International Series in
Operations Research & Management Science

Michel Gendreau - Jean-Yves Potvin
Editors

book of
taheuristics

@ Springer

Michel Gendreau - Jean-Yves Potvin
Editors

Handbook of Metaheuristics

Third Edition

@ Springer

Editors

Michel Gendreau Jean-Yves Potvin

Department of Mathematics Département d’informatique et de
and Industrial Engineering recherche opérationnelle
Polytechnique Montréal Université de Montréal

Montreal, QC, Canada Montreal, QC, Canada

ISSN 0884-8289 ISSN 2214-7934 (electronic)

International Series in Operations Research & Management Science

ISBN 978-3-319-91085-7 ISBN 978-3-319-91086-4 (eBook)

https://doi.org/10.1007/978-3-319-91086-4
Library of Congress Control Number: 2018953159

2nd edition: © Springer Science+Business Media LLC 2010

3rd edition: © Springer International Publishing AG, part of Springer Nature 2019, corrected publication
2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Contents

10

Simulated Annealing: From Basics to Applications

Daniel Delahaye, Supatcha Chaimatanan, and Marcel Mongeau

Tabu Search e

Michel Gendreau and Jean-Yves Potvin

Variable Neighborhood Search

Pierre Hansen, Nenad Mladenovié, Jack Brimberg,
and José A. Moreno Pérez

Large Neighborhood Search

David Pisinger and Stefan Ropke

Iterated Local Search: Framework and Applications

Helena Ramalhinho Lourengo, Olivier C. Martin, and Thomas Stiitzle

Greedy Randomized Adaptive Search Procedures: Advances

and EXtensions. e

Mauricio G. C. Resende and Celso C. Ribeiro

Intelligent Multi-Start Methods

Rafael Marti, Ricardo Aceves, Maria Teresa Ledn,
Jose M. Moreno-Vega, and Abraham Duarte

Next Generation Genetic Algorithms: A User’s

Guide and Tutorial

Darrell Whitley

An Accelerated Introduction to Memetic Algorithms

Pablo Moscato and Carlos Cotta

Ant Colony Optimization: Overview and Recent Advances.

Marco Dorigo and Thomas Stiitzle

XV

Xvi

11

12

13

14

15

16

17

18

Contents

Swarm Intelligence
Xiaodong Li and Maurice Clerc

Metaheuristic Hybrids
Giinther R. Raidl, Jakob Puchinger, and Christian Blum

Parallel Metaheuristics and Cooperative Search.
Teodor Gabriel Crainic

A Classification of Hyper-Heuristic Approaches: Revisited
Edmund K. Burke, Matthew R. Hyde, Graham Kendall, Gabriela Ochoa,
Ender Ozcan, and John R. Woodward

Reactive Search Optimization: Learning While Optimizing
Roberto Battiti, Mauro Brunato, and Andrea Mariello

Stochastic Search in Metaheuristics
Walter J. Gutjahr and Roberto Montemanni

Automated Design of Metaheuristic Algorithms
Thomas Stiitzle and Manuel Lopez-Ibaiiez

Computational Comparison of Metaheuristics
John Silberholz, Bruce Golden, Swati Gupta, and Xingyin Wang

Correction to: Swarm Intelligence

Contributors

Ricardo Aceves
Universidad Nacional Auténoma de México, Mexico City, Mexico

Roberto Battiti
University of Trento, Trento, [taly

Christian Blum
Artificial Intelligence Research Institute, Bellaterra, Spain

Jack Brimberg
Royal Military College of Canada, Kingston, ON, Canada

Mauro Brunato
University of Trento, Trento, Italy

Edmund K. Burke
University of Leicester, Leicester, UK

Supatcha Chaimatanan
Geo-Informatics and Space Technology Development Agency, Siracha, Thailand

Maurice Clerc
Independent Consultant, Groisy, France

Carlos Cotta
Universidad de Mdlaga, Mdlaga, Spain

Teodor Gabriel Crainic
Ecole des Sciences de la Gestion, Université du Québec a Montréal, Montréal, QC,
Canada

CIRRELT, Montréal, QC, Canada

Xvii

Xviil Contributors

Daniel Delahaye
Ecole Nationale de I’ Aviation Civile, Toulouse, France

Marco Dorigo
Université Libre de Bruxelles, Brussels, Belgium

Abraham Duarte
Universidad Rey Juan Carlos, Madrid, Spain

Michel Gendreau
Polytechnique Montréal, Montréal, QC, Canada
CIRRELT, Montréal, QC, Canada

Bruce Golden
R.H. Smith School of Business, University of Maryland, College Park, MD, USA

Swati Gupta
Simons Institute for the Theory of Computing, University of California, Berkeley,
CA, USA

Walter J. Gutjahr
University of Vienna, Vienna, Austria

Pierre Hansen

Ecole des Hautes Etudes Commerciales, Montréal, QC, Canada
GERAD, Montréal, QC, Canada

Matthew R. Hyde

University of Nottingham, Nottingham, UK

Graham Kendall

University of Nottingham Malaysia Campus, Semenyih, Malaysia

Maria Teresa Ledn
Universidad de Valencia, Valencia, Spain

Xiaodong Li
RMIT University, Melbourne, VIC, Australia

Manuel Lépez-Ibifiez
Alliance Manchester Business School, University of Manchester, Manchester, UK

Helena Ramalhinho Lourengo
Universitat Pompeu Fabra, Barcelona, Spain

Andrea Mariello
University of Trento, Trento, [taly

Rafael Marti
Universidad de Valencia, Valencia, Spain

Olivier C. Martin
Université Paris-Sud, Orsay, France

Contributors Xix

Nenad Mladenovié
Mathematical Institute, SANU, Belgrade, Serbia

Marcel Mongeau
Ecole Nationale de I’ Aviation Civile, Toulouse, France

Roberto Montemanni
Dalle Molle Institute for Artificial Intelligence, University of Applied Sciences of
Southern Switzerland, Manno, Switzerland

Jose M. Moreno-Vega

Universidad de La Laguna, San Cristébal de La Laguna, Spain
Pablo Moscato

The University of Newcastle, Newcastle, NSW, Australia

Gabriela Ochoa
University of Stirling, Stirling, UK

Ender Ozcan
University of Nottingham, Nottingham, UK

José A. Moreno Pérez

Universidad de La Laguna, San Cristébal de La Laguna, Spain
David Pisinger

Technical University of Denmark, Lyngby, Denmark
Jean-Yves Potvin

Université de Montréal, Montréal, QC, Canada

CIRRELT, Montréal, QC, Canada

Jakob Puchinger
CentraleSupélec, Gif-sur-Yvette, France

Giinther R. Raidl
Institute of Logic and Computation, TU Wien, Vienna, Austria

Mauricio G. C. Resende
Amazon.com, Seattle, WA, USA
University of Washington, Seattle, WA, USA

Celso C. Ribeiro
Universidade Federal Fluminense, Niterdi, Brazil

Stefan Ropke
Technical University of Denmark, Lyngby, Denmark

John Silberholz
Ross School of Business, University of Michigan, Ann Arbor, MI, USA

Thomas Stiitzle
Université Libre de Bruxelles, Brussels, Belgium

XX Contributors
Xingyin Wang
Singapore University of Technology and Design, Singapore, Singapore

Darrell Whitley
Colorado State University, Fort Collins, CO, USA

John R. Woodward
Queen Mary University of London, London, UK

Chapter 1)

Check for

Simulated Annealing: From Basics
to Applications

Daniel Delahaye, Supatcha Chaimatanan, and Marcel Mongeau

Abstract Simulated Annealing (SA) is one of the simplest and best-known meta-
heuristic method for addressing difficult black box global optimization problems
whose objective function is not explicitly given and can only be evaluated via some
costly computer simulation. It is massively used in real-life applications. The main
advantage of SA is its simplicity. SA is based on an analogy with the physical an-
nealing of materials that avoids the drawback of the Monte-Carlo approach (which
can be trapped in local minima), thanks to an efficient Metropolis acceptance cri-
terion. When the evaluation of the objective-function results from complex simula-
tion processes that manipulate a large-dimension state space involving much mem-
ory, population-based algorithms are not applicable and SA is the right answer to
address such issues. This chapter is an introduction to the subject. It presents the
principles of local search optimization algorithms, of which simulated annealing is
an extension, and the Metropolis algorithm, a basic component of SA. The basic
SA algorithm for optimization is described together with two theoretical properties
that are fundamental to SA: statistical equilibrium (inspired from elementary sta-
tistical physics) and asymptotic convergence (based on Markov chain theory). The
chapter surveys the following practical issues of interest to the user who wishes to
implement the SA algorithm for its particular application: finite-time approxima-
tion of the theoretical SA, polynomial-time cooling, Markov-chain length, stopping
criteria, and simulation-based evaluations. To illustrate these concepts, this chapter
presents the straightforward application of SA to two classical and simple classi-
cal NP-hard combinatorial optimization problems: the knapsack problem and the

[). Delahaye (>4) - M. Mongeau
Ecole Nationale de 1’ Aviation Civile, Toulouse, France
e-mail: daniel.delahaye @enac.fr; marcel. mongeau @enac.fr

S. Chaimatanan
Geo-Informatics and Space Technology Development Agency, Siracha, Thailand
e-mail: supatcha@ gistda.or.th

© Springer International Publishing AG, part of Springer Nature 2019 1
M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics,

International Series in Operations Research & Management Science 272,
https://doi.org/10.1007/978-3-319-91086-4_1

2 D. Delahaye et al.

traveling salesman problem. The overall SA methodology is then deployed in detail
on a real-life application: a large-scale aircraft trajectory planning problem involv-
ing nearly 30,000 flights at the European continental scale. This exemplifies how to
tackle nowadays complex problems using the simple scheme of SA by exploiting
particular features of the problem, by integrating astute computer implementation
within the algorithm, and by setting user-defined parameters empirically, inspired
by the SA basic theory presented in this chapter.

1.1 Introduction

Simulated Annealing (SA) is one of the simplest and best-known metaheuristic
methods for addressing difficult black box global optimization problems, whose ob-
jective function is not explicitly given and can only be evaluated via some costly
computer simulation. It is massively used in real-life applications. The expression
“simulated annealing” yields over one million hits when searching through the
Google Scholar web search engine dedicated to the scholarly literature.

This chapter is an introduction to the subject. It is organized as follows. The first
section introduces the reader to the basics of the simulated annealing algorithm.
Section 1.2 deals with two theoretical properties of SA: statistical equilibrium and
asymptotic convergence. Practical issues of interest when implementing SA are dis-
cussed in Sect. 1.3: finite-time approximation, polynomial-time cooling, Markov-
chain length, stopping criteria and simulation-based evaluations. Section 1.4 illus-
trates the application of SA to two classical NP-hard combinatorial optimization
problems: the knapsack problem and the traveling salesman problem. A real-life
application, large-scale aircraft trajectory planning problem, is finally tackled in
Sect. 1.5 in order to illustrate how the particular knowledge of an application and
astute computer implementation must be integrated within SA in order to tackle
nowadays complex problems using the simple scheme of SA.

1.2 Basics

In the early 1980s three IBM researchers, Kirkpatrick et al. [11], introduced the
concepts of annealing in combinatorial optimization. These concepts are based on a
strong analogy with the physical annealing of materials. This process involves bring-
ing a solid to a low energy state after raising its temperature. It can be summarized
by the following two steps (see Fig. 1.1):

e Bring the solid to a very high temperature until “melting” of the structure;
e Cool the solid according to a very particular temperature decreasing scheme in
order to reach a solid state of minimum energy.

1 Simulated Annealing: From Basics to Applications 3

In the liquid phase, the particles are distributed randomly. It is shown that the
minimum-energy state is reached provided that the initial temperature is sufficiently
high and the cooling time is sufficiently long. If this is not the case, the solid will be
found in a metastable state with non-minimal energys; this is referred to as hardening,
which consists in the sudden cooling of a solid.

Liquid State Solid State : Metastable
o o0 ¢ T Hardenin,

° :. . g

° °

°e® %o ®
® o0 . t

° © ——

Liquid State Solid State : Crystal

° © T e o o o

s * o, ® e o o o
] L] e o o o
°e® %, - e o o o
® oo L e o o o
o @) * * e

Minimum Energy

Fig. 1.1 When the temperature is high, the material is in a liquid state (left). For a hardening
process, the material reaches a solid state with non-minimal energy (metastable state; top right). In
this case, the structure of the atoms has no symmetry. During a slow annealing process, the material
reaches also a solid state but for which atoms are organized with symmetry (crystal; bottom right)

Before describing the simulated annealing algorithm for optimization, we need to
introduce the principles of local search optimization algorithms, of which simulated
annealing is an extension.

1.2.1 Local Search (or Monte Carlo) Algorithms

These algorithms optimize the cost function by exploring the neighborhood of the
current point in the solution space.

In the next definitions, we consider (S, f) an instantiation of a combinatorial
optimization problem (§: set of feasible solutions, f: objective function to be mini-
mized).

Definition 1 Let A" be an application that defines for each solution i € S a subset
Si C S of solutions “close” (to be defined by the user according to the problem of
interest) to the solution i. The subset S; is called the neighborhood of solution i.

In the next definitions, we consider that .4 is a neighborhood structure associ-
ated with (S, f).

Definition 2 A generating mechanism is a mean for selecting a solution j in any
neighborhood S; of a given solution i.

4 D. Delahaye et al.

A local search algorithm is an iterative algorithm that begins its search from a fea-
sible point, randomly drawn in the state space. A generation mechanism is then
successively applied in order to find a better solution (in terms of the objective func-
tion value), by exploring the neighborhood of the current solution. If such a solution
is found, it becomes the current solution. The algorithm ends when no improvement
can be found, and the current solution is considered as the approximate solution
of the optimization problem. One can summarize the algorithm by the following
pseudo-code for a minimization problem:

Local Search

1. Draw an initial solution i;

2. Generate a solution j from the neighborhood S; of the current solution i;
3. If f(j) < f(i) then j becomes the current solution;

4. If f(j) = f(i) for all j € S; then END;

5. Go to step 2;

Definition 3 A solution i* € § is called a local optimum with respect to A for (S, f)

if (") < f(j) for all j € Sp-.

Definition 4 The neighborhood structure A is said to be exact if, for every local
optimum with respect to A, i* € S, i* is also a global optimum of (S, f).

Thus, by definition, local search algorithms converge to local optima unless one
has an exact neighborhood structure. This notion of exact neighborhood is theoreti-
cal because it generally leads, in practice, to resort to a complete enumeration of the
search space.

Intuitively, if the current solution “falls” in a subdomain over which the objective
function is convex, the algorithm remains trapped in this subdomain, unless the
neighborhood structure associated with the generation mechanism can reach points
outside this subdomain.

In order to avoid being trapped in local minima, it is then necessary to define a
process likely to accept current state transitions that momentarily reduce the perfor-
mance (in terms of objective) of the current solution: this is the main principle of
simulated annealing.

Before describing this algorithm, it is necessary to introduce the Metropolis al-
gorithm [15] which is a basic component of SA.

1.2.2 Metropolis Algorithm

In 1953, three American researchers [15] developed an algorithm to simulate the
physical annealing process, as described in Sect. 1.2. Their aim was to reproduce
faithfully the evolution of the physical structure of a material undergoing annealing.

1 Simulated Annealing: From Basics to Applications 5

This algorithm is based on Monte Carlo techniques which consist in generating a
sequence of states of the solid in the following way.

Starting from an initial state / of energy E;, a new state j of energy E; is generated
by modifying the position of one particle.

If the energy difference, E; — E;, is positive (the new state features lower en-
ergy), the state j becomes the new current state. If the energy difference is less than
or equal to zero, then the probability that the state j becomes the current state is
given by:

Pr{Current state = j} = e(w1
where T represents the temperature of the solid and kp is the Boltzmann constant
(kg = 1.38 x 1072 J/K).

