This means that... the
maximum population which continental United States, as now areally limited,
will ever have will be roughly twice the present population. We fear that some
will condemn at once the whole theory because this number is not sufficiently
imposing. It is so easy, and most writers on population have been so prone, to
extrapolate population by geometric series, or by a parabola or some such purely
empirical curve, and arrive at stupendous figures, that calm consideration of real
probabilities is most difficult to obtain.

And as was the case with Verhulst’'s maxima for Belgium and France,
Pearl and Reed also underestimated the supportable maximum of the US
population. By 2018 its total had surpassed 325 million, nearly 65% above

Copyrighted materia
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Logistic growth (inflection point at 37.1 days, asymptote at 292.9 ¢cm) of a sunflower
plant plotted by Reed and Holland (1919).

their calculation of the maximum carrying capacity (figure 1.14)—even as
the country has been diverting 40% of its largest crop into corn-based fer-
mentation of ethanol and still remains the world’s largest food exporter.
But Pearl had little doubt about the predictive power of his equation: in
1924 he compared the curve “in a modest way” with Kepler’s law of plan-
etary motion and with Boyle’s law of gases (Pearl 1924, 585).

Applications of logistic growth function began to spread. Robertson used
information about the growth of dairy cows, domestic fowl, frogs, annual
plants and fruits in his voluminous survey of The Chemical Basis of Growth
and Senescence (Robertson 1923). A year later, Spillman and Lang (1924)
published a detailed treatment of The Law of the Diminishing Returns with
many quantifications of bounded growth rates. Reed and Berkson (1929)
applied the logistic function to several bimolecular reactions and to the
proteolysis of gelation by pancreatin, and Bliss (1935) used it to calculate
a dosage-mortality curve. And during the two decades before WWII, Pearl
and his collaborators applied the logistic curve “to almost any living popu-
lation from fruit flies to the human population of the French colonies in
North Africa as well as the growth of cantaloupes” (Cramer 2003, 6).

In 1945 Hart published a comprehensive examination of logistic
social trends with scores of examples classified as series reflecting the
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Figure 1.14
Forecast of US population growth based on the logistic curve (inflection point in
1919, asymptote at 197.3 million) fitted to decennial census data between 1790 and

1910 (Pearl and Reed 1920).

growth of specific social units (populations, cities, crop yields, output
and consumption of industrial products, inventions measured by patent-
ing, length of railways), the diffusion of specific cultural traits (school
enrolments, car ownership, social and civic movements), and what he
called indices of social efficiency, including life expectancy, speed rec-
ords, and per capita incomes (Hart 1945). Two decades of rapid post-
WWII population and economic growth driven by technical expansion
were dominated by numerous instances of exponential growth, but the
logistic function regained a greater prominence with the rise of modern
ecological consciousness during the late 1960s and 1970s. Not surpris-
ingly, there are many publications describing how to fit a logistic curve
to data (Cavallini 1993; Meyer et al. 1999; Arnold 2002; Kahm et al.
2010; Conder 2016).

There is another fairly commonly used growth model, the Gompertz
curve, whose origins are even older than the Verhulst function. The model
was originally proposed in 1825 by Benjamin Gompertz (1779-1865), a
British mathematician, in order to estimate the progress of human mortal-
ity (Gompertz 1825). It shares three constants, the asymptote and a fixed
degree of skewness with the logistic function but, as already noted, the
logistic function has the inflection point exactly halfway between the two

Copyrighted materia
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still-growing family of sigmoid curves have been a new growth equation
developed by Birch (1999) and, as already noted, a generalized logistic func-
tion by Tsoularis (2001). Birch (1999) modified Richards’s equation to make
it more suitable for generic simulation models, particularly for representing
the growth of various plant species within mixed vegetation, while Tsou-
laris (2001) proposed a generalized logistic growth equation incorporating
all previously used functions as special cases.

Logistic Curves in Forecasting

Logistic curves have been a favorite tool of forecasters because of their abil-
ity to capture, often very closely, growth trajectories of both living organ-
isms and anthropogenic artifacts and processes. Undoubtedly, their use
can provide valuable insights but, at the same time, I must caution against
any overenthusiastic reliance on logistic curves as failure-proof forecasting
tools. Noél Bonneuil’s (2005, 267) verdict recalled the “golden age of the
logistic curve, when Pearl enthusiastically applied the same function to any
case of growth he could find, from the length of tails of rats to census data
of the United States” and dismissed the claims of strikingly accurate appli-
cations of this model to historical data sets by tagging these “triumphs as
shallow: most constrained growth processes do resemble the logistic, but to
say so adds little understanding to dynamics in history...Curve fitting is
too often an exercise that misleads in two fronts: not only should it not be
taken as probative, but it can also conceal important detail.”

Obviously, using these curves for long-range forecasting is no guarantee
of success. Their application may be revealing and it can provide useful
indications about coming limits, and throughout this book [ will intro-
duce retrospective fittings that are remarkably accurate and that may offer
reliable indications of near-term growth. But in other cases, even highly
accurate logistic fits of past trajectories may provide highly misleading con-
clusions about the coming advances and the forecasting errors may go far
beyond those expected and acceptable £10-25% deviations over a period
of 10-20 years.

In one of the earliest surveys of logistic trends published at the end of
WWII, Hart (1945) included speed records of airplanes between 1903 and
1938: that trajectory produces a very good logistic fit with the inflection
point in 1932 and the maximum speed of close to 350 km/h—but tech-
nical innovation invalidated that conclusion twice within a dozen years.
First, improvements in the performance of reciprocating engines (required
to power wartime aircraft) brought their output to practical limits and
they were soon adopted for commercial aviation. Lockheed 1L-1049 Super



44 Chapter 1

Constellation, first flown in 1951, had a cruising speed of 489 km/h and
maximum speed of 531 km/h, about 50% higher than the forecast of Hart’s
logistic ceiling.

