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Introduction

In this introductory chapter we provide a brief overview of some core ideas of data
science and their motivation. In a first step we carefully distinguish between “data”
and “knowledge” in order to obtain clear notions that help us to work out why it is
usually not enough to simply collect data and why we have to strive to turn them
into knowledge. As an illustration, we consider a well-known example from the his-
tory of science. In a second step we characterize the data science process, also often
referred to as the knowledge discovery process, in which modeling is one impor-
tant step. We characterize standard data science tasks and summarize the catalog of
methods to tackle them.

1.1 Motivation

Every year that passes brings us more powerful computers, faster and cheaper stor-
age media, and higher bandwidth data connections. Due to these technological ad-
vancements, it is possible nowadays to collect and store enormous amounts of data
with little effort and at impressively low costs. As a consequence, more and more
companies, research centers, and governmental institutions create huge archives of
tables, documents, images, and sounds in electronic form. Since for centuries lack
of data has been a core hindrance to scientific and economic progress, we feel com-
pelled to think that we can solve—at least in principle—basically any problem we
are faced with if only we have enough data.

However, a closer examination of the matter reveals that this is an illusion. Data
alone, regardless of how voluminous they are, are not enough. Even though large
databases allow us to retrieve many different single pieces of information and to
compute (simple) aggregations (like average monthly sales in Berlin), general pat-
terns, structures, and regularities often go undetected. We may say that in the vast
amount of data stored in some data repositories we cannot see the wood (the pat-
terns) for the trees (the individual data records). However, it is most often exactly
these patterns, regularities, and trends that are particularly valuable if one desires,
for example, to increase sales in a supermarket. Suppose, for instance, a supermar-
ket manager discovers that by analyzing sales and customer records certain products

© Springer Nature Switzerland AG 2020 1
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2 1.1 Motivation

are frequently bought together. In such a case sales can sometimes be stimulated by
cleverly arranging these products on the shelves of the market (they may, for exam-
ple, be placed close to each other, or may be offered as a bundle, in order to invite
even more customers to buy them together).

Unfortunately, it turns out to be harder than may be expected at first sight to
actually discover such patterns and regularities and thus to exploit a larger part of the
information that is contained in the available data. In contrast to the overwhelming
flood of data there was, at least at the beginning, a lack of tools by which raw data
could be transformed into useful information. More than 20 years ago John Naisbett
aptly characterized the situation by saying [4]: “We are drowning in information, but
starving for knowledge.” As a consequence, a new research area has been developed,
which has become known under the name of data science. The goal of this area was
to meet the challenge to develop tools that can help humans to find potentially useful
patterns in their data and to solve the problems they are facing by making better
use of the data they have. Today, more than 20 years later, a lot of progress has
been made, and a considerable number of methods and implementations of these
techniques in software tools have been developed. Still it is not the tools alone,
but the intelligent composition of human intuition with the computational power, of
sound background knowledge with computer-aided modeling, of critical reflection
with convenient automatic model construction, that leads data science projects to
success [2]. In this book we try to provide a hands-on approach to many basic data
science techniques and how they are used to solve data science problems if relevant
data is available.

1.1.1 Data and Knowledge

In this book we distinguish carefully between data and knowledge. Statements like
“Columbus discovered America in 1492” or “Mister Smith owns a VW Beetle” are
data. Note that we ignore whether we already know these statements or whether
we have any concrete use for them at the moment. The essential property of these
statements we focus on here is that they refer to single events, objects, people, points
in time, etc. That is, they generally refer to single instances or individual cases. As a
consequence, their domain of application and thus their utility is necessarily limited.

In contrast to this, knowledge consists of statements like “All masses attract each
other” or “Every day at 7:30 a.m. a train with destination Rome departs from Zurich
main station.” Again, we neglect the relevance of these statements for our current
situation and whether we already know them. Rather, we focus on the essential
property that they do not refer to single instances or individual cases but are general
rules or (physical) laws. Hence, if they are true, they have a large domain of appli-
cation. Even more importantly, though, they allow us to make predictions and are
thus highly useful (at least if they are relevant to us).

We have to admit, though, that in daily life we also call statements like “Colum-
bus discovered America in 1492” knowledge (actually, this particular statement is
used as a kind of prototypical example of knowledge). However, we neglect here
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this vernacular and rather fuzzy use of the notion “knowledge” and express our re-
grets that it is not possible to find a terminology that is completely consistent with
everyday speech. Neither single statements about individual cases nor collections of
such statements qualify, in our use of the term, as knowledge.

Summarizing, we can characterize data and knowledge as follows:

data
e refer to single instances
(single objects, people, events, points in time, etc.)
describe individual properties
e are often available in large amounts
(databases, archives)
e are often easy to collect or to obtain
(e.g., scanner cashiers in supermarkets, Internet)
e do not allow us to make predictions or forecasts

knowledge

e refers to classes of instances
(sets of objects, people, events, points in time, etc.)
describes general patterns, structures, laws, principles, etc.
consists of as few statements as possible
(this is actually an explicit goal, see below)

e is often difficult and time consuming to find or to obtain
(e.g., natural laws, education)

¢ allows us to make predictions and forecasts

These characterizations make it very clear that generally knowledge is much more
valuable than (raw) data. Its generality and the possibility to make predictions about
the properties of new cases are the main reasons for this superiority.

It is obvious, though, that not all kinds of knowledge are equally valuable as any
other. Not all general statements are equally important, equally substantial, equally
significant, or equally useful. Therefore knowledge has to be assessed, so that we
do not drown in a sea of irrelevant knowledge. The following list (which we do not
claim to be complete) lists some of the most important criteria:

criteria to assess knowledge

correctness (probability, success in tests)
generality (domain and conditions of validity)
usefulness (relevance, predictive power)
comprehensibility (simplicity, clarity, parsimony)
novelty (previously unknown, unexpected)

In the domain of science, the focus is on correctness, generality, and simplicity
(parsimony) are in the focus: one way of characterizing science is to say that it is
the search for a minimal, correct description of the world. In economy and industry,
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however, the emphasis is placed on usefulness, comprehensibility, and novelty: The
main goal is to gain a competitive edge and thus to increase revenues. Nevertheless,
neither of the two areas can afford to neglect the other criteria.

1.1.2 Tycho Brahe and Johannes Kepler

We illustrate the considerations of the previous section with an (at least partially)
well-known example from the history of science. In the sixteenth century studying
the stars and the planetary motions was one of the core areas of research. Among its
proponents was Tycho Brahe (1546-1601), a Danish nobleman and astronomer, who
in 1576 and 1584, with the financial help of King Frederic 11, built two observatories
on the island of Ven, about 32 km north-east of Copenhagen. He had access to the
best astronomical instruments of his time (but no telescopes, which were used only
later by Galileo Galilei (1564—-1642) and Johannes Kepler (see below) to observe
celestial bodies), and he used them to determine the positions of the sun, the moon,
and the planets with a precision of less than one angle minute. With this precision
he managed to surpass all measurements that had been carried out before and to
actually reach the theoretical limit for observations with the unaided eye (that is,
without the help of telescopes). Working carefully and persistently, he recorded the
motions of the celestial bodies over several years.

Stated plainly, Tycho Brahe collected data about our planetary system, fairly
large amounts of data, at least from the point of view of the sixteenth century. How-
ever, he failed to find a consistent scheme to combine them, could not discern a clear
underlying pattern—partially because he stuck too closely to the geocentric system
(the earth is in the center, and all planets, the sun, and the moon revolve around the
earth). He could tell the precise location of Mars on any given day of the year 1582,
but he could not connect its locations on different days by a clear and consistent
theory. All hypotheses he tried did not fit his highly precise data. For example, he
developed the so-called Tychonic planetary system (the earth is in the center, the sun
and the moon revolve around the earth, and the other planets revolve around the sun
on circular orbits). Although temporarily popular in the seventeenth century, this
system did not stand the test of time. From a modern point of view, we may say that
Tycho Brahe had a “data science problem” (or “knowledge discovery problem”). He
had obtained the necessary data but could not extract the hidden knowledge.

This problem was solved later by Johannes Kepler (1571-1630), a German as-
tronomer and mathematician, who worked as an assistant of Tycho Brahe. Contrary
to Brahe, he advocated the Copernican planetary system (the sun is in the center, the
earth and all other planets revolve around the sun in circular orbits) and tried all his
life to reveal the laws that govern the motions of the celestial bodies. His approach
was almost radical for his time, because he strove to find a mathematical descrip-
tion. He started his investigations with the data Tycho Brahe had collected and which
he extended in later years. After several fruitless trials and searches and long and
cumbersome calculations (imagine no pocket calculators), Kepler finally succeeded.
He managed to combine Tycho Brahe’s data into three simple laws, which nowa-
days bear his name as Kepler’s laws. After having realized in 1604 already that
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the course of Mars is an ellipse, he published the first two of these laws in his work
“Astronomia Nova” in 1609 [7] and the third law ten years later in his magnum opus
“Harmonices Mundi” [5, 8]:

1. The orbit of every planet (including the earth) is an ellipse,
with the sun at a focal point.

2. A line from the sun to the planet sweeps out equal areas
during equal intervals of time.

3. The squares of the orbital periods of any two planets relate to each other
like the cubes of the semimajor axes of their respective orbits:

le / T22 = af/a%, and therefore generally T ~ a 3,

Tycho Brahe had collected a large amount of astronomical data, and Johannes Ke-
pler found the underlying laws that can explain them. He discovered the hidden
knowledge and thus became one of the first “data scientists™ in history.

Today the works of Tycho Brahe are almost forgotten—few have even heard his
name. His catalogs of celestial data are merely of historical interest. No textbook on
astronomy contains excerpts from his measurements—and this is only partially due
to the better measurement technology we have available today. His observations and
precise measurements are raw data and thus suffer from a decisive drawback: they
do not provide any insight into the underlying mechanisms and thus do not allow us
to make predictions. Kepler’s laws, on the other hand, are treated in basically all as-
tronomy and physics textbooks, because they state the principles according to which
planets and comets move. They combine all of Brahe’s observations and measure-
ments in three simple statements. In addition, they permit us to make predictions:
if we know the location and the speed of a planet relative to the sun at any given
moment, we can compute its future course by drawing on Kepler’s laws.