The acceptance criterion of the new state is called the Metropolis criterion. If the
cooling is carried out sufficiently slowly, the solid reaches a state of equilibrium at
each given temperature T. In the Metropolis algorithm, this equilibrium is achieved
by generating a large number of transitions at each temperature. The thermal equi-
librium is characterized by the Boltzmann statistical distribution. This distribution
gives the probability that the solid is in the state i of energy E; at the temperature 7":

PriX =i} = Z(IT)e_(%)’

where X is a random variable associated with the current state of the solid and Z(T')
is a normalization coefficient, defined as:

Z(T) = Ze_(%).

JES

1.2.3 Simulated Annealing (SA) Algorithm

In the SA algorithm, the Metropolis algorithm is applied to generate a sequence of
solutions in the state space S. To do this, an analogy is made between a multi-particle
system and our optimization problem by using the following equivalences:

e The state-space points (solutions) represent the possible states of the solid;
e The function to be minimized represents the energy of the solid.

A control parameter ¢, acting as a temperature, is then introduced. This parameter
is expressed with the same units as the objective that is optimized.

It is also assumed that the user provides for each point of the state space, a neigh-
borhood and a mechanism for generating a solution in this neighborhood. We then
define the acceptance principle:

6 D. Delahaye et al.

Definition 5 Let (S, f) be an instantiation of a combinatorial minimization prob-
lem, and i, j two points of the state space. The acceptance criterion for accepting
solution j from the current solution i is given by the following probability :

, if f(7) < f(i)
Pr{ accept j} = (ftf')fft;)) ;
e ¢ else.

By analogy, the principle of generation of a neighbor corresponds to the per-
turbation mechanism of the Metropolis algorithm, and the principle of acceptance
represents the Metropolis criterion.

Definition 6 A transition represents the replacement of the current solution by a
neighboring solution. This operation is carried out in two stages: generation and
acceptance.

In the sequel, let ¢, be the value of the temperature parameter, and L; be the
number of transitions generated at some iteration k. The principle of SA can be
summarized as follows:

Simulated Annealing

)

. Initialization (i := igg, k := 0, ¢ = o, Ly := Lo);
. Repeat
. For I =0to L; do

W N

¢ Generate a solution j from the neighborhood S; of the current solution
i3

e If f(j) < f(i) then i := j (j becomes the current solution);

IGEN)
o Else, j becomes the current solution with probability e(%);
4. k:=k+1;
5. Compute(Ly, cy);

=)

. Until ¢; ~ 0.

One of the main features of simulated annealing is its ability to accept transitions
that degrade the objective function.

At the beginning of the process, the value of the temperature ¢ is high, which
makes it possible to accept transitions with high objective degradation, and thereby
to explore the state space thoroughly. As ¢, decreases, only the transitions improving
the objective, or with a low objective deterioration, are accepted. Finally, when c¢;
tends to zero, no deterioration of the objective is accepted, and the SA algorithm
behaves like a Monte Carlo algorithm.

1 Simulated Annealing: From Basics to Applications 7

1.3 Theory

This section addresses two theoretical properties that are fundamental to SA: statis-
tical equilibrium and asymptotic convergence. More details and proofs of the theo-
rems cited in this section can be found in the books [1, 13].

1.3.1 Statistical Equilibrium

Based on the ergodicity hypothesis that a particle system can be considered as a
set having observable statistical properties, a number of useful quantities can be
deduced from the equilibrium statistical system: mean energy, energy distribution,
entropy. Moreover, if this particle set is stationary, which is the case when the statis-
tical equilibrium is reached, the probability density associated with the states in the
equilibrium phase depends on the energy of the system. Indeed, in the equilibrium
phase, the probability that the system is in a given state i with an energy E; is given
by the Boltzmann law:

Theorem 1 After a sufficient number of transitions with a fixed control parameter
¢ and using the following probability of acceptance:

1 el .
P{accepr j|S;} = { (M if f(J) < f(i)
e

¢) else,

the simulated annealing algorithm will find a given solution i € S with the
probability:

PAX =i} = qic) = ﬁ@e(f”),

where X is the random variable representing the current state of the annealing algo-
rithm, and Ny(c) is the normalization coefficient:

_ I
No(c) = Ze(c)
jes
Definition 7 Let A and B be two sets such that B C A. We define the characteristic
function of B, noted K(p), to be the function such that:

l ifaeB
K(B)(a) - { 0 else.

Corollary 1 For any given solution i, we have:

cl—l>l(])1* Pt{X - I} - cg-%l' q;(C) = qi = K(SW’)(‘)’

‘Snpr‘

where S, represents the set of global optima.

8 D. Delahaye et al.

This result guarantees the asymptotic convergence of the simulated annealing al-
gorithm towards an element of the set of global optima, provided that the stationary
distribution g;(c), i € S, is reached at each value of ¢. For a discrete state space, such
distributions are discrete and one can compute the probability to reach one particular
point x; in the state space with an objective value y;:

jes

The expected value of the function f to optimize at equilibrium for any positive
value of c is denoted (f). and the variance is denoted (f2)..

At a very high temperature ¢, the SA algorithm moves randomly in the state
space. With each point x; generated by this process, is associated an objective value
yi by the mapping y{ = f(x;). If we consider this process for a long period, it is
possible to build the distribution of the objective function values y¢, (i = 1,2,...,N)
generated by the SA process. This distribution depends on the temperature ¢ and
will be denoted ¢(c). For large values of ¢, this distribution is equal to the objective
distribution. Figure 1.2 gives an example of such a distribution. The figure shows
a one-dimensional objective function for which the circles represent the samples of
the SA algorithm at some high temperature ¢|. The dashed horizontal line shows
the mean of this distribution (< f(c;) >), and on the left-hand side the associated
distribution is represented by the dashed graph (g(c;)). For a lower temperature ¢z,
some transitions in the SA process are not accepted, meaning that the associated
distribution g(c2) is shifted to the lower levels (squares in the objective function on
the right and solid graph on the left) with a lower expected value.

Definition 8 The entropy at equilibrium is

H. =Y gi(c)in(gi(c)).

ics
Corollary 2 One has:
e _ o
de 52
JdH. __ O;
P T S

These last two expressions play an important role in statistical mechanics. We
also deduce the following expressions:

1 Simulated Annealing: From Basics to Applications 9

y=f(x)
. eV
l' ‘ ‘
' f
' f
i —~
B o N
S AN I » | c2<cl
_ L 5 N, AN SN S ol SO ((5)
9 \ . ' T
= ‘\‘ P "-_ 1/ Lro b e <f(c2)>
A / - \J | / LW \
N [| h | & AV, s \
Ay I) ".‘
\ | - \/ .
1 ".‘
\ . \
/ | x

Fig. 1.2 Distribution of the objective function values at some high temperature ¢; and at a lower
temperature ¢

Corollary 3
limeseo(f)e = () = 15 Dies (1) limesso{f)e = (F)o = fopr,

lime 0 = 02 = ﬁzfgs(f(f) —(f)=)?* limc 007 =05 =0,

im0 He = H., = In(|S]) lime 0 He = Ho = In(|Sop|),

where fo,; denotes the optimal value of f. This last formula represents the third law
in thermodynamics (assuming that there is only one state of minimum energy, we
then obtain: Sy = In(1) = 0).

In physics, the entropy measures the level of disorder associated with the sys-
tem: a high entropy value indicates a chaotic structure, while a low value reflects
organization.

In the context of optimization, the entropy is related to a measure of the degree of
optimality achieved. During the successive SA iterations, the mathematical expec-
tation of the objective function value and of the entropy only decrease and converge
respectively towards fo, and In(|Sop|).

The derivative of the distribution ¢;(c) with the temperature ¢ is given by the
following expression:

9qi(c) _ 4i(c)

T:T[(f)"_f(i)]'

Since (f)¢ < {f)<, one can exhibit three regimes in the simulated annealing pro-
cess. More precisely, one can show the following:

Corollary 4 Let (S, f) be an instantiation of a combinatorial optimization prob-
lem with Sop; # S, and let g;(c) be the stationary distribution associated with the
annealing process. We then have:

10 D. Delahaye et al.

(i) Vi € Sop 24 < 0
(it) Vi & Sop such that f(i) > (f)e : %‘Eﬁ >0;

(i) Vi & Sope such that f(i) < (f)e,3¢ > 0 satisfying:

v
—

C

985 > 0 ifc < &

a =0ifc=¢
") <0ife>é

QJ
,—m.

C

CL»

This corollary indicates that the probability of finding an optimal solution in-
creases monotonically when ¢ decreases. Moreover, for any non-optimal solution,
there exists a positive value ¢; such that for ¢ < ¢, the probability of finding this
solution decreases as ¢ decreases.

Definition 9 The acceptance rate associated with the simulated annealing algo-
rithm is defined by:

Number of accepted transitions

x(e) =

Number of proposed transitions”

As a general rule, when c¢ has a high value, all transitions are accepted and y/(c)
is close to 1. Then, when ¢ decreases, ¥ (c) decreases slowly until reaching 0, indi-
cating that no transitions are accepted.

By observing the evolution of {f). and 6 as a function of ¢, we note that there
exists a critical value called the transition threshold (denoted ¢;), that delimits two
distinct regions of the distribution at equilibrium. This threshold is the value ¢; such
that

1
<f>c; ~ E (< fm > +f0p!)f

and N 5
s oy ifc>cq,
< O'i if ¢ < ¢.
For any given value of ¢, the search space S can therefore be partitioned into two
regions:
1. Region R;: where 6 remains roughly constant (close to 62) when ¢ decreases.

2. Region R,: where o decreases when ¢ decreases.

When ¢ approaches the value of ¢;, the acceptance rate is about 0.5 (i.e., ¥(c;) &
0.5). Furthermore, one can show:

e In Ry, for large values of ¢, (f), is linear in ¢~!, and 0’3 is roughly constant.
e In R,, for small values of ¢, (f). is proportional to ¢, and 0'3 is proportional to
2
c.

1 Simulated Annealing: From Basics to Applications 11

One can then propose the following approximation models for {f). and 0'3 :

<f>c & fo = fopr +N; ((f)m — fopt — UT”%) I
(fle=fo=(fle— GTT% ife>¢

.

0-(2 :0'2 :M20-3; (l:\}"') ifcgcf
2_ 2 2
or=0; =0, ifc>¢
with

. _ 202
€= T f() ot
where, roughly speaking, v is the first-order approximation of {f).. Finally, let us
introduce the specific heat, noted H(c) which is given by the following formula:

2_ ()2
H(c) = d{f)ye (fHii—{fe

de kpc?

and N, =]y"d

A large value of H(c) indicates that the material starts to become solid: in this case,
the decreasing rate of the temperature has to be reduced.

1.3.2 Asymptotic Convergence

The simulated annealing algorithm possesses the property of stochastic convergence
towards a global optimum as long as it provides an infinitely-long temperature decay
diagram with infinitely-small decay steps. This decay scheme is purely theoretical
and one will try in practice to get closer to this ideal while remaining within reason-
able times of execution.

Definition 10 A Markov chain is a sequence of states, where the probability of
reaching a given state depends only on the previous state. Let X (k) be the state
reached at the kth iteration. Then, the probability of transition at the kth iteration
for each state pair i, j is given by F;j(k) = Pr{X (k) = j|X (k—1) = i}. The associ-
ated matrix [P,j(k)| is called the transition matrix.

12 D. Delahaye et al.

In the simulated annealing context, a Markov-chain transition corresponds to a
move in the state space (generation plus acceptance).

Definition 11 The transition probabilities of the SA algorithm are given by:

Gij(cr)Aij(cr) ifi#j

V=% Palcr) ifi=J, (D

viLj €5 By(k) = Bifer) = {
where Gjj(c;) denotes the probability of generating state j from state i; and A;j(cy)
is the probability of accepting the state j generated from the state i. For all i, j € §,
Ajj(cy) is given by:
(, (U)-ra)*)
Ayl =\

o 4+ Jaifa>0
witha _{Oelse.

Theorem 2 Let the transition probability associated with the SA algorithm be de-
fined by (1). Suppose that the following condition is satisfied:

Vi,jeS3p=1,3p,h,...,0, €S,

withly =1i,l, = j,and Gy, ., > 0,k=0,1,....p—1.

Then, the Markov chain has a stationary distribution, denoted q(c) which is the
distribution of the solutions visited by the SA algorithm at temperature c, whose
components are given by:

1 11)

qi(c) = We </ Vies

where No(c) is the normalization coefficient.

Furthermore,
limg(c)=q",
c—0
Wlth q* = Ist'}[’f‘ K(S(apr)(i) 1 S S.
Finally,
lim lim Pr{X{ =i}q(c)=q",
c—0k—peo
and

lim lim Pr{X; € Sopi } =1,

c—+0k—see

where X{ denotes the kth iterate obtained at temperature c¢. This result indicates the
convergence of the simulated annealing algorithm to one of the optimal solutions.

1 Simulated Annealing: From Basics to Applications 13
Generalization:

Theorem 3 Assume that the probabilities of generation and acceptance satisfy the
following assumptions:

(G1)Yex >0, Vi, jeS3p>1, ol lp €S :
ly=il,=jand Gy (c;) >0k=0,1,..,p—1;

(Gg) Vep >0, Vi,j €85 : G,‘J;(Ck) = GJ,‘,'(C;;);

o Agle) =1, i £ > £U)
(Ay) Vep >0, Vi, jk ES.{ Aijler) €]0,1], if £(i)<fj(f)

(A2) Ver >0, Vi, j.k € Swith f(i) < f(j) < f(k), Ai(ck) = Aij(cr)Ajx(ck)
(A3) Vi, j € Swith f(i) < £(j), lim,_,o+ Aj(c) =0

Then, at any iteration k there exists a stationary distribution g(cy) whose compo-
nents are given by:

Aigpilci)

e — V l S Sand iOpI S SOpr-
ZjESAf();)rf (Ck)

gi(cx) =

Moreover, for any iop: € Sop, we have:

1
Jim_giler) = fgo 7 XSom) (i)-

In practice, it is very hard to find acceptance distributions, other than exponential
distributions, that satisfy Aj,A>,As.

The theoretical results presented above are not directly applicable to a practical
SA algorithm since they assume an infinite number of iterations for each value of
¢k, which moreover decreases continuously towards zero.

In the case where the number of iterations at each temperature step is finite, the
simulated annealing can be modeled using a Markovian inhomogeneous model for
which similar results can be established.

The simulated annealing algorithm converges towards an optimal solution of the
optimization problem but it reaches this optimum only for an infinite number of
transitions. The approximation of the asymptotic behavior requires a number of iter-
ations whose order of magnitude is equal to the cardinality of the state space, which
is unrealistic in the context of NP-hard problems. It is therefore necessary to see the
annealing as a mechanism for approaching the global solution of a combinatorial
optimization problem, to which it will be necessary to add a local search method
allowing an optimum to be reached exactly. In other words, the simulated annealing
makes it possible to move in the right attraction basin, and a local method com-

14 D. Delahaye et al.

pletes the optimization process by determining a local optimum within this basin of
attraction corresponding to a global optimum of the problem.

1.4 Practical Issues

This section surveys the following practical issues of interest to the user who
wishes to implement the SA algorithm for its particular application: finite-time ap-
proximation, polynomial-time cooling, Markov-chain length, stopping criteria, and
simulatation-based evaluations.

1.4.1 Finite-Time Approximation

In practice, the convergence conditions will be approximated by choosing, at every
iteration k, relatively small steps of decay of the parameter ¢ and a sufficiently large
number, L, of transitions at this temperature. Intuitively, the greater the decrement,
the greater the length of the stabilization steps to achieve a quasi-equilibrium (de-
fined below). There is therefore a trade-off to find between “large decrement” and
“length” Ly.

A finite-time implementation of a simulated annealing algorithm can be achieved
by generating homogeneous Markov chains of finite length for a finite decreasing
sequence of values of the control parameter c.