Super Constellation became the fastest transatlantic airliner but its dom-
inance was short-lived. The ill-fated British de Havilland Comet flew for
the first time in January 1951 but was withdrawn in 1954, and the first
scheduled jet-powered flight by an American company was Pan Am’s Boeing
707 in October 1958 (Smil 2010b; figure 1.15). Turbojets, the first gas tur-
bines in commercial flight, had more than doubled the pre-WWII cruising
speeds of passenger aircraft (with the first service in 1919) and generated
a new logistic curve with the inflection point in 1945 and asymptote
around 900 km/h (figure 1.16). More powerful and more efficient turbofan
engines, first introduced during the 1960s, enabled large aircraft and lower
fuel consumption, but maximum cruising speeds have remained basically
unchanged (Smil 2010b).

During the 1970s, it appeared that that the air speed trajectory might
be raised vet again by supersonic airplanes, but Concorde (cruising at
2,150 km/h, 2.4 times faster than wide-body jetliners) remained an expen-
sive exception until it was finally abandoned in 2003 (Glancey 2016. By
2018 several companies (Spark Aerospace and Aerion Corporation for Air-
bus, Lockheed Martin, and Boom Technology in Colorado) were working
on designs of new supersonic aircraft and although any expectations of an
early large-scale commercial operation would be highly premature, another
eventual doubling of (at least some) cruising speeds cannot be excluded
later in the 21st century.

One of the best extensive illustrations of excessive logistic enthusiasm
is a book on predictions whose subtitle—Society’s Telltale Signature Reveal
the Past and Forecasts the Future—indicates the author’s belief in the predic-
tive efficacy of logistic fits. Modis (1992) used logistic curves to forecast
trajectories of many modern techniques (ranging from the share of cars
with catalytic converters to the performance of jet engines) and assorted
economic and social phenomena (ranging from the growth of oil and gas
pipelines to passenger air traffic). One of the agreements between data and
curve that he singled out was the growth of world air traffic: he predicted
that by the late 1990s it will reach 90% of the estimated ceiling. In reality,
by 2017 air freight was 80% higher than in the year 2000, and the number
of passengers carried annually had more than doubled (World Bank 2018).

In addition, Modis presented a long table of predicted saturation levels
taken from Gribler (1990). Less than 30 years later some of these forecasts
have become spectacularly wrong. A notable example of these failures is the
prediction of the worldwide total of cars: their count was to reach 90% of
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The plane that raised a logistic growth ceiling of the cruising speed: Boeing 707.
Image from wikimedia.
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Figure 1.16

Logistic curve tracing the growth of cruising speed of commercial airliners 1919-
2039 (inflection point in 1945, asymptotic cruising speed of 930.8 km/h). Plotted
from data on speeds of specific airplanes, starting with KLM's de Havilland DH-16 in
1919 and ending with Boeing 787 in 2009.
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the saturation level by 1988. At that time there were about 425 million car
registrations, implying the eventual saturation at some 475 million cars—
but one billion cars were registered by 2017, more than twice the supposed
maximum, and their global count still keeps rising (Davis et al. 2018).

Marchetti (1985 and 1986b) brought the dictate of logistic growth “into
one of the most defended strongholds of human ego, that of freedom, and
in particular freedom in his creative acts” by concluding that “each of us
has some sort of internal program regulating his output until death...and
people die when they have exhausted 90-95% of their potential” (Mar-
chetti 1986b, figure 42). After analyzing Mozart’s cumulative output, he
concluded that when the composer died at 35 “he had already said what he
had to say” (Marchetti 1985, 4). Modis (1992) enthusiastically followed this
belief but he carried it even further.

After fitting the cumulative number of Mozart’s compositions into an
S-curve, Modis (1992, 75-76) claimed not only that “Mozart was compos-
ing from the moment he was born, but his first eighteen compositions were
never recorded due to the fact the he could neither write nor speak well
enough to dictate them to his father.” And he asserted, with accuracy on
the order of 1%, that this logistic fit also indicates the total potential for
644 compositions and hence Mozart’s creativity was 91% exhausted when
he died and, echoing Marchetti, there was “very little left for Mozart to do.
His work in this world has been practically accomplished.”

I wonder what Bonneuil would have to say about these verdicts! I did
my own fittings, using the enduring Koéchel catalogue of 626 compositions
listed between 1761 and 1791 (Giegling et al. 1964). When plotting the
totals in five-year intervals, a symmetrical logistic curve with the inflec-
tion point in 1780 was the best fit (R*=0.995): its saturation level was at
784 compositions and it predicted the total of 759 of them by 1806 when
Mozart would have turned 50 (figure 1.17a). When | entered cumulative
totals for every one of Mozart’s productive years, I found that the best-
fitting curve (R*=0.9982) was an asymmetrical (five-parameter) sigmoid
that predicted the total of 955 compositions by 1806 (figure 1.17b).