How did Johannes Kepler find the simple astronomical laws that bear his name?
How did he discover them in Tycho Brahe’s long tables and voluminous catalogs,
thus revolutionizing astronomy? We know fairly little about his searches and efforts.
He must have tried a large number of hypotheses, most of them failing. He must have
carried out long and cumbersome computations, repeating some of them several
times to eliminate errors. It is likely that exceptional mathematical talent, hard and
tenacious work, and a significant amount of good luck finally led him to success.
What we can be sure of is that he did not possess a universally applicable procedure
or method to discover physical or astronomical laws.

Even today we are not much further: there is still no silver bullet to hit on the right
solution. It is still much easier to collect data, with which we are virtually swamped
in today’s “information society” (whatever this popular term actually means) than
to discover knowledge. Automatic measurement instruments and scanners, digital
cameras and computers, and an abundance of other automatic and semiautomatic
devices have even relieved us of the burden of manual data collection. In addition,
modern databases and the ability to store data in the cloud allow us to keep ever
increasing amounts of data and to retrieve and to sample them easily. John Naisbett
was perfectly right: *“We are drowning in information, but starving for knowledge.”
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It took a distinguished researcher like Johannes Kepler several years (actually
half a lifetime) to evaluate the data that Tycho Brahe had collected—data that from
a modern point of view are negligibly few and of which Kepler actually analyzed
closely only those about the orbit of Mars. Given this, how can we hope today to
cope with the enormous amounts of data we are faced with every day? “Manual”
analyses (like Kepler’s) have long ceased to be feasible. Simple aids, like the visual-
ization of data in charts and diagrams, even though highly useful and certainly a first
and important step, quickly reach their limits. Thus, if we refuse to surrender to the
flood of data, we are forced to develop and employ computer-aided techniques, with
which data science can be simplified or even automated to some degree. These are
the methods that have been and still are developed in the research areas of statistics,
machine learning, data analysis, knowledge discovery in databases, and data min-
ing. Even though these methods are far from replacing human beings like Johannes
Kepler, especially since a mindless (or unintelligent) application can easily produce
artifacts and misleading results, it is not entirely implausible to assume that Kepler,
if he had been supported by these methods and tools, could have reached his goal a
little earlier.

1.1.3 Intelligent Data Science

Many people associate any kind of data science with statistics (see also Ap-
pendix A, which provides a brief review). Statistics has a long history and originated
from collecting and analyzing data about the population and the state in general.

Statistics can be divided into descriptive and inferential statistics. Descriptive
statistics summarizes data without making specific assumptions about the data,
often by characteristic values like the (empirical) mean or by diagrams like his-
tograms. Inferential statistics provides more rigorous methods than descriptive
statistics that are based on certain assumptions about the data generating random
process. The conclusions drawn in inferential statistics are only valid if these as-
sumptions are satisfied.

Typically, in statistics the first step of the data science process is to design the
experiment that defines how data should be collected in order to be able to carry out
a reliable analysis based on the obtained data. To capture this important issue, we
distinguish between experimental and observational studies. In an experimental
study one can control and manipulate the data generating process. For instance,
if we are interested in the effects of certain diets on the health status of a person,
we might ask different groups of people to stick to different diets. Thus we have a
certain control over the data generating process. In this experimental study, we can
decide which and how many people should be assigned to a certain diet.

In an observational study one cannot control the data generating process. For
the same dietary study as above, we might simply ask people on the street what they
normally eat. Then we have no control about which kinds of diets we get data and
how many people we will have for each diet in our data.
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No matter whether the study is experimental or observational, there are usually
independence assumptions involved, and the data we collect should be representa-
tive. The main reason is that inferential statistics is often applied to hypothesis test-
ing where, based on the collected data, we desire to either confirm or reject some
hypothesis about the considered domain. In this case representative data and certain
independencies are required in order to ensure that the test decisions are valid.

In contrast to hypothesis testing, exploratory data analysis is concerned with
generating hypotheses from the collected data. In exploratory data analysis there
are no or at least considerably weaker model assumptions about the data generating
process. Most of the methods presented in this book fall into this category, since
they are mostly universal methods designed to achieve a certain goal but are not
based on a rigorous model as in inferential statistics.

The typical situation we assume in this book is that we already have the data.
They might not have been collected in the best way, or in the way we would have
collected them had we been able to design the experiment in advance. Therefore,
it is often difficult to make specific assumptions about the data generating process.
We are also mostly goal-oriented—that is, we ask questions like “Which customers
will yield the highest profit”?—and search for methods that can help us to answer
such questions or to solve our problems.

The opportunity of analyzing large real world data repositories that were ini-
tially collected for different purposes came with the availability of powerful tools
and technologies that can process and analyze massive amounts of data, which is
nowadays called data science.

In this book we strove to provide a comprehensive guide to intelligent data sci-
ence, outlining the process and its phases, presenting methods and algorithms for
various tasks and purposes, and illustrating them using a well known, freely avail-
able software platform. In this way we hope to offer a good starting point for anyone
who wishes to become more familiar with the area of data science.

1.2 The Data Science Process

There are at least two typical situations in which data science may help us to find
solutions to certain problems or provide answers to questions that arise. In the first
case, the problem at hand is by no means new, but it is already solved as a matter of
routine (e.g., approval of credit card applications, technical inspection during quality
assurance, machine control by a plant operator, etc.). If data have been collected
for the past cases together with the result that was finally achieved (such as poor
customer performance, malfunction of parts, etc.), such historical data may be used
to revise and optimize the presently used strategy to reach a decision. In the second
case, a certain question arises for the first time, and only little experience is available,
or the experience is not directly applicable to this new question (e.g., starting with a
new product, preventing abuse of servers, evaluating a large experiment or survey).
In such cases, it is supposed that data from related situations may be helpful to
generalize the new problem or that unknown relationships can be discovered from
the data to gain insights into this unfamiliar area.
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What if we have no data at all? This situation does not usually occur in prac-
tice, since in most cases there is always some data. Especially in businesses huge
amounts of data have been collected and stored for operational reasons in the past
(e.g., billing, logistics, warranty claims) that may now be used to optimize vari-
ous decisions or offer new options (e.g., predicting customer performance, reducing
stock on hand, tracking causes of defects). So the right question should be: How do
we know if we have enough relevant data? This question is not answered easily. If
it actually turns out that the data are not sufficient, one option is to acquire new data
to solve the problem. However, as already pointed out in the preceding section, the
experimental design of data acquisition is beyond the scope of this book.

Historically there have been several proposals about what the data science pro-
cess should look like, such as SEMMA (an acronym for sample, explore, modify,
model, assess), CRISP-DM (an acronym for CRoss Industry Standard Process for
Data Mining as defined by the CRISP-DM consortium) [3], or the KDD-process [4]
(see [9] for a detailed comparison). In this book, we are going to adopt the CRISP-
DM process, which has been developed by a consortium of large companies, and
still represents the most widely used process model for data science today.

Thus, the data science process consists of six phases as shown in Fig. 1.1. Most
of these phases are usually executed more than once, and the most frequent phase
transitions are shown by arrows. The main objective of the first project under-
standing step (see Chap. 3) is to identify the potential benefit, as well as the risks
and efforts of a successful project, such that a deliberate decision on conducting the
full project can be made. The envisaged solution is also transferred from the project
domain to a more technical, data-centered notion. This first phase is usually called
business understanding, but we stick to the more general term project understanding
to emphasize that our problem at hand may as well be purely technical in nature or
a research project rather than economically motivated.

Next we need to make sure that we will have sufficient data at hand to tackle
the problem. While we cannot know this for sure until the end of the project, we
at least have to convince ourselves that there are enough relevant data. To achieve
this, we proceed in the data understanding phase (see Chap. 4) with a review of
the available databases and the information contained in the database fields, a vi-
sual assessment of the basic relationships between attributes, a data quality audit,
an inspection of abnormal cases (outliers), etc. For instance, outliers appear to be
abnormal in some sense and are often caused by faulty insertion, but sometimes they
give surprising insights on closer inspection. Some techniques respond very sensi-
tively to outliers, which is why they should be treated with special care. Another
aspect is empty fields which may occur in the data for various reasons—ignoring
them may introduce a systematic error in the results. By getting familiar with the
data, typically first insights and hypotheses are gained. If we do not believe that
the data suffice to solve the problem, it may be necessary to revise the project’s
objective.

So far, we have not changed any field of our data. However, this will be required
to get the data into a shape that enables us to apply modeling tools. In the data
preparation phase (Chap. 6) the data are selected, corrected, modified, even new
attributes are generated, such that the prepared data sets best suit the problem and the
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Fig. 1.1 Overview of the data science process together with typical questions to be asked in the
respective phases

envisaged modeling technique. Basically all deficiencies that have been identified in
the data understanding phase require special actions. Often the outliers and missing
values are replaced by estimated values or true values obtained from other sources.
We may restrict further analysis to certain variables and to a selection of the records
from the full data set. Redundant and irrelevant data can give many techniques an
unnecessarily hard time.

Once the data are prepared, we select and apply modeling tools to extract knowl-
edge out of the data in the form of a model (Chaps. 5 and 7-9). Depending on
what we want to do with the model, we may choose techniques that are easily in-
terpretable (to gain insights) or less demonstrative black-box models, which may
perform better. If we are not pleased with the results but are confident that the model
can be improved, we step back to the data preparation phase and, say, generate new
attributes from the existing ones, to support the modeling technique or to apply
different techniques. Background knowledge may provide hints on useful transfor-
mations that simplify the representation of the solution.
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Compared to the modeling itself, which is typically supported by efficient tools
and algorithms, the data understanding and preparation phases take considerable
part of the overall project time as they require a close manual inspection of the data,
investigations into the relationships between different data sources, often even the
analysis of the process that generated the data. New insights promote new ideas
for feature generation or alter the subset of selected data, in which case the data
preparation and modeling phases are carried out multiple times. The number of
steps is not predetermined but influenced by the process and findings itself.

