Handbook of
Network and System
Administration

Jan Bergstra
Mark Burgess

(Editors)

HANDBOOK OF
NETWORK AND SYSTEM
ADMINISTRATION

Edited by

Jan Bergstra
Informatics Institute, University of Amsterdam
Amsterdam, The Netherlands

Mark Burgess
Faculty of Engineering, University College Oslo
Oslo, Norway

£ oS0
ELSEVIER

Amsterdam — Boston — Heidelberg — London — New York — Oxford — Paris
San Diego — San Francisco — Singapore — Sydney — Tokyo

Elsevier
Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands
Linacre House, Jordan Hill, Oxford OX2 8DP, UK

First edition 2007

Copyright © 2007 Elsevier B.V. All rights reserved

No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means electronic, mechanical, photocopying, recording or otherwise
without the prior written permission of the publisher

Permissions may be sought directly from Elsevier’s Science & Technology Rights Depart-
ment in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email:
permissions @elsevier.com. Alternatively you can submit your request online by visiting
the Elsevier website at http://elsevier.com/locate/permissions, and selecting Obtaining per-
mission to use Elsevier material

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons
or property as a matter of products liability, negligence or otherwise, or from any use or
operation of any methods, products, instructions or ideas contained in the material herein.
Because of rapid advances in the medical sciences, in particular, independent verification
of diagnoses and drug dosages should be made

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN: 978-0-444-52198-9

For information on all Elsevier publications
visit our website at books.elsevier.com

Printed and bound in The Netherlands

0708091011 10987654321

Contents

Preface
List of Contributors
1. The Arena
1.1. Commentary
1.2. Scaling data centre services
M. Burgess
1.3. Automating system administration: Landscape, approaches and costs
A.B. Brown, J.L. Hellerstein and A. Keller
1.4. System configuration management
A.L. Couch
2. The Technology
2.1. Commentary
2.2. Unix and z/OS
K. Stav
2.3. Email
C.P.J. Koymans and J. Scheerder
2.4, XML-based network management
M.-J. Choi and J.W. Hong
2.5. Open technology
J. Scheerder and C.P.J. Koymans
2.6. System backup: Methodologies, algorithms and efficiency models
A. Frisch
2.7. What can Web services bring to integrated management?
A. Pras and J.-P. Martin-Flatin
2.8. Internet management protocols
J. Schonwidlder
3. Networks, Connections and Knowledge
3.1. Commentary
3.2. Management of ad-hoc networks
R. Badonnel, R. State and O. Festor
3.3. Some relevant aspects of network analysis and graph theory
G.S. Canright and K. Engg-Monsen
3.4. Knowledge engineering using ontologies
J. Strassner
3.5. Application integration using semantic Web services
J. Vrancken and K. Koymans

Vil

W = —

43

75
135
135
137
147
173
197
205
241
295
329
329
331
361

425

457

X Contents

4. Policy and Constraint
4.1. Commentary
4.2. Security management and policies
M. Bishop
4.3. Policy-based management
A. Bandara, N. Damianou, E. Lupu, M. Sloman and N. Dulay
5. Computational Theories of System Administration
5.1. Commentary
5.2. On the complexity of change and configuration management
M. Burgess and L. Kristiansen
5.3. Complexity of system configuration management
Y. Sun and A. Couch
5.4. Predictable and reliable program code: Virtual machine-based projection
semantics
J.A. Bergstra and J. Bethke
6. System Science
6.1. Commentary
6.2. System administration and the scientific method
M. Burgess
6.3. System administration and micro-economic modelling
M. Burgess
6.4. System reliability
T. Reitan
7. Business and Services
7.1. Commentary
7.2. State-of-the-art in economic management of internet services
B. Stiller and D. Hausheer
7.3. Service provisioning: Challenges, process alignment and tool support
M. Brenner, G. Dreo Rodosek, A. Hanemann, H.-G. Hegering and R. Koenig
7.4. IT service management
P.FL. Scheffel and J. Strassner
7.5. Decision and control factors for IT-sourcing
G. Delen
7.6. How do ICT professionals perceive outsourcing? Factors that influence
the success of ICT outsourcing
D. Hoogeveen
8. Professional and Social Issues
8.1. Commentary
8.2. Systems administration as a self-organizing system: The professionalization
of SA via interest and advocacy groups
S.R. Chalup
8.3. Ethical, legal and social aspects of systems
S. Fagernes and K. Ribu

Subject Index

471
471
473
507
565
565
567

623

653
687
687
689
729
775
811
811
813
855
905

929

947

959
959

961

969

999

1. The Arena

1.1. Commentary

The arena of system management is as broad as it is long. What began in consolidated
computer centres has spread to the domestic arena of households and even to the outdoors,
through a variety of personal consumer electronic items. It is an open question how much
management such computing devices need in such different milieux.

In this part the authors describe some of the issues involved in the administration of
systems in a more traditional organizational settings. Many matters have been left out;
others are covered in later chapters, such as Chapter 3.2 about ad hoc networking in Part 3.

During the 1970s one spoke of computer operations, during the 1980s and 1990s ‘system
administration’ or sometimes ‘network administration’ was the preferred appellation. Now
in the 2000s we have become service oriented and departments and businesses are service
providers. The organization is required to provide a service to customers within a ‘business’
framework.

Efficiency and productivity are key phrases now, and most computers in a business or
university environment are located within some kind of data centre. Since the limits of
performance are constantly being pushed Automation is an important approach for scala-
bility. From an economic perspective, automation is a good investment for tasks that are
frequently repeated and relatively easy to perform. As they become infrequent or difficult,
the economics of automation become less attractive.

Configuration management has been one of the main areas of research in the field over
the past twenty years. In other management arenas, as well as in software engineering,
configuration management has a high level meaning and concerns the arrangement of re-
sources in an enterprise. Do not be confused by the low-level interpretation of configuration
management used by system administrators. This concerns the bits and bytes of files and
databases that govern the properties of networks of computing devices.

This page intentionally left blank

- 1.2 -

Scaling Data Centre Services

Mark Burgess

Faculty of Engineering, University College Oslo, Room 707, Cort Adelers Gate 30, 0254 Oslo, Norway
E-mail: mark.burgess @iu.hio.no

1. Introduction

The management of computer resources is a key part of the operation of IT services. Its
trends tend to proceed in cycles of distribution and consolidation. Today, the data centre
plays an increasingly important role in services: rather than managing computer resources
in small private rooms, many companies and organizations are once again consolidating
the management of systems into specialized data centres. Such organized management
is linked to the rise of de facto standards like ITIL [4,25,26] and to the increased use
of outsourcing and service oriented computing which are spreading through the industry.
Management standards like ITIL are rather abstract however; this chapter offers a brief
technical overview of the data centre environment.

2. Computing services

Computing services are increasingly required to be scalable and efficient to meet levels of
demand. The delivery of high levels of computing service is associated with three common
phrases:

e High Performance Computing (HPC).

e High Volume Services (HVS).

e High Availability Services (HAS).
These phrases have subtly different meanings.

HANDBOOK OF NETWORK AND SYSTEM ADMINISTRATION
Edited by Jan Bergstra and Mark Burgess
© 2007 Elsevier B.V. All rights reserved

4 M. Burgess Part 1

2.1. High performance computing

HPC is the term used to describe a variety of CPU intensive problems. This often involves
supercomputers and/or networked clusters of computers to take a large computational prob-
lem, divide it into to smaller chunks and solve those chunks in parallel. HPC requires very
high-capacity and/or low-latency connections between processors. The kinds of problems
solved in this way are typically of a scientific nature, such as massive numerical problems
(e.g., weather and climate modelling), or search problems in bioinformatics.

For problems that require massive computational power but which are less time-critical,
another strategy is Grid computing, an extension of the idea in which the sharing takes
place over anything from a short cable to a wide area network.

2.2, High volume services

This refers to applications or services, normally based on content provision, that are de-
signed to handle large numbers of transactions. HVS are a generalization of HPC to
non-specifically CPU-oriented tasks. High volume services are achieved by implementing
strategies for workload sharing between separate server-hosts (often called load balancing).

HVS focuses on serving large volumes of requests, and must therefore address scalabil-
ity. System throughput demands a careful analysis of system bottlenecks. Load-sharing is
often required to attain this goal. HVS includes the economics and the performance tuning
of services. The ability to deliver reliable service levels depends on both the resources that
are available in the data centre and the pattern of demand driven by the users.

2.3. High availability services

These are applications designed for mission-critical situations, where it is essential that the
service is available for the clients with a low latency, or short response time. To achieve
this, a mixture of redundancy and fault detection is implemented in the system. HAS is
about ensuring that a service is available with an assured quality of response time, with
target service level. One must decide what ‘available’ means in terms of metric goals (e.g.,
upper bound response time).