But quadratic regression (second order polynomial) is also a great fit
for Mozart’s three decades of productivity, as is quartic (fourth order poly-
nomial) regression (both with R* of 0.99) and they would predict, respec-
tively, just over 1,200 and more than 1,300 compositions completed by
1806 (figures 1.17¢ and 1.17d). The verdict is clear: various curves could
be found to fit Mozart’s composing trajectory, but none of them should be
seen as revealing anything credible about the creativity of which Mozart
was deprived by his early death (or, pace Modis, which he would have been
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Fitting Mozart’s oeuvre into growth curves: symmetrical (a) and asymmetrical (b)
logistic functions and quadratic (¢) and quartic (d) regression have all high degrees
of fit (R*=0.99) but predict substantially different long-term outcomes for the year
1806 when Mozart (who died in 1791) would have been 50 years old. Compositions
by date listed in Giegling et al. (1964).

unable to realize even if he had lived much longer). Besides, all of this
misses the most obvious point of such curve-fitting exercises based on
cumulative numbers of creative acts (compositions, novels, or paintings):
those analyzed numbers are mere quantities devoid of any qualitative con-
tent and they do not reveal anything about the course of a creative process
or about the appeal and attractiveness of individual creations.

Marchetti has been also an enthusiastic user of logistic curves in fore-
casting technical developments in general and composition of global pri-
mary energy demand in particular. In his studies of energy transitions, he
adopted a technique developed by Fisher and Pry (1971). Originally used
to study the market penetration of new techniques, it assumes that the
advances are essentially competitive substitutions which will proceed to
completion (that is, to capturing most of the market or all of it) in such a
way that the rate of fractional substitution is proportional to the remainder
that is yet to be substituted.



50 Chapter 1

before the year 2000—but by 2015 more than 2.5 billion people used them
daily for cooking and heating; in absolute terms, the annual demand for
these fuels is nearly twice as large as a century ago; and in 2015 they sup-
plied at least 8% of all primary energy (Smil 2017a).

Curiously, Marchetti’s original analysis of primary energy shares excluded
hydroelectricity: in 2015 it delivered 55% more electricity than nuclear fis-
sion. But he included a rapid ascent of a new “solar/fusion” category whose
contribution was to surpass coal’s share around 2020—but in 2019 there is
no commercially generated fusion electricity (indeed no fusion electricity
and no prospects for any early breakthrough), while in 2018 solar photo-
voltaics produced an equivalent of less than 0.5% of the world’s primary
energy supply. Obviously, the unerring internal clock has failed and all of
Marchetti’s supposedly immutable growth trajectories departed substan-
tially from their predetermined schedules.

The only correct conclusion of Marchetti’s analysis is that global energy
substitutions unfold slowly, but his specific timing—about 100 years to
go from 1% to 50% of the market, what he called time constant of the
system—nhas been an exception rather than a rule. Only coal has done that,
going from 1% just before 1800 to 50% a century later—while crude oil’s
global share has never reached 50%. By 2015, more than a century after it
surpassed 1% of global energy supply, natural gas was still just short of 25%,
while wind- and solar-generated electricity have reached, after two decades
of subsidized development, just 2% of global primary energy consumption
by 2016. These lessons of failed forecasts should be kept in mind whenever
[ use logistic fits to indicate (not to forecast!) possible future developments:
some may foretell specific levels fairly well, while others may turn out to
be only rough indicators, and others yet may fail as unexpected superior
solutions emerge.

But which ones will surpass our expectations? Since 1900, the maximum
battery energy densities rose from 25 Wh/kg for lead-acid units to about
300 Wh/kg for the best lithium-ion designs in 2018, a 12-fold gain that fits
a logistic curve predicting about 500 Wh/kg by 2050 (figure 1.20). We must
hope that new discoveries will vault us onto a new logistic trajectory as
even 500 Wh/Kkg is not enough for battery-powered machines to displace all
liquid derived from crude oil: the diesel fuel used to power heavy machines,
trains, and ships has energy density of 13,750 Wh/kg. In contrast, another
(fairly mature) logistic curve has a much higher probability to provide use-
ful guidance: the stock of US passenger vehicles—after growing from just
8,000 to 134 million during the 20th century and to 189 million by 2015—
will most likely grow by no more than about 25% by 2050.
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Logistic growth trajectory (inflection point in 2024, asymptote at 625.5 Wh/Kkg) of
battery energy densities, 1900-2017. Plotted from data in Zu and Li (2011) and from

subsequent news reports.

Confined Exponential Growth

Many growth phenomena do not follow S-shaped trajectories and belong
to the other major class of finite growth patterns, confined exponential
distributions. Unlike exponential growth, with its doubling time, these
curves trace exponential decay, with its declining growth rates. Their maxi-
mum slope and curvature occur right at the beginning and hence they
have no inflection point, and their concave shapes become more prom-
inent with higher growth rates (figure 1.21). Such trajectories illustrate
many phenomena of diminishing returns and are encountered with pro-
cesses ranging from heat and mass transfer to tracing vield response to
crop fertilization. The confined exponential function often used in these
fertilizer application/crop response studies is also known as Mitscherlich
equation (Banks 1994).

Confined exponential functions also capture well many diffusion pro-
cesses, be it public interest in a news item, or adoption of technical innova-
tions, often called technology transfer (Rogers 2003; Rivera and Rogers 2006;
Flichy 2007). Comin and Hobijn (2004) concluded—after examining all
major classes of technical innovations (including textiles, steelmaking, com-
munications, information, transportation, and electricity) from the closing
decades of the 18th century to the beginning of the 21st century—that a
robust pattern of trickle-down diffusion dominates. Innovations originate

| | ! I 1
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Figure 1.21
Examples of confined exponential growth curves (based on Banks 1994).

mostly in advanced economies and then get adopted elsewhere, with the
quality of human capital, type of government, openness to trade, and adop-
tion of predecessor innovations being the key factors that determine the
rate of trickling down.