When the technical benchmarks cannot be improved anymore, the obtained re-
sults are analyzed in the deployment phase (Chap. 10) from the perspective of the
problem owner. At this point, the project may stop due to unsatisfactory results, the
objectives may be revised in order to succeed under a slightly different setting, or
the found and optimized model may be deployed.

After deployment, which ranges from writing a report to the creation of a soft-
ware system that applies the model automatically to aid or make decisions, the
project is not necessarily finished. If the project results are used continuously over
time, an additional monitoring and model management phase is necessary: During
the analysis, a number of assumptions will be made, and the correctness of the de-
rived model (and the decisions that rely on the model) depends on them. So we better
verify from time to time that these assumptions still hold to prevent decision-making
on outdated information.

In the literature one can find attempts to create cost models that estimate the costs
associated with a data science project. Without going into the details, the major key
factors that remained in a reduced cost model derived from 40 projects were [10]:

the number of tables and attributes,

the dispersion of the attributes (only a few vs. many values),

the number of external data sources,

the type of the model (prediction being the most expensive),

the attribute type mixture (mixture of numeric and nonnumeric), and
the familiarity of the staff with data science projects in general,

the project domain in particular, and the software suites.

While there is not much we can do about the problem size, the goal of this book is
to increase the familiarity with data science projects by going through each of the
phases and providing first instructions to get along with the software suites.

It is obvious that this process requires lots of familiarity with the methods used,
as well as experience with data science projects in general. So in recent years the
question has arisen as to how less trained people can use data science techniques and
how parts of or the entire process can be automated. Obviously, in order to apply
sophisticated techniques, some understanding of the underlying theory is required—
otherwise the results are potentially nonsensical. This is why we added the term
“intelligent” in the title of this book. Our aim is to introduce sufficient details about
the main steps of the data science process so that they can be applied in a thoughtful,
intelligent way [6].
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To address this, techniques for automated machine learning have been suggested
that are able to automatically create, train, and test machine learning models with
as little expert input as possible. There are different algorithms and strategies to do
this which vary by complexity and performance, but the main idea is empowering
business analysts to train a great number of models and deliver the best one with
just a small amount of configuration [1, 11, 12]. These methods can work surpris-
ingly well if the data are in appropriate shape but face limitations for less typical
or more complex tasks. Systems for automation of other steps of the data science
process appear increasingly, but they face similar limitations. More complex data
science problems are likely to call for a higher degree of data science expertise in
conjunction with business or problem insights. For example, the domain expert can
add some unique knowledge about the data treatment and filtering before continuing
with the machine learning process. Also, when the data domain becomes more com-
plex than simple tabular data, e.g., includes text, images or time series, the human
expert can contribute custom techniques for data preparation, data partitioning, and
feature engineering.

The focus of this book is not on techniques to eliminate the need for data science
expertise, but instead on providing deeper insights into the methods so that they
can be applied in an intelligent way. This should not eliminate the use of some
automation techniques where appropriate—but that decision alone already requires
some level of data science expertise.

1.3 Methods, Tasks, and Tools

Problem Categories Every data science problem is different. To avoid the effort
of inventing a completely new solution for each problem, it is helpful to think of
different problem categories and consider them as building blocks from which a
solution may be composed. These categories also help categorize the large number
of different algorithms that solve specific tasks. Over the years, the following set of
method categories has been established [4]:

e Classification
Predict the outcome of an experiment with a finite number of possible results
(like yes/no or unacceptablelacceptable/good/very good). We may be interested
in a prediction because the true result will emerge in the future or because it is
expensive, difficult, or cumbersome to determine it.
Typical questions: Is this customer credit-worthy? Will this customer respond to
our mailing ? Will the technical quality be acceptable?

¢ Regression
Regression is, just like classification, also a prediction task, but this time the
value of interest is numerical in nature.
Typical questions: How will the EUR/USD exchange rate develop? How much
money will the customer spend for vacation next year? How much will the ma-
chine’s temperature change within the next cycle?
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e Clustering, segmentation
Summarize the data to get a better overview by forming groups of similar cases
(called clusters or segments). Instead of examining a large number of similar
records, we need to inspect the group summary only. We may also obtain some
insight into the structure of the whole data set. Cases that do not belong to any
group may be considered as abnormal or outliers.
Typical questions: Do my customers divide into different groups? How many
operating points does the machine have, and what do they look like?

¢ Association analysis
Find any correlations or associations to better understand or describe the inter-
dependencies of all the attributes. The focus is on relationships between all at-
tributes rather than on a single target variable or the cases (full record).
Typical questions: Which optional equipment of a car often goes together? How
do the various qualities influence each other?

¢ Deviation analysis
Knowing already the major trends or structures, find any exceptional subgroup
that behaves differently with respect to some target attribute.
Typical questions: Under which circumstances does the system behave differ-
ently? Which properties do those customers share who do not follow the crowd?

The most frequent categories are classification and regression, because decision
making always becomes much easier if reliable predictions of the near future are
available. When a completely new area or domain is explored, cluster analysis and
association analysis may help identify relationships among attributes or records.
Once the major relationships are understood (e.g., by a domain expert), a deviation
analysis can help focus on exceptional situations that deviate from regularity.

Catalog of Methods There are various methods in each of these categories to
find reliable answers to the questions raised above. However, there is no such thing
as a single golden method that works perfectly for all problems. To convey some
idea which method may be best suited for a given problem, we will discuss various
methods in Chaps. 7-9. However, in order to organize these chapters, we did not rely
on the problem categories collected above, as some methods can be used likewise for
more than one problem type. We rather used the intended task of the data analysis
as a grouping criterion:

e Finding patterns (Chap. 7)
If the domain (and therefore the data) is new to us or if we expect to find interest-
ing relationships, we explore the data for new, previously unknown patterns. We
want to get a full picture and do not concentrate on a single target attribute, yet.
We may apply methods from, for instance, segmentation, clustering, association
analysis, or deviation analysis.

e Finding explanations (Chap. 8)
We have a special interest in some target variable and wonder why and how it
varies from case to case. The primary goal is to gain new insights (knowledge)
that may influence our decision making, but we do not necessarily intend au-
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tomation. We may apply methods from, for instance, classification, regression,
association analysis, or deviation analysis.

e Finding predictors (Chap.9)
We have a special interest in the prediction of some target variable, but it (possi-
bly) represents only one building block of our full problem, so we do not really
care about the how and why but are just interested in the best-possible prediction.
We may apply methods from, for instance, classification or regression.

Tools for Data Science As already mentioned, the key to success is often the
proper combination of data preparation and modeling techniques. Data analysis soft-
ware suites are of great help as they reduce data formatting efforts and ease method
linking. There is a (growing) list of commercial and free software suites and tools
which we do not attempt to summarize here. Many online resources provide com-
parative summaries.

Although the choice of the software suite has considerable impact on the project
time (usability) and can help avoid errors (because some of them are easily spot-
ted using powerful visualization capabilities), the suites cannot take over the full
analysis process. They provide at best an initial starting point (by means of analysis
templates or project wizards), but in most cases the key factor is the intelligent com-
bination of tools and background knowledge (regarding the project domain and the
utilized tools). The suites exhibit different strengths, some focus on supporting the
human data analyst by sophisticated graphical user interfaces, graphical configura-
tion and reporting, while others are better suited for batch processing and automati-
zation.

1.4 How to Read This Book

In the next chapter we will take a glimpse at the data science process by looking
over the shoulder of Stan and Laura as they analyze their data (while only one of
them actually follows the data science process). The chapter is intended to give an
impression of what will be discussed in much greater detail throughout the book.
The subsequent chapters follow the data science process stages: we analyze the
problem first in Chap. 3 (project understanding) and then investigate whether the
available data suit our purposes in terms of size, representativeness, and quality in
Chap. 4 (data understanding). If we are confident that the data are worth carrying
out the analysis, we discuss the data preparation (Chap. 6) as the last step before
we enter the modeling phase (Chaps. 7-9). As already mentioned, data preparation
is already tailored to the methods we are going to use for modeling; therefore, we
have to introduce the principles of modeling already in Chap. 5. Deployment and
monitoring is briefly addressed in Chap. 10. Readers who, over the years, have lost
some of their statistical knowledge can (partially) recover it in Appendix A. The
statistics appendix is not just a glossary of terms to quickly look up details but also
serves as a book within the book for a few preparative lessons on statistics before
delving into the chapters about data science.
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Most chapters contain a section that equips the reader with the necessary infor-
mation for some first hands-on experience using KNIME Analytics Platform. We
have settled on KNIME Analytics Platform because it supports the composition of
complex workflows in a graphical user interface. Appendix B provides a brief intro-
duction to KNIME Analytics Platform. The workflows discussed in this book—and
many more—are available for download at the book’s website. We will continu-
ously update this material and also provide examples using the popular data science
languages R and Python.
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Practical Data Science: An Example

Before talking about the full-fledged data science process and diving into the de-
tails of individual methods, this chapter demonstrates some typical pitfalls one en-
counters when analyzing real-world data. We start our journey through the data
science process by looking over the shoulders of two (pseudo) data scientists, Stan
and Laura, working on some hypothetical data science problems in a sales envi-
ronment. Being differently skilled, they show how things should and should not
be done. Throughout the chapter, a number of typical problems that data analysts
meet in real work situations are demonstrated as well. We will skip algorithmic and
other details here and only briefly mention the intention behind applying some of
the processes and methods. They will be discussed in depth in subsequent chapters.

2.1 The Setup

Disclaimer The data and the application scenario used in this chapter are fictional.
However, the underlying problems are motivated by actual problems which are en-
countered in real-world data science scenarios. Explaining particular applicational
setups would have been entirely out of the scope of this book since, in order to un-
derstand the actual issue, a bit of domain knowledge is often helpful if not required.
Please keep this in mind when reading the following. The goal of this chapter is
to show (and sometimes slightly exaggerate) pitfalls encountered in real-world data
science setups and not the reality in a supermarket chain. We are painfully aware
that people familiar with this domain will find some of the encountered problems
strange, to say the least. Have fun.