3. Resources

To achieve a high performance (and hence high volume) computing we need resource
management. The resources a computer system has to utilize and share between different
tasks, users and processes are:

e CPU.

e Disk.

Ch. 2 Scaling data centre services 5

e Memory.

e Network capacity.!

Many technologies are available to do optimization and perform this sharing, as noted in
the forthcoming sections.

Computer processing is limited by bottlenecks or throughput limitations in a system.
Sometimes these performance issues can be separated and conquered one by one, other
times interdependencies make it impossible to increase performance simply by making
changes to components. For instance, some properties of systems are emergent, i.e., they
are properties of the whole system of all components, not of any individual part.

3.1. CPU

For CPU intensive jobs, the basic sharing tools are:

e Multi-tasking and threading at the operating system level.

e Multi-processor computers, vector machines and Beowulf clusters which allow paral-

lelism.

e Mainframe computing.

e Grid Engine job distribution systems for parallel computing.

e MPI (Message Passing Interface) programming tools.

Flynn’s taxonomy is a classification scheme for parallel computers based on whether the
parallelism is exhibited in the instruction stream and/or in the data stream. This classifi-
cation results in four main categories, SISD (single instruction single data), SIMD (single
instruction multiple data), MISD (multiple instruction single data) and MIMD (multiple in-
struction multiple data). Different strategies for building computers lead to designs suited
to particular classes of problems.

Load-balancing clusters operate by having all workload come through one or more load-
balancing front ends, which then distribute work to a collection of back end servers. Al-
though they are primarily implemented for improved performance, they commonly include
high availability features as well. Such a cluster of computers is sometimes referred to as
a server farm.

Traditionally computers are built over short distance buses with high speed communi-
cations. Dramatic improvements in network speeds have allowed wide area connection of
computer components. Grid computing is the use of multiple computing nodes connecting
by such wide area networks. Many grid projects exist today; many of these are designed to
serve the needs of scientific projects requiring huge computational resources, e.g., bioin-
formatics, climate and weather modelling, and the famous Search for Extra-terrestrial In-
telligence (SETI) analysis project.

3.2. Disk

Fast, high volume storage is a key component of delivery in content based services. Be-
cause disk-storage requires mechanical motion of armatures and disk heads, reading from

IThe use of the term ‘bandwidth’ is commonly, if incorrectly, used in everyday speech. Bandwidth refers to
frequency ranges. Channel capacity (or maximum throughput) is proportional to bandwidth — see chapter System
Administration and the Scientific Method in this volume.

6 M. Burgess Part 1

and writing to disk is a time-consuming business, and a potential bottleneck. Disk services
that cache pages in RAM can provide a large speed-up for read/write operations.

RAID includes a number of strategies for disk performance and reliability. Redundant
Arrays of Independent Disks” are disk arrays that have special controllers designed to
optimize speed and reliability. RAID deals with two separate issues: fault tolerance and
parallelism. Fault tolerant features attempt to reduce the risk of disk failure and data-loss,
without down-time. They do this using redundant data encoding (parity correction codes)
or mirroring. Parallism (mirroring and striping of disks) is used to increase data availability.
These are often conflicting goals [11,15,16,31].

Disk striping, or parallelization of data access across parallel disks can result in an up-
to- NV -fold increase in disk throughput for N disks in the best case.

Error correction, sometimes referred to as parity, is about reliability. Error correction
technology adds additional search and verification overheads, sometimes quoted at as much
as 20% to the disk search response times. It can be a strategy for increasing up-time how-
ever, since RAID disks can be made hot-swappable without the need for backup.

Ten years ago networks were clearly slower than internal databuses. Today network
speeds are often faster than internal databuses and there is a potential gain in both perfor-
mance and administration in making disk access a network service. This has led to two
architectures for disk service:

e Storage Area Networks (SAN).

e Network Attached Storage (NAS).

A Storage Area Network is an independent network of storage devices that works in
place of disks connected on a local databus. This network nevertheless appears as a low
level disk interface, usually SCSI. Disk storage appears as locally attached device in a
computer operating system’s device list. The device can be formatted for any high level
filesystem.

SAN uses ISCSI (SCSI over Internet) using a dedicated network interface to connect to
a storage array. This gives access to an almost unlimited amount of storage, compared to
the limited numbers of disks that can be attached by the various SCSI versions. SAN can
also use Fibre channel, which is another fibre-based protocol for SCSI connection.

NAS works more like a traditional network service. It appears to the computer as a
filesystem service like NFS, Samba, AFS, DFS, etc. This service is mounted in Unix or
attached as a logical ‘drive’ in Windows. It runs over a normal network protocol, like IP.
Normally this would run over the same network interface as normal traffic.

3.3. Network

Network service provision is a huge topic that evolves faster than the timescale of publish-
ing. Many technologies compete for network service delivery. Two main strategies exist
for data delivery:

e Circuit switching.

e Packet switching.

2Originally the ‘T" meant Inexpensive, but that now seems outdated.

Ch. 2 Scaling data centre services 7

These are roughly analogous to rail travel and automobile travel respectively. In circuit
switching, one arranges a high-speed connection between certain fixed locations with a
few main exchanges. In the packet switching, packets can make customized, individually
routed journeys at the expense of some loss of efficiency.

Network throughput can be improved by adapting or tuning:

e Choice of transport technology, e.g., Fibre, Ethernet, Infiniband, etc.

e Routing policies, including the strategies above.

e Quality of service parameters in the underlying transport.
Most technological variations are based on alternative trade-offs, e.g. high speed over short
distances, or stable transport over wide-areas. The appropriate technology is often a matter
of optimization of performance and cost.

4. Servers and workstations

Computer manufacturers or ‘vendors’ distinguish between computers designed to be
‘workstations’ and computers that are meant to be ‘servers’. Strictly speaking, a server
is a process that provides a service not necessarily a whole computer; nevertheless, this
appellation has stuck in the industry.

In an ideal world one might be able to buy a computer tailored to specific needs, but
mass production constraints lead manufacturers to limit product lines for home, businesses
and server rooms. Home computers are designed to be cheap and are tailored for gaming
and multi-media. Business computers are more expensive versions of these with different
design look. Servers are designed for reliability and have their own ‘looks’ to appeal to
data centre customers.

A server computer is often designed to make better use of miniaturization, has a more
robust power supply and better chassis space and expansion possibilities. High-quality
hardware is also often used in server-class systems, e.g. fast, fault tolerant RAM, and com-
ponents that have been tested to higher specifications. Better power supply technology can
lead to power savings in the data centre, especially when many computers are involved in
a large farm of machines.

We sometimes think of servers as ‘large computers’, but this is an old fashioned view.
Any computer can now act as a server. Basic architectural low-level redundancy is a selling
point for mainframes designs, as the kind of low-level redundancy they offer cannot easily
be reproduced by clustering several computers.

4.1. Populating a data centre

How many computers does the data centre need, and what kind? This decision cannot be
made without an appraisal of cost and performance. In most cases companies and organi-
zations do not have the necessary planning or experience to make an informed judgment
at the time they need it, and they have to undergo a process of trial-and-error learning.
Industry choices are often motivated by the deals offered by sellers rather than by an engi-
neering appraisal of system requirements, since fully rational decisions are too complicated
for most buyers to make.

8 M. Burgess Part 1

One decision to be made in choosing hardware for a server function is the following.
Should one:

e Buy lots of cheap computers and use high-level load sharing to make it perform?

e Buy expensive computers designed for low-level redundancy and performance?
There is no simple answer as to which of these two approaches is the best strategy. The
answer has fluctuated over the years, as technological development and mass production
have advanced. Total cost of ownership is usually greater with custom-grown systems and
cheap-to-buy computers. The cost decision becomes a question of what resources are most
available in a given situation. For a further discussion of this see the chapter on System
Administration and Business in this volume.

Computer ‘blades’ are a recent strategic design aimed at data centres, to replace normal
chassis computers.

e Blades are small — many of these computers can be fitted into a small spaces specially

designed for racks.

e Power distribution to blades is simplified by a common chassis and can be made
redundant (though one should often read the small-print).

e A common switch in each chassis allows efficient internal networking.

e VLANS can be set up internally in a chassis, or linked to outside network.

e Blade chassis are increasingly designed for the kind of redundancy that is needed in a
large scale computing operation, with two of everything provided as options (power,
switch, etc.).

e They often have a separate network connection for an out-of-band management con-
sole.

The blade servers are a design convenience, well suited to life in data centre where space,
power and cooling are issues.

4.2. Bottlenecks — why won't it go faster?

Service managers are sometimes disappointed that expensive upgrades to not lead to im-
proved performance. This is often because computing power is associated with the CPU
frequency statistics. Throwing faster CPUs at service tasks is a naive way of increasing
processing. This will only help if the service tasks are primarily CPU bound.