Definition 12 A cooling process is defined by:
1. A finite sequence of values of the control parameter c, that is to say:
e Aninitial value co;

e A decay function of parameter c;
e A final value for c.

2. A finite number of transitions for each value of the control parameter, i.e. a finite
length of the associated Markov chain.

Definition 13 Let € be a sufficiently small positive value, k a given iteration num-
ber, Ly the length of the kth Markov chain and cy the value of the control parameter.
We say that we have a quasi-equilibrium if the probability distribution of the solu-
tions after Ly, iterations of the Markov chain (distribution denoted by a(Ly,cy)) is
sufficiently close to the stationary distribution q(cy):

1 _f)
No(cx)

qilex) = e % Vies,

_fl)
No(ck) = ze k.
JES

1 Simulated Annealing: From Basics to Applications 15

That is:
l|a(Li,cx) —qler)|| < €.

The cooling process using the quasi-equilibrium principle is based on the fol-
lowing observation. When the parameter ¢;, tends to oo, the stationary distribution is
given by a uniform law on the set of possible solutions S:

. 1
c_1_lgr1mq(6k) = ml,

where 1 is the vector of dimension |S| whose components are all one.

Thus, for ¢; sufficiently large, each point of the search space is visited with the
same probability and a state of quasi-equilibrium is directly reached whatever the
value of L. Then, the cooling process consists in determining the value (L, ¢y) that
will lead to a quasi-equilibrium at the end of each Markov chain.

There are many possible cooling processes but the two most common ones are
the geometric process proposed by Kirkpatrick [11, 12] and the polynomial-time
cooling proposed by Aarts and Van Laarhoven [2, 3].

1.4.2 Geometric Cooling

¢ Initial temperature cy: A prior heating is performed so that we can find a value
of ¢g large enough so that nearly all transitions are accepted at the first iterations.
In order to find such a value, one starts with a small value ¢g. Then, this value
is progressively multiplied by a number greater than 1 until the acceptance rate
%(co) is close to 1.

e Decay of the control parameter: c; | := ac; where typically 0.8 < o < 0.99.
Stopping criterion: One decides that the algorithm is terminated when the cur-
rent solution does not change any longer from one iteration to the next during a
sufficiently large number of iterations.

o Length of the chain: In theory, it is necessary to allow each chain to reach a state
of quasi-equilibrium. To this end, a sufficient number of acceptable transitions
must be performed, which generally depends on the problem. Since the number
of accepted transitions decrease over time with respect to the number of proposed
transitions Ly, the latter must be lower bounded.

1.4.3 Cooling in Polynomial Time

Let us explain how the initial value of the temperature parameter can be set and how
it should then be iteratively decreased.

16 D. Delahaye et al.

1.4.3.1 Initial Temperature ¢

Let m; be the total number of transitions proposed that improves strictly the value
of objective function, and let m> be the number of other (increasing) proposed tran-

sitions. Moreover, let A f(+) be the average of the cost differences over all the in-
creasing transitions. Then, the acceptance rate can be approximated by:

()
()
my +nne

x(c) =

my +mz

which yields
A f(+)

The proposed initial value of ¢ is then defined as follows:

Initially ¢p is set to zero. Thereafter, a sequence of my transitions is generated
for which the values of m; and my are computed. The initial value of cp is then
calculated from Eq. (1.2), where the value of the acceptance rate, ¥ (c), is defined by
the user. The final value of ¢y is then taken as the initial value in the cooling process.

o~ (1.2)

1.4.3.2 Decay of the Control Parameter

The quasi-equilibrium condition is replaced by:
Yk >0 ||glk) —qk+1)|| <&,

Thus, for two successive values ¢ and cg4 of the control parameter, it is desired
for the stationary distributions to be close. This can be quantified by the following
formula:

) 1 qi(ck)
YieS —— <
1+6 qilcrs)

where § is some small positive number a priori given. The following theorem pro-
vides a necessary condition for satisfying Eq. (1.3).

<1438, (1.3)

Theorem 4 Let g(c;) be the stationary distribution of the Markov chain associated
with the simulated annealing process at iteration k, and let ¢, and ¢y be two
successive values of the control parameter with ¢ < cy, then (1.3) is satisfied if:

1 1

VieS e‘A"(fkT*f_k) <1438, (1.4)

where A; = f(i) — fop-

1 Simulated Annealing: From Basics to Applications 17
The necessary condition (1.4) can be rewritten as:

Ck

Vies Cy1 > m (15)
f(") 7f0,w
One can show that the latter condition (1.5) can be approximated by:
. Ck
Vies Ck+1 >W, (16)
3o,

where o, is the standard deviation of g(cy) at temperature cy.

The decrement of the temperature parameter ¢ is then determined by the user-
defined parameter 8. A large value of & induces large decrements of ¢, and small
value of § produces small decrements.

1.4.3.3 Length of Markov Chains

In the SA cooling process, the length of the Markov chains must allow a signifi-
cant percentage of the neighborhood S; of a given solution i € S to be visited. The
following theorem is used to quantify this percentage:

Theorem 5 Let S be a set of cardinality |S|. Then, the average number of elements
of § visited during a random walk with N iterations is given by:

S| [1 —ei%]

for large N and large |S)|.

Thus, if no transition is accepted and if N = [S;|, the percentage of solutions
visited in the neighborhood S; of a solution /is: 1 — e~ 2/3.

A good choice for the number of iterations of the inner loop (at temperature ci)
at iteration k is given by L; = |S;| where, obviously, |5;| is problem dependent and
has to be designed by the user.

1.4.3.4 Stopping Criterion

Let A{f)c, = (f)e, — fopr- Then, the execution of the algorithm should terminate
when A(f),, is “sufficiently” small with respect to (f),. For sufficiently high val-
ues of ¢, we have < f,; > (f)w

Moreover, for ¢, << 1:

d{fe
A(f)ckt’ck (gf(j(.

18 D. Delahaye et al.

The end of the algorithm is then fixed by the following condition:

Ck a(f)q
(fl e

with some small tolerance &; to be set by the user.

< g forep <<'1

1.4.3.5 Summary

The cooling process in polynomial time is thus parameterized by:

o The initial rate of acceptance: ¥ (cp)

e The distance between successive stationary distributions controlled by the pa-
rameter &

e The stopping criterion, controlled by the parameter &

The number of iterations of this cooling process is bounded and can be charac-
terized by the following theorem:

Theorem 6 Ler the decrement function be given by:

Ck
Cpy] = ———,
(e
where
In(1+8)
O = —(
3o,

and let K be the first integer for which the stopping criterion is satisfied. Then, we
have K = O(In(|§])).

Consequently, if /n(|S|) is polynomial on the size of the problem (which is the
case for many combinatorial optimization problems), then this type of cooling in-
duces a polynomial execution of the algorithm.

There is an optimal annealing scheme for each problem and it is up to the user
to define which one is the most suitable for his application. When one has no prior
information about the optimal annealing scheme, which is generally the case, one
should rely on a standard geometrical scheme for which the parameter ¢; evolves
as follows: ¢z 1= ogcy, and tune empirically the parameters ¢y and L; on some
representative instances of the class of problem of interest.

This geometric approach is not optimal for all problems but has the advantage
of being robust and ensures convergence towards an approximate solution, even
though it requires more time to converge than it would do with an optimal annealing
scheme.

1 Simulated Annealing: From Basics to Applications 19

1.4.4 Simulation-Based Evaluation

In many optimization applications, the objective function is evaluated thanks to a
computer simulation process which requires a simulation environment. In such a
case, the optimization algorithm controls the vector of decision variables, X, which
are used by the simulation process in order to compute the performance (quality), v,
of such decisions, as shown in Fig. 1.3.

Data

|

Simulation
Environment

Optimization

Fig. 1.3 Objective function evaluation based on a simulation process

In this situation, population-based algorithms may not be adapted to address such
problems, mainly when the simulation environment requires huge amount of mem-
ory space as is often the case in nowadays real-life complex systems. As a matter
of fact, in the case of a population-based approach, the simulation environment has
to be duplicated for each individual of the population of solutions, which may re-
quire an excessive amount of memory. In order to avoid this drawback, one may
think about having only one simulation environment which could be used each time
a point in the population has to be evaluated. One first consider the first individ-
ual for which the simulation environment is initiated and the simulation associated
with this first individual is run. The associated performance is then transferred to the
optimization algorithm. After that, the second individual is evaluated, but the simu-
lation environment must first be cleared from the events of the first simulation. The
simulation is then run for the second individual, and so on until the last individual of
the population is evaluated. In this case the memory space is not an issue anymore,
but the evaluation time may be excessive and the overall process too slow, due to
the fact that the simulation environment is reset at each evaluation.

In the standard simulated annealing algorithm, a copy of a state space point is
requested for each proposed transition. In fact, a point X; is generated from the
current point X; through a copy in the memory of the computer. In the case of state
spaces of large dimension, the simple process of implementing such a copy may
be inefficient and may reduce drastically the performance of simulated annealing.

20 D. Delahaye et al.

In such a case, it is much more efficient to consider a come back operator, which
cancels the effect of a generation. Let G be the generation operator which transforms
a point from X; to X :
G
X, — XJ,

The comeback operator is the inverse G~ of the generation operator.

Usually, such a generation modifies only one component of the current solution.
In this case, the vector X; can be modified without being duplicated. Depending on
the value obtained when evaluating this new point, two options may be considered:

1. the new solution is accepted and, in this case, only the current objective function
value is updated.

2. else, the come back operator G~ is applied to the new position in order to come
back to the previous solution, again without any duplication in the memory.

This process is summarized in Fig. 1.4.

o afa]] Ta] [[1[4

dy |dy |dy|dy dy

(COME BACKD
dy |dy |dy | dy d; dy

Fig. 1.4 Optimization of the generation process. In this figure, the state space is built with a de-
cision vector for which the generation process consist of changing only one decision (d;) in the
current solution. If this modification is not accepted, this component of the solution recovers its
former value. The only information to be stored is the integer / and the real number d;.

The come back operator has to be used carefully because it can easily generate
undesired distortions in the way the algorithm searches the state space. For example,
if some secondary evaluation variables are used and modified for computing the
overall evaluation, such variables must also recover their initial value, and the come
back operator must therefore ensure the coherence of the state space.

1.5 Illustrative Applications

In this section, we will see how simulated annealing can be applied to two classi-
cal NP-hard combinatorial optimization problems: the knapsack problem and the
traveling salesman problem.

1 Simulated Annealing: From Basics to Applications 21

1.5.1 Knapsack Problem

The knapsack problem can be defined as follows. Given a set of n item types, each
with a weight and a value, and given a weight limit, determine the number of each
item to include in a collection so that the associated total weight is less than or equal
to the weight limit, and so that the total value is as large as possible. The knapsack
problem derives its name from the problem faced by someone who is constrained
by a fixed-size knapsack and must fill it with the most valuable items.

This problem often arises as a subproblem in resource allocation applications
where there are financial constraints, such as:

e Cargo loading (truck, boat, cargo aircraft)
e Satellite channel assignment
e Portfolio optimization

In the following, we will consider the binary version of the problem, where there
is only one item of each type. Thus, we have n items, each with value v; and weight
w; , i =1,...,n. We must decide whether each item should be put (or not) in a
knapsack of weight limit P, so as to maximize its total value. Before presenting the
application of simulated annealing to such a problem, we first present a mathemati-
cal model for this optimization problem.

1.5.1.1 Mathematical Modeling

As for any real optimization problem to be solved, the modeling step is critical and
has to be done carefully. It models the state space by defining the decision variables,
and it expresses the objective function and the constraint functions in terms of the
decision variables and the given data.

In the binary knapsack problem, we have a vector of binary decision variables
x = (x1,x2,...,%,)7 , where x; = 0 if item i is left out of the knapsack and x; = 1
if item i is put in the knapsack. For a given vector x, the objective function value,
which represents the total value of the items in the knapsack, is:

f(x) = vixi.
-1

‘We want this value to be maximized. If there was no weight limit, there would be no
optimization problem in the sense that all items would fit in the knapsack (i.e., the
optimal decision vector would be x = (1,1,... I)T). Thus, the weight limit makes
the problem combinatorial. This weight limit is the main constraint of this problem
and is modeled by the following inequality:

n
Z wixi. < P.
i=1

22 D. Delahaye et al.
Then, one must add the binary constraints:
xi €40,1}, fori=1,2,...,n.

The overall model is then

n
max f(x) = Zv;x;
i=1
s.t.

n

> pxi<P

i=1

xe{01},i=12,...n

This problem is easy to formulate but hard to solve due to the associated com-
binatorics. For n items, the number of potential solutions to consider is 2" which
grows very rapidly with n:

“ 2;1

10 [1.024x10°
20 | 1.048x10°
30 | 1.073%x10°
40 [1.099x 102
50 |1.125x 1013
60 [1.152x10'8
70 |1.180x 102!
80 [1.208x10%*
90 1.237x10%
100(1.267x 103

For large instances of the knapsack problem, one can consider applying meta-
heuristics like simulated annealing.

1.5.1.2 Simulated Annealing Implementation

For the knapsack problem, each solution is encoded as a binary vector X. From a
point X;, we generate a neighbor X; by randomly flipping one component of X;, as
shown in Fig. 1.5 where the kth component is chosen.

In the unconstrained optimization context of SA, a classical relaxation can be
considered to take into account the weight limit constraint. Basically, a term is added
in the objective function to penalize the violation of this constraint. Here, we com-
pute the weight excess A when the weight of the items in the knapsack exceeds its
weight limit:

A = min(0, (i wix;) — P).
i=1

1 Simulated Annealing: From Basics to Applications 23

and the objective function value is then penalized by subtracting from it [t %, where
U is a penalty parameter to be set by the user.

lk

- ==

1 1| 1]1]0]|1 10|10 Xj

Fig. 1.5 In this example, with n = 10, the sixth position has been randomly selected in order to
include the sixth object in the bag

In order to test the simulated annealing algorithm on this problem, we first build
an instance of the problem by randomly generating 100 items for which the weights
have also been selected randomly between | and 100 with a uniform probability
density function. For this instance, the weight limit of the bag is set to P = 2000.
We choose i =1 for the penalty parameter and we apply the basic SA algorithm
with the initial temperature set to a value of ¢y such that y(c¢) = 0.8, a geometric
cooling schedule with o¢ = 0.995, and L; = 1000 for every iteration k. The algorithm
is stopped when the temperature reaches 5%

We propose as initial solution a uniformly-distributed random binary vector. The
evolution of the penalized objective function with the number of iterations is shown
in Fig. 1.6, and the associated evolution of the total weight and the value of the
knapsack is shown in Fig. 1.7. At the beginning of the optimization process, the
SA explores the solution space by accepting solutions that yield low value of the
penalized objective function. This leads to high excess weight and high total value.
The value of the penalized objective function increases as the algorithm converges to
the optimal solution. Since the excess weight is high at the beginning, the solution is
improved mainly by removing weight from the knapsack, therefore the total weight
and total value decrease. As the excess weight reaches zero (feasible solution) the
solution must be improved by increasing the value (while keeping the weight under
the weight limit). Therefore, the total value increases until it reaches the maximum
value.

1.5.2 Traveling Salesman Problem

The traveling salesman problem (TSP) asks the following question: “Given a list of
n cities, among which an origin city, and the distances between each pair of cities,
what is the shortest possible route that visits each city exactly once and returns to
the origin city?” This is again an important NP-hard combinatorial optimization

24 D. Delahaye et al.

problem, particularly in the fields of operations research and theoretical computer
science. The problem was first formulated in 1930 and is one of the most intensively-
studied problems in discrete optimization.

Penalized objective function
20000 T . T T r T T T T

0 Penelized objective

-20000
-40000
-60000

> -80000
-100000

-120000
-140000
-160000

-180000

0 200 400 600 800 1000 1200 1400 1600 1800 2000
iterations

Fig. 1.6 Evolution of the penalized objective function with iterations

Weight and Value Evolution
22000 T T T T r T .