The Data For the following examples, we will use an artificial set of data sources
from a hypothetical supermarket chain. The data set consists of a few tables, which
have already been extracted from an in-house database:'

1Often just getting the data is a problem of its own. Data science assumes that you have access
to the data you need—an assumption which is, unfortunately, frequently not true.
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e Customers—Data about customers, stemming mostly from information col-
lected when these customers signed up for frequent shopper cards;

e Products—A list of products with their categories and prices;
Purchases—A list of products together with the date they were purchased and
the customer card ID used during checkout.

The Analysts Stan and Laura are responsible for the analytics of the southern and
northern parts, respectively, of a large supermarket chain. They were recently hired
to help better understand customer groups and behavior and try to increase revenue
in the local stores. As is unfortunately all too common, over the years the stores
have already begun all sorts of data acquisition operations, but in recent years quite
a lot of this data has been merged—however, still without a clear picture in mind.
Many other stores had started to issue frequent shopping cards, so the directors of
marketing of the southern and northern markets decided to launch a similar program.
Lots of data have been recorded, and Stan and Laura now face the challenge to fit
existing data to the questions posed. Together with their managers, they have sat
down and defined three data science tasks to be addressed in the following year:

e Differentiating the different customer groups and their behavior to better under-
stand their impact on the overall revenue,

e lIdentifying connections between products to allow for cross-selling campaigns,
and

e Helping design a marketing campaign to attract core customers to increase their
purchases.

Stan is a representative of the typical self-taught data science newbie with little expe-
rience on the job and some more applied knowledge about the different techniques,
whereas Laura has some training in statistics, data processing, and data science pro-
cess planning.

2.2 Data Understanding and Pattern Finding

The first analysis task is a standard data science setup: customer segmentation—find
out which types of customers exist in your database and try to link them to the rev-
enue they create. This can be used later to care for clientele who are responsible for
the largest revenue source or foster groups of customers who are underrepresented.
Grouping (or clustering) records in a database is the predominant method to find
such customer segments: the data are partitioned into smaller subsets, each forming
a more coherent group than the overall database contains. We will go into much
more detail on this type of data science methods in Chap. 7. For now it suffices to
know that some of the most prominent clustering methods return one typical exam-
ple for each cluster. This essentially allows us to reduce a large data set to a small
number of representative examples for the subgroups contained in the database.
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Table 2.1 Stan’s clustering

Cluster-id Age Customer revenue
result
46.5 € 1,922.07
2 39.4 € 11,162.20
3 39.1 € 7,279.59
4 46.3 €419.23
5 39.0 € 4,459.30

The Naive Approach Stan quickly jumps onto the challenge, creates a dump of
the database containing customer purchases and their birth date, and computes the
age of the customers based on their birth date and the current day. He realizes that
he is interested in customer clusters and therefore needs to somehow aggregate the
individual purchases to their respective “owner.” He uses an aggregating operator in
his database to compute the total price of the shopping baskets for each customer.
Stan then applies a well-known clustering algorithm which results in five prototyp-
ical examples, as shown in Table 2.1.

Stan is puzzled—he was expecting the clustering algorithm to return reasonably
meaningful groups, but this result looks as if all shoppers are around 40-50 years
old but spend vastly different amounts of money on products. He looks into some of
the customers’ data in some of these clusters but seems unable to find any interesting
relations or any reason why some seem to buy substantially more than others. He
changes some of the algorithm’s settings, such as the number of clusters created, but
the results are similarly uninteresting.

The Sound Approach Laura takes a different approach. Routinely she first tries
to understand the available data and validates that some basic assumptions are in fact
true. She uses a basis data summarization tool to report the different values for the
string attributes. The distribution of first names seems to match the frequencies she
would expect. Names such as “Michael” and “Maria” are most frequent, and “Rose-
marie” and “Anneliese” appear a lot less often. The frequencies of the occupations
also roughly match her expectations: the majority of the customers are employ-
ees, while the second and third groups are students and freelancers, respectively.
She proceeds to checking the attributes holding numbers. In order to check the age
of the customers, she also computes the customers’ ages from their birth date and
checks minimum and maximum. She spots a number of customers who obviously
reported a wrong birthday, because they are unbelievably young. As a consequence,
she decides to filter the data to only include people between the ages of 18 and 100.
In order to explore the data more quickly, she reduces the overall customer data set
to 5,000 records by random sampling and then plots a so-called histogram, which
shows different ranges of the attribute age and how many customers fall into that
range. Figure 2.1 shows the result of this analysis.

This view confirms Laura’s assumptions—the majority of shoppers is middle
aged, and the number of shoppers continuously declines toward higher age groups.
She creates a second histogram to better inspect the subtle, but strange, cliff at
around age 48 using finer setting for the bins. Figure 2.2 shows the result of this
analysis.
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Fig. 2.1 A histogram for the distribution of the value of attribute age using 8 bins
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Fig. 2.2 A histogram for the distribution of the value of attribute age using 40 bins

Surprised, she notices the huge peak in the bin of ages 38—40. She discusses this
observation with colleagues and the administrator of the shopping card database.
They have no explanation for this odd concentration of 40-year-old people either (as
of 2010). After a few other investigations, a colleague of the person who—before
his retirement—designed the data entry forms suspects that this may have to do with
the coding of missing birth dates. And, as it turns out, this is in fact the case: forms
where people entered no or obviously nonsensical birth dates were entered into the
form as zero values. For technical reasons, these zeros were then converted into the
Java 0-date which turns out to be January 1, 1970. So these people all turn up with
the same birth date in the customer database and in turn have the same age after the
conversion Laura performed initially. Laura marks those entries in her database as
“missing” in order to be able to distinguish them in future analyses.

Similarly, she inspects the shopping basket and product database and cleans up
a number of other outliers and oddities. She then proceeds with the customer seg-
mentation task. As in her previous data science projects, Laura first writes down her
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Table 2.2 Laura’s clustering

result Cluster Age Avg. cart price  Avg. purchases/month
75.3 €19.— 5.6
2 42.1 €78.— 7.8
3 38.1 €112.— 9.3
4 30.6 €16.— 4.8
5 44.7 €45.— 3.7

domain knowledge in form of a cognitive map, indicating relationships and depen-
dencies between the attributes of her database. Having thus recalled the interactions
between the variables of interest, she is well aware that the length of the customer’s
history and the number of overall shopping trips affect the overall basket price, and
so she settles on the average basket price as a better estimator for the value of a par-
ticular customer. She also considers distinguishing the different product categories,
realizing that those, of course, also potentially affect the average price. For the first
step, she adds the average number of purchases per month, another indicator for the
revenue a customer brings in. Data aggregation is now a bit more complex, but the
modern data science tool she is using allows her to do the required joining and pivot-
ing operations effortlessly. Laura knows that clustering algorithms are very sensitive
to attributes with very different magnitudes, so she normalizes the three attributes
to make sure that all three contribute equally to the clustering result. Running the
same clustering algorithm that Stan was using, with the same setting for the number
of clusters to be found, she gets the result shown in Table 2.2.

Obviously, there is a cluster (#1) of older customers who have a relatively small
average basket price. There is also another group of customers (#4) which seems
to correlate to younger shoppers, also purchasing smaller baskets. The middle-aged
group varies wildly in price, however. Laura realizes that this matches her assump-
tion about family status—people with families will likely buy more products and
hence combine more products into more expensive baskets, which seems to explain
the difference between clusters #2/#3 and cluster #5. The latter also seem to shop
significantly less often. She goes back and validates some of these assumptions by
looking at shopping frequency and average basket size as well, and also determines
the overall impact on store revenues for these different groups. She finally discusses
these results with her marketing and campaign specialists to develop strategies to
foster the customer groups which bring in the largest chunk of revenue and develop
the ones which seem to be underrepresented.

2.3 Explanation Finding
The second analysis goal is another standard shopping basket analysis problem: find
product dependencies in order to better plan campaigns.

The Naive Approach Stan recently read in a book on practical data science how
association rules can arbitrarily find such connections in market basket data. He
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runs the association rule mining algorithm in his favorite data science tool with
the default settings and inspects the results. Among the top-ranked generated rules,
sorted by their confidence, Stan finds the following output:

"foie gras’ (pl231) <- ’'champagne Don Huberto’ (p2149),
‘truffle oil de Rossini’ (p578) [s=1E-5, c=75%]
"Tortellini De Cecco 500g’ (p3456)°
<- ’'De Cecco Sugo Siciliana’ (p8764) [s=1E-5, c=60%]

He quickly infers that this representation must mean that foie gras is bought when-
ever champagne and truffle oil are bought together and similarly for the other rule.
Stan knows that the confidence measure c¢ is important, as it indicates the strength
of the dependency (the first rule holds in 3 out of 4 cases). He considers the sec-
ond measure of frequency s to be less important and deliberately ignores its fairly
small value. The two rules shown above are followed by a set of other, similarly lux-
ury/culinary product-oriented rules. Stan concludes that luxury products are clearly
the most important products on the shelf and recommends to his marketing man-
ager to launch a campaign to advertise some of the products on the right-hand side
of these rules (champagne, truffle oil) to increase the sales of the left side (foie gras).
In parallel, he increases orders for these products, expecting a recognizable increase
in sales. He proudly sends the results of his analysis to Laura.

The Sound Approach Laura is puzzled by those nonintuitive results. She reruns
the analysis and notices the support values of the rules extracted by Stan—some
of the rules Stan extracted have a remarkably high confidence, and some almost
forecast shopping behavior. However, they have very low support values, meaning
that only a small number of shopping baskets containing the products were ever
observed. The rules that Stan found are not representative at all for his customer
base. To confirm this, she runs a quick query on her database and sees that, indeed,
there is essentially no influence on the overall revenue.

She notices that the problem of low support is caused by the fact that Stan ran
the analysis on product IDs, so in effect he was forcing the rules to differentiate
between brands of champagne and truffle oil. She reruns the analysis based on the
product categories instead, ranks them by a mix of support and confidence, and finds
a number of association rules with substantially higher support:

tomatoes <- capers, pasta [s=0.007, c=32%]
tomatoes <- apples [s=0.013, c=22%]

Laura focuses on rules with a much higher support measure s than before and also
realizes that the confidence measure c is significantly higher than one would expect
by chance. The first rule seems to be triggered by a recent fashion of Italian cooking,
whereas the apple/tomato-rule is a known aspect.