The spread of a technical innovation (adoption of new manufacturing
processes or new prime movers), rising ownership of a new consumer prod-
uct (share of families owning a microwave oven or air conditioning), or a
displacement of an old product by a better version (color TV driving out
black-and-white TV) are examples of diffusion processes that commonly
follow a sigmoid function. But there are also instances of an immediate
rapid takeoff followed by gradual slowdown, with the complete trajectory
resembling a bow segment. This Kind of confined exponential trajectory in
innovation diffusion is also known as the Coleman model, and Sharif and
Ramanathan (1981 and 1982) offered a comprehensive evaluation of bino-
mial and polynomial innovation diffusion models.

The model applies to all situations where the population of potential
adaptors (companies, customers) is both limited and constant, where all
of them eventually adopt (there are no intercontinental flights powered
by piston engines; there are no vacuum electronic computers) and where
the diffusion proceeds independently of the number of adopters. Binomial
models of confined exponential growth—limited to two variables repre-
senting the population that has already adopted an innovation and the
potential adopters—have captured well such phenomena as the adoption
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of the fluoridation of the US water supply or the diffusion of credit card
banking (Evans 2004).

Given the variety of growth processes, it is not surprising that even
the two large categories of growth trajectories—S-shaped functions and
confined exponential growth function—cannot subsume all variations of
real-world growth. Ultimately, growth trajectories must be governed by
first principles expressed through biochemical reactions, material limits,
entropy change, and information decay, but actual nonlinear progressions
will show irregularities and deviations from specific growth functions. As a
result, some growth processes are best captured by a combination of growth
functions: for example, California’s post-1860 population growth followed
an exponential path for 100 years until 1960 and then entered a confined
exponential stage (Banks 1994). Brody (1945) found this combination use-
ful for capturing the growth of livestock.

And the evolution of technical advances offers examples of very slow lin-
ear growth suddenly accelerating into an exponential expansion followed
by confined exponential growth. And technical and economic advances
get interrupted by extended performance plateaus caused by such external
interventions as economic downturns or armed conflicts. Consequently,
too much effort could be spent on fitting assorted growth phenomena into
chosen growth models, or on seeking the “best” function for a particu-
lar growth trajectory. Doing that may have both heuristic and economic
rewards—for example, a highly accurate model of body mass of an aqua-
cultured fish species would help to optimize the consumption of relatively
expensive protein feed—but this quest has been repeatedly subverted by
moving the ultimate bar, that is by changing the maximum value whose
level determines the trajectories of all S-shaped functions.

Staying with an aquacultural example, the growth rate of farmed salmon
(produced since the late 1960s in offshore pens, now in Europe, North and
South America and in New Zealand) has been doubled with the approval
of AquaBounty genetically engineered fish (all sterile females) for human
consumption in 2015 (AquaBounty 2017). A growth-promoting gene from
Chinook salmon put into fertilized Atlantic salmon eggs makes them grow
like a trout would, reaching the market weight of 2-3 kg in 18-24 months
rather than in three vears. The transferred gene also allows the fish to be
grown in warmer waters and in complete containment.

Examples of such fundamental innovation-induced shifts in the asymp-
tote abound, and I will cite just one more here, with many others to come
in the topical chapters of this book. Waterwheels were the first inanimate
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prime movers to provide stationary power for tasks ranging from grain mill-
ing and water pumping and from powering blast furnace bellows to forging
iron. For nearly two millennia they were wooden, and even by the early
18th century their average capacities were less than 4 kW, with only a few
machines approaching 10 kW. At that point, the trajectory of waterwheel
growth would have indicated future maxima of less than 100 kW—but by
1854, Lady Isabella, England’s largest iron overshot wheel, reached a capac-
ity of 427 KW (Reynolds 1970). Meanwhile, water turbines, derived from
horizontal water wheels, began to make their inroads. In 1832 Benoit Four-
neyron installed his first low-head (2.4 m) small capacity (38 kW) reaction
turbine to power forge hammers in Fraisans, but just five years later he built
two 45 KW machines with water falling more than 100 m (Smith 1980).

Other turbine designs (by James B. Francis and Lester A. Pelton) followed
during the second half of the 19th century, and Viktor Kaplan patented his
axial flow machine in 1920. Turbines took over from waterwheels as the
prime movers in many industries but, above all, they enabled inexpensive
conversion of falling water into electricity, with capacities above 1 MW
by 1900, and by the 1930s, when America’s largest hydro stations were
built on the Columbia and Colorado Rivers, turbine capacities surpassed
100 MW. The first technical innovation, moving from wood to iron, raised
the maximum power about fourfold, the second one (moving from wheels
to turbines) lifted that value by an order of magnitude, and since the early
20th century it has grown by two orders of magnitude as the largest water
turbines now rate 1,000 MW,

Collective Outcomes of Growth

A perceptive observer of organisms, artifacts, and achievements (be they
record running speeds or average incomes) is aware that collective outcomes
of their growth do not fit into a single category that could be characterized
(whether almost perfectly or with satistactory approximation) by an all-
embracing mathematical function: growth of children and adolescents does
not end up with the same distribution as does the growth of towns and cities.
But many measured attributes do fall into two basic categories as they form
either a normal distribution or as they extend over a range of values con-
forming (more or less closely) to one of many specific power laws. The first
common category of growth outcomes includes species, objects, or proper-
ties whose distribution is dominated by a single quantity around which all
individual measurements are centered and this clustering produces a typical
value, and large deviations from this mean are relatively rare.
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easy. But the distribution’s common occurrence in nature has also led many
to assume, falsely, that its fit is more universal than is justified by unruly
realities.