So where are the main performance bottlenecks in computers? This is probably the
wrong question to ask. Rather we have to ask, where is the bottleneck in an application?
The resources needed by different applications are naturally different. We must decide
whether a process spends most of its time utilizing:

e CPU?

e Network?

e Disk?

e Memory?

We also need to understand what dependencies are present in the system which could be a
limiting factor [6].

Only when we know how an application interacts with the hardware and operating sys-

tem can we begin to tune the performance of the system. As always, we have to look at

Ch. 2 Scaling data centre services 9

the resources being used and choose a technology which solves the problem we are facing.
Technologies have design trade-offs which we have to understand. For instance, we might
choose Infiniband for short connection, high-speed links in a cluster, but this would be no
good for connecting up a building. Distance and speed are often contrary to one another.

Read versus write performance is a key factor in limiting throughput. Write-bound op-
erations are generally slower than read-only operations because data have to be altered and
caching is harder to optimize for writing. Redundancy in subsystems has a performance
cost, e.g., in RAID 5 data are written to several places at once, whereas only one of the
copies has to be read. This explains why RAID level 5 redundancy slows down disk writ-
ing, for example. The combination of disk striping with each disk mirrored is often chosen
as the optimal balance between redundancy and efficiency.

Applications that maintain internal state over long-term sessions versus one-off trans-
actions often have complications that make it harder to share load using high-level redun-
dancy. In such cases low-level redundancy, such as that used in mainframe design is likely
to lead to more efficient processing because the cost of sharing state between separate
computers is relatively high.

5. Designing an application architecture
5.1. Software architecture

In an ideal world, software engineers would be aware of data centre issues when writing
application software. Service design involves concerns from the low-level protocols of the
network to the high-level web experiences of the commercial Internet.

While low-level processor design aims for greater and greater integration, the dominant
principle in soft-system architecture is the separation of concerns. Today’s architypical
design for network application services is the so-called three tier architecture: webserver,
application, database (see Figure 1).

Service design based entirely on the program code would be a meaningless approach
in today’s networked environments. A properly functioning system has to take into ac-
count everything from the user experience to the basic resources that deliver on the service
promises. Design considerations for services include:

e Correctness.

e Throughput and scalability.

e Latency (response time).

e Reliability.

e Fault tolerance.

e Disaster recovery.

High volume services require efficiency of resource use. High availability requires, on
the other hand, both efficiency and a reliability strategy that is fully integrated with the
software deployment strategy. Typically one uses load sharing and redundancy for this.

10 M. Burgess Part 1

VSN |
N |
— 1 AN

Server host(s) Database host(s)

Fig. 1. A three tier architecture.

5.2. Scalability

Like security, scalability is a property of systems that researchers and designers like to
claim or even boast, backed up with at best spurious evidence, as if the mere mention
of the word could bring fortune. Like security, it has become a word to mistrust. Part of
the problem is that very little attention has been given to defining what scalability means.
This chapter is not the place for a comprehensive discussion of scalability, but we can
summarize some simple issues.

Scalability is about characterizing the output of a system as a function of input (usually
a task). The ability of a system to complete tasks depends on the extent to which the task
can be broken up into independent streams that can be completed in parallel, and thus the
topology of the system and its communication channels. Some simple ideas about scala-
bility can be understood using the flow approximation of queueing systems (see chapter
of System Administration and the Scientific Method in this volume) to see how the output
changes as we vary the input.

We shall think of scalability as the ability of a system to deal with large amounts of
input, or more correctly, we consider how increasing the input affects the efficiency with
which tasks are discharged at the output. This sounds somewhat like the problem posed in
queueing theory. However, whereas queueing theory deals with the subtleties of random
processes, scalability is usually discussed in a pseudo-deterministic flow approximation.

If we think of rain falling (a random process of requests) then all we are interested
in over time is how much rain falls and whether we can drain it away quickly enough
by introducing a sufficient number of drains (processors or servers). Thus scalability is
usually discussed as throughput as a function of load. Sometimes the input is a function of
a number of clients, and sometimes the output is a function of the number of servers (see
Figure 2). There are many ways to talk about scaling behavior.

Amdahl’s law, named after computer designer Gene Amdahl, was one of the first at-
tempts to characterize scalability of tasks in High Performance Computing, in relation to
the number of processors [1]. It calculates the expected ‘speed-up’, or fractional increase

Ch. 2 Scaling data centre services 11

Server 1

Server 2
Load Balancer
.
L]

Servern

Fig. 2. The topology for low-level load sharing using a commercial dispatcher.

in performance, as a result of parallelizing part of the processing (load balancing) between
N processors as:

_ Tserial _ f(l)
Tparallel t(N) '

(1

Suppose a task of total size ¢ + 7, which is a sum of a serial part o and a paralleliz-
able part , is to be shared amongst N servers or processors and suppose that there is an
overhead o associated with the parallelization (see Figure 3). Amdahl’s law says that:

a+m

S tr/Nto @

In general, one does not know much about the overhead o except to say that it is positive
(0 = 0), thus we write

o+
< ——. (3)
o+mn/N
This is usually rewritten by introducing units of the serial fraction, f = o /(¢ +), so that
we may write:

1

S« ——mm——. “)
f+Qa-=f)/N

This fraction is never greater than 1/f, thus even with an infinite number of processors the
task cannot be made faster than the processing of the serial part. The aim of any application
designer must therefore be to make the serial fraction of an application as small as possible.
This is called the bottleneck of the system.

Amdahl’s law is, of course, an idealization that makes a number of unrealistic assump-
tions, most notably that the overhead is zero. It is not clear that a given task can, in fact, be
divided equally between a given number of processors. This assumes some perfect knowl-
edge of a task with very fine granularity. Thus the speedup is strictly limited by the largest
chunk (see Figure 3) not the smallest. The value of the model is that it predicts two issues
that limit the performance of a server or high performance application:

12 M. Burgess Part 1

(o) 0 s

Serial

Parallel (P=6)

o

time

Fig. 3. Representation of Amdahl’s law. A typical task has only a fraction that is parallelizable. The serial part
cannot be sped up using parallel processing or load balancing. Note that one is not always able to balance tasks
into chunks of equal size, moreover there is an overhead (shaded) involved in the parallelization.

e The serial fraction of the task.’

e The processor entropy or even-ness of the load balancing.

Amdahl’s law was written with High Performance Computing in mind, but it applies
also to server load balancing for network services. If one thinks of an entire job as the
sum of all requests over a period of time (just as drain-water is a sum of all the individual
rain-drops) then the law can also be applied to the speed up obtained in a load-balancing
architecture such as that shown in Figure 2. The serial part of this task is then related to the
processing of headers by the dispatcher, i.e., the dispatcher is the fundamental limitation
of the system.

Determining the serial fraction of a task is not always as straightforward as one thinks.
Contention for dependent resources and synchronization of tasks (waiting for resources to
become available) often complicates the simple picture offered by the Amdahl law.

Karp and Flatt [21] noted that the serial part of a program must often be determined
empirically. The Karp—Flatt metric is defined as the empirically determined serial fraction,
found be rearranging the Amdahl formula (4) to solve for the serial fraction.

S—l _ NI
f= TN (%)

31t is often quoted that a single woman can have a baby in nine months, but nine women cannot make this
happen in a month.

Ch. 2 Scaling data centre services 13

Here we assume no overhead (it will be absorbed into the final effective serial fraction).
Note that, as the number of processors becomes large, this becomes simply the reciprocal
of the measured speed up. This formula has no predictive power, but it can be used to
measure the performance of applications with different numbers of processors. If S is small
compared to N then we know that the overhead is large and we are looking for performance
issues in the task scheduler.

Another way of looking at Amdahl’s law in networks has been examined in refs. [7,8]
to discuss centralization versus distribution of processing. In network topology, serializa-
tion corresponds to centralization of processing, i.e. the introduction of a bottleneck by
design. Sometimes this is necessary to collate data in a single location, other times design-
ers centralize workflows unnecessarily from lack of imagination. If a centralized server is
a common dependency of N clients, then it is clear that the capacity of the server C has to
be shared between the N clients, so the workflow per client is

W (6)

We say then that this architecture scales like 1/N, assuming C to be constant. As N be-
comes large, the workflow per client goes to zero which is a poor scaling property. We
would prefer that it were constant, which means that we must either scale the capacity C
in step with N or look for a different architecture. There are two alternatives:

e Server scaling by load balancing (in-site or cross-site) C — CN.

e Peer-to-peer architecture (client-based voluntary load balancing) N — 1.
There is still much mistrust of non-centralized systems although the success of peer to peer
systems is now hard to ignore. Scaling in the data centre cannot benefit from peer to peer
scaling unless applications are designed with it in mind. It is a clear case where application
design is crucial to the scaling.

5.3. Failure modes and redundancy

To gauge reliability system and software engineers should map out the failure modes of (or
potential threats to) the system [6,18] (see also the chapter on System Reliability in this
volume). Basic failure modes include:

e Power supply.