However, she is still irritated by one of the rules discovered by Stan, which has
a higher than suspected confidence despite a relatively low support. Are there some
gourmets among the customers who prefer a very specific set of products? Rerun-
ning this analysis on the shopping card owners yields almost the same results, so
the (potential) gourmets appear among their regular customers. Just to be sure, she
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inspects how many different customers (resp. shopping cards) occur for baskets that
support this rule. As she had conjectured, there is a very limited number of cus-
tomers that seem to have a strong affection for these products. Those few customers
have bought this combination frequently, thus inflating the overall support measure
(which refers to shopping baskets). This means that the support in terms of the num-
ber of customers is even smaller than the support in terms of number of shopping
baskets. The response to any kind of special promotion would fall even shorter than
expected from Stan’s rule.

Apparently the time period in which the analyzed data have been collected influ-
ences the results. Thinking about it, she develops an idea how to learn about changes
in the customers shopping behavior: She identifies a few rules, some rather promis-
ing, other well-known facts, and decides to monitor those combinations on a regular
basis (say, quarterly). She got to know that a chain of liquor stores will soon open
a number of shops close to the own markets, so she picks some rules with bever-
ages in their conclusion part to see if the opening has any impact on the established
shopping patterns of the own customers. As she fears a loss of potential sales, she
plans a comparison of rules obtained not only over time but also among markets
in the vicinity of such stores versus the other markets. She wonders whether pro-
moting the products in the rule’s antecedent may help bring back the customer and
decides to discuss this with the marketing & sales team to determine if and where
appropriate campaigns should be launched, once she has the results of her analysis.

2.4 Predicting the Future

The third and final analysis goal we consider in this brief overview is a forecasting
or prediction problem. The idea is to find some relationship in our existing data that
can help us predict if and how customers will react to coupon mailings and how this
will affect our future revenue.

The Naive Approach Stan believes that no detailed analysis is required for this
problem and notices that it is fairly straightforward to monitor success. At a com-
petitor he has seen how discount coupons attract customers to purchase additional
products. So he suggests launching a coupon campaign that gives customers a dis-
count of 10% if they purchase products for more than €50. This coupon is mailed
to all customers on record. Throughout the course of the next month, he carefully
monitors his database and is positively surprised when he sees that his campaign is
obviously working: the average price of shopping baskets is going up in comparison
with previous months. However, at the end of the quarter he is shocked to see that
overall revenues for the past quarter actually fell. His management is finally fed up
with the lack of performance and fires Stan.

The Sound Approach Laura, who is promoted to head of analytics for the north-
ern and southern supermarket chain, first cancels Stan’s campaign and looks into
the underlying data. She quickly realizes that even though quite a few customers did
in fact use the coupons and increased their shopping baskets, their average number
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of baskets per month actually went down—so quite a few people seem to have sim-
ply combined smaller shopping trips to be able to benefit from the discount offer.
However, for some shoppers, the combined monthly shopping basket value did go
up markedly, so there might be value here. Laura wonders how she can discriminate
between those customers who simply use the coupons to discount their existing pur-
chases and those who are actually enticed to purchase additional items. She notices
that one of the earlier generated customer segments correlates better than others
with the group of customers whose revenue went up—this fraction of customers is
significantly higher than in the other groups. She considers using this very simple,
manually designed predictor for a future campaign but wants to first make sure that
she cannot do better with some smarter techniques. She decides that in the end it is
not so important if she can actually understand the extracted model but only how
well it performs.

To provide good starting points for the modeling technique, she decides to gen-
erate a few potentially informative attributes first. Models that rely on thousands
of details typically perform poorly, so providing how often every product has been
bought by the customer in the last month is not an option for her. To get robust mod-
els, she wants to aggregate the tiny bits of information, but what kind of aggregation
could be helpful? She returns to her cognitive map to review the dependencies. One
aspect is the availability of competitors: She reckons that customers may have alter-
native (possibly specialized) markets nearby but have been attracted by the coupon
this time, keeping them away from the competitors. She decides to aggregate the
money spent by the customer per month for a number of product types (such as bev-
erages, thinking of the chain of liquor stores again). She conjectures that customers
that perform well on average, but underperform in a specific segment only, may
be enticed by the coupon to buy products for the underperforming segment also.
Providing the segment performance before and after Stan’s campaign should help a
predictor detect such dependencies if they exist.

The cognitive map brings another idea to her mind: People who appreciate the
full assortment but live somewhat further away from the own stores may see the
coupon as a kind of travel compensation. So she adds a variable expressing a coarse
estimation of the distance between the customer home and the nearest available
market (which is only possible for the shopping card owners). She continues to use
her cognitive map to address many different aspects and creates attributes that may
help verify her hypotheses. She then investigates the generated attributes visually
and also technically by means of feature selection methods.

After selecting the most promising attributes, she trains a classifier to distin-
guish the groups. She uses part of the data to simulate an independent test scenario
and thereby evaluates the expected impact of a campaign—are the costs created
by sending coupons to customers who do not purchase additional products offset
by customers buying additional items? After some additional model fine-tuning,
she reaches satisfactory performance. She discusses the results with the market-
ing&sales team and deploys the prediction system to control the coupon mailings
for the next quarter. She keeps monitoring the performance of these coupon cam-
paigns over future quarters and updates her model sporadically.
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2.5 Concluding Remarks

In this chapter we have, very briefly and informally, touched upon a number of issues
data scientists may encounter while making sense of real-world data. Many other
problems can arise, and many more methods for data science exist in the academic
literature and in real-world data science tools. We will attempt at covering the most
prominent and most often used examples in the following chapters.

Note that one of the biggest problems data scientists very often have is that the
data they get is not suited to answer the questions they are asked. For instance,
if we were supposed to use the data in our customer database to find out how to
differentiate Asian shopping behavior from European, we would have a very hard
time. These data can only be used to distinguish between different types of European
shoppers because it contains data from European markets only. Note also that we
are (why ever) assuming that we used a nice, representative sample of all different
types of European shoppers to generate the data—very often this is not the case,
and the data themselves are already biased and will bias our analysis results—in
this example we could be heavily biased by the type of supermarket chain we used
to record the data in the first place. An upscale delicatessen supermarket will have
dramatically different shopping patterns than a downscale discounter. We will be
discussing these points later in more depth as well.



Project Understanding

We are at the beginning of a series of interdependent steps, where the project under-
standing phase marks the first. In this initial phase of the data analysis project, we
have to map a problem onto one or many data analysis tasks. In a nutshell, we con-
jecture that the nature of the problem at hand can be adequately captured by some
data sets (that still have to be identified or constructed), that appropriate modeling
techniques can successfully be applied to learn the relationships in the data, and fi-
nally that the gained insights or models can be transferred back to the real case and
applied successfully. This endeavor relies on a number of assumptions and is threat-
ened by several risks, so the goal of the project understanding phase is to assess the
main objective, the potential benefits, as well as the constraints, assumptions, and
risks. While the number of data analysis projects is rapidly expanding, the failure
rate is still high, so this phase should be carried out seriously to rate the chances
of success realistically. The project understanding phase should be carried out with
care to keep the project on the right track.

We have already sketched the data analysis process (CRISP-DM in Sect. 1.2).
There is a clear order among the steps in the sense that for a later step, all precedent
steps must have been executed. However, this does not mean that we can run once
through all steps to deterministically achieve the desired results. There are many
options and decisions to be made. Most of them will rely on our (subjective and dy-
namic) understanding of the problem at hand. The line of argument will not always
be from an earlier phase to a later one. For instance, if a regression problem has to be
solved, the analyst may decide that a certain method seems to be a promising choice
for the modeling phase. From the characteristics of this technique he knows that all
input data have to be transformed into numerical data, which has to be carried out
beforehand (data preparation phase). This requires a careful look at the multivalued
ordinally scaled attributes already in the data understanding phase to see how the
order of the values is best preserved. If it is not considered in time, it may happen
that later, in the evaluation phase, it turns out that the project owner expected to gain
insights into the input—output relationship rather than having a black-box model
only. If the analyst had considered this requirement beforehand, he might have cho-
sen a different method. Changing this decision at any point later than in this initial
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Table 3.1 Problems faced in data analysis projects, excerpt from [1]

Problem source Project owner perspective Analyst perspective

Communication Project owner does not Analyst does not understand the terms of
understand the technical terms of the domain of the project owner
the analyst

Lack of Project owner was not sure what  Analyst found it hard to understand
understanding  the analyst could do or achieve  how to help the project owner

Models of analyst were different
from what the project owner
envisioned

Organization Requirements had to be adopted  Project owner was an unpredictable
in later stages as problems with  group (not so concerned with the project)
the data became evident

project understanding phase often renders some (if not most) of the earlier work in
data understanding, data preparation, and modeling useless. While the time spent on
project and data understanding compared to data preparation and modeling is small
(20% : 80%), the importance to success is just the opposite (80% : 20%) [4].

3.1 Determine the Project Objective

As a first step, a primary objective (not a long list but one or two) and some success
criteria in terms of the project domain have to be determined (who will decide which
results are desired and whether the original project goal was achieved or not). This
is much easier said than done, especially if the analysis is not carried out by the do-
main expert himself. In such cases the project owner and the analyst speak different
languages which may cause misunderstandings and confusion. In the worst case,
the communication problems lead to very soft project goals, just vague enough to
allow every stakeholder to see his own perspective somehow accounted for. At the
end, all of a sudden the stakeholders recognize that the results do not fit their expec-
tations. The challenge here is usually not a matter of technical but of communicative
competence.

Table 3.1 shows some of the typical problems that occur in such projects. To
overcome language confusion, a glossary of terms, definition, acronyms, and abbre-
viations is inevitable. Knowing the terms still does not imply an understanding of
the project domain, objectives, constraints, and influencing factors. One interview-
ing technique that may help getting most out of the expert is to rephrase all of her
statements, which often provokes additional relativizing statements. Another tech-
nique is to use explorative tools such as mind or cognitive maps to sketch beliefs,
experiences, and known factors, and how they influence each other.