Instances once thought to fit the normal pattern turned out to be bet-
ter expressed by other distributions, and the long-standing explanation
of normal distribution, invoking the central limit theorem (the sum of a
numerous independent random variable tends to be normally distributed
regardless of its underlying distribution) is not always (even approximately)
satisfactory, while an alternative explanation, relying on the maximum
entropy property, has its own problems (Lyon 2014). These caveats do not
invalidate the commonality of normal distribution; they merely alert us to
the fact that many distributions are more complicated than is suggested by
sample averages.

After Quetelet, the normal distribution and the arithmetic mean became
the norm for statistical analyses of many phenomena, but this changed
once Galton (1876) and McAlister (1879) called attention to the impor-
tance of the geometric mean in vital and social statistics. Galton (1879,
367) pointed out the absurdity of applying the arithmetic mean (normal
distribution) to wide deviations (as excess must be balanced by deficiency
of an equal magnitude) and illustrated the point with reference to height:
“the law is very correct in respect to ordinary measurements, although it
asserts that the existence of giants, whose height is more than double the
mean height of their race, implies the possibility of the existence of dwarfs,
whose stature is less than nothing at all.”

Skewed (nonnormal) distributions in nature are a common outcome of
specific growth and interspecific competition. When the number of species
in a community is plotted on a vertical axis and their abundance (num-
bers of individuals belonging to those species) are on a horizontal axis, the
resulting asymmetric “hollow” curve has a long right tail—but the distri-
bution will conform fairly closely to a normal curve when the horizontal
values are expressed in decadic logarithms. Properties of this lognormal dis-
tribution have been well known since the mid-19th century: skewed to the
left and characterized by its mean (or median) and a standard deviation
(Limpert 2001). Lognormal distribution means that most species constitut-
ing a community will be present in moderate numbers, a few will be very
rare and a few will be encountered in very high numbers.

Earlier studies of species abundance distribution (SAD) in ecosystems
have identified lognormal abundance among 150 species of diatoms, hun-
dreds of species of moths in England, Maine and Saskatchewan, and scores
of species of fish and birds (Preston 1948; May 1981; Magurran 1988). Other
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interesting findings of lognormal SAD arising from the growth of organisms
have included instances as dissimilar as airborne contamination by bacteria
and fungi (Di Giorgio et al. 1996), abundance distribution of woody species
in a fragment of cerrado forest in southeastern Brazil (Oliveira and Batalha
2005), and the length of terminal twigs on self-similar branches of Japanese
elm trees (Kovama et al. 2017).

But lognormal SAD is not the norm in nature. Williamson and Gaston
(2005) looked at three different distributions: the abundance of British
breeding birds, the number of trees with breast-height diameter larger than
1 cm in a Panamanian forest plot, and the abundance of butterflies trapped
at Jatun Sacha, Ecuador. The first two sets were complete enumerations and
they showed left skew when the abundance was transformed to logarithmes,
while the third, incomplete, count showed right skew. They concluded that
the lognormal distribution is placed uncomfortably between distributions
with infinite variance and the log-binomial one, that a satisfactory spe-
cies abundance distribution should have a thinner right-end tail than does
the lognormal pattern, and that SAD for logarithmic abundance cannot be
Gaussian.

Sizling et al. (2009) showed that lognormal-like species-abundance dis-
tributions (including the power-fraction model) cannot be universally
valid because they apply only to particular scales and taxa, and the global
species/range size distributions (measured in km?) for raptors and owls are
extremely right-skewed on untransformed axes, which means that when
transformed they are not lognormally distributed (Gaston et al. 2005).
Ulrich et al. (2010) found that completely censused terrestrial or fresh-
water animal communities tend to follow lognormal species abundance
distributions more often than log-series or power-law types (and do so
irrespective of species richness, spatial scale), but they also failed to iden-
tify a specific shape that should apply to a certain type of community and
hence they strongly supported a pluralistic way of dealing with species
abundances.

Baldridge et al. (2016) used rigorous statistical methods to compare
ditferent models of SAD and they found that in most cases several of the
most popular choices (log-series, negative binomial, Poisson lognormal)
provided roughly equivalent fits. By far the most comprehensive exami-
nation of lognormal distributions in ecosystems is by Antao et al. (2017),
who analyzed 117 empirical data sets, all from intensely sampled com-
munities, for plants, invertebrates, fish, and birds in marine, aquatic, and
terrestrial habitats. They found excellent or good lognormal fits for many
sets of fish, birds, and plants, but a significant share of species/abundance



number of species

number of species

Trajectories 59

tan fish

number of species

iros

an Asian vegetation

$

$

?

number of species
3

-

Lognormal species abundance distributions (x axes in log2 classes) of North American
fish and birds and less regular distributions of North American and Asian vegetation.
Simplified from Antdo et al. (2017).

distributions (on the order of 20%, and including both vegetation and ver-
tebrates) can also exhibit multiple modes. This multimodality appears to
increase with ecosystemic heterogeneity, that is when the examined sets
include a broader spatial scale and greater taxonomic range (figure 1.24).