20000
18000
16000
14000
12000
10000
8000
6000
4000
2000

Weight ——
Value

Weight and Value

0 200 400 600 800 1000 1200 1400 1600 1800 2000
iterations

Fig. 1.7 Evolution of the total weight and value with iterations

As for the knapsack problem, we first present the mathematical modeling.

1 Simulated Annealing: From Basics to Applications 25

1.5.2.1 Mathematical Modeling

Let us consider a set of n cities where each city i has coordinates (x;,y;),i =
1,2,...,n. In this case, each point X of the state space, has to represent a poten-
tial permutation in the order we visit the n cities. For simplicity, we consider the
following initial solution using the lexicographic order:

%o =(2EEL-[A

The objective function evaluation consists in computing the length f of the tour
corresponding to any vector X:

n—1
f(X)=) d(Xi,Xi1)+d(Xn,X1),

i=1

where, X; is the ith element of X. If X; = k and X;| = [, the inter-city distance is:

d(X;, Xis1) = \/(x.' —x)% 4 (v —yi)*

Note that the last term, d(Xy,X;), in the above definition of f represents the last
segment of the tour to come back to the origin city.

The complexity associated with the traveling salesman problem is known to be
much higher than that of the knapsack problem. For a problem with n cities, the
number of potential tours to be considered is n!, which grows with n much faster
than 2™:

2?!
1.024x10°

n!
3.628x 10°

n
10

20
30
40
50
60
70
80
90
100

1.048x10°
1.073%x 107
1.099% 10'2
1.125%10'5
1.152x10'8
1.180x 102!
1.208x 10
1.237x 10%7
1.267x 103

2.432x10'8
2.652x 1032
8.159x10%
3.041x10%4
8.320x 108!
1.197x 10190
7.156x 1018
1.485x 10138
9.332x 1057

Just to give an idea of the complexity of the problem, if one evaluation of the
objective function requests 10~ s, then a naive enumeration algorithm evaluating
every possible solution would require the following CPU time:

26 D. Delahaye et al.

n 2" n! ratiog—,!,
10 s 3.6ms 3.6x10°
20 1 ms 77 years 2.3x10'?
30 ls 8.4 x10' years [2.47x 10

40 18 min 2.5 x 10" years | 7.4x10%
50 13days | 9.6 x10%7 years | 2.7x10%
60| 36years |2.6 x10% years | 7.2x109
70 | 37 x 103 years | 3.8 x10%3 years | 1x107°

80 | 38 x 10° years [2.2 x10'% years| 5.9x 10%
90 | 39 x 107 years [4.7 x10"! years|1.2x 10!
100(40 x10'? years|2.9 x 10" years|7.3x10'*7

Even if the computer power is likely to double in the next 18 months, no need to say
that it would not make such a naive algorithm practical.

1.5.2.2 Simulated Annealing Implementation

One of the simplest neighborhood operator for this problem consists of randomly
exchanging two positions in the current solution vector X (see Fig. 1.8). This way of
manipulating points of the state space ensures that the produced neighbor remains
a permutation i.e. a tour of the n cities. Implementing such an operator within the
SA algorithm yields acceptable results, but the performance of the SA can really be
improved by using a neighborhood operator that exchanges all the positions between
two randomly chosen indices (m,n), as shown in Fig. 1.9.

ln

m

[—

i i
1|27|a|s|6|3| 8|9 10| Xj

Fig. 1.8 A first neighborhood operator: randomly swapping two positions

Let us consider an instance with n = 1000 cities randomly generated in a square
subset of the plane. The straightforward SA algorithm is implemented, again, with
initial temperature ¢ such that y(X) = 0.8, a geometric cooling schedule with
o = 0.995, and L; = 1000 for every iteration. The algorithm is stopped when the
temperature reaches 1545, and based on the second neighborhood operator (Fig. 1.9).
The initial solution considered is the tour of total distance 1.16857164 x 10® shown
in Fig. 1.10.

1 Simulated Annealing: From Basics to Applications 27

o) I
34|56 |7 |89 |10 X;

1|2

127165 4|3|8|9]|10] Xj

Fig. 1.9 A second neighborhood operator: swapping all positions between two randomly chosen
positions (m, n)

Fig. 1.10 Initial tour of the TSP with n = 1000 cities

After application of the simulated annealing algorithm on this problem, one ob-
tains the tour displayed in Fig. 1.11. One minute of computation on a Unix platform
with a 2.4 GHz processor and 8 GB of RAM was needed to get the final tour of total
distance 360,482.

This is clearly not an optimal solution for this instance (there are some subop-
timal crossings) but this solution is very easily obtained via a direct application of
SA.

Simulated annealing has also been applied to many combinatorial problems com-
ing from the industry and real-world operations. To mention just a few:

Airline Crew Scheduling [8]

Railway Crew Scheduling [9]

Traveling Salesman Problem [4]

Vehicle Routing Problem [14]
Layout-Routing of Electronic Circuits [17]

28 D. Delahaye et al.

e = = b
2 \(‘i‘;{\?“ :E\& vl
AN :K il & Az ¢
K\‘Iz P it BN ol i3
-1 W;J -f.l: g]
=

Fig. 1.11 Final tour of the TSP with n = 1000 cities

Large Scale Aircraft Trajectory Planning [5, 10]
Complex portfolio problem [7]

Graph coloring problem [6]

High-dimensionality minimization problems [16]

1.6 Large-Scale Aircraft Trajectory Planning

In this section, we present a methodology using SA to address a strategic planning of
aircraft trajectories at the European continental scale, which involves nearly 30,000
flights per day. The goal is to separate the given set of 4D aircraft trajectories (three-
dimension space plus time) by allocating an alternative route in the three-dimension
space and an alternative departure time to each flight.

1.6.1 Mathematical Modeling

Our strategic trajectory planning problem considers a set of flight plans (origin,
destination, departure time) for a given day. We rely on route or departure-time allo-
cation to separate aircraft trajectories. In other words, for each flight, we can delay
departure and/or impose an alternative route instead of the initially-planned direct
route between the origin and the destination. This can be formulated as an optimiza-
tion problem aimed at minimizing the number of interactions between trajectories,

1 Simulated Annealing: From Basics to Applications 29

where we count one interaction whenever two flights are in conflict i.e., separated at
some point by less than 5 NM (nautical miles) horizontally or 1000 feet vertically.
Given Data. A problem instance is given by:

e A setof N initial (nominal) discretized 4D (direct-route) trajectories;
e For each flight i, fori=1,2,...,N:

— The initial planned departure time: #; ¢;

— The maximum allowed advance departure time shift: &7 < 0;

— The maximum allowed delay departure time shift: f, > 0;

— The maximum allowed route length extension coefficient: 0 < d; < 1.
— M: the number of allowed virtual waypoints to modify the route.

Decision Variables. In the time domain, one can use a departure-time shift, &;,
associated with each flight i (i = 1,2,...,N). Therefore, the resulting departure time
of flight i is given by ; = t; ¢ + &;, In the 3D space, one can rely on a vector, w;, of
virtual waypoint locations through which flight i must go (using straight-line seg-
ments), w; := (w,-l ,w?, e ,wﬁ-”),i: 1,...,N. Let us set the compact vector notation:
6 :=(681,8,...,8v), and w := (wy,wa,...,wy). Therefore, the decision variables
of our route / departure-time allocation problem can be represented by the vector:
u:=(8,w).

Constraints. The above optimization variables must satisfy the following con-
straints:

e Allowed departure time shift. Since it is not reasonable to delay or to advance
departure times for too long, the departure time shift, &;, is limited to lie in the
interval 8, 8)]. Common practice in airports led us to discretize this time inter-
val. Given the (user-defined) time-shift step size &, this yields N := gi possible
advance slots, and N;' r= gf possible delay slots for flight i. Therefore, we define
the discrete set, A;, of all possible departure time shifts for flight i by

A;={-N.&,—(N. - 1).5;,...,—8,0,8,,..., (N, — 1).8,N..&}. (1.7)

e Maximal route length extension. The alternative trajectory to be chosen in-
creases the route length, which leads to an increase in fuel consumption and
flight time. Therefore, the alternative choice should be limited for the new trajec-
tory if it is to be accepted by the airline. Consequently, the alternative trajectory
for flight i must satisfy:

Li(w;) < (1+d;), (1.8)

where L;(w;) denotes the normalized length (i.e., assuming that the direct-flight
path length is 1) of the alternative trajectory determined by the waypoint vector
Wi.

e Allowed waypoint locations. To reduce the search space, prevent undesirable
sharp turns, and restrain the route length extension, we bound the possible lo-
cation of each virtual waypoint. Let W' and W' be the 2D sets of all possi-
ble normalized longitudinal and lateral locations, respectively, of the mth virtual

30 D. Delahaye et al.

waypoint for trajectory i. The (normalized) longitudinal component, w!}, must lie
in the interval:

W = Klﬁw—b,-),(lzvﬁb,-)],m=1,2,...,M, (1.9)

where 0 < b; <1 is a (user-defined) model parameter. The normalized lateral

component, w},, is restricted to lie in the interval:

W,;" = [—a;,ail, (1.10)
where 0 < q; < 1 is a (user-defined) model parameter chosen a priori so as to

satisfy (1.8). This yields a rectangular shape for the possible locations of the
virtual waypoint wi" (see Figure 1.12).

= = = . initial en-route segment

alternative en-route segment

A virtual waypoint

Fig. 1.12 Rectangular-shape sets of the possible locations of M = 2 virtual waypoints, for
trajectory i

Objective Function

The objective is to minimize the number of inferactions between trajectories,
which correspond, roughly speaking, to situations that occur in the flight planning
phase, when more than one trajectory compete for the same space at the same period
of time. Consider for example the trajectories A, B and C in Fig. 1.13.

We define an interaction at a trajectory point P;;(u;) to be the sum of all the
conflicts associated with point P, ;(u;), where u; the ith component of u. We further
define the interaction, ®;, associated with trajectory i, as: @;(u) := szLl D; i (u)
where Kj is the number of trajectory points obtained through some discretization of
the trajectory of the ith flight. Figure 1.13 illustrates the case of trajectory i = B at
the trajectory point Pg 4. Finally, interaction between trajectories, @,,,, for a whole
traffic situation is simply defined as:

1 Simulated Annealing: From Basics to Applications 31

protection volume

trajectory A
8

trajectory B

trajectory C

Fig. 1.13 Interactions, @p 4, at sampling point Pg 4 of trajectory B

)= 3 D)= 3 S ielu). (L.11)

1 i=lk=1

The interaction minimization problem can be formulated as a mixed-integer op-
timization problem, as follows:

min @D, (u
u=(8,w) ror ()

subject to
& ed;, foralli=1,2,....N (PT)
wheW!”, foralli=12,... . Nm=12,.M

wiy e Wl, foralli=1,2,....Nom=12,....M,

where the set 4; is defined in (1.7), and W' and W} are defined in (1.9) and (1.10),
respectively.

In order to evaluate the objective function of a candidate solution, (w,8), one
needs to compute the interaction, @, between the N aircraft trajectories. To
avoid the N(l\;—l) time-consuming pair-wise comparisons, which is prohibitive in
our large-scale application context, we propose a 4D grid-based conflict detection
scheme as illustrated in Fig. 1.14 (see [5, 10] for further details). First, we define a
four-dimensional (3D space + time) grid (see Fig. 1.14). The size of each cell in the
x,y, and z directions is defined by the minimum separation requirements, N, = 5 NM
and N, = 1000 ft. The size of the cell in the time domain is set according to some
given discretization step size, t;. To detect conflicts, the idea is to successively put
each trajectory in this grid, and then check for conflicts only in the cells surrounding
the current trajectory.

In the SA optimization process, the computation of the objective function,
@, (u), is repeated many times. Therefore it must be computed as efficiently as
possible. To avoid checking interactions over all the N trajectories even when only a
subset of trajectories are modified in a new proposed solution, the interaction count
is updated in a differential manner. More precisely, we proceed as follows. First,
the 4D grid is initialized with every cell empty. Then, the initial N trajectories, cor-
responding to the initial value of the decision vector, u (with all its components at
zero, i.e., direct flight), are placed in the 4D grid and the current interaction, @, as-
sociated with each trajectory, i, and the current total interaction between trajectories,
D; 1, are computed.

32 D. Delahaye et al.

X_ X X_ X, time

Fig. 1.14 Four dimension (space-time) grid

We assume now that during the optimization process, the decision variables of /
flights are to be modified. Let /,,,4i be a list of length / containing the flight indices
of the [flights. To update the value of total interaction, we first remove all the / cor-
responding trajectories from the 4D grid. Therefore, the interaction associated with
each trajectory in I,,g4;s is set to an intermediate value @; jyre,(4) =0, Vi € Lyoaif-
It should be noted that the interaction measurement is symmetrical: if ®%(u) de-
notes the contribution of trajectory i to the interaction associated with trajectory
j. then @Y (u) = @/(u). Let .4 be a set of trajectories currently interacting with
trajectory i. The interaction associated with trajectory j € .4{ over all trajectories
i € Lyodi, is set to an intermediate value @; e, (1) = @j(u) — Zief,mnﬁf DY (u).
Thereafter, the modified trajectories corresponding to the new decision variable val-
ues, i, [€ Lyoqgif, are placed in the 4D grid and the interaction detection procedure is
performed over all trajectories i € I,,04i¢. Then, the interaction, @;, associated with
each trajectory i € [,04i¢, is computed. Again, the interaction associated with each
trajectory, j, interacting with the set of modified trajectories is updated as follows:
Dj(u) = Djjner(u) + i€ hoais @'/ (u). Finally, the total interaction between trajec-

tories is simply computed as @, (1) = XV, ®;(u). This interaction computation
method allows us to update the value of the objective function when some trajec-
tories are modified within a very short computation time, since we do not need to
compute the change of interaction for decisions that are not modified at the current
optimization iteration.

1.6.2 Computational Experiments with SA

The proposed methodology is tested with a continent-size air traffic instance for
a full day of air-traffic over the European airspace, consisting of N = 29,852 en-
route trajectories. The trajectories are sampled with a discretization step of ¢, =
20s. The initial trajectory set involves @,,, = 142,144 total interactions between
trajectories. Figure 1.15 illustrates the initial trajectory points (blue dots), and the
locations where the initial interactions occur (red dots).

I Simulated Annealing: From Basics to Applications 33

x 108
3.

-4 -3 -2 -1 0 1 2 3 4
x 108

Fig. 1.15 Initial (direct-route) trajectory set involving 1-day en-route air traffic over the European
airspace (29,852 flights) sampled with #; = 20 s with initial location of interactions displayed as red
color dots

The initial temperature is computed by first generating 100 deteriorating trans-
formations at random and then by evaluating the average variations, A @y, of the

objective function values. The initial temperature, cp, is then deduced from the re-
Adgyg
lation: ¢cg = e T , where 19 is the initial acceptance rate of degrading solutions

(which will be empirically set). In order to reach an equilibrium, a sufficient num-
ber of iterations, denoted Ly, have to be performed at each temperature step k. In
our case, we assume for simplicity purposes that the number of iterations, L, is
constant and empirically set. The temperature is decreased following the geometri-
cal law, ¢;1 = oy, where 0 < o < 1 is a pre-defined constant value.

To generate a solution in the neighborhood, we set a user-defined threshold value
of interaction, denoted @, such that the trajectory of a randomly chosen flight i will
be modified only if @;(u) > @, where u is the current solution. Then, for a chosen
flight, i, we introduce another user-defined parameter, P, < I, to control the proba-
bility of modifying the value of the ith trajectory waypoint location decision vector,
w;. The probability to modify instead the departure time is thus 1 — P,. The algo-
rithm terminates when the final temperature, &f; is reached, or when an interaction-
free solution is found. The parameter values chosen to specify the instance consid-
ered, and the empirically set parameters defining the overall SA problem-solving
methodology are given in Table 1.1.