An example of a cognitive map in the shopping domain considered in Sect. 2 is
given in Fig. 3.1. Each node of this graph represents a property of the considered
product or the customer. The variable of interest is placed in the center: How often
will a certain product be found in the shopping basket of the customer? This depends
on various factors, which are placed around this node. The direction of influence is
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in particular). Besides a plain listing of databases and personnel, it is important to
clarify the access to both: If the data are stored in an operative system, mining the
data may paralyze the applications using it. To become independent, it is advisable
to provide a database dump. Experts are typically busy and difficult to grasp—but
an inaccessible knowledge source is useless. A sufficiently large number of time
slots for meetings should be arranged.

Based on the domain exploration (cognitive map, business process model, etc.),
a list of explicit and implicit assumptions and risks is created to judge the chances
of a successful project and guide the next steps. Data analysis lives on data. This
list shall help convince ourselves that the data are meaningful and relevant to the
project. Why should we undertake this effort? We will see whether we can build
a model from these data later anyway. Unfortunately, this is only half of the truth.
After reviewing a number of reports in a data analysis competition, Charles Elkan
noted that “when something surprising happens, rather than question the expecta-
tions, people typically believe that they should have done something slightly differ-
ent” [2]. Expecting that the problem can be solved with the given data may lead
to continuously changing and “optimizing” the model—rather than taking the pos-
sibility into account that the data are not appropriate for this problem. In order to
avoid this pitfall, the conjectured relations and expert-proven connections can help
us verify that the given data satisfy our needs—or to put forward good reasons why
the project will probably fail. This is particularly important as in many projects the
available data have not been collected to serve the purpose that is intended now. To
prevent us from carrying out an expensive project having almost no prospect of suc-
cess, we have to carefully track all assumptions and verify them as soon as possible.
Typical requirements and assumptions include:

e Requirements and constraints
— model requirements,
e.g., model has to be explanatory (because decisions must be justified clearly);
— ethical, political, legal issues,
e.g., variables such as gender, age, race must not be used:
— technical constraints,
e.g., applying the technical solution must not take more than n seconds;
e Assumptions
representativeness
If conclusions about a specific target group are to be derived, a sufficiently
large number of cases from this group must be contained in the database, and
the sample in the database must be representative for the whole population.
— informativeness
To cover all aspects by the model, most of the influencing factors (identified
in the cognitive map) should be represented by attributes in the database.
- good data quality
The relevant data must be of good quality (correct, complete, up-to-date) and
unambiguous thanks to the available documentation.
— presence of external factors
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We may assume that the external world does not change constantly—for in-
stance, in a marketing project we may assume that the competitors do not
change their current strategy or product portfolio at all.

Every assumption inherently represents a risk (there might be other risks though).
If possible, a contingency should be sketched in case the assumption turns out to be
invalid, including options such as the acquisition of additional data sources.

3.3 Determine Analysis Goals

Finally, the primary objective must be transformed into a more technical data mining
goal. An architecture for the envisaged solution has to be found, composed of build-
ing blocks as discussed in Sect. 1.3 (data analysis tasks). For instance, this architec-
ture might contain a component responsible for grouping the customers according
to some readily available attributes first; another component finds interesting devi-
ating subgroups in each of the groups; a third component predicts some variable of
interest based on the customer data and the membership to the respective groups
and subgroups. The better this architecture fits the actual situation, the better the
chances of finding a model class that will prove successful in practice. To achieve
this analogy, the discussions about the project domain are of great help.

Again there is the danger of accepting a reasonable architecture quickly, under-
estimating or even ignoring the great impact on the overall effort. Suppose that a
company wants to increase the sales of some high-end product by direct mailing.
One approach is to develop a model that predicts who will buy this product using
the company’s own customer database. Such a model might be interesting to in-
terpret (useful for a report), but if it is used to decide to whom a mailing should be
sent, most of the customers may have the product already (within the same customer
database). Applying the model to people not being in the database is impossible as
we lack the information about them that is needed by the model. The predictive
model may also find out that customers buying the product were loyal customers
for many years—but artificially increasing the duration of the customer relationship
to support the purchase of the product is unfortunately impossible. If a foreseeable
result is ignored or a misconception w.r.t. the desired use of the model is not recog-
nized, considerable time may be wasted with building a correct model that turns out
to be useless in the end.

For each of the building blocks, we can select a model class and technique to
derive a model of this class automatically from data. There is nothing like the unique
best method for predictive tasks, because they all have their individual weaknesses
and strengths and it is impossible to combine all their properties or remove all biases
(see Chap. 5). Although the final decision about the modeling technique will be
made in the modeling phase, it should be clear already at this point of the analysis
which properties the model should have and why. The methods and tools optimize
the technical aspects of the model quality (such as accuracy, see also Chap. 5). Other
aspects are often difficult to formalize and thus to optimize (such as interestingness
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or interpretability), so that the choice of the model class has the greatest influence
on these properties. Desirable properties may be, for instance:

¢ Interpretability
If the goal of the analysis is a report that sketches possible explanations for a
certain situation, the ultimate goal is to understand the delivered model. For some
black-box models, it is hard to comprehend how the final decision is made, and
their model lacks interpretability.

¢ Reproduceability/stability
If the analysis is carried out more than once, we may achieve similar perfor-
mance—but not necessarily similar models. This does no harm if the model is
used as a black box, but hinders a direct comparison of subsequent models to
investigate their differences.

e Model flexibility/adequacy
A flexible model can adapt to more (complicated) situations than an inflexible
model, which typically makes more assumptions about the real world and re-
quires less parameters. If the problem domain is complex, the model learned
from data must also be complex to be successful. However, with flexible models
the risk of overfitting increases (will be discussed in Chap. 3).

¢ Runtime
If restrictive runtime requirements are given (either for building or applying the
model), this may exclude some computationally expensive approaches.

e Interestingness and use of expert knowledge
The more an expert already knows, the more challenging it is to “surprise” him or
her with new findings. Some techniques looking for associations (see Sect. 7.6)
are known for their large number of findings, many of them redundant and thus
uninteresting. So if there is a possibility of including any kind of previous knowl-
edge, this may ease the search for the best model considerably, on the one hand,
and may prevent us from rediscovering too many well-known artifacts.

When discussing the various modeling techniques in Chaps. 7-9, we will give hints
which properties they possess. The final choice is then up to the analyst.

3.4 Further Reading

The books by Dorian Pyle [4, 5] offer many suggestions and constructive hints for
carrying out the project understanding phase; [5] contains a step-by-step workflow
for business understanding and data mining consisting of various action boxes. An
organizationally grounded framework to formally implement the business under-
standing phase of data mining projects is presented in [6]. In [1] a template set for
educing and documenting project requirements is proposed.
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Data Understanding

The main goal of data understanding is to gain general insights about the data that
will potentially be helpful for the further steps in the data analysis process, but data
understanding should not be driven exclusively by the goals and methods to be ap-
plied in later steps. Although these requirements should be kept in mind during data
understanding, one should approach the data from a neutral point of view. Never
trust any data as long as you have not carried out some simple plausibility checks.
Methods for such plausibility checks will be discussed in this chapter. At the end
of the data understanding phase, we know much better whether the assumptions we
made during the project understanding phase concerning representativeness, infor-
mativeness, data quality, and the presence or absence of external factors are justified.

We first take a general look at single attributes in Sect. 4.1 and ask questions like:
What kind of attributes do we have, and what do their domains look like? What is
the precision of numerical values? Is the domain of an attribute stable over time, or
does it change? We also need to assess the data quality. Methods and criteria for this
purpose are introduced in Sect. 4.2.

Data understanding requires taking a closer look at the data. However, this does
not mean that we must browse through seemingly endless columns of numbers and
other values. In this way we would probably overlook most of the important facts.
Looking at the data refers to visualization techniques (Sect. 4.3) that can be used
to get a quick overview of basic characteristics of the data and enable us to check
the plausibility of the data to a certain extent. Visualization techniques are suitable
for the analysis of single attributes and of attributes in combination. Apart from the
pure visualization, it is also recommended to compute simple statistical measures
for correlation between attributes as described in Sect. 4.4.

Outliers, values, or records that are very different from all others should be iden-
tified with methods described in Sect. 4.5. They might cause difficulties for some of
the methods applied in later steps, or they might be wrong values due to data quality
problems. Missing values (see Sect. 4.6) can lead to similar problems as outliers,
and by simply ignoring missing values we might obtain wrong data analysis results,
so we must be aware of whether we have to deal with missing values and, if we have
to, of what kind the missing values are.
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of children or the number of times a customer has ordered from an online shop in
the last 12 months.

Sometimes, categorical attributes are coded by numerical values. For instance,
the three possible values food, drinks, nonfood of the attribute general product cat-
egory might be coded by the numbers 1, 2, and 3. However, this does not turn the
attribute general product category into a (discrete) numerical attribute. We should
bear this fact in mind for later steps of the analysis to avoid that the attribute is
suddenly interpreted as a numerical attribute: it does not make sense to carry out
numerical operations like computing the mean on such coded categorical attributes.
For a discrete attribute, though, especially when it represents some counting pro-
cess, it is meaningful to calculate the mean value, even though the mean value will
usually not be an integer number. It is meaningful to say that on average the cus-
tomers buy products 2.6 times per year in our online shop. But it does not make
sense that the average general product category we sell is 2.6, which we might ob-
tain when we simply compute the mean value of the products we have sold based
on the numerical coding of the general product categories.

In contrast to discrete numerical attributes, a continuous attribute can—at least
theoretically—assume any real value. However, such numerical values will always
be measured and represented with limited precision. It should be taken into account
how precise these values are. Drastic round-off errors or truncations can lead to
problems in later steps of the analysis. Suppose, for instance, that a cluster analysis
is to be carried out later on and that there is one numerical attribute, say X, that
is truncated to only one digit right after the decimal point, while all other numeri-
cal attributes were measured and stored with a higher precision. When comparing
different records, such truncation for the attribute X influences their perceived sim-
ilarity and might be a dominating factor for the further analysis only for this reason.
Truncation errors and measurements with limited precision should be distinguished
from values corrupted with noise. The problem of noise will be tackled in the con-
text of data quality in Sect. 4.2 and will also be discussed in more detail in Chap. 5.