Component failure.

Software failure (programming error).
Resource exhaustion and thrashing.
Topological bottlenecks.

Human error.

So-called ‘single points of failure” in a system are warning signs of potential failure
modes (see Figure 4). The principle of separation of concerns tends to lead to a tree-like
structure which is all about not repeating functional elements and is therefore in basic
conflict with the idea of redundancy (Figure 4(a)). To counter this, one can use dispatchers,
load balancers and external parallelism (i.e. not built into the software, but implemented

14 M. Burgess Part 1

Internet

Servers
(2) (b)

Fig. 4. Load balancing is a tricky matter if one is looking for redundancy. A load balancer is a tree — which is a
structure with many intrinsic points of failure and bottlenecks.

ﬂ_

1 L O
n

Fig. 5. Redundancy folk theorem.

afterwards). This can cure some problems, but there might still be points of failure left
over (Figure 4(b)). Ideally one tries to eliminate these through further redundancy, e.g.,
redundant Internet service provision, redundant power supplies, etc. One should not forget
the need for human redundancy in this reckoning: human resources and competence are
also points of failure. Redundancy is the key issue in handling quality of service: it answers
the issues of parallelism for efficiency and for fault tolerance.

When planning redundancy, there are certain thumb rules and theorems concerning sys-
tem reliability. Figure 5 illustrates the folk theorem about parallisms which says that re-
dundancy at lower system levels is always better than redundancy at higher levels. This
follows from the fact that a single failure at a low level could stop an entire computing
component from working. With low-level redundancy, the weakest link only brings down
a low-level component, with high-level redundancy, a weakest link could bring down an
entire unit of dependent components.

A minimum dependency and full redundancy strategy is shown in Figure 6. Each of the
doubled components can be scaled up to n to increase thoughput.

Ch. 2 Scaling data centre services 15

ISP1 ISP2

Switch/route r

Server tier 1

Server tier n

Cooling

S

Power

=
A

Power 1 Power 2

Fig. 6. Minimum strategy for complete redundancy.

Security is another concern that can be addressed in terms of failure modes. It is of-
ten distinguished from system failure due to ‘natural causes’ by being a ‘soft failure’, i.e.,
a failure relative to a policy rather than continuation. The distinction is probably unneces-
sary, as we can simply consider all failures relative to policy.

A secure system can be defined as follows [6]: A secure system is one in which all
the risks have been identified and accepted as a matter of policy. See also the chapter by
Bishop in this volume. This definition underlines the point that there is always an arbitrary
threshold (or policy) in making decisions, about when faults are sufficiently serious to
warrant a change of attitude, or a response.

An important enemy in system reliability is human error, either by mistake or incompe-
tence. Human fault paths deal with many issues. Hostile parties expose us to risk through:

e Greed.

Vanity.

Bribery and blackmail.

Revenge.

Vandalism.

Warfare.

Friends, on the other hand, expose us to risk by:

e Forgetfulness.

e Misunderstanding/miscommunication.

16 M. Burgess Part 1

Confusion/stress/intoxication.
Arrogance.
Ignorance/carelessness.
Slowness of response.
Procedural errors.
Inability to deal with complexity.
e Inability to cooperate with others.
The lists are long. It is also worth asking why such incompetence could be allowed to
surface. Systems themselves are clearly at fault in many ways through:
e Design faults — inadequate specification.
e Run-time fault — system does not perform within its specification.
e Emergent faults — behavior that was not planned for or explicitly designed for, often
provoked by the environment.
e Changing assumptions — about technology or the environment of the system, e.g.,
a system is designed for one scenario that becomes replaced by another.
Documentation of possible fault modes should be prioritized by their relative likelihood.

5.4. Safe and reliable systems

The construction of safe systems [5,6] is both controversial and expensive. Security has
many interpretations, e.g., see ISO 17799 [3] and RFC 2196 (replacing RFC 1244), or
The Orange Book Trusted Computer Security Evaluation Criteria (TSEC) (now somewhat
dated).

Security, like fault analysis, begins with a threat evaluation. It includes issues from hu-
man interface design to resistance to hostile actions. In all cases a preventative response is
a risk reducing strategy.

There are many unhealthy attitudes to security amongst system designers and even ad-
ministrators, e.g. ‘Encryption solves 90% of the world’s security problems’ as stated by a
naive software analyst known to the author. Security is a property of complete systems, not
about installable features. Encryption deals with only a risk of information capture, which
is one part of a large problem that is easily dealt with. Encryption key management, on the
other hand, is almost never addressed seriously by organizations, but is clearly the basis
for the reliability of encryption as a security mechanism.

Just as one must measure fault issues relative to a policy for severity, security requires
us to place trust boundaries. The basis of everything in security is what we consider to
be trustworthy (see the definition in the previous section). Technology can shift the focus
and boundaries of our trust, but not eliminate the assumption of it. A system policy should
make clear where the boundaries of trust lie. Some service customers insist on source
code-review of applications as part of their Service Agreement. Threats include:
Accidents.

Human error, spilled coffee, etc.

Attacks.

Theft, spying, sabotage.

Pathogenic threats like virus, Trojan horse, bugs.

Ch. 2 Scaling data centre services 17

e Human—computer interfaces.

e Software functionality.

e Algorithms.

e Hardware.

e Trust relationships (the line of defense).
Restriction of privilege is one defense against these matters. Access is placed on a ‘need
to know/do’ basis and helps one to limit the scope of damage. System modelling is an
important tool in predicting possible failure modes (see chapters on System Administration
and the Scientific Method by the author, and the chapter on Security Management and
Policies by Bishop).

In short, a well-designed system fails in a predictable way, and allows swift recovery.

6. Data centre design

The data centre is a dry and noisy environment. Humans are not well suited to this envi-
ronment and should try to organize work so that they do not spend more time there than
necessary. Shoes and appropriate clothing shall be worn in data centres for personal safety
and to avoid contaminating the environment with skin, hair and lost personal items. Un-
authorized persons should never be admitted to the data centre for both safety and security
reasons.

Data centres are not something that can be sold from a shelf; they are designed within
the bounds of a specific site to cope with a specific tasks. Data centres are expensive to
build, especially as performance requirements increase. One must consider power supply,
cooling requirements, disasters (flooding, collision damage, etc.) and redundancy due to
routine failure. This requires a design and requirement overview that companies rarely
have in advance. The design process is therefore of crucial importance.

It is normal for inexperienced system administrators and engineers to underestimate the
power and cooling requirements for a data centre. Today, with blade chassis computers and
dense rack mounting solutions it is possible to pack even more computers into a small space
than ever before, thus the density of heat and power far exceeds what would be required in
a normal building. It is important to be able to deliver peak power during sudden bursts of
activity without tripping a fuse or circuit-breaker.

With so much heat being generated and indeed wasted in such a small area, we have to
think seriously in the future about how buildings are designed. How do we re-use the heat?
How can cooling be achieved without power-driven heat-exchangers?

6.1. Power in the data centre

Power infrastructure is the first item on the agenda when building a data centre. Having
sufficient access to electrical power (with circuit redundancy) is a prerequisite for stable
operation. Data centres are rated in a tier system (see Section 6.10) based on how much
redundancy they can provide.

18 M. Burgess Part 1

Every electrical device generates heat, including cooling equipment. Electrical power is
needed to make computers run. It is also needed for lighting and cooling. Once power needs
have been estimated for computers, we might have to add up to 70% again for the cost of
cooling, depending on the building. In the future buildings could be designed to avoid this
kind of gratuitous compounding of the heat/energy problem with artificial air-conditioning
by cooling naturally with underground air intakes.

Power consumption is defined as the flow of energy, per unit time, into or out of a
system. It is measured in Joules per second, or Watts or Volt-Amperes, all of which are
equivalent in terms of engineering dimensions. However, these have qualitatively different
interpretations for alternating current sources.

Computers use different amounts of electrical current and power depending on where
they are located. Moreover, since electricity companies charge by the current that is drawn
rather than the power used, the current characteristics of a device are important as a poten-
tial source of cost saving.

Electronic circuitry has two kinds of components:

e Resistive components absorb and dissipate power as heat. They obey Ohm’s law.

e Reactive components absorb and return energy (like a battery), by storing it in electro-
magnetic fields. They include capacitors (condensers) and inductors (electro-magnetic
coils).

Reactive components (inductors and capacitors) store and return most of the power they
use. This means that if we wait for a full cycle of the alternating wave, we will get back
most of what we put in again (however, we will still have to pay for the current). Resistive
components, on the other hand, convert most of the energy going into them into heat.