Another commonly examined case of a lognormal distribution has
become known as Gibrat’s law (or Gibrat’s rule of proportional growth),
named after Robert Gibrat, a French engineer who realized that the propor-
tional growth rate of companies within an industry is independent of their
absolute size (Gibrat 1931). This produces a lognormal distribution—but
an overview of about 60 published analyses (Santarelli et al. 2006) found
that it is impossible either to confirm the general validity of the law or to
reject it systematically. The rule appears to apply only in relation to certain
sectors (particularly in the services) and to the largest size classes. This het-
erogeneous outcome across industries and size classes precludes seeing it,
despite frequent references in economic literature, as a strictly valid law. But
Eeckhout (2004) concluded that the size distribution for all US cities (based
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on the 2000 census) is lognormal rather than fitting the most commonly
assumed power-law (Zipf) model (for more on this, see the growth of cities
in chapter 5).

Asymmetrical Distributions
Asymmetrical distributions are commonly encountered when analyzing
many natural and anthropogenic phenomena. Many of them are applicable
to outcomes that have not been created by any gradual growth processes but
rather by sudden, violent releases of energy. They include the intensity of
solar flares, the size of lunar craters, the magnitude of earthquakes and volca-
nic eruptions, and the size of forest fires. But they also apply to the magnitude
of terrorist attacks, to sudden and economically crippling losses (intensity of
electricity outages), as well as to the constant flow of both numerical and
verbal information, including frequencies of nine digits in assemblages of
numbers ranging from logarithmic tables to newspapers and cost data, and
word and surname frequencies in most languages (Clauset et al. 2009).
These, often highly asymmetrical, distributions vary over wide ranges,
commonly spanning many orders of magnitude. They are a common out-
come of inanimate growth processes, be it the height of mountains produced
by tectonic uplift and subsequent erosion or the size of islands produced
by plate tectonics, erosion, coral accretion and deposition processes. There
is only one Qomolangma (Mount Everest) at 8,848 m (figure 1.25), just
four mountains between 8.2 and 8.6 km, 103 mountains between 7.2 and
8.2 km, and about 500 mountains higher than 3.5 km (Scaruffi 2008). Simi-
larly, there is only one Greenland (about 2.1 million km?) and just three
other islands larger than 500,000 km®, more than 300 islands larger than
1,000 km®, thousands of protuberances smaller than 100 km®, and so on.
But highly asymmetric distribution is also a common outcome among
anthropogenic growth processes. Towns have grown into cities and many
cities have evolved into large metropolitan areas or conurbations in every
country on every inhabited continent—but in 2018, there was only one
Tokyo metro area with nearly 40 million inhabitants (figure 1.25), 31 cities
had more than 10 million people, more than 500 cities had surpassed 1 mil-
lion, and thousands of cities were larger than 500,000 (UN 2014 and 2016).
On linear scales, plots of such distributions produce curves that are best
characterized either by exponential functions or by a power-law function.
A perfect power-law function (approximating the form f(x)=ax -k where
a and k are constant) produces a nearly L-shaped curve on a linear plot,
and when both axes are converted to decadic logarithms, it produces a
straight line. Obviously, neither exponential nor power-law functions can
be well characterized by their modal or average values; in the real world
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Peaks of two asymmetric distributions, one natural and one anthropogenic: there is
only one Qomolangma and one Tokyo. Qomolangma image is available at wikimedia
and Tokyo's satellite image is from NASA’s Earth Observatory collection.
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Figure 1.27 Ranking of the 100 largest US metropolitan districts based on 1940
census (Zipf 1949).

many social, economic, and physical phenomena ranging from company
sizes (on national or global scales) to the characteristics of Internet traffic
(Saichev et al. 2010; Pinto et al. 2012). Other inverse power laws are rela-
tively less known in general, although they are much referred to within
specific disciplines. In 1925 Udny Yule, based on the conclusions of J. C.
Willis, presented almost perfect power-law frequency distribution of sizes
of genera for a large family of plants (Leguminosae) and for two families of
beetles, Cerambycidae and Chrysomelidae (Yule 1925b). In 1926 Alfred Lotka
identified the inverse distribution in the frequency of scientific publica-
tions in a specific field (Lotka 1926).

In 1932 Max Kleiber, a Swiss biologist working in California, published
his pioneering work on animal metabolism that challenged the nearly
S0-year-old Rubner’s surface law that expected animal metabolism to be
proportional to two thirds of body mass (Rubner 1883; Kleiber 1932).
Kleiber’s law—simply stating that an animal’s metabolic rate scales to the %
power of its mass and illustrated by the straight mouse-to-elephant line—
has been one of the most important generalizations in bioenergetics. But
Kleiber derived his exponent from only 13 data points (including two steers,
a cow, and a sheep) and later extensive examinations have uncovered many
significant departures from the % power (for more, see the section on ani-
mals in chapter 2).
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Jaromir Korcak called attention to the duality of statistical distribution,
with the outcome of organic growth organized in normal fashion, while
the distribution of the planet’s physical characteristics—area and depth of
lakes, size of islands, area of watersheds, length of rivers—follows inverse
power law with distributions highly skewed leftward (Korcak 1938 and
1941). KorCak’s law was later made better known, via Fréchet (1941), by
Benoit Mandelbrot in his pioneering work on fractals (Mandelbrot 1967,
1975, 1977, 1982). But a recent reexamination of Korcak’s law concluded
that his ranked properties cannot be described with a single power-law
exponent and hence the law is not strictly valid even for sets consisting of
strictly similar fractal objects presented in his original publications (Imre
and Novotny 2016).

The Gutenberg-Richter law—the second author’s name is well known due
to his classification system of earthquake magnitudes (Richter 1935)—relates
the total number of earthquakes, N, to their magnitude, M (Gutenberg and
Richter 1942). Ishimoto and lida (1939) were the first authors to note this
relationship. In the equation N=10*"" g indicates the activity rate (how
many earthquakes of a given magnitude in a year) and b is usually close to 1
for interplate events but it is higher along oceanic ridges and lower for intra-
plate earthquakes. Quincy Wright (1942) and Lewis F. Richardson (1948)
used power law to explain the variation of the frequency of fatal conflicts
with their magnitude.