Numerical attributes can have an interval, a ratio, or an absolute scale. For an
interval scale, the definition of what zero means is more or less arbitrary. The date
is a typical example for an attribute measured on an interval scale. There are calen-
dars with different definitions of the time point zero. For instance, the Unix standard
time, counted in milliseconds, has its time point zero in the year 1970 of the Gre-
gorian calendar. The same applies to temperature scales like Fahrenheit and Celsius
degrees, where zero refers to different temperatures. Certain operations like quo-
tients are not meaningful for interval scales. For example, it does not make sense to
say that a temperature of 21 °C is three times as warm as 7 °C.!

In contrast to this, a ratio scale has a canonical zero value and thus allows us to
compute meaningful ratios. Examples of ratio scales are height, distance, or dura-
tion. Distance can be measured in different units like meters, kilometers, or miles.
But no matter which unit we choose, a distance of zero will always have the same

!'Such a statement may make sense, though, for the Kelvin temperature scale, because on this
scale the temperature is directly proportional to the average kinetic energy of the particles—and it
is meaningful to compute ratios of energies.
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meaning. Especially ratios, which do not make sense for interval scales, are often
useful for ratio scales: The quotient of distances is independent of the measurement
unit, so the distance 20 km is always twice as long as the distance 10 km, even if
we change the unit kilometers to meters or miles. Whereas for a ratio scale, only
the value zero has a canonical meaning and the meaning of other values depends
on the choice of the measurement unit, for an absolute scale, there is a unique
measurement unit. A typical example for an absolute scale is any kind of counting
procedure.

4.2 Data Quality

The saying “garbage in, garbage out” applies to data analysis just as it does to any
other area. The results of an analysis cannot be better than the quality of the data,
therefore we should be concerned about the data quality before we carry out any
deeper analysis with the data. Data quality refers to how well the data fit their
intended use. There are various data quality dimensions.

Accuracy is defined as the closeness between the value in the data and the true
value. For numerical attributes, accuracy means how exact the value in the data set is
compared to the true value. Noise or limited precision in measurements can lead to
reduced accuracy for numerical attributes. Limited precision is often obvious from
the data set. For example, in the Iris data set all numerical values are measured with
only one digit right after the decimal point. The magnitude of noise can be estimated
when measurements for the same value have been taken repeatedly. Accuracy of nu-
merical values can also be affected by wrong or erroneous measurements or simply
by errors like transposition of digits when measurements are recorded manually.
For categorical attributes, problems with accuracy can result from misspellings like
“fmale” for a value of the attribute gender, and also from erroneous entries.

We distinguish between syntactic and semantic accuracy. Syntactic accuracy
means that a considered value might not be correct, but it belongs at least to the do-
main of the corresponding attribute. For a categorical attribute like gender for which
only the values female and male are admitted, “fmale” violates syntactic accuracy.
For numerical attributes, syntactic accuracy does not only mean that the value must
be a number and not a string or text. Also certain numerical values can be out of the
range of syntactic accuracy. Attributes like weight or duration will admit only pos-
itive values, and therefore negative values would violate syntactic accuracy. Other
numerical attributes have an interval as their range like [0, 100] for the percentage
of votes for a candidate. Negative values and values larger than 100 should not oc-
cur. For integer-valued attributes like the number of items a customer has bought,
floating-point values should be excluded.

Problems with semantic accuracy mean that a value might be in the domain of
the corresponding attribute, but it is not correct. When the attribute gender has the
value female for the customer John Smith, then this is not a question of syntactic
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accuracy, since female is a possible value of the attribute gender. But it is obviously
a wrong value for a person named “John” 2

Discovering problems of syntactic accuracy in a data set is a relatively easy task.
Once we know the domains of the attributes, we can easily verify, whether the values
lie in the corresponding domains or not. A simple measure for syntactic accuracy is
the fraction of values that lies in the domains of their corresponding attribute.

The verification of semantic accuracy is much more difficult or often even im-
possible. Another source for the same data would enable us to check our data, and
differences not caused by problems with syntactic accuracy indicate problems with
semantic accuracy. Sometimes also certain “business rules” are known for the data.
For instance, if we find a record in our data set with the value male for the at-
tribute gender and yes for the attribute pregnant, there must be a problem of se-
mantic accuracy based on the known “business rule” that only women can be preg-
nant.

Whether or to what detail we check syntactic and semantic accuracy depends
very much on how the data were generated. Especially, when data were entered
manually, there is a higher chance of accuracy problems. In any case, it is recom-
mended to carry out at least some simple tests to see whether there might be prob-
lems with accuracy. However, the usual practice is to keep these tests at a minimum
and to find out later on that there are problems with accuracy, namely when the data
analysis yields implausible results.

Throughout this book we normally assume that the data are already given, for
example, as a database table. This is not the best point in time to cope with data
quality problems. Chances of avoiding or reducing data quality problems are highest
when the data are entered into the database. For instance, instead of letting a user
type in the value of categorical attribute with the danger of misspellings, one could
provide a fixed selection of values from which the user can choose.

Another dimension of data quality is completeness which can be divided into
completeness with respect to attribute values and completeness with respect to
records. Completeness with respect to attribute values refers to missing values
(which will be discussed in Sect. 4.6). When missing values are explicitly marked
as such, then a simple measure for this dimension of data quality is the fraction of
missing values among all values. But we will see that missing values are not al-
ways directly recognizable, so that the fraction of known missing values might only
provide a lower bound for the fraction of actually missing values.

Completeness with respect to records means that the data set contains the nec-
essary information that is required for the analysis. Some records might simply
be missing for some technical reasons. Data might have been lost because a few
years ago the underlying database system was changed and only those data records
were transferred to the new database that were considered to be important at that
point in time. In a customer database, customers who had not bought anything for
a longer time might not have been transferred to the new database (in order to

ZNote, however, that the problem may also reside with the name. Maybe the name of the person
was misspelled, and the correct name is “Joan Smith”—then the gender is actually female.
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eliminate potential zombie customers), or older transactions were not stored any-
more.

Very often the available data set itself is biased and not representative. Consider
as an example a bank that provides mortgages to private customers. If the aim of the
analysis is to predict whether future applicants of loans will return the loan, we must
take into account that the sample is biased in the sense that we only have information
about those customers who have been granted a loan. For those customers who have
been denied the loan initially, we have no information whether they would have
returned the loan or not. But these customers especially could be the ones for whom
it is interesting to find a good scheme to predict the risk. For customers with high
income and a safe job and no current debt, we need no sophisticated data analysis
techniques to predict that there is a good chance that they will return the loan. Of
course, it is impossible to obtain a representative sample in the statistical sense in
this case. Such a sample would mean that we would have to provide loans to any
customer for a certain period, no matter how bad their financial status is, and collect
and evaluate these data. Unfortunately, this would be a method entailing almost
guaranteed bankruptcy.

The same problems occur in many other areas. For a production plant, we usually
have large amounts of data when it is running in a normal mode. For exceptional
situations, we will have little or no data. We cannot ask for such data, for instance,
by requiring to check what happens if, say, a nuclear plant operates at its limit.

In such cases we might encounter future situations for which we had no corre-
sponding data in our sample. Such possible gaps in the data should be identified. One
should be aware that the space of possible values is automatically covered sparsely
by the data when we have a larger number of attributes. Consider a set of m numer-
ical attributes, and we want to make sure that we have at least positive and negative
values for each attribute in our data set. This does not require a large data set. But
if we want to make sure that we have data for all combinations of positive and neg-
ative values for the considered attributes, this leads to 2" possible combinations. If
we have m = 20 attributes, we already have more than one million possible com-
binations of positive and negative values. Therefore, if we have a data set with one
million records, we have on average one sample for each of these combinations.
For a data set with 100,000 records, at least 90% of the combinations will not be
covered.

Other problems can be caused by unbalanced data. As an example, consider a
production line for goods for which an automatic quality control is to be installed.
Based on suitable measurements, a classifier is to be constructed that sorts out parts
with flaws or faults. The scrap rate in production is usually very small, so that our
data might contain far less than 1% examples for parts with flaws or faults.

Timeliness refers to whether the available data are too old to provide up to date
information or cannot be considered as representative for predictions of future data.
Timeliness is often a problem in dynamically changing domains, where only re-
cently collected data provide relevant information, while older data can be mislead-
ing and can indicate trends that have vanished or even reversed.
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Fig. 4.1 Measured wind speeds with a period of a jammed sensor
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Fig. 4.2 A bar chart (categorical attribute, leff) and a histogram (numerical attribute, right)

4.3 Data Visualization

According to Tukey [25], “there is no excuse for failing to plot and look™ when one
wants to handle a data analysis problem. The right plots of the data can provide
valuable information as the simple time series plot in Fig. 4.1 shows, which en-
ables us to discover zero values that are actually missing values. There are infinitely
many ways to plot data, and it is not always easy to find the best ways of plotting a
given data set. Nevertheless, there are some very useful standard data visualization
techniques that will be discussed in the following.

4.3.1 Methods for One and Two Attributes

A bar chart is a simple way to depict the frequencies of the values of a categorical
attribute. A simple example for a categorical attribute with six values a, b, ¢, d, e,
and f is shown on the left in Fig. 4.2.

A histogram shows the frequency distribution for a numerical attribute. To this
end, the range of the numerical attribute is discretized into a fixed number of inter-
vals (called bins), usually of equal length. For each interval, the (absolute) frequency
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Fig. 4.6 Two boxplots for a
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extreme values from the sample (for instance, the 3% smallest and the 3% largest
values) for calculating and displaying the histogram, or one can deviate from the
principle of bins of equal length.

Boxplots are a very compact way to visualize and summarize main character-
istics of a sample from a numerical attribute. Figure 4.6 shows two boxplots from
samples from a standard normal distribution with mean 0 and variance 1. The left
boxplot is based on sample of size n = 1000, whereas a sample of size n = 100
was used for the right boxplot.