In direct current (DC) circuits, the power (energy released per unit time) is simply given
by P = [V, where [is the constant current and V is the constant voltage. In a device
where a DC current can flow, reactive components to not have an effect and Ohm’s law
applies: V = I R, where R is the electrical resistance. In this case, we can write

P=IV=I"R=—. @

For an alternating current (wave) source, there are several cases to consider however.
Ohm’s law is no longer true in AC circuits, because capacitors and inductors can bor-
row power for a short time and then return it, like a wave shifting pebbles on a beach. The
voltage and current are now functions of time: 7 (¢), V(¢). The instantaneous power con-
sumption (the total energy absorbed per unit time) is still P = IV = [(t)V (t). However,
mains power is typically varying at 50-60 Hz, so this is not an true reflection of the long
term behavior, only what happens on the scale of tenths of a second.

For a system driven by a single frequency (clean) wave, the short term borrowing of
current is reflected by a phase shift between the voltage (wave) and the current, which is
the response of the system to that driving force (pebbles). Let us call this phase shift ¢.

V(t) = Vosin(2w f1),
I1(t) = Ipsin(27 ft + @),

(3)

Ch. 2 Scaling data centre services 19

where f is frequency and 7' = 1/f is the period of the wave. We can compute the average
power over a number of cycles n7T by computing

(P}¢=%f0ﬂ1(r)vu)dr. 9)
We evaluate this using two trigonometric identities:

sin(A + B) =sin Acos B + cos Asin B, (10)

sian:%(l—cos2X) (11)

Using the first of these to rewrite /(¢), we have

oy _ JoVo f”T z(@) s (zi‘) (ﬂ) ing [dr. (12)
()_nT | sin| — cos ¢ + sin 7)eos| sing | dr.

Rewriting the first term with the help of the second identity allows us to integrate the
expression. Most terms vanish showing the power that is returned over a whole cycle. We
are left with:

1
(P)¢=§IUVQCOS¢. (13)

In terms of the normally quoted root-mean-square (RMS) values:

Vo= |~ [vy 14
ms — E](; ((I)) ()

For a single frequency one has simply:

Vims = Vo/ V2,

(15)
Iims = 10/'\/1
(P)p = Irms Vims cO8 . (16)

The RMS values are the values returned by most measuring devices and they are the values
quoted on power supplies. The cosine factor is sometimes called the ‘power factor’ in
electrical engineering literature. It is generalized below. Clearly

(P)¢>0 < (P)g=o0. (17

In other words, the actual power consumption is not necessarily as bad as the values one
would measure with volt and ammeters. This is a pity when we pay our bill, because the
power companies measure current, not work-done. That means we typically pay more than
we should for electrical power. Large factories can sometimes negotiate discounts based
on the reactive power factor.

20 M. Burgess Part 1

6.2. Clipped and dirty power

A direct calculation of the reduction in power transfer is impractical in most cases, and one
simply defines a power factor by

(P)

Irms Vrms '

PF =cos¢p = (18)

More expensive power supply equipment is designed with ‘power factor corrected’ elec-
tronics that attempt to reduce the reactance of the load and lead to a simple ¢ = 0 behavior.
The more equipment we put onto a power circuit, the more erratic the power factor is likely
to be. This is one reason to have specialized power supplies (incorporated with Uninter-
ruptible Power Supplies (UPS)).

Actual data concerning power in the computer centres is hard to find, so the following
is based on hearsay. Some authors claim that power factors of cos ¢ = 0.6 have been ob-
served in some PC hardware. Some authors suggest that a mean value of cos¢p = 0.8 is
a reasonable guess. Others claim that in data centres one should assume that cos¢ =1 to
correctly allow for enough headroom to deal with power demand.

Another side effect of multiple AC harmonics is that the RMS value of current is not
simply 1/+/2 =1/1.4 of the peak value (amplitude). This leads to a new ratio called the
‘crest factor’, which is simply:

I
Crest = —0. (19)

rms

This tells us about current peaking during high load. For a clean sinusoidal wave, this ratio
is simply +/2 = 1.4. Some authors claim that the crest factor can be as high as 2-3 for
cheap computing equipment. Some authors claim that a value of 1.4-1.9 is appropriate for
power delivered by a UPS. The crest factor is also load dependent.

6.3. Generators and batteries

Uninterruptible Power Supplies (UPS) serve two functions: first to clean up the electrical
power factor, and second to smooth out irregularities including power outages. Batteries
can take over almost instantaneously from supply current, and automatic circuit breakers
can start a generator to take over the main load within seconds. If the generator fails, then
battery capacity will be drained.

UPS devices require huge amounts of battery capacity and even the smallest of these
weighs more than a single person can normally lift. They must be installed by a competent
electrician who knows the electrical installation details for the building.

Diesel powered generators should not be left unused for long periods of time, as bacteria,
molds and fungi can live in the diesel and transform it into jelly over time.

Ch. 2 Scaling data centre services 21

6.4. Cooling and airflow

Environmental conditions are the second design priority in the data centre. This includes
cooling and humidity regulation. Modern electronics work by dumping current to ground
through semi-conducting (resistive) materials. This is the basic transistor mode of opera-
tion. This generates large amounts of heat. Essentially all of the electrical power consumed
by a device ultimately becomes heat.

The aim of cooling is to prevent the temperature of devices becoming too great, or
changing too quickly. If the heat increases, the electrical and mechanical resistance of
all devices increases and even more energy is wasted as heat. Eventually, the electrical
properties of the materials will become unsuitable for their original purpose and the device
will stop working. In the worst case it could even melt.

Strictly speaking, heat is not dangerous to equipment, but temperature is. Temperature
is related to the density of work done. The more concentrated heat is, the higher the tem-
perature. Thus we want to spread heat out as much as possible.

In addition to the peak temperature, changes in temperature can be dangerous in the data
centre. If temperature rises or falls too quickly it can result in mechanical stress (expansion
and contraction of metallic components), or condensation in cases of high humidity.

e Polymer casings and solder-points can melt if they become too hot.

e Sudden temperature changes can lead to mechanical stresses on circuits, resulting in

cracks in components and circuit failures.

e Heat increases electrical and mechanical resistance, which in turn increases heat pro-

duction since heat power conversion goes like ~ I>R.

Air, water and liquefied gases can be used to cool computing equipment. Which of these
is best depends on budget and local environment. Good environmental design is about the
constancy of the environment. Temperature, humidity, power consumption and all variables
should be evenly regulated in space and time.

6.5. Heat design

Cooling is perhaps the most difficult aspect of data centre design to get right. The flow
of air is a complicated science and our intuitions are often incorrect. It is not necessarily
true that increasing the amount of cooling in the data centre will lead to better cooling of
Servers.

Cooling equipment is usually rated in BTUs (British Thermal Units), an old fashioned
measurement of heat. 1 Watt = 3413 BTUs. A design must provide cooling for every heat
generating piece of equipment in the data centre, including the humans and the cooling
equipment itself. Temperature must be regulated over both space and time, to avoid gra-
dient effects like condensation, disruptive turbulence and heat-expansion or contraction of
components.

The key to temperature control is to achieve a constant ambient temperature throughout
a room. The larger a room is, the harder this problem becomes. If hot spots or cold spots
develop, these can lead to problems of condensation of moisture, which increases in like-

22 M. Burgess Part 1

U i U extract
]

L/
/\

|
|
— |
= |~ &/
- / N\ = | ~—
-~ | ~—
—~] I_.-_ Z‘\\

COLD

Fig. 7. A bad cooling design. Too much cold air comes through the floor, driving all the cold air past the racks
into the extractor instead of passing through them. This leaves hot spots and wastes most of the cooling capacity.

lihood with increasing humidity and is both harmful to the computing equipment and can
even lead to bacterial growth which is a health hazard (e.g., Legionnaires disease).

If air moves too quickly past hot devices, it will not have time to warm up and carry away
heat from hot spots; in this case, most of the air volume will simply cycle from and back to
the cooling units without carrying away the heat. If air moves too slowly, the temperature
will rise. (See Figures 7 and 8.)

As everyone knows, hot air rises if it is able to do so. This can be both a blessing and
a curse. Raised flooring is a standard design feature in more advanced data centres which
allows cool air to come up through holes in the floor. This is a useful way of keeping air
moving in the data centre so that no hot spots can develop. However, one should be careful
not to have cold air entering too quickly from below, as this will simply cause the hot air
to rise into the roof of the centre where it will be trapped. This will make some servers too
hot and some too cold. It can also cause temperature sensors to be fooled into misreading
the ambient temperature of the data centre, causing energy wastage from over cooling, or
over regulation of cooling.

Over-cooling can, again, lead to humidity and condensation problems. Large tempera-
ture gradients can cause droplets of water to form (as in cloud formation). Hot computer
equipment should not be placed too close to cooling panels as this will cause the coolers to
work overtime in order to cool the apparent imbalance, and condensation-ice can form on
the compressors. Eventually they will give up and water can then flood into the data centre
under the flooring. The solution, unfortunately, is not merely to dry out the air, as this can
lead to danger of static electrical discharges and a host of related consequences.