And Benoit Mandelbrot’s pioneering studies of self-similarity and frac-
tal structures further expanded the applications of power laws: after all,
the “probability distribution of a self-similar random variable X must be of
the form Pr(X>x)=x-D, which is commonly called hyperbolic or Pareto dis-
tribution” (Mandelbrot 1977, 320). Mandelbrot’s D, fractal dimension, has
many properties of a “dimension” but it is fractional (Mandelbrot 1967).
Mandelbrot (1977) had introduced a more general power law—nearly the
most general, as Gell-Mann put it—by modifying the inverse sequence, by
adding a constant to the rank, and by allowing squares, cubes, square roots
or any other powers of fractions (Gell-Mann 1994). Zipf’s law is then just a
special case with those two constants at zero. Fractal dimension equals 1 for
smooth Euclidian shapes, between 1 and 2 for two-dimensional shapes—
seacoast length has D of 1.25 (Mandelbrot 1967)—and as much as 2.9 (of
possible 3) for such complex three-dimensional networks as human lungs
(Turner et al. 1998).

Distributions of those collective outcomes where growth conforms to an
inverse relationship have the negative exponent (constant scaling para-
meter) often close to one or ranging between one and three. Although
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power-law distributions appear to come up frequently in the studies of
physical and social phenomena, it requires the deployment of standard sta-
tistical techniques to ascertain that an observed quantity does conform to a
power-law distribution and that such a fit does not result merely from wish-
ful thinking. Chen (2015) pointed out that while the inverse power func-
tion suggests a complex distribution and the negative exponential function
indicates a simple distribution, a special type of the former function can be
created through averaging of the latter.

And, almost always, linear fits on log-log scales do not persist across
the entire range that is often spanning many orders of magnitude, but dis-
play noticeable curvatures. These heavy-tailed distributions are not expo-
nentially bounded, and much more commonly they have a heavy right tail
rather than left tail, but both tails may be heavy. Heavy-tailed scaling is obvi-
ous in the distribution of common natural events (including earthquake
magnitudes, solar flux intensities, and size of wildfires), as well as informa-
tion flows (distribution of computer file sizes, Web hits) and major socio-
economic phenomena resulting from population and economic growth,
including the distribution of urban population and accumulated wealth
(Clauset et al. 2009; Markovic¢ and Gros 2014; figure 1.28).

Jang and Jang (2012) studied the applicability of Korcak-type distribu-
tion for the size of French Polynesian islands. They found that above a
certain value of island area in each sampling interval (scale), the double-
log plot followed a straight line, but that it remained essentially constant
below it: numbers of small islands do not vary with size. And power-law
distributions are not the only ones with heavy tails: lognormal distribu-
tion and Weibull and Lévy distributions are also one-tailed, while the more
complex Cauchy distribution is two-tailed. Consequently, when the sample
size is limited and the data show large variance, it may be difficult to dif-
ferentiate among these functions. Moreover, Laherrére and Sornette (1998)
argued that a stretched exponential function (with an exponent smaller
than one) provides a better fit in many commonly encountered probability
distributions in nature and society and demonstrated the claim with data
for French and American urban agglomerations. Tails of stretched exponen-
tial distributions are fatter than the exponential fit but much less fat than a
pure power-law distribution.

Clauset et al. (2009) tested a large number of data sets describing real-
world phenomena and claimed to follow power laws (figure 1.28). Their
sets came from physics, earth and life sciences, computing and information
sciences, engineering, and economics, with growth-related items includ-
ing the numbers of distinct interaction partners in the metabolic network
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Heavy-tailed lognormal distributions of earthquake magnitudes, sizes of forest fires,

cities, and the citations of academic papers. Simplified from Clauset et al. (2009).

of Escherichia coli, number of species per genus of mammals, and popula-
tions of US cities in the 2000 census. Their rigorous tests found that 17 of
24 data sets were consistent with power-law distribution—but, remarkably,
they also concluded that the lognormal distribution could not be ruled out
for any sets save one, because “it is extremely difficult to tell the difference
between log-normal and power-law behavior. Indeed over realistic ranges
of x the two distributions are very closely equal, so it appears unlikely that
any test would be able to tell them apart unless we have an extremely large
data set” (Clauset et al. 2009, 689).

Mitzenmacher (2004) came to the same conclusion as far as lognormal
and power-law distributions are concerned, and Lima-Mendez and van
Helden (2009) showed how an apparent power law can disappear when
data are subjected to more rigorous testing. Most instances of power-law
distributions do not even have strong statistical support, and any purely
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empirical fitting—while interesting, perhaps even remarkable—does not
justify unsubstantiated suggestions of universality. Allometric scaling of
metabolism is a rare exception as it finds strong statistical support across
many orders of magnitude, from bacteria to whales (for details see chap-
ter 2). And even if the law passes statistical muster, it commonly lacks a con-
vincing generative mechanism. Long before the recent interest in complex
systems and power-law scaling, Carroll (1982) listed five different classes of
models that could explain city rank-size (Zipf) distributions but many of
them had directly contradicted each other.