The line in the middle of a boxplot indicates the sample median. The notch in
the box is not always shown. It indicates a 95% confidence interval for the median.
The box itself corresponds to the interquartile range covering the middle 50% of the
data. The whiskers are drawn in the following way. The maximum length of each
whisker is 1.5 times the length of the interquartile range. But if there is no data point
at the maximum length of a whisker, the corresponding whisker is shortened until
it reaches the next data point. Data points lying outside the whiskers are considered
as outliers and are indicated in the form of small circles.

Comparing the two boxplots in Fig. 4.6, we can observe the following:

e Although both boxplots come from samples from the same normal distribution,
they look different, since they are based on different samples.

e The notch of the left boxplot, representing a 95% confidence interval for the
median, is much smaller than the notch of the right boxplot because of the larger
sample size for the left boxplot.

e Theoretically, the whiskers for a sample from a symmetric distribution like the
normal distribution should have roughly the same length. For the boxplot based
on the smaller sample size, we can see that whiskers differ significantly in length,
since—by chance—the largest value among the sample of 100 values was not
greater than 2, whereas the smallest value was smaller than —3.

¢ In contrast to the boxplot on the left-hand side, the right boxplot does not contain
any outliers. This is again due to the smaller sample size. The theoretical length
of the interquartile range for a standard normal distribution is 1.349. Therefore,
the probability of a point lying outside the (theoretical) range [—2.698, 2.698] of
the whiskers is almost 0.7%. Therefore, for a sample from a normal distribution
of size n = 1000, we can expect roughly 7 outliers on average in a boxplot and
less than one for a sample of size n = 100.
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The boxplots of asymmetric distributions look completely different. If we sample
from an exponential distribution, whose probability density function is shown in
Fig. 4.7, we obtain boxplots as they are shown in Fig. 4.8. The boxplots on the left
and right represent samples of sizes n = 1000 and n = 100, respectively.

Bar charts, histograms, and boxplots are visualizations for single attributes. In
most cases, we have to deal with a number of attributes, and we are not only inter-
ested in the characteristics of single attributes but also in the relations and depen-
dencies between the attributes. However, the display for visualizing the data is two-
dimensional, and even if we use 3D-techniques from computer graphics, we cannot
directly display more than two or three variables at the same time in a simple co-
ordinate system, unless we use additional features such as symbols, color, and size.
Scatter plots refer to displays where two attributes are plotted against each other.
The two axes of the coordinate system represent the two considered attributes, and
each instance in the data set is represented by a point, a circle, or any other symbol.

Simple scatter plots are not suited for larger data sets. For a data set with one
million objects and a window size of 500 x 500 pixels, we would have on average
four data objects per pixel. For larger data sets, many points or symbols in the scatter
plot will be plotted at the same position, and we cannot distinguish whether a point
in the scatter plot represents one or 100 objects. In the worst case, a scatter plot for a
larger data set might simply look like the one in Fig. 4.9, providing only information
about the range of the data, but no hint concerning the distribution of the data.
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This can be amended by using density plots or plots based on binning. Using
semitransparent points for plotting the data is one way to generate a density plot.
Each plotted point is semitransparent, and the more points are plotted at the same
place, the less transparent the image will become in this place. Binning was already
used to generate histograms, and the principle is used for the scatter plots. The two-
dimensional domain of the data for the scatter plot is partitioned into bins of the
same size. Possible forms for the bins are rectangles or hexagons. The intensity of
the color for the bin is chosen proportional to the number of data objects falling into
the bin. Figure 4.10 shows a density plot on the left and a plot based on a hexagonal
binning on the right for the same data set displayed in Fig. 4.9. Both plots indicate
a higher density of the data around the point (0.6, 0.4), which cannot be seen in the
simple scatter plot in Fig. 4.9.

Scatter plots can be enriched with further information in order to involve more
attributes. Different plot symbols or colors can be used for plotting the points in
order to include information about a categorical attribute. Color intensity and the
size of the symbols are possible means to indicate the value of additional numerical
attributes.

Figure 4.11 shows two scatter plots of the Iris data set—one displaying the sepal
length versus the sepal width and the other one the petal length versus the petal
width—in which different species are displayed by different colors. Both plots show
that the red circles, representing the species Iris setosa, can be well distinguished
from the other two species, Iris versicolor and Iris virginica, displayed as triangles
and crosses, respectively. However, the left chart in Fig. 4.11 gives the impression
that Iris virginica and Iris versicolor are very difficult to distinguish, at least when
we only take the sepal length and the sepal width into account. When we consider
the petal length and the petal width (right chart in Fig. 4.11), we can still see the
overlap of the corresponding symbols for the species, but there is a clear tendency
that Iris virginica tends to larger values than Iris versicolor for the petal length and
width.
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Fig. 4.10 Density plot (left) and a plot based on hexagonal binning (right) for the same data set
as shown in Fig. 4.9
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Fig.4.11 Scatter plots of the iris data set for sepal length vs. sepal width (/ef) and for petal length
vs. petal width (right). All quantities are measured in centimeters (cm)

Comparing the number of red circles in Figs. 4.11 (left and right), there seem to
be less red circles on the right. But how can some of the objects suddenly vanish
in the scatter plot? When we count the number of red circles, we see that in both
scatter plots there are less than 50, although the data set contains 50 instances of
Iris setosa that should be displayed by red circles. The circles are not missing in the
scatter plots. Some circles are simply plotted at exactly the same position, since their
measured sepal length and width or their measured petal length and width coincide.
Recall that these values were only measured with a precision of just one digit right
after the decimal point. To avoid this impression of seeing less objects than there
actually are, one can add jitter to the scatter plot. Instead of plotting the symbols
exactly at the coordinates specified by the values in the data set, we add a small ran-
dom value to each original value in the data table. The left chart in Fig. 4.12 shows
the resulting scatter plot with jitter where we have added random values from a uni-
form distribution on the interval [—0.04, 0.04] to the original values. This ensures
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Fig.4.12 The same scatter plot as in Fig. 4.11 on the right, but with jitter (left) and with jitter and
two outliers (right; the outliers are the red points in the top left and top right corners)

that a point originally lying left or below another point will always remain left or
below the other point, even when the jitter is added.

Jitter is essential when categorical attributes are used for the coordinate axes of
a scatter plot, since categorical attributes have only a limited number of possible
values, so that plotting of objects at exactly the same position occurs very often
when no jitter is added.

From a scatter plot we can already extract important information. Consider again
the scatter plot displayed in Fig. 4.12. We can see that the petal length and width
are correlated. Objects with larger values for the petal length also tend to have larger
values for the petal width. The scatter plot also shows that Iris setosa—the red circles
in the scatter plot—can be easily distinguished from the other two species just on
the basis of the petal length or width. The scatter plot does not indicate that the other
two species cannot be separated clearly. It only shows that, solely based on the petal
length and width, it is not possible to distinguish the two species perfectly. Outliers
can also be discovered in scatter plots. The left chart in Fig. 4.12 does not have any
outliers. In the right chart, however, we have added two artificial outliers. The data
point in the upper left corner is a clear outlier with respect to the whole data set. Note
that the values for the attributes petal length and width are both in the general range
of the corresponding attributes in the data set. But there is no other object in the data
set with a similar combination of these attribute values. The second outlier in the
right chart of Fig. 4.12—the circle in the upper right corner—is not an outlier with
respect to the values for the petal length and width or their combination. However, it
is an outlier for the class Iris setosa displayed by red circles. Whenever such outliers
are discovered, one should check the data or the data generating process again to
ensure that the outliers are not due to erroneous data.

It should be noted that the scatter plots—Tlike all other visualization techniques—
are very useful tools to discover simple structures and patterns or peculiar deviations
like outliers in a data set. But there is no guarantee that a scatter plot or any visu-
alization technique will automatically show all or even any interesting or deviating
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Ta tlvle 4.1 Preser\fation of the Principal component
variance of the Iris data set

depending onthe number of PCl PC2 PC3 PC4
principal components Proportion of variance (.73 0.229 0.0367 0.00518

Cumulative proportion (.73 0958  0.9948  1.00000

The left chart in Fig. 4.13 is a plot of the petal length and width of the Iris data
set. However, apart from the necessary centering of the data around the origin by
subtracting the mean, the data have been z-score standardized by the transforma-
tion

x> T EX (4.6)

ax

where /i x and 6x are the mean value and empirical standard deviation of attribute X
(see also Sect. 6.3.2), respectively. Without standardization, the result of PCA would
depend on the scaling of the attributes. If no standardization is carried out, the at-
tribute with the largest variance can easily dominate the first principal component.
For the example in Fig. 4.13 with z-score standardization, the first principal compo-
nent is the vector (+/2/2, +/2/2). If the petal length is measured in meters instead of
centimeters, but petal width is still measured in centimeters, the first principal com-
ponent without z-score standardization becomes the vector (0.0223, 0.9998), since
the variance of the petal length has been decreased drastically by the scaling factor
0.01 resulting from the change from centimeters to meters, so that more or less only
the petal width contributes to the variance in the data.

PCA can be used for visualization purposes by restricting to the first two principal
components. More generally, PCA can carry out a dimension reduction to any lower-
dimensional space; even more, PCA also provides information about over how many
dimensions the data set actually spreads. This information can be extracted from
the eigenvalues Ay > --- > ), of the covariance matrix. When we project the
data to the first ¢ principal components vy, ..., vy corresponding to the eigenvalues
Al ..., Ag, this projection will preserve a fraction of

Aty

4.7
A-l‘i""‘i‘)\dm ( )

of the variance of the original data. Table 4.1 shows the corresponding result of
PCA applied to the Iris data set without the categorical attribute for the species.
A projection of this four-dimensional data set to the first principal component, i.e.,
to only one dimension, covers already 73% of the variance of the original data set.
A projection to a plane defined by the first two principal components covers already
95.8% of the variance. This means that the four numerical attributes of the Iris data
set are not located on a two-dimensional plane in the four-dimensional space but do
not deviate too much from the plane defined by the first two principal components.
The right chart in Fig. 4.13 shows the projection of the Iris data set to the first two
principal components where PCA was carried out after the z-score standardization
had been applied.