Ch. 2 Scaling data centre services 23

extract

L2 S

7

/\

|
Z_g_

)
L]

COLD

Fig. 8. A good cooling design. A trickle cold air comes through the floor, spreading out near the racks into the
room where has time to collect heat. The air circulates from the cold aisle into the warm aisle where it is extracted
and recycled.

6.6. Heat, temperature and humidity

Heat and temperature are related through the specific heat capacity (symbol ¢y, also called
specific heat) of a substance is defined as heat capacity per unit mass. The SI unit for
specific heat capacity is the Joule per kilogramme Kelvin, J kg~! K~! or J/(kg K), which
is the amount of energy required to raise the temperature of one kilogram of the substance
by one Kelvin. Heat capacity can be measured by using calorimetry.

For small temperature variations one can think of heat capacity as being a constant prop-
erty of a substance, and a linear formula for the relates temperature and heat energy.

AQ =mcgAT, (20)

where A Q is a change of heat energy (Watts x time). In other words temperature increase
AT, in a fixed mass m of any substance, is proportional to the total power output and the
time devices are left running.

If air humidity is too high, it can lead to condensation on relatively cool surfaces. Al-
though a small amount of clean, distilled water is not a serious danger to electrical equip-
ment, water mixed with dust, airborne dirt or salts will conduct electricity and can be
hazardous.

Computer equipment can work at quite high temperatures. In ref. [24], experienced en-
gineers suggest that the maximum data centre temperature should be 25 degrees Celcius
(77 Fahrenheit), with a relative humidity of at least 40% (but no more than 80%). At less

24 M. Burgess Part 1

than 30% humidity, there is a risk of static electrical discharge, causing read errors or even
unrecoverable runtime failures.

Heat is transmitted to and from a system by three mechanisms:

e Conduction is the direct transfer of heat by material contact (molecular vibration). For
this, we use the heat capacity formula above.

e Convection is a transport of gas around a room due to the fact that, as a gas is heated
its density decreases under constant pressure, so it gets lighter and rises. If the hot
air rises, cooler air must fall underneath it. This results in a circulation of air called
convection. If there is not enough space to form convection cells, hot air will simply
sit on top of cold air and build up.

e Radiation is the direct transfer of heat without material contact. Electromagnetic radi-
ation only passes through transparent substances. However, a substance that is trans-
parent to visible light is not necessarily transparent to heat (infra-red), which has a
much longer wavelength. This is the essence of the Greenhouse effect. Visible light
can enter a Greenhouse through the glass walls, this energy is absorbed and some of
the energy is radiated back as heat (some of it makes plants grow). However not all
of the long wavelength heat energy passes through the glass. Some is absorbed by the
air and heats it up. Eventually, it will cool off by radiation of very long wavelengths,
but this process is much slower than the rate at which new energy is coming in, hence
the energy density increases and temperature goes up.

If a material is brought into contact with a hotter substance, heat will flow into it by conduc-
tion. Then, if we can remove the hotter substance e.g. by flow convection, it will carry the
heat away with it. Some values of ¢y for common cooling materials are shown in Table 1.

Water is about four times as efficient at carrying heat per degree rise in temperature than
is air. It is therefore correspondingly better at cooling than air.

Melting temperatures in Table 2 show that it is not likely that data centre heat will cause
anything in a computer to melt. The first parts to melt would be the plastics and polymers
and solder connections (see Table 2).

Today’s motherboards come with temperature monitoring software and hardware which
shuts the computer off the CPU temperature gets too hot. CPU maximum operating tem-
peratures lie between 60 and 90°C.

Table 1

Substance Phase Specific heat capacity (J/(kg K))
Air (dry) gas 1005

Air (100% humidity) gas 1030

Air (different source) gas 1158

Water liquid 4186

Copper (room temp) solid 385

Gold (room temp) solid 129

Silver (room temp) solid 235

Ch. 2 Scaling data centre services 25

Table 2

Material Melting point (°C)
Silicon 1410

Copper 1083

Gold 1063

Silver 879

Polymers 50-100

9

—

Temperature out

4

ection area = A

Velocity of air

Temperature in

Fig. 9. Schematic illustration of air flowing through and around a rack device.

6.7. Cooling fans

Fans are place in computers to drive air through them. This air movement can also help to
keep air circulating in the data centre. Rack doors and poorly placed fans can hinder this
circulation by generating turbulence.

Cooling fans exploit the same idea as convection, to transport energy away by the actual
movement of air (or sometimes fluid). The rate of flow of volume is proportional to the
fixed area of the channel cross-section and the length per unit time (velocity) of the coolant
passing through it.

dv dx

— x A—, 21
dr Oc dt @
F o Av. (22)

You should bear in mind that:
e It is the temperature of components inside the computer that is the main worry in
cooling design.

26 M. Burgess Part 1

e The temperature of the air coming out depends on many factors, including the ambient
temperature around the box, the rate of air flow through the device and around it, the
amount of convection in and around the device, humidity etc.

e Air is a poor carrier of heat, so if air is getting hot, you know that the metallic com-
ponents are sizzling! Also, air is a good insulator so it takes some time to warm up. If
air moves too fast, it will not carry away the heat.

In very high speed computers that generate large amounts of heat quickly, liquids such as
water and nitrogen are use for cooling, piped in special heat exchangers. The density of a
liquid means that it is able to carry much more heat, and hence a smaller flow is needed to
carry a larger amount of waste power. Water-based cooling is many times more expensive
than air-cooling.

6.8. Placement of cooling flow ducts

The use of raised flooring is common in datacentres. Cold air usually passes underneath
raised flooring from compressors and escapes into the data centre through holes in the floor.

If cold air rose from everywhere quickly and evenly, hot air would simply rise to the
roof and there would be no circulation (see Figure 7). A standard strategy to maintain
convectional circulation is to limit the number of holes in flooring to prevent air from
circulating too quickly, and the have alternating hot and cold aisles. In a cold aisle, there
are holes in the floor. In a hot aisle there are no holes in the floor, but there are cooling
intakes (see Figure 8).

To ensure sufficient circulation, there should be at least ten centimetres of clearence
between racks in the roof and computer racks should not be within a metre or more of
cooling units.

6.9. Fire suppression

A data center fire suppression system uses gas rather than water or foam. There are many
gaseous suppression systems that use gases hazardous to humans and environment and are
therefore unsuitable. The gas used to suppress the fire should not be toxic to people nor
damage the equipment causing data to be lost. Inergen and Argonite are both gasses com-
monly used in data centers. Inergen is a gaseous mixture composed of nitrogen, argon and
carbon dioxide. Argonite is a gas composed of argon and nitrogen. Since the fire suppres-
sion systems is based on gas one should make sure that in case of gas release there is no
leakage to the outside.

6.10. Tier performance standards

The Uptime Institute has created a 4 Tier rating system of a data centre [33]. Tier 1 level
is the most basic where no redundancy is required, while Tier 4 level is a 100% redundant

Ch. 2 Scaling data centre services 27

data center. A system is as good as the weakest link and hence terms like ‘near 4 Tier’ or
“Tier 3 plus’ do not exist.

The ratings use the phrases capacity components and distribution paths. Capacity com-
ponents are active components like servers which deliver the service provided by the data
centre. Distribution paths refer to communication infrastructure, such as network.

The Tier 1 describes a basic site, i.e., a non-redundant data center. Communication paths,
cabling, power and cooling are non-redundant, the computer system is affected by a com-
ponent failure and the system has to be shut down to do maintaince work.

Tier 2 describes a data center that has redundant capacity components, but non-
redundant distribution paths. The computer system might be affected by a capacity com-
ponent failure, and will certainly be affected by a path failure. The system might be inop-
erative during maintenance work.

Tier 3 describes a concurrently maintainable data center. In other words, the data center
is equipped with redundant capacity components and multiple distribution paths (of which
one is always active). The computer system will not be affected either in case of a capacity
component failure or path failure and does not require shutdown to do maintaince work,
but interruptions could occur.

Tier 4 describes a fault tolerant data center. In other words, the data center is equipped
with redundant capacity component sand multiple distribution active paths. The computer
system will not be affected of any worst-case failure of any capacity system or distribution
element and does not require to be shut down to do maintaince work, no interruptions may
occur.

7. Capacity planning

Simple results from queueing theory can be used as estimators of the capacity needs for
a system [2,9]. Most service delivery systems are 1/O bound, i.e. the chief bottleneck is
input/output. However, in a data centre environment we have another problem that we do
not experience on a small scale: power limitations.

Before designing a data center we need to work out some basic numbers, the scales and
sizes of numbers involved.

e How fast can we process jobs? (CPU rate and number of parallel servers.)

e How much memory do we need: how many jobs will be in the system (queue length)

and what is the average size of a job in memory?

e How many bytes per second of network arrivals and returns do we expect?

e How many bytes per second of disk activity do we expect?

e What is the power cost (including cooling) of running out servers?