The SA adapted to solve the strategic trajectory planning problem is implemented
in Java. We address this problem instance with an AMD Opteron 2 GHz processor
with 128 Gb RAM. Numerical results obtained from the simulation are reported
in Table 1.2. This SA implementation yields an interaction-free solution for this
continent-scale problem instance after around 76 min of computation time. This is
compatible with strategic (several days in advance) planning application require-
ments in the setting of regular airline schedules.

34 D. Delahaye et al.

Table 1.1 Chosen (user-defined) parameter values defining the problem and the empirically-set
(user-defined) parameter values of the resolution methodology

Parameters defining the | Parameters defining the
problem SA
Parameter Value Parameter Value
—&; =0 60 min L 3500
LR 20s T 0.3
d; 0.12 (12%) B 0.99
M 2 Ty (1/500).T,
aj 0.126 P, 0.5
b; 0.067 O, 0.5 @y,

Table 1.2 Numerical results for continent-size problem instance solved by SA (averages are com-
puted over 10 runs)

Numerical results Value
Number of iterations 497,000
Avg. computation time (minutes) 76.19
Avg. proportion of delayed/advanced flights | 71.29%
Avg. proportion of extended flights 46.23%
Avg. departure time shifts (minutes) 30.14
Avg. route length extensions 1.95%

1.7 Conclusion

This chapter introduced the reader to simulated annealing (SA), a global optimiza-
tion metaheuristic. The main advantage of SA is its simplicity. SA is based on
an analogy with the physical annealing of materials that avoids the drawback of
the Monte-Carlo approach (which can be trapped in local minima), thanks to an
efficient Metropolis acceptance criterion. When the objective function evaluations
require a lot of memory space, for example when it results from complex simula-
tion processes that manipulate large-dimension state space involving much memory,
population-based algorithms are not applicable and simulated annealing is the right
answer to address such issues. An illustration was provided in section 1.6 where
a large-scale complex aircraft trajectory planning problem involving nearly 30,000
flights over Europe was addressed by exploiting particular features of the problem
and, in particular, by integrating clever implementation techniques within the al-
gorithm, and by setting user-defined parameters empirically, along the lines of the
basic SA theory.

1 Simulated Annealing: From Basics to Applications 35

References

1.

17.

E. Aarts, J. Korst, Simulated Annealing and Boltzmann Machines: A Stochastic Approach to
Combinatorial Optimization and Neural Computing (Wiley, New York, 1989)

E. Aarts, P. Van Laarhoven, A new polynomial time cooling schedule, in Proceedings of the
IEEE International Conference on Computer-Aided Design, Santa Clara (1985), pp. 206-208
E. Aarts, P. Van Laarhoven, Statistical cooling: a general approach to combinatorial problems.
Philips J. Res. 40, 193-226 (1985)

H. Bayram, R. Sahin, A new simulated annealing approach for travelling salesman problem.
Math. Comput. Appl. 18(3), 313-322 (2013)

S. Chaimatanan, D. Delahaye, M. Mongeau, A hybrid metaheuristic optimization algorithm
for strategic planning of 4D aircraft trajectories at the continental scale. IEEE Comput. Intell.
Mag. 9(4), 46-61 (2014)

M. Chams, A. Hertz, D. de Werra, Some experiments with simulated annealing for coloring
graphs. Eur. J. Oper. Res. 32(2), 260-266 (1987)

Y. Crama, M. Schyns, Simulated annealing for complex portfolio selection problems. Eur. J.
Oper. Res. 150(3), 546-571 (2003)

T. Emden-Weiner, M. Proksch, Best practice simulated annealing for the airline crew schedul-
ing problem. J. Heuristics 5(4), 419436 (1999)

R. Hanafi, E. Kozan, A hybrid constructive heuristic and simulated annealing for railway crew
scheduling. Comput. Ind. Eng. 70, 11-19 (2014)

A. Islami, S. Chaimatanan, D. Delahaye, Large-scale 4D trajectory planning, in Air Traffic
Management and Systems I1, ed. by Electronic Navigation Research Institute. Lecture Notes
in Electrical Engineering, vol. 420 (Springer, Tokyo, 2017), pp. 27-47

. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing. IBM Research

Report RC 9355, Acts of PTRC Summer Annual Meeting (1982)
S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing. Science
220(4598), 671 (1983)

. P. Laarhoven, E. Aarts (eds.), Simulated Annealing: Theory and Applications (Kluwer,

Norwell, 1987)
W.F. Mahmudy, Improved simulated annealing for optimization of vehicle routing problem
with time windows (VRPTW). Kursor J. 7(3), 109-116 (2014)

. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, Equation of state calcula-

tion by fast computing machines. J. Chem. Phys. 21(6), 1087-1092 (1953)

P. Siarry, G. Berthiau, F. Durdin, J. Haussy, Enhanced simulated annealing for globally min-
imizing functions of many continuous variables. ACM Trans. Math. Softw. 23(2), 209-228
(1997)

D.F. Wong, H.W. Leong, C.L. Liu, Simulated Annealing for VLSI Design (Kluwer Academic,
Boston, 1988)

Chapter 2)
Tabu Search Ghack o

Michel Gendreau and Jean-Yves Potvin

Abstract This chapter presents the fundamental concepts of Tabu Search (TS) in a
tutorial fashion. Special emphasis is put on showing the relationships with classical
local search methods and on the basic elements of any TS heuristic, namely, the
definition of the search space, the neighborhood structure, and the search memory.
Other sections cover other important concepts such as search intensification and
diversification and provide references to significant work on TS. Recent advances
in TS are also briefly discussed.

2.1 Introduction

Over the last 30 years, hundreds of papers presenting applications of Tabu Search
(TS), a heuristic method originally proposed by Glover in 1986 [30], to various
combinatorial problems have appeared in the operations research literature. In sev-
eral cases, the methods described provide solutions very close to optimality and are

M. Gendreau

Département de mathématiques et de génie industriel, Polytechnique Montréal, Montreal, QC,
Canada

Centre interuniversitaire de recherche sur les réseaux d’entreprise, la logistique et le transport,

Montreal, QC, Canada
e-mail: michel.gendreau@cirrelt.net

J.-Y. Potvin (<)
Département d’informatique et de recherche opérationnelle, Université de Montréal, Montreal, QC,
Canada

Centre interuniversitaire de recherche sur les réseaux d’entreprise, la logistique et le transport,
Montreal, QC, Canada
e-mail: potvin@iro.umontreal.ca

© Springer International Publishing AG, part of Springer Nature 2019 37
M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics,

International Series in Operations Research & Management Science 272,
https://doi.org/10.1007/978-3-319-91086-4_2

40 M. Gendreau and J.-Y. Potvin

can be interpreted as a form of controlled random walk in the space of feasible so-
lutions. The emergence of SA indicated that one could look for other ways to tackle
combinatorial optimization problems and spurred the interest of the research com-
munity. In the following years, many other new approaches were proposed, mostly
based on analogies with natural phenomena (like TS, Ant Colony Optimization, Par-
ticle Swarm Optimization, Artificial Immune Systems) which, together with some
older ones, such as Genetic Algorithms [38], gained an increasing popularity. Now
collectively known under the name of metaheuristics (a term originally coined by
Glover in [30]), these methods have become over the last 20 years the leading edge
of heuristic approaches for solving combinatorial optimization problems.

2.3.2 Tabu Search

Building upon some of his previous work, Fred Glover proposed a new approach,
which he called Tabu Search, to allow local search methods to overcome local op-
tima [30]. In fact, many elements of this first TS proposal, and some elements of
later TS elaborations, were introduced in [29], including short term memory to pre-
vent the reversal of recent moves, and longer term frequency memory to reinforce
attractive components. The basic principle of TS is to pursue LS whenever it en-
counters a local optimum by allowing non-improving moves; cycling back to pre-
viously visited solutions is prevented by the use of memories, called tabu lists, that
record the recent history of the search, a key idea that can be linked to artificial
intelligence concepts. It is also important to remark that Glover did not see TS as
a proper heuristic, but rather as a metaheuristic, i.e., a general strategy for guiding
and controlling inner heuristics specifically tailored to the problems at hand.

2.3.3 Search Space and Neighborhood Structure

As we just mentioned, TS is an extension of classical LS methods. In fact, a basic TS
can be seen as simply the combination of LS with short-term memories. It follows
that the two first basic elements of any TS heuristic are the definition of its search
space and its neighborhood structure.

The search space of an LS or TS heuristic is simply the space of all possible so-
lutions that can be considered (visited) during the search. For instance, in the CVRP
example described in Sect. 2.2, the search space could simply be the set of feasi-
ble solutions to the problem, where each point in the search space corresponds to a
set of vehicles routes satisfying all the specified constraints. While in that case the
definition of the search space seems quite natural, it is not always so. In the Capaci-
tated Plant Location Problem (CPLP), for instance, customers must be served from
plants located in a subset of potential sites. In this context, one could use the full
feasible search space made of binary location variables (a site is open or closed) and

2 Tabu Search 41

continuous flow variables. A more attractive search space, though, is obtained by re-
stricting the search space to the binary location variables, from which the complete
solution can be obtained by solving the associated transportation problem to get the
optimal flow variables. One could also decide to search for the extreme points of the
set of feasible flow variable vectors, retrieving the associated location variables by
noting that a plant must be open whenever some flow is allocated to it [17]. It is also
important to note that it is not always a good idea to restrict the search space to fea-
sible solutions; in many cases, allowing the search to move to infeasible solutions is
desirable, and sometimes necessary (see Sect. 2.4.3 for further details).

Closely linked to the definition of the search space is that of the neighborhood
structure. At each iteration of LS or TS, the local transformations that can be ap-
plied to the current solution, denoted S, define a set of neighboring solutions in
the search space, denoted N(S) (the neighborhood of §). Formally, N(§) is a sub-
set of the search space made of all solutions obtained by applying a single local
transformation to S. In general, for any specific problem at hand, there are many
more possible (and even, attractive) neighborhood structures than search space defi-
nitions. This follows from the fact that there may be several plausible neighborhood
structures for a given definition of the search space. This is easily illustrated on our
CVRP example that has been the object of several TS implementations. To simplify
the discussion, we suppose in the following that the search space is the feasible
space. Simple neighborhood structures for the CVRP involve moving at each itera-
tion a single customer from its current route; the selected customer is inserted in the
same route or in another route with sufficient residual capacity. An important fea-
ture of these neighborhood structures is the way in which insertions are performed:
one could use random insertion or insertion at the best position in the target route;
alternately, one could use more complex insertion schemes that involve a partial re-
optimization of the target route, such as GENI insertions [25]. Before proceeding
any further it is important to stress that while we say that these neighborhood struc-
tures involve moving a single customer, the neighborhoods they define contain all
the feasible route configurations that can be obtained from the current solution by
moving any customer and inserting it in the stated fashion. Examining the neighbor-
hood can thus be fairly demanding.

More complex neighborhood structures for the CVRP, such as the A-interchange
[50], are obtained by allowing simultaneously the movement of customers to dif-
ferent routes and the swapping of customers between routes. In [54], moves are de-
fined by ejection chains that are sequences of coordinated movements of customers
from one route to another; for instance, an ejection chain of length 3 would involve
moving a customer v; from route R; to route R», a customer v» from R» to route
R3 and a customer v3 from R3 to route R4. Other neighborhood structures involve
the swapping of sequences of several customers between routes, as in the Cross-
exchange [63]. These types of neighborhoods have seldom been used for the CVRP,
but are common in TS heuristics for its time-windows extension, where customers
must be visited within a pre-specified time interval. We refer the interested reader
to [9, 27] for a more detailed discussion of TS implementations for the CVRP and
the Vehicle Routing Problem with Time Windows.

42 M. Gendreau and J.-Y. Potvin

When different definitions of the search space are considered for a given prob-
lem, neighborhood structures will inevitably differ to a considerable degree. In the
case of the CPLP, alluded to above, if the search space corresponds to the location
variables only, one could use operators to change the status of these variables (from
open to closed and conversely). If, however, the search space is made of the extreme
points of the set of feasible flow variable vectors, one could instead consider moves
defined by the application of pivots to the linear programming formulation of the
transportation problem to move the current solution to an adjacent extreme point.
Thus, choosing a search space and a neighborhood structure is by far the most crit-
ical step in the design of any TS heuristic. It is at this step that one must make the
best use of the understanding and knowledge he/she has of the problem at hand.

2.3.4 Tabus

Tabus are one of the distinctive elements of TS when compared to LS. As we already
mentioned, tabus are used to prevent cycling when moving away from local optima
through non-improving moves. The key realization here is that when this situation
occurs, something needs to be done to prevent the search from tracing back its steps
to where it came from. This is achieved by declaring tabu (disallowing) moves that
reverse the effect of recent moves. For instance, in the CVRP example, if customer
v1 has just been moved from route R; to route R», one could declare tabu moving
back v; from R> to R; for some number of iterations (this number is called the
tabu tenure of the move). Tabus are also useful to help the search move away from
previously visited portions of the search space and thus perform more extensive
exploration.

Tabus are stored in a short-term memory of the search (the tabu list) and usually
only a fixed and fairly limited quantity of information is recorded. In any given
context, there are several possibilities regarding the specific information that is
recorded. One could record complete solutions, but this requires a lot of storage
and makes it expensive to check whether a potential move is tabu or not; it is there-
fore seldom used. The most commonly used tabus involve recording the last few
transformations performed on the current solution and prohibiting reverse transfor-
mations (as in the example above); others are based on key characteristics of the
solutions themselves or of the moves.

To better understand how tabus work, let us go back to our reference problem. In
the CVRP, one could define tabus in several ways. To continue our example where
customer v; has just been moved from route R; to route R2, one could declare tabu
specifically moving back v| from R> to R; and record this in the short-term memory
as the triplet (vi,R2,R;). Note that this type of tabu will not constrain the search
much and that cycling may occur if vy is then moved to another route K3 and then
from R3 to R;. A stronger tabu would involve prohibiting moving back v; to Ry,
without consideration for its current route, and be recorded as (vi,R;). An even

2 Tabu Search 43

stronger tabu would be to disallow moving v; to any other route and would simply
be noted as (v;).

Multiple tabu lists can be used simultaneously and are sometimes advisable. For
example, when different types of moves are used to generate the neighborhood,
it might be a good idea to keep a separate tabu list for each type. Standard tabu
lists are usually implemented as circular lists of fixed length. It has been shown,
however, that fixed-length tabus cannot always prevent cycling, and some authors
have proposed varying the tabu list length during the search [31, 32, 58, 60, 61].
Another solution is to randomly generate the tabu tenure of each move within some
specified interval; using this approach requires a somewhat different scheme for
recording tabus that are then usually stored as tags in an array (the entries in this
array will usually record the iteration number until which a move is tabu; see [25],
for more details).

2.3.5 Aspiration Criteria

While central to TS, tabus are sometimes too powerful: they may prohibit attrac-
tive moves, even when there is no danger of cycling, or they may lead to an overall
stagnation of the searching process. It is thus necessary to use algorithmic devices
that will allow one to revoke (cancel) tabus. These are called aspiration criteria. The
simplest and most commonly used aspiration criterion, which is found in almost all
TS implementations, consists in allowing a move, even if it is tabu, if it results in
a solution with an objective value better than that of the current best-known solu-
tion (since the new solution has obviously not been previously visited). Much more
complicated aspiration criteria have been proposed and successfully implemented
(see, for instance [19, 37]), but they are rarely used. The key rule in this respect is
that if cycling cannot occur, tabus can be disregarded.

2.3.6 A Template for Simple Tabu Search

We are now in the position to give a general template for TS, integrating the elements
we have seen so far. We suppose that we are trying to minimize a function f(S) over
some domain and we apply the so-called best improvement version of TS, i.e., the
version in which one chooses at each iteration the best available move (this is the
most commonly used version of TS).