Similarly, Phillips (1999) listed 11 separate concepts to explain self-
organization principles applied in earth and environmental sciences. Invariant
behavior of many physical phenomena and their power-law distributions
have been explained by various optimization schemes, cooperative effects,
preferential attachment (most famously, rich get richer), self-similarity and
fractal geometry, organized criticality, and by nonlinear dynamic behavior
including multiplicative cascades (Mandelbrot 1982; Bak 1996; Pietronero
et al. 2001; Yakovenko and Rosser 2009). But skepticism is in place, and on
a closer examination power law does not appear to be either as ubiquitous
or as fundamental as has been suggested by those who prefer to explain
complex realities with simple models. Stumpf and Porter (2012, 665) con-
sidered the wide range of power-law occurrences and concluded that “the
mechanistic insights are almost always too limited for the identification of
power-law behavior to be scientifically useful.”

But even if the statistics are convincing and even if there is empirical
support for a theory explaining the generative process, “a critical question
remains: What genuinely new insights have been gained by having found
a robust, mechanically supported, and in-all-other-ways super power law?
We believe that such insights are very rare” (Stumpf and Porter 2012, 666).
Rather than demonstrating the existence of a universal principle, power
laws illustrate that equifinality is common in complex open systems, as
many different processes can lead to identical or very similar outcomes and
hence these outcomes cannot be used to infer clear-cut causes (von Berta-
lanffy 1968).

What does this all mean for evaluating and understanding the distribu-
tion of many growth outcomes? Few things are incontestable: applications
of power laws share the same fundamental relationship with one quan-
tity varying as a power of another, the change being scale invariant and
the direction positive or negative. Perhaps the most commonly applicable
example in the first category was one of the fundamental breakthroughs
in bioenergy, the discovery of metabolic scaling in animals (Kleiber 1932):



2 Nature: or growth of living matter

Perhaps the most remarkable attribute of natural growth is how much
diversity is contained within the inevitable commonality dictated by fun-
damental genetic makeup, metabolic processes, and limits imposed by com-
binations of environmental factors. Trajectories of all organismic growth
must assume the form of a confined curve. As already noted, many sub-
stantial variations within this broad category have led to the formulation
of different growth functions devised in order to find the closest possible
fits for specific families, genera or species of microbes, plants or animals or
for individual species. S-shaped curves are common, but so are those con-
forming to confined exponential growth, and there are (both expected and
surprising) differences between the growth of individuals (and their con-
stituent parts, from cells to organs) and the growth of entire populations.

Decades-long neglect of Verhulst’s pioneering growth studies postponed
quantitative analyses of organismic growth until the early 20th century.
Most notably, in his revolutionary book Darwin did not deal with growth
in any systematic manner and did not present any growth histories of spe-
cific organisms. But he noted the importance of growth correlation—“when
slight variations in any one part occur, and are accumulated through natu-
ral selection, other parts become modified” (Darwin 1861, 130)—and, quot-
ing Goethe (“in order to spend on one side, nature is forced to economise
on the other side”), he stressed a general growth principle, namely that
“natural selection will always succeed in the long run in reducing and sav-
ing every part of the organization, as soon as it is rendered superfluous,
without by any means causing some other part to be largely developed in a
corresponding degree” (Darwin 1861, 135).

This chapter deals with the growth of organisms, with the focus on those
living forms that make the greatest difference for the functioning of the
biosphere and for the survival of humanity. This means that I will look
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at cell growth only when dealing with unicellular organisms, archaea and
bacteria—but will not offer any surveys of the genetic, biochemical and
bioenergetic foundations of the process (both in its normal and aberrative
forms) in higher organisms. Information on such cell growth—on its gene-
tics, controls, promoters, inhibitors, and termination—is available in many
survey volumes, including those by Studzinski (2000), Hall et al. (2004),
Morgan (2007), Verbelen and Vissenberg (2007), Unsicker and Krieglstein
(2008) and Golitsin and Krylov (2010).

The biosphere’s most numerous, oldest and simplest organisms are archaea
and bacteria. These are prokaryotic organisms without a cell nucleus and
without such specialized membrane-enclosed organelles as mitochondria.
Most of them are microscopic but many species have much larger cells and
some can form astonishingly large assemblages. Depending on the species
involved and on the setting, the rapid growth of single-celled organisms
may be highly desirable (a healthy human microbiome is as essential for
our survival as any key body organ) or lethal. Risks arise from such diverse
phenomena as the eruptions and diffusion of pathogens—be they infec-
tious diseases affecting humans or animals, or viral, bacterial and fungal
infestations of plants—or from runaway growth of marine algae. These algal
blooms can Kkill other biota by releasing toxins, or when their eventual decay
deprives shallow waters of their normal oxygen content and when anaero-
bic bacteria thriving in such waters release high concentrations of hydrogen
sulfide (UNESCO 2016).

The second subject of this chapter, trees and forests—plant communi-
ties, ecosystems and biomes that are dominated by trees but that could not
be perpetuated without many symbioses with other organisms—contain
most of the world’s standing biomass as well as most of its diversity. The
obvious importance of forests for the functioning of the biosphere and
their enormous (albeit still inadequately appreciated and hugely underval-
ued) contribution to economic growth and to human well-being has led to
many examinations of tree growth and forest productivity. We now have
a fairly good understanding of the overall dynamics and specific require-
ments of those growth phenomena and we can also identify many factors
that interfere with them or modify their rates.

The third focus of this chapter will be on crops, plants that have been
greatly modified by domestication. Their beginnings go back to 8,500 BCE
in the Middle East, with the earliest domesticates being einkorn and emmer
wheat, barley, lentils, peas, and chickpeas. Chinese millet and rice were first
cultivated between 7,000 and 6,000 BCE and the New World’s squash was
grown as early as 8,000 BCE (Zohary et al. 2012). Subsequent millennia of