7.1. Basic queueing theory

Service provision is usually modelled as a relationship between a client and a server (or
service provider). A stream of requests arrives randomly at the input of a system, at a

28 M. Burgess Part 1

mean rate of A transactions per second, and they are added to a queue, whereupon they are
serviced at a mean rate . transactions per second by a processor.

Generalizations of this model include the possibility of multiple (parallel) queues and
multiple servers. In each case one considers a single incoming stream of transaction re-
quests; one then studies how to cope with this stream of work.

As transaction demand is a random process, queues are classified according to the type
of arrival process for requests, the type of completion process and the number of servers.
In the simplest form, Kendall notation of the form A/S/n is used to classify different
queueing models.

e A: the arrival process distribution, e.g., Poisson arrival times, deterministic arrivals,

or general spectrum arrivals.

e 5. the service completion distribution for job processing, e.g., Poisson renewals, etc.

e n: the number of servers processing the incoming queue.

The basic ideas about queueing can be surmised from the simplest model of a single
server, memoryless queue: M /M /1 (see chapter by Burgess, System Administration and
the Scientific Method in this volume).

Queues are described in terms of the statistical pattern of job arrivals. These processes
are often approximated by so-called memoryless arrival processes with mean arrival rate A
jobs per second and mean processing rate p jobs per second. The quantity p =4/ < 1 is
called the traffic intensity [6,19]. The expected length of the simplest M /M /1 queue is

)= pan=1"—. 23)
n=0 p

Clearly as the traffic intensity p approaches unity, or A — u, the queue length grows out
of control, as the server loses the ability to cope.

The job handling improves somewhat for s servers (here represented by the M/M/s
queue), where one finds a much more complicated expression which can be represented
by:

(n)=sp+ P(nz=s) lf (24)

The probability that the queue length exceeds the number of servers P(n == s) is of order
p? for small load p, which naturally leads to smaller queues.

It is possible to show that a single queue with s servers is always at least as efficient as
s separate queues with their own server. This satisfies the intuition that a single queue can
be kept moving by any spare capacity in any of its s servers, whereas an empty queue that
is separated from the rest will simply be wasted capacity, while the others struggle with the
load.

7.2. Flow laws in the continuum approximation

As we noted, talking about scalability, in the memoryless approximation we can think of
job queues as fluid flows. Dimensional analysis provides us with some simple continuum

Ch. 2 Scaling data centre services 29

relationships for the ‘workflows’. Consider the following definitions:

No. of arrivals _ A

Arrivalrate A = ——— = —, (25)
Time T
No. of letions C
Throughput . = &9 C(-)mp e - (26)
Time T
B ti B
Utilization U = ——> o~ _ 2 (27)

Total time T
Busy time B

Mean service time S =

=_. 28
No. of completions C (28)

The utilization U tells us the mean level at which resources are being scheduled in the
system. The ‘utilization law’ notes simply that:

B C B
U=—=—x— (29)
T T C
or
U=us. (30)

So utilization is proportional to the rate at which jobs are completed and the mean time to
complete a job. Thus it can be interpreted as the probability that there is at least one job
in the system. Often this law is written U = A.S, on the assumption that in a constant flow
the flow rate in is equal to the flow rate out of the system C/T — A. This is reasonable at
low utilization because p is sufficiently greater than A that the process can be thought of
as deterministic, thus:

U=25. (31)

This handwaving rule is only applicable when the queue is lightly loaded and all jobs are
essentially completed without delay; e.g., uppose a webserver receives hits at a mean rate
of 1.25 hits per second, and the server takes an average of 2 milliseconds to reply. The law
tells us that the utilization of the server is

U =1.25x0.002=0.0025 =0.25%. (32)

This indicates to us that the system could probably work at four hundred times this rate
before saturation occurs, since 400 x 0.25 = 100%. This conclusion is highly simplistic,
but gives a rough impression of resource consumption.

Another dimensional truism is known as Little’s law of queue size. It says that the mean
number of jobs in a queue {n}, is equal to the product of the mean arrival rate A (jobs per
second) and the mean response time R (seconds) incurred by the queue:

(n) =AR. (33)

30 M. Burgess Part 1

Note that this equation has the generic form V = I R, similar to Ohm’s law in electricity.
This an analogy is a direct consequence of a simple balanced flow model. Note that R
differs from the mean service time. R includes the waiting time in the queue, whereas the
mean service time assumes that the job is ready to be processed.

In the M/M/1 queue, it is useful to characterize the expected response time of the
service centre. In other words, what is the likely time a client will have to wait in order to
have a task completed? From Little’s law, we know that the average number of tasks in a
queue is the product of the average response time and the average arrival rate, so

On (n) 1 1
=== —_ . 34
P w-p -n 49

R

Notice that this is finite as long as A <« u, but as A — u, the response time becomes
unbounded.

Load balancing over queues is a topic for more advanced queueing theory. Weighted
fair queueing and algorithms like round-robin etc., can be used to spread the load of an
incoming queue amongst multiple servers, to best exploit their availability. Readers are
referred to refs. [6,13,19,35] for more discussion on this.

7.3. Simple queue estimates

The M/M/1 queue is simplistic, but useful for its simplicity. Moreover, there is a point
of view amongst system engineers that says: most systems will have a bottleneck (a point
at which there is a single server queue) somewhere, and so we should model weakest
links as M /M /1. Let us use the basic M /M /1 formulae to make some order-of-magnitude
calculations for capacity planning.

For example, using the formulae for the M /M /1 queue, let us calculate the amount of
RAM, disk rate and CPU speed to handle the average loads:

7.3.1. Problem
1. 10 downloads per second of image files 20 MB each.
2. 100 downloads per second of image files 20 MB each.
3. 20 downloads per second of resized images to a mobile phone, each image is 20 MB
and takes 100 CPU cycles per byte to render and convert in RAM.
Given that the size of the download request is of the order 100 bytes.

7.3.2. Estimates
1. If we have 10 downloads per second, each of 20 MB/s, then we need to process

10 x 20 =200 MB/s. (35)
Ideally, all of the components in the system will be able to handle data at this rate

or faster. (Note that when the averages rates are equal (A =), the queue length is
not zero but infinite as this means that there will be a significant probability that

Ch. 2

Scaling data centre services 31

the stochastic arrival rate will be greater than the stochastic processing rate.) Let us
suppose that the system disk has an average performance of 500 MB /s, then we have:

2
A:%):mj/s,

36
500 g (36)
T

Note that we cannot use MB/s for X, or the formulae will be wrong. In the worst
case, each component of the system must be able to handle this data rate. The average
queue length is:

A

This tells us that there will be about 1 job in the system queue waiting to be processed
at any given moment. That means the RAM we need to service the queue will be
1 x 100 bytes, since each job request was 100 bytes long. Clearly RAM is not much

of an issue for a lightly loaded server.
The mean response time for the service is

I I 1
R= —— = = — 8.
L—n 25-10 15" (38)

With the numbers above the server would fail long before this limit, since at queue
size blows up to infinity as A — 25 and the server starts thrashing, i.e. it spends all
its time managing the queue and not completing jobs.

. Now we have an added processing time. Suppose we assume that the CPU has a clock

speed of 10? Hz, and an average of 4 cycles per instruction. Then we process at a rate
of 100 CPU cycles per byte, for all 20 MB.

20 x 106 x 100
%:25. (39)

Thus we have a processing overhead of 2 seconds per download, which must be added
to the normal queue response time.

400
A=——=20j

20 1/s.

500
M=E=25j/5a

(40)

==t

T l—p u—xr

32 M. Burgess Part 1

Notice that the CPU processing now dominates the service time, so we should look
at increasing the speed of the CPU before worrying about anything else.
Developing simple order of magnitude estimates of this type forces system engineers to
confront resource planning in a way that they would not normally do.

7.4. Peak load handling — the reason for monitoring

Planning service delivery based on average load levels is a common mistake of inexperi-
enced service providers. There is always a finite risk that a level of demand will occur that
is more than we can the system can provide for. Clearly we would like to avoid such a
time, but this would require expensive use of redundant capacity margins (so-called ‘over-
provisioning’).

A service centre must be prepared to either provide a constant margin of headroom, or
be prepared to deploy extra server power on demand. Virtualization is one strategy for the
latter, as this can allow new systems to be brought quickly on line using spurious additional
hardware. But such extended service capacity has to be planned for. This is impossible if
one does not understand the basic behavior of the system in advance (see the chapter on
System Administration and the Scientific Method).

Monitoring is essential for understanding normal demand and performance levels in a
system. Some administrators think that the purpose of monitoring is to receive alarms when
faults occur, or for reviewing what happened after an incident. This is a dangerous point of
view. First of all, by the time an incident has occurred, it is too late to prevent it. The point
of monitoring ought to be to predict possible future occurrences. This requires a study of
both average and deviant (‘outlier’) behavior over many weeks (see the chapter on System
Administration and the Scientific Method).