Notation

e S, the current solution,
e S*, the best-known solution,

44 M. Gendreau and J.-Y. Potvin

f*, the value of §¥,

N(S), the neighborhood of S,

N(S), the admissible subset of N(S) (i.e., non-tabu or allowed by aspiration),
T, the tabu list.

Initialization

Choose (construct) an initial solution Sy.
Set S« So, f* « f(So), S* + S0, T « 0.

Search

While termination criterion not satisfied do:

select § in argming g5 [f(S)];
if £(8) < f*, then set f* < f(§), S* « §;
record tabu for the current move in T (delete oldest entry if necessary).

2.3.7 Termination Criteria

One may have noticed that we have not specified in our template above a termination
criterion. In theory, the search could go on forever, unless the optimal value of the
problem at hand is known beforehand. In practice, obviously, the search has to be
stopped at some point. The most commonly used stopping criteria in TS are:

e after a fixed number of iterations (or a fixed amount of CPU time);

e after some number of iterations without an improvement in the objective function
value (the criterion used in most implementations);

e when the objective reaches a pre-specified threshold value.

In complex tabu schemes, the search is usually stopped after completing a se-
quence of phases, the duration of each phase being determined by one of the above
criteria.

2.3.8 Probabilistic TS and Candidate Lists

In regular TS, one must evaluate the objective for every element of the neighborhood
N(S) of the current solution. This can prove extremely expensive from the computa-
tional standpoint. An alternative is to instead consider only a random sample N'(S)
of N(S), thus reducing significantly the computational burden. Another attractive

2 Tabu Search 47

2.4.3 Allowing Infeasible Solutions

Accounting for all problem constraints in the definition of the search space often
restricts the searching process too much and can lead to mediocre solutions. This
occurs, for example, in CVRP instances where the route capacity or duration con-
straints are too tight to allow moving customers effectively between routes. In such
cases, constraint relaxation is an attractive strategy, since it creates a larger search
space that can be explored with simpler neighborhood structures. Constraint relax-
ation is easily implemented by dropping selected constraints from the search space
definition and adding to the objective weighted penalties for constraint violations.
This, however, raises the issue of finding correct weights for constraint violations.
An interesting way of circumventing this problem is to use self-adjusting penalties,
i.e., weights are adjusted dynamically on the basis of the recent history of the search:
weights are increased if only infeasible solutions were encountered in the last few
iterations, and decreased if all recent solutions were feasible (see, for instance, [25]
for further details). Penalty weights can also be modified systematically to drive the
search to cross the feasibility boundary of the search space and thus induce diversi-
fication. This technique, known as strategic oscillation, was introduced as early as
1977 in [29] and used since in several successful TS procedures (an important early
variant oscillates among different types of moves, hence neighborhood structures,
while another oscillates around a selected value for a critical function).

2.4.4 Surrogate and Auxiliary Objectives

There are many problems for which the true objective function is quite costly to
evaluate. When this occurs, the evaluation of moves may become prohibitive, even if
sampling is used. An effective approach to handle this issue is to evaluate neighbors
using a surrogate objective, i.e., a function that is correlated to the true objective, but
is less computationally demanding, in order to identify a (small) set of promising
candidates (potential solutions achieving the best values for the surrogate). The true
objective is then computed for this small set of candidate moves and the best one
selected to become the new current solution; an example of this approach is found
in [16].

Another frequently encountered difficulty is that the objective function may not
provide enough information to effectively drive the search to more interesting areas
of the search space. A typical illustration of this situation is the variant of the CVRP
in which the fleet size is not fixed, but is rather the primary objective (i.e., one is
looking for the minimal fleet size allowing a feasible solution). In this problem,
except for solutions where a route has only one or a few customers assigned to it,
most neighborhood structures will lead to the situation where all elements in the
neighborhood score equally with respect to the primary objective (i.e., all allowable
moves produce solutions with the same number of vehicles). In such a case, it is
absolutely necessary to define an auxiliary objective function to orient the search.

48 M. Gendreau and J.-Y. Potvin

Such a function must measure in some way the desirable attributes of solutions. In
our example, one could, for instance, use a function that would favor solutions with
routes having just a few customers, thus increasing the likelihood that a route can be
totally emptied in a subsequent iteration. It should be noted that coming up with an
effective auxiliary objective is not always easy and may require a lengthy trial and
error process. In some other cases, fortunately, the auxiliary objective is obvious for
anyone familiar with the problem at hand (see [24], for an illustration).

2.5 Advanced Concepts

The concepts and techniques described in the previous sections are sufficient to de-
sign effective TS heuristics for many combinatorial problems. Early TS implementa-
tions, several of which were extremely successful, relied indeed almost exclusively
on these algorithmic components. Modern TS implementations, however, exploit
more advanced concepts and techniques. While it is clearly beyond the scope of an
introductory tutorial, such as this one, to review this type of advanced material, we
would like to give readers some insight into it (readers who wish to learn more about
this topic should consider the key references provided in the next section).

Various techniques have been devised for making the search more effective.
These include methods for exploiting better the information that becomes available
during search and creating better starting points, as well as more powerful neigh-
borhood operators and parallel search strategies (on this last topic, see the advances
reported in [3] and the chapter on parallel metaheuristics in this Handbook; for spe-
cific implementation examples of TS on CPU-based parallel platforms, see [13, 42],
and for GPU-based platforms, see [46, 67]). The numerous techniques for making
better use of the information are of particular significance since they can lead to
dramatic performance improvements. Many of these rely on elite solutions (the best
solutions previously encountered) or on parts of these to create new solutions, the
rationale being that fragments or elements of excellent solutions are often identi-
fied quite early in the searching process, but that the challenge is to complete these
fragments or to recombine them [33, 35, 39, 53, 55, 64]. Other methods, such as
the Reactive TS [6, 48], attempt to find ways of making the search move away from
local optima that have already been visited. An important issue is the general ap-
proach for exploiting the search framework provided by TS. Some favor simplicity,
that is, a search strategy with only a few parameters and based on simple neigh-
borhood operators, as illustrated by the Unified TS [14, 15, 22]. Others propose
complex neighborhood operators, thus leading to large or very large neighborhood
searches [1, 2].

Another important research area in TS (this is, in fact, pervasive in the whole
metaheuristics field) is hybridization, i.e., using TS in conjunction with other so-
lution approaches such as adaptive large neighborhood search [69], genetic algo-
rithms [41, 45, 47, 49], constraint programming [8, 10, 18, 52] or integer program-
ming techniques (there is a whole chapter on this topic in [35]).

2 Tabu Search 49

TS has also been successful in domains outside its traditional ones (graph the-
ory problems, scheduling, vehicle routing), for example: continuous optimization [7,
11, 12,21, 40, 68], multi-criteria optimization [36, 40], stochastic programming [5],
mixed integer programming [51, 57], dynamic decision problems [26, 28, 56], etc.
These domains confront researchers with challenges that ask for innovative exten-
sions of the method.

2.6 Key References

Readers who wish to read other introductory papers on TS can choose among sev-
eral ones [23, 31, 34, 37, 62]. The book by Glover and Laguna [35] is the ultimate
reference on TS: apart from the fundamental concepts of the method, it presents
a considerable amount of advanced material, as well as a variety of applications.
It is interesting to note that this book contains several ideas applicable to TS that
yet remain to be fully exploited. Also valuable are the books and special issues
made up from selected papers presented at the recent Metaheuristics International
Conferences (MIC) in 2011 [20], 2013 [44] and 2015 [4]. The last MIC confer-
ence was held in Barcelona in 2017 and the conference web site can be accessed at
mic2017.upf.edu.

2.7 Tricks of the Trade

Newcomers to TS trying to apply the method to a problem that they wish to solve
are often confused about what they need to do to come up with a successful imple-
mentation. This section is aimed at providing some help in this regard.

2.7.1 Getting Started

The following step-by-step procedure should provide a useful framework for getting
started.
A step-by-step procedure

1. Read one or two good introductory papers to gain some knowledge of the con-
cepts and of the vocabulary.

2. Read several papers describing in detail applications in various areas to see how
the concepts have been actually implemented by other researchers.

3. Think a lot about the problem at hand, focusing on the definition of the search
space and the neighborhood structure.

4. Implement a simple version based on this search space definition and this neigh-
borhood structure.

50

5.

M. Gendreau and J.-Y. Potvin

Collect statistics on the performance of this simple heuristic. It is usually useful
at this point to introduce a variety of memories, such as frequency and recency
memories, to really track down what the heuristic does.

Analyze results and adjust the procedure accordingly. It is at this point that
one should eventually introduce mechanisms for search intensification and di-
versification or other intermediate features. Special attention should be paid to
diversification, since this is often where simple TS procedures fail.

2.7.2 More Tips

It is not unusual that, in spite of following carefully the preceding procedure, one
ends up with a heuristic that nonetheless produces mediocre results. If this occurs,
the following tips may prove useful:

L.

(5]

If there are constraints, consider penalizing them. Letting the search move to
infeasible solutions is often necessary in highly constrained problems to allow
for a meaningful exploration of the search space (see Sect.2.4).

Reconsider the neighborhood structure and change it if necessary. Many TS
implementations fail because the neighborhood structure is too simple. In par-
ticular, one should make sure that the chosen neighborhood structure allows for
a purposeful evaluation of possible moves (i.e., the moves that seem intuitively
to move the search in the right direction should be the ones that are likely to
be selected); it might also be a good idea to introduce a surrogate objective to
achieve this (see Sect. 2.4).

Collect more statistics.

Follow the execution of the algorithm step-by-step on some reasonably sized
instances.

. Reconsider diversification. As mentioned earlier, this is a critical feature in most

TS implementations.

Experiment with parameter settings. Many TS procedures are extremely sensi-
tive to parameter settings; it is not unusual to see the performance of a procedure
dramatically improve after changing the value of one or two key parameters (un-
fortunately, it is not always obvious to determine which parameters are the key
ones in a given procedure).

2.7.3 Additional Tips for Probabilistic TS

While it is an effective way of tackling many problems, probabilistic TS creates
problems of its own that need to be carefully addressed. The most important of these
is the fact that, more often than not, the best solutions returned by probabilistic TS
will not be local optima with respect to the neighborhood structure being used. This

2 Tabu Search 51

is particularly annoying since, in that case, better solutions can be easily obtained,
sometimes even manually. An easy way to come around this is to simply perform
a local improvement phase (using the same neighborhood operator) from the best
found solution at the end of the TS itself. One could alternately switch to TS without
sampling (again from the best found solution) for a short duration before completing
the algorithm. A possibly more effective technique is to add throughout the search
an intensification step without sampling; in this fashion, the best solutions available
in the various regions of the search space explored by the method will be found and
recorded (similar special aspiration criteria for allowing the search to reach local
optima at useful junctures are proposed in [34]).

2.7.4 Parameter Calibration and Computational Testing

Parameter calibration and computational experiments are key steps in the develop-
ment of any algorithm. This is particularly true in the case of TS, since the number
of parameters required by most implementations is fairly large and since the perfor-
mance of a given procedure can vary quite significantly when parameter values are
modified. The first step in any serious computational experimentation is to select a
good set of benchmark instances (either by obtaining them from other researchers
or by constructing them), preferably with some reasonable measure of their diffi-
culty and with a wide range of size and difficulty. This set should be split into two
subsets, the first one being used at the algorithmic design and parameter calibration
steps, and the second reserved for performing the final computational tests that will
be reported in the paper(s) describing the heuristic under development. The reason
for doing so is quite simple: when calibrating parameters, one always run the risk of
overfitting, i.e., finding parameter values that are excellent for the instances at hand,
but poor in general, because these values provide too good a fit (from the algorith-
mic standpoint) to these instances. Methods with several parameters should thus be
calibrated on much larger sets of instances than ones with few parameters to ensure
a reasonable degree of robustness. The calibration process itself should proceed in
several stages:

1. Perform exploratory testing to find good ranges of parameters. This can be done
by running the heuristic with a variety of parameter settings.

2. Fix the value of parameters that appear to be robust, i.e., which do not seem to
have a significant impact on the performance of the procedure.

3. Perform systematic testing for the other parameters. It is usually more efficient
to test values for only a single parameter at a time, the others being fixed at what
appear to be reasonable values. One must be careful, however, for cross effects
between parameters. Where such effects exist, it can be important to jointly test
pairs or triplets of parameters, which can be an extremely time-consuming task.

The work in [16] provides a detailed description of the calibration process for a
fairly complex TS procedure and can be used as a guideline for this purpose.

54

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

M. Gendreau and J.-Y. Potvin

J.H. Holland, Adaptation in Natural and Artificial Systems (The University of Michigan Press,
Ann Arbor, 1975)

L.M. Hvattum, A. Lokketangen, F. Glover, Comparisons of commercial MIP solvers and an
adaptive memory (tabu search) procedure for a class of 0-1 integer programming problems.
Algorithm. Oper. Res. 7, 13-20 (2012)

D.M. Jaeggi, G.T. Parks, T. Kipouros, P.J. Clarkson, The development of a multi-objective
tabu search algorithm for continuous optimisation problems. Eur. J. Oper. Res. 185, 1192—
1212 (2008)

S.N. Jat, S. Yang, A hybrid genetic algorithm and tabu search approach for post enrolment
course timetabling. J. Sched. 14, 617-637 (2011)

J. Jin, T.G. Crainic, A. Lokketangen, A parallel multi-neighborhood cooperative tabu search
for capacitated vehicle routing problems. Eur. J. Oper. Res. 222, 441-451 (2012)

S. Kirkpatrick, C.D. Gelatt Jr., M.P. Vecchi, Optimization by simulated annealing. Science
220, 671-680 (1983)

H.C. Lau, G.R. Raidl, P. Van Hentenryck (eds.), New developments in metaheuristics and their
applications. Special issue. J. Heuristics 22(4), 359-664 (2016)

X. Li, L. Gao, An effective hybrid genetic algorithm and tabu search for flexible job shop
scheduling problem. Int. J. Prod. Econ. 174, 93—110 (2016)

T.V. Luong, L. Loukil, N. Melab, E.-G. Talbi, A GPU-based iterated tabu search for solv-
ing the quadratic 3-dimensional assignment problem, in ACS/IEEE International Conference
on Computer Systems and Applications, Hammamet (2010). https://doi.org/10.1109/AICCSA.
2010.5587019

T. Lust, J. Teghem, MEMOTS: a memetic algorithm integrating tabu search for combinatorial
multiobjective optimization. RAIRO—Oper. Res. 42, 3-33 (2008)

F. Mascia, P. Pellegrini, M. Birattari, T. Stiitzle, An analysis of parameter adaptation in reactive
tabu search. Int. Trans. Oper. Res. 21, 127-152 (2014)

S. Meeran, M.S. Morshed, A hybrid genetic tabu search algorithm for solving job shop
scheduling problems: a case study. J. Intell. Manuf. 23, 1063-1078 (2012)

I.H. Osman, Metastrategy simulated annealing and tabu search algorithms for the vehicle rout-
ing problem. Ann. Oper. Res. 41, 421451 (1993)

J.P. Pedroso, Tabu search for mixed integer programming, in Metaheuristic Optimization
via Memory and Evolution, ed. by C. Rego, B. Alidaece (Kluwer Academic, Boston, 2005),
pp. 247-261

G. Pesant, M. Gendreau, A constraint programming framework for local search methods. J.
Heuristics 5, 255-280 (1999)

C. Rego, B. Alidaee (eds.), Metaheuristic Optimization via Memory and Evolution: Tabu
Search and Scatter Search (Kluwer Academic, Boston, 2005)

C. Rego, C. Roucairol, A parallel tabu search algorithm using ejection chains for the vehicle
routing problem, in Meta-Heuristics: Theory and Applications, ed. by LH. Osman, J.P. Kelly
(Kluwer Academic, Boston, 1996), pp. 661-675

Y. Rochat, E.D. Taillard, Probabilistic diversification and intensification in local search for
vehicle routing. J. Heuristics 1, 147-167 (1995)

A.G. Roesener, J.W. Barnes, An advanced tabu search approach to the dynamic airlift loading
problem. Log. Res. 9, 12:1-12:18 (2016)

L.H. Sacchi, V.A. Armentano, A computational study of parametric tabu search for 0-1 mixed
integer program. Comput. Oper. Res. 38, 464-473 (2011)

J. Skorin-Kapov, Tabu search applied to the quadratic assignment problem. ORSA J. Comput.
2, 33-45 (1990)

P. Soriano, M. Gendreau, Diversification strategies in tabu search algorithms for the maximum
clique problem. Ann. Oper. Res. 63, 189-207 (1996)

E.D. Taillard, Some efficient heuristic methods for the flow shop sequencing problem. Eur. J.
Oper. Res. 47, 65-74 (1990)

E.D. Taillard, Robust taboo search for the quadratic assignment problem. Parallel Comput. 17,
443-455 (1991)

2 Tabu Search 55

62.

63.

64.

65.

66.

67.

68.

69.

E. Taillard, Tabu search, in Metaheuristics, ed. by P. Siarry (Springer International Publishing,
Cham, 2016), pp. 51-76

ED. Taillard, P. Badeau, M. Gendreau, F. Guertin, J.-Y. Potvin, A tabu search heuristic for the
vehicle routing problem with soft time windows. Transp. Sci. 31, 170-186 (1997)

C.D. Tarantilis, C.T. Kiranoudis, BoneRoute - an adaptive memory-based method for effective
fleet management. Ann. Oper. Res. 115, 227-241 (2002)

P. Toth, D. Vigo (eds.), The Vehicle Routing Problem. SIAM Monographs on Discrete Mathe-
matics and Applications (SIAM, Philadelphia, 2002)

P. Toth, D. Vigo, The granular tabu search and its application to the vehicle routing problem.
INFORMS J. Comput. 15, 333-346 (2003)

C. Tsotskas, T. Kipouros, A.M. Savill, The design and implementation of a GPU-enabled
multi-objective tabu-search intended for real world and high-dimensional applications. Proce-
dia Comput. Sci. 29, 2152-2161 (2014)

G. Waligéra, Simulated annealing and tabu search for discrete-continuous project scheduling
with discounted cash flows. RAIRO—Oper. Res. 48, 1-24 (2014)

L. Zulj, S. Kramer, M. Schneider, A hybrid of adaptive large neighborhood search and tabu
search for the order-batching problem. Eur. J. Oper. Res. 264, 653-664 (2018)

Chapter 3)
Variable Neighborhood Search e

Pierre Hansen, Nenad Mladenovié, Jack Brimberg, and José A. Moreno Pérez

Abstract Variable neighborhood search (VNS) is a metaheuristic for solving
combinatorial and global optimization problems whose basic idea is a system-
atic change of neighborhood both within a descent phase to find a local optimum
and in a perturbation phase to get out of the corresponding valley. In this chapter
we present the basic schemes of VNS and some of its extensions. We then describe
recent developments, i.e., formulation space search and variable formulation search.
We then present some families of applications in which VNS has proven to be very
successful: (1) exact solution of large scale location problems by primal-dual VNS;
(2) generation of solutions to large mixed integer linear programs, by hybridization
of VNS and local branching; (3) generation of solutions to very large mixed inte-
ger programs using VNS decomposition and exact solvers (4) generation of good

P. Hansen
Ecole des Hautes Etudes Commerciales, Montréal, QC, Canada

GERAD, Montréal, QC, Canada
e-mail: pierre.hansen @ gerad.ca

N. Mladenovié (£)
Mathematical Institute, SANU, Belgrade, Serbia
e-mail: nenad @mi.sanu.ac.rs

J. Brimberg

Department of Mathematics and Computer Science, Royal Military College of Canada, Kingston,
ON, Canada

e-mail: jack.brimberg @rmc.ca

J. A. M. Pérez

IUDR and Department of Informatics and Systems Engineering, Universidad de La Laguna,
Tenerife, Spain

e-mail: jamoreno@ull.es

© Springer International Publishing AG, part of Springer Nature 2019 57
M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics,

International Series in Operations Research & Management Science 272,
https://doi.org/10.1007/978-3-319-91086-4_3

58 P. Hansen et al.

feasible solutions to continuous nonlinear programs; (5) adaptation of VNS for
solving automatic programming problems from the Artificial Intelligence field and
(6) exploration of graph theory to find conjectures, refutations and proofs or ideas
of proofs.

3.1 Introduction

Optimization tools have greatly improved during the last two decades. This is due to
several factors: (1) progress in mathematical programming theory and algorithmic
design; (2) rapid improvement in computer performances; (3) better communica-
tion of new ideas and integration in widely used complex softwares. Consequently,
many problems long viewed as out of reach are currently solved, sometimes in very
moderate computing times. This success, however, has led researchers and prac-
titioners to address much larger instances and more difficult classes of problems.
Many of these may again only be solved heuristically. Therefore thousands of pa-
pers describing, evaluating and comparing new heuristics appear each year. Keeping
abreast of such a large literature is a challenge. Metaheuristics, or general frame-
works for building heuristics, are therefore needed in order to organize the study of
heuristics. As evidenced by the Handbook, there are many of them. Some desirable
properties of metaheuristics [58, 59, 68] are listed in the concluding section of this
chapter.

Variable neighborhood search (VNS) is a metaheuristic proposed by some of the
present authors some 20 years ago [80]. Earlier work that motivated this approach
can be found in [25, 36, 44, 78]. It is based upon the idea of a systematic change of
neighborhood both in a descent phase to find a local optimum and in a perturbation
phase to get out of the corresponding valley. Originally designed for approximate
solution of combinatorial optimization problems, it was extended to address mixed
integer programs, nonlinear programs, and recently mixed integer nonlinear pro-
grams. In addition VNS has been used as a tool for automated or computer assisted
graph theory. This led to the discovery of over 1500 conjectures in that field and the
automated proof of more than half of them. This is to be compared with the unas-
sisted proof of about 400 of these conjectures by many different mathematicians.

Applications are rapidly increasing in number and pertain to many fields: loca-
tion theory, cluster analysis, scheduling, vehicle routing, network design, lot-sizing,
artificial intelligence, engineering, pooling problems, biology, phylogeny, reliabil-
ity, geometry, telecommunication design, etc. References are too numerous to be
listed here, but many of them can be found in [69] and special issues of IMA Jour-
nal of Management Mathematics [76], European Journal of Operational Research
[68] and Journal of Heuristics [87] that are devoted to VNS.

This chapter is organized as follows. In the next section we present the ba-
sic schemes of VNS, i.e., variable neighborhood descent (VND), reduced VNS
(RVNS), basic VNS (BVNS) and general VNS (GVNS). Two important extensions
are presented in Sect. 3.3: Skewed VNS and Variable neighborhood decomposition

3 Variable Neighborhood Search 59

search (VNDS). A further recent development called Formulation Space Search
(FSS) is discussed in Sect.3.4. The remainder of the paper describes applications
of VNS to several classes of large scale and complex optimization problems for
which it has proven to be particularly successtul. Section 3.5 is devoted to primal
dual VNS (PD-VNS) and its application to location and clustering problems. Find-
ing feasible solutions to large mixed integer linear programs with VNS is discussed
in Sect. 3.6. Section 3.7 addresses ways to apply VNS in continuous global opti-
mization. The more difficult case of solving mixed integer nonlinear programming
by VNS is considered in Sect.3.8. Applying VNS to graph theory per se (and not
just to particular optimization problems defined on graphs) is discussed in Sect. 3.9.
Brief conclusions are drawn in Sect. 3.10.

3.2 Basic Schemes

A deterministic optimization problem may be formulated as
min{f(x)|x € X, X C .#}, (3.1)

where .%, X, x and f denote the solution space, the feasible set, a feasible solution
and a real-valued objective function, respectively. If . is a finite but large set, a
combinatorial optimization problem is defined. If .% = R", we refer to continuous
optimization. A solution x* € X is optimal if

fxX") < flx), Vx e X.

An exact algorithm for problem (3.1), if one exists, finds an optimal solution x*,
together with the proof of its optimality, or shows that there is no feasible solution,
i.e., X =0, or the solution is unbounded. Moreover, in practice, the time needed to do
so should be finite (and not too long). For continuous optimization, it is reasonable
to allow for some degree of tolerance, i.e., to stop when sufficient convergence is
detected.

Let us denote A, (k= 1,...,knay), a finite set of pre-selected neighborhood
structures, and .4 (x) the set of solutions in the kth neighborhood of x. Most local
search heuristics use only one neighborhood structure, i.e., k0 = 1. Often succes-
sive neighborhoods .4; are nested and may be induced from one or more metric
(or quasi-metric) functions introduced into a solution space .. An optimal solution
Xop: (Or global minimum) is a feasible solution where a minimum is reached. We
call ¥ € X a local minimum of (3.1) with respect to .4; (w.r.t. .4 for short), if there
is no solution x € 4;(x) C X such that f(x) < f(x’). Metaheuristics (based on local
search procedures) try to continue the search by other means after finding the first
local minimum. VNS is based on three simple facts:

Fact 1 A local minimum w.r.t. one neighborhood structure is not necessarily so for
another;

62 P. Hansen et al.

It has been observed that the best value for the parameter &, is often 2 or 3. In
addition, a maximum number of iterations between two improvements is typically
used as the stopping condition. RVNS is akin to a Monte-Carlo method, but is more
systematic (see, e.g., [81] where results obtained by RVNS were 30% better than
those of the Monte-Carlo method in solving a continuous min-max problem). When
applied to the p-Median problem, RVNS gave equally good solutions as the Fast
Interchange heuristic of [102] while being 20 to 40 times faster [63].

(iii) The Basic VNS (BVNS) method [80] combines deterministic and stochastic
changes of neighborhood. The deterministic part is represented by a local search
heuristic. It consists in (1) choosing an initial solution x, (2) finding a direction
of descent from x (within a neighborhood N(x)) and (3) moving to the minimum of
f(x) within N(x) along that direction. If there is no direction of descent, the heuristic
stops; otherwise it is iterated. Usually the steepest descent direction, also referred to
as best improvement, is used. Also see Algorithm 2, where the best improvement is
used in each neighborhood of the VND. This is summarized in Algorithm 5, where
we assume that an initial solution x is given. The output consists of a local minimum,
also denoted by x, and its value.

Function Best Improvement(x)
1 repeat
2 X —x
3 X < argminge) f(¥)
until ((x) > f())
return x
Algorithm 5: Best improvement (steepest descent) heuristic

As Steepest descent may be time-consuming, an alternative is to use a first de-
scent (or first improvement) heuristic. Points x' € N(x) are then enumerated sys-
tematically and a move is made as soon as a direction for descent is found. This is
summarized in Algorithm 6.

Function First Improvement (x)
1 repeat
2 Xux; i+0
3 repeat
4 i—i+1
5 x ¢ argmin{f(x), f(x')}, x €N(x)
until (f(x) < f(x') oxr i=|N(x)])
until (f(x) = f(x))

return x

Algorithm 6: First improvement (first descent) heuristic

The stochastic phase of BVNS (see Algorithm 7) is represented by the random
selection of a point x’ from the kth neighborhood of the shake operation. Note that

3 Variable Neighborhood Search 63

point x’ is generated at random in Step 5 in order to avoid cycling, which might
occur with a deterministic rule.

Function BVNS(x, &0y Lnax)

1140
2 whilet < t,,,,, do
3 k1
4 repeat
5 x' + Shake (x,k) // Shaking
6 x" + BestImprovement (¥) // Local search
7 x,k + NeighborhoodChange (x,x",k) // Change neighborhocd
until £ = k¢
8 t < CpuTime ()
return x

Algorithm 7: Basic VNS

Example. We illustrate the basic steps on a minimum k-cardinality tree instance
taken from [72], see Fig. 3.1. The minimum k-cardinality tree problem on graph G
(k-card for short) consists of finding a subtree of G with exactly k edges whose sum
of weights is minimum.

Fig. 3.1 4-Cardinality tree problem

The steps of BVNS for solving the 4-card problem are illustrated in Fig. 3.2. In
Step 0 the objective function value, i.e., the sum of edge weights, is equal to 40;
it is indicated in the right bottom corner of the figure. That first solution is a local
minimum with respect to the edge-exchange neighborhood structure (one edge in,
one out). After shaking, the objective function is 60, and after another local search,
we are back to the same solution. Then, in Step 3, we take out 2 edges and add
another 2 at random, and after a local search, an improved solution is obtained with
a value of 39. Continuing in that way, the optimal solution with an objective function
value equal to 36 is obtained in Step 8.

64

P. Hansen et al.

LS 26 Shake-1 LS
O O O O o O O
1 1 1
O O o O O O O
258 5 258 258 6
O O O o O
0 4001 60 40
Shake-2 LS Shake-1
@] O o O O O @] @]
1 18
O O o] 4 e} O O
6\16 8\ /6\% 6\%0
O O
3 47| 4 39 49
LS Shake-2 LS
o O O O o O O
9
O 16 O O @]
8\ /6170 W& o 9
6 39| 7 o 43 9 36

Fig. 3.2 Steps of the Basic VNS for solving 4-card tree problem

(iv) General VNS. Note that the local search step (line 6 in BVNS, Algorithm 7)
may also be replaced by VND (Algorithm 2). This General VNS (VNS/VND) ap-
proach has led to some of the most successful applications reported in the literature
(see, e.g., [1, 26-29, 31, 32, 39, 57, 66, 92, 93]). General VNS (GVNS) is outlined
in Algorithm 8 below. Note that neighborhoods Ny, ... N, . are used in the VND
step, while a different series of neighborhoods Ny, ..., Ny, apply to the Shake step.

M GVNS (x 3 Ema.r: knmxafmﬂ_r)

1 repeat

2 k+1

3 repeat

4 x' + Shake(x,k)
5 X" — VND(Y, €nax)
6

x,k + NeighborhoodChange(x,x”, k)

until k = k.,

7 t + CpuTime ()

until 7 > fya,
return x

Algorithm 8: General VNS

3 Variable Neighborhood Search 65

3.3 Some Extensions

(i) The Skewed VNS (SVNS) method [62] addresses the problem of exploring val-
leys far from the incumbent solution. Indeed, once the best solution in a large region
has been found it is necessary to go quite far to obtain an improved one. Solutions
drawn at random in far-away neighborhoods may differ substantially from the in-
cumbent, and VNS may then degenerate, to some extent, into a Multistart heuristic
(where descents are made iteratively from solutions generated at random, and which
is known to be inefficient). So some compensation for distance from the incum-
bent must be made, and a scheme called Skewed VNS (SVNS) is proposed for that
purpose. Its steps are presented in Algorithms 9, 10 and 11. The KeepBest(x,x')
function (Algorithm 9) in SVNS simply keeps the best of solutions x and x” The
NeighborhoodChanges function (Algorithm 10) performs the move and neigh-
borhood change for the SVNS.

Function KeepBest(x,x')
1 if f(xX') < f(x) then
2 | xeX

return x

Algorithm 9: Keep best solution

Function NeighborhoodChangeS(x,x’, k, o)
1 if f(x') — ap(x,x) < f(x) then
2 | xedike
else
3| kek+1

return x.k
Algorithm 10: Neighborhood change for Skewed VNS

SVNS makes use of a function p(x,x”) to measure the distance between the cur-
rent solution x and the local optimum x”. The distance function used to define .4;
could also be used for this purpose. The parameter or must be chosen to allow move-
ment to valleys far away from x when f(x”) is larger than f(x) but not too much
larger (otherwise one will always leave x). A good value for ¢ is found experimen-
tally in each case. Moreover, in order to avoid frequent moves from x to a close
solution, one may take a smaller value for & when p(x,x") is small. More sophis-
ticated choices for selecting a function of ap (x,x") could be made through some
learning process.

66 P. Hansen et al.

Function SVNS (x. kax, fnax, @)

1 Xpest € X
2 repeat
3 k1
4 repeat
5 X'+ Shake(x.k)
6 "+ First Improvement(x)
7 X,k + NeighborhoodChangeS(x,x",k, o)
8 Xpest 4 KeepBest (Xpey,X)
until k£ = ka0
9 X 4= Xpest
10 t + CpuTime()
until 7 > 1,
return x

Algorithm 11: Skewed VNS

(ii) The Variable neighborhood decomposition search (VNDS) method [63] ex-
tends the basic VNS into a two-level VNS scheme based upon decomposition of
the problem. It is presented in Algorithm 12, where #; is an additional parameter
that represents the running time allowed for solving decomposed (smaller-sized)
problems by Basic VNS (line 5).

Function VNDS (x, lkm(u(l sEmaxs [d)
1 repeat
2 k+1
3 repeat
4 x' + Shake (x,k); vy« x"\ x
5 Y 4= BVNS(, kg, t4); X = (7 \y) Uy
6 X" « FirstImprovement(x”)
7 x,k +— NeighborhoodChange(x,x" k)
until k = ka1
until 7 > t,,,
return x

Algorithm 12: Variable neighborhood decomposition search

For ease of presentation, but without loss of generality, we assume that the so-
lution x represents a set of attributes. In Step 4 we denote by y a set of k solution
attributes present in x’ but not in x (y = x’ \ x). In Step 3 we find the local optimum
y' in the space of y; then we denote with x” the corresponding solution in the whole
space X (x” = (x'\ y) Uy"). We notice that exploiting some boundary effects in a new
solution can significantly improve solution quality. That is why, in Step 6, the local
optimum x” is found in the whole space X using x” as an initial solution. If this is
time consuming, then at least a few local search iterations should be performed.

VNDS can be viewed as embedding the classical successive approximation
scheme (which has been used in combinatorial optimization at least since the six-
ties, see, e.g., [48]) in the VNS framework. Let us mention here a few applications

3 Variable Neighborhood Search 69

Logical Function Accept (x,xX, p)
fori=0to pdo
if (fi(x') < fi(x)) then return TRUE
L if (f;(x) > fi(x)) then return FALSE

return FALSE

Algorithm 15: Accept procedure with p secondary formulations

If Accept (x,x,p) is included in the LocalSearch subroutine of BVNS,
then it will not stop the first time a non improved solution is found. In order to
stop LocalSearch and thus claim that x' is a local minimum, x’ should not be im-
proved by any among the p different formulations. Thus, for any particular problem,
one needs to design different formulations of the problem considered and decide the
order in which they will be used in the Accept subroutine. Answers to those two
questions are problem specific and sometimes not easy. The Accept (x,x, p) sub-
routine can obviously be added to the NeighborhoodChange and Shaking
steps of BVNS from Algorithm 7 as well.

In [85], three evaluation functions, or acceptance criteria, within the Neighborhood
Change step are used in solving the Bandwidth Minimization Problem. This min-
max problem consists of finding permutations of rows and columns of a given
square matrix to minimize the maximal distance of the nonzero elements from
the main diagonal in the corresponding rows. Solution x may be represented as a
labeling of a graph and the move from x to x’ as x — x’. Three criteria are used:

1. the bandwidth length f(x) (fo(x') < fo(x));

2. the total number of critical vertices fi(x) (fi(x") < fi(x)), if fo(x') = fo(x);

3. falx,x) = plx,x) — o, if fo(X') = fo(x) and f1(x') = fi(x). Here, we want
f3(x,x") > 0, because we assume that x and x’ are sufficiently far from one
another when p(x,x’) > o, where « is an additional parameter. The idea for a
move to an even worse solution, if it is very far, is used within Skewed VNS.
However, a move to a solution with the same value is only performed in [85] if
its Hamming distance from the incumbent is greater than a.

In [86] a different mathematical programming formulation of the original prob-
lem is used as a secondary objective within the Neighborhood Change func-
tion of VNS. There, two combinatorial optimization problems on a graph are consid-
ered: the Metric Dimension Problem and Minimal Doubly Resolving Set Problem.

A more general VFS approach is given in [89], where the Curwidth Graph Min-
imization Problem (CWP) is considered. CWP also belongs to the min-max prob-
lem family. For a given graph, one needs to find a sequence of nodes such that the
maximum cutwidth is minimum. The cutwidth of a graph should be clear from the
example provided in Fig. 3.3 for the graph with six vertices and nine edges shown
in (a).

70 P. Hansen et al.

£ 2 3 4 5 6

2

CW{A)=4 CW(B)=5 CW(C)=6 CW{D)=4 CWiE)=2
(a) (b)

Fig. 3.3 Cutwidth minimization example as in [89]

Figure 3.3b shows an ordering x of the vertices of the graph in (a) with the
corresponding cutwidth CW values of each vertex. It is clear that the CW repre-
sents the number of cut edges between two consecutive nodes in the solution x.
The cutwidth value fy(x) = CW (x) of the ordering x = (A,B,C,D,E F) is equal to
fo(x) =max{4,5,6,4,2} = 6. Thus, one needs to find an order x that minimizes the
maximum cut-width value over all vertices.

Beside minimizing the bandwidth fy, two additional formulations, denoted f;
and f> , are used in [89], and implemented within a VND local search. Results are
compared among themselves (Table 3.1) and with a few heuristics from the literature
(Table 3.1), using the following usual data set:

e “Grid”: This data set consists of 81 matrices constructed as the Cartesian prod-
uct of two paths. They were originally introduced by Rolim et al. [94]. For this
set of instances, the vertices are arranged on a grid of dimension width x height
where width and height are selected from the set {3, 6, 9, 12, 15, 18, 21, 24,
27}.

. “Harwell-Boeing” (HB): This data set is a subset of the public-domain Ma-
trix Market library.! This collection consists of a set of standard test matrices
M = (M;;) arising from problems in linear systems, least squares, and eigen-
value calculations from a wide variety of scientific and engineering disciplines.
Graphs were derived from these matrices by considering an edge (i, j) for ev-
ery element M;; # 0. The data set is formed by the selection of the 87 instances
were n < 700. Their number of vertices ranges from 30 to 700 and the number
of edges from 46 to 41,686.

! Available at http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/.

3 Variable Neighborhood Search 71

Table 3.1 presents the results obtained with four different VFS variants, after
executing them for 30 s over each instance. The column ‘BVNS’ of Table 3.1 repre-
sents a heuristic based on BVNS which makes use only of the original formulation
Jo of the CWP. VES; denotes a BVNS heuristic that uses only one secondary crite-
rion, i.e., fo and f;. VFS; is equivalent to the previous one with the difference that
now f> is considered (instead of f). Finally, the fourth column of the table, denoted
as VFS3, combines the original formulation of the CWP with the two alternative
ones, in the way presented in Algorithm 15. All algorithms were configured with
kmax = 0.1n and start from the same random solution.

Table 3.1 Comparison of alternative formulations within 30s for each test, by average objective
values and % deviation from the best known solution

BVNS VFS; VES; VES3

Avg. 137.31 93.56 91.56 90.75

Dev. (%)|192.44 60.40 49.23 48.22

Test are performed on “Grid” and “HB” data sets that contain 81 and 86 instances, respectively

It appears that significant improvements in solution quality are obtained when at
least one secondary formulation is used in case of ties (compare e.g., 192.44% and
60.40% deviations from the best known solutions obtained by BVNS and VFS;,
respectively). An additional improvement is obtained when all three formulations
are used in VFSs3.

Comparison of VFS3 and state-of-the-art heuristics are given in Table 3.2. There,
the stopping condition is increased from 30s to 300 and 600 s for the first and the
second set of instances, respectively. Besides average values and % deviation, the
methods are compared based on the number of wins (the third row) and the total
cpu time in seconds. Overall, the best quality results are obtained by VFES in less
computing time.

Table 3.2 Comparison of VES with the state-of-the-art heuristics over the “Grid” and “HB” data
sets, within 300 and 600 s respectively

81 ‘grid’ test instances 86 HB instances
GPR [2] SA[34] SS[88] VFS|[89][GPR [2] SA[34] SS[88] VFS [89]
Avg. 3844 16.14 13.00 12.23| 364.83 346.21 31522 31439
Dev. (%) | 201.81 2542 7.76 3.25 95.13 53.30 3.40 1.77
#0pt. 2 37 44 59 2 8 47 61
CPU1t(s)| 235.16 2l16.14 210.07 90.34 | 557.49 43540 430.57 128.12

3.5 Primal-Dual VNS

For most modern heuristics, the difference in value between the optimal solution
and the obtained approximate solution is not precisely known. Guaranteed perfor-
mance of the primal heuristic may be determined if a lower bound on the objective

72 P. Hansen et al.

function value can be found. To this end, the standard approach is to relax the in-
tegrality condition on the primal variables, based on a mathematical programming
formulation of the problem. However, when the dimension of the problem is large,
even the relaxed problem may be impossible to solve exactly by standard commer-
cial solvers. Therefore, it seems to be a good idea to solve dual relaxed problems
heuristically as well. In this way we get guaranteed bounds on the primal heuristic
performance. The next difficulty arises if we want to get an exact solution within
a branch-and-bound framework since having the approximate value of the relaxed
dual does not allow us to branch in an easy way, for example by exploiting com-
plementary slackness conditions. Thus, the exact value of the dual is necessary. A
general approach to get both guaranteed bounds and an exact solution is proposed
in [67], and referred as Primal-Dual VNS (PD-VNS). It is given in Algorithm 16.

Function PD-VNS (X, kpax, tmax)
1 BVNS (X, Kpax:Imax) // Solve primal by VNS

2 DualFeasible(x,y) // Find (infeasible) dual such that fp = fp
3 DualVNS(y) /1 Use VNS do decrease infeasibility

4 DualExact(y) /1 Find exact (relaxed) dual

5 BandB(x,y) /! Apply branch-and-bound method

Algorithm 16: Basic PD-VNS

In the first stage, a heuristic procedure based on VNS is used to obtain a near op-
timal solution. In [67] it is shown that VNS with decomposition is a very powerful
technique for large-scale simple plant location problems (SPLP) with up to 15,000
facilities and 15,000 users. In the second phase, the objective is to find an exact so-
lution of the relaxed dual problem. Solving the relaxed dual is accomplished in three
stages: (1) find an initial dual solution (generally infeasible) using the primal heuris-
tic solution and complementary slackness conditions; (2) find a feasible solution by
applying VNS to the unconstrained nonlinear form of the dual; (3) solve the dual
exactly starting with the found initial feasible solution using a customized “sliding
simplex” algorithm that applies “windows” on the dual variables, thus substantially
reducing the problem size. On all problems tested, including instances much larger
than those previously reported in the literature, the procedure was able to find the ex-
act dual solution in reasonable computing time. In the third and final phase, armed
with tight upper and lower bounds obtained from the heuristic primal solution in
phase one and the exact dual solution in phase two, respectively, a standard branch-
and-bound algorithm is applied to find an optimal solution of the original problem.
The lower bounds are updated with the dual sliding simplex method and the upper
bounds whenever new integer solutions are obtained at the nodes of the branching
tree. In this way it was possible to solve exactly problem instances of sizes up to
7000 facilities <7000 users, for uniform fixed costs, and 15,000 facilities x 15,000
users, otherwise.

3 Variable Neighborhood Search 73

3.6 VNS for Mixed Integer Linear Programming

The Mixed Integer Linear Programming (MILP) problem consists of maximizing
or minimizing a linear function, subject to equality or inequality constraints and
integrality restrictions on some of the variables. The mixed integer programming
problem (MILP) can be expressed as:

min Ejl!zlcjxj
S.t. Z’uf-zla,-jszb,- VfEM:{l,Z,...,m}

(MILP) xe{0.1} Vieaz
xj>0,integer Vj € ¥
szO Vje?

where the set of indices N = {1,2,...,n} is partitioned into three subsets %,% and
‘¢, corresponding to binary, general integer and continuous variables, respectively.

Numerous combinatorial optimization problems, including a wide range of prac-
tical problems in business, engineering and science, can be modeled as MILPs. Sev-
eral special cases, such as knapsack, set packing, cutting and packing, network de-
sign, protein alignment, traveling salesman and other routing problems, are known
to be NP-hard [46].

Many commercial solvers such as CPLEX [71] are available for solving MILPs.
Methods included in such software packages are usually of the branch-and-bound
(B&B) or of branch-and-cut (B&C) types. Basically, those methods enumerate all
possible integer values in some order, and prune the search space for the cases where
such enumeration cannot improve the current best solution.

3.6.1 Variable Neighborhood Branching

The connection between local search based heuristics and exact solvers may be
established by introducing the so called local branching constraints [43]. By adding
just one constraint into (MILP), as explained below, the kth neighborhood of (MILP)
is defined. This allows the use of all local search based metaheuristics, such as Tabu
search, Simulating annealing, VNS etc. More precisely, given two solutions x and y
of (MILP), the distance between x and y is defined as:

S(x,y) =Y, |lxj—yjl

JERB

76 P. Hansen et al.

at line 24. There are four different outputs from subroutine MIPSOLVE provided
by variable stat. They are coded in lines 11-20. The shaking step also uses the MIP
solver. It is presented in the loop that starts at line 25.

3.6.2 VNDS Based Heuristics for MILP

It is well known that heuristics and relaxations are useful for providing upper and
lower bounds on the optimal value of large and difficult optimization problems. A
hybrid approach for solving 0-1 MILPs is presented in this section. A more detailed
description may be found in [51]. It combines variable neighborhood decomposition
search (VNDS) [63] and a generic MILP solver for upper bounding purposes, and
a generic linear programming solver for lower bounding. VNDS is used to define
a variable fixing scheme for generating a sequence of smaller subproblems, which
are normally easier to solve than the original problem. Different heuristics are de-
rived by choosing different strategies for updating lower and upper bounds, and thus
defining different schemes for generating a series of subproblems. We also present
in this section a two-level decomposition scheme, in which subproblems created
according to the VNDS rules are further divided into smaller subproblems using
another criterion, derived from the mathematical formulation of the problem.

3.6.2.1 VNDS for 0-1 MILPs with Pseudo-Cuts

Variable neighborhood decomposition search is a two-level variable neighborhood
search scheme for solving optimization problems, based upon the decomposition of
the problem (see Algorithm 12). We discuss here an algorithm which solves exactly
a sequence of reduced problems obtained from a sequence of linear programming
relaxations. The set of reduced problems for each LP relaxation is generated by
fixing a certain number of variables according to VNDS rules. That way, two se-
quences of upper and lower bounds are generated, until an optimal solution of the
problem is obtained. Also, after each reduced problem is solved, a pseudo-cut is
added to guarantee that this subproblem is not revisited. Furthermore, whenever an
improvement in the objective function value occurs, a local search procedure is ap-
plied in the whole solution space to attempt a further improvement (the so-called
boundary effect within VNDS). This procedure is referred to as VNDS-PC, since it
employs VNDS to solve 0-1 MILPs, while incorporating pseudo-cuts to reduce the
search space [51].

If J C %, we define the partial distance between x and y, relative to J, as
8(J,x,y) = X jes| xj —y;j|. Obviously we have 6(#,x,y) = &(x,y)). More gener-
ally, let x be an optimal solution of LP(P), the LP relaxation of the problem P
considered (not necessarily MIP feasible), and J C B(x) = {j € N | x; € {0,1}}
an arbitrary subset of indices. The partial distance §(J,x,X) can be linearized as
follows:

8(J,x,3) = Y [xj(1 %)) +x;(1 —x;)]-
jeJ
Let X be the solution space of problem P. The neighborhood structures {4 | k =
Knins « « + s Kmax > 1 < kiin < Kiax < p, can be defined knowing the distance 6 (%, x,y)