The steps in planning for reliable provision include:

e Equipping the system for measurement instrumentation.

Collecting data constantly.

Characterizing and understand workload patterns over the short and the long term.
Modelling and predicting performance including the likelihood and magnitude of
peak activity.

Past data can indicate patterns of regular behavior and even illuminate trends of change,
but they cannot truly predict the future.

In a classic failure of foresight in their first year of Internet service, the Norwegian tax
directorate failed to foresee that there would be peak activity on the evening of the deadline
for delivering tax returns. The system crashed and extra time had to be allocated to cope
with the down-time. Such mistakes can be highly embarrassing (the tax authorities are
perhaps the only institution that can guarantee that they will not lose money on this kind
of outage).

Common mistakes of prediction include:

e Measuring only average workload without outlier stress points.

e Not instrumenting enough of the system to find the source of 1/0 bottlenecks.

e Not measuring uncertainties an data variability.

e Ignoring measurement overhead from the monitoring itself.

Ch. 2 Scaling data centre services 33

e Not repeating or validating measurements many times to eliminate random uncertain-
ties.

e Not ensuring same conditions when making measurements.

e Not measuring performance under transient behavior (rapid bursts).

e Collecting data but not analyzing properly.

8. Service level estimators

Service level agreements are increasingly important as the paradigm of service provision
takes over the industry. These are legal documents, transforming offers of service into
obligations. Promises that are made in service agreements should thus be based on a real-
istic view of service delivery; for that we need to relate engineering theory and practice.

8.1. Network capacity estimation

The data centre engineer would often like to know what supply-margin (‘over-provision’)
of service is required to be within a predictable margin of an Service Level Agreement
(SLA) target? For example, when can we say that we are 95% certain of being able to
deliver an SLA target level 80% of the time? Or better still: what is the full probability
distribution for service within a given time threshold [2]?

Such estimates have to be based either on empirical data that are difficult to obtain,
or simplified models that describe traffic statistics. In the late 1980s and early 1990s it
became clear that the classical Poisson arrivals assumptions which worked so well for
telephone traffic were inadequate to describe Internet behavior. Leland et al. [22] showed
that Ethernet traffic exhibited self similar characteristics, later followed up in ref. [29].
Paxson and Floyd [28] found that application layer protocols like TELNET and FTP were
modelled quite well by a Poisson model. However, the nature of data transfer proved to be
bursty with long-range dependent behavior.

Web traffic is particularly interesting. Web documents can contain a variety of in-line
objects such as images and multimedia. They can consist of frames and client side script.
Different versions of HTTP (i.e., version 1.0 and 1.1) coexist and interact. Implementations
of the TCP/IP stack might behave slightly different, etc. depending on the operating system.
This leads to great variability at the packet level [12]. Refs. [14,27] have suggested several
reasons for the traffic characteristics.

In spite of the evidence that for self-similarity of network traffic, it is known that if one
only waits for long enough, one should see Poisson behavior [20]. This is substantiated by
research done in [10] and elsewhere, and is assumed true in measurements approaching the
order of 102 points. However this amounts to many years of traffic [17].

8.2. Server performance modelling

To achieve a desired level of quality of service under any traffic conditions, extensive
knowledge about how web server hardware and software interacts and affects each other

34 M. Burgess Part 1

is required. Knowing the expected nature of traffic and queueing system only tells us how
we might expect a system to perform; knowledge about software and hardware interaction
enables performance tuning.

Slothouber [32] derived a simple model for considering web server systems founded on
the notion of serial queues. Several components interact during a web conversation and
a goes through different stages, with different queues at each stage. The response time is
therefore an aggregate of the times spent at different levels within the web server.

Mei et al. [34] followed this line of reasoning in a subsequent paper. One of the focal
points in their work was to investigate the effects of for response time and server blocking
probability due to congestion in networks. High end web servers usually sit on a network
with excess bandwidth to be able to shuffle load at peak rates. However, customers inher-
ently has poorly performing networks with possible asynchronous transfer mode, such as
ADSL lines. Therefore, returning ACKs in from client to server can be severely delayed.
In turn this causes the request to linger for a longer time in the system than would be the
case if the connecting network was of high quality. Aggregation of such requests could
eventually cause the TCP and HTTP listen queue to fill up, making the server refuse new
connection requests even if it is subject to fairly light load.

These models are simple and somewhat unrealistic, but possess the kind of simplicity
we are looking for our comparisons.

8.3. Service level distributions

The fact that both arrival and service processes are stochastic processes without a well-
defined mean, combined with the effect of processor sharing has on response time tails,
leads to the conclusion that there is an intrinsic problem in defining average levels for
service delivery. Instead, it is more fruitful to consider the likelihood of being within a
certain target. For instance, one could consider 80% or 90% compliance of a service level
objective. Depending on the nature of traffic the differences between these two levels can
be quite significant.

This becomes quite apparent if we plot the Cumulative Distribution Functions (CDF) for
the experimental and simulated response time distributions (see Figure 10) [2]. Because of
the large deviations of values, going from 80% to 90% is not trivial from a service providers
point of view. The CDF plots show that going from 80% to 90% in service level confidence
means, more or less, a double of the service level target.

The proper way to quote service levels is thus distributions. Mean response times and
rates are useless, even on the time scale of hours. A cumulative probability plot of service
times is straightforwardly derived from the experimental results and gives the most realistic
appraisal of the system performance. The thick cut lines in the figure show the 80% and
90% levels, and the corresponding response times associated with them. From this one
can make a service agreement based on probably compliance with a service time, i.e. not
merely expectation value but histogram.

For instance, one could consider 80% or 90% compliance of a maximum service level
target. Depending on the nature of traffic, the differences between these two levels can be
quite significant. Since customers are interested in targets, this could be the best strategy
available to the provider.

Ch. 2 Scaling data centre services 35

Exp. CDF - Arrivals, Exponential

€

o

g e

o Exponential

= |— Pareto, o.=2.01
| Pareto,x=2.2
|— Pareto, . =2.4
| Pareto, .=2.6

0 1 2 3 4 5 6 7 8 9 10 11 12
Response time in s

Fig. 10. The cumulative percentage distribution for response processing for sample exponential and Pareto ar-

rivals. The thick cut lines show the 80% and 90% levels, and the corresponding response times associated with

them. The theoretical estimators are too pessimistic here, which is good in the sense that it would indicate a
recommended over-capacity, but the value if surely too much.

8.4. Over-capacity planning

The basic results for M /M /1 queues can be used to make over-estimates for capacity
planning. The best predictive prescription (with noted flaws) is provided in ref. [2]:
1. Calculate the server rate u for the weakest server that might handle a request. E.g.

for a CPU bound process
. . av. instructions CPU cycles time
= av. job size x - - X - - X
job size instruction cycles
av. instructions x RISC/CISC ratio
= : (41)
MHz

2. Estimate traffic type at maximum load.
3. Construct the Cumulative Probability Distribution as a function of response times
using FCFS.
4. Make SLA promises about probability of transaction rate based on where the curves
cross basic thresholds.
With this recipe, one overestimates service promise times to achieve a given level of cer-
tainty (or equivalently overestimates required capacity for a given time) in a non-linear
way — the amount can be anything up to four hundred percent! This explains perhaps why
most sites have seemingly greatly over-dimensioned webservers. Given the problems that
can occur if a queue begins to grow, and the low cost of CPU power, this over-capacity
might be worth the apparent excess.
Readers are also referred to the cost calculations described in the chapter System Ad-
ministration and the Business Process by Burgess, in this volume.

36 M. Burgess Part 1
9. Network load sharing

Load sharing in the data centre is an essential strategy for meeting service levels in high
volume and high availability services. Figure 2 shows the schematic arrangement of servers
in a load balancing scenario. Classical queueing models can also be used to predict the
scaling behavior of server capacity in a data centre.

Since service provision deals with random processes, exact prediction is not an option.
A realistic picture is to end up with a probability or confidence measure, e.g., what is the
likelihood of being able to be within 80% or 90% of an SLA target value? The shape of this
probability distribution will also answer the question: what is the correct capacity margin
for a service in order to meet the SLA requirements.

Once again, in spite of the limitations of simple queueing models, we can use these as
simple estimators for service capacity [9]. The total quality of service in a system must
be viewed as the combined qualities of the component parts [30]. It is a known result of
reliability theory [18] that low level parallelism is, in general, more efficient than high-
level parallelism, in a component-based system. Thus a single M /M /n queue is generally
superior in performance to n separate M /M /1 queues (denoted (M /M /1)").

To understand load, we first have to see its effect on a single machine (Figure 11). We
see that a single computer behaves quite linearly up to a threshold at which it no longer is
able to cope with the resource demands placed upon it. At that point the average service
delivery falls to about 50% of the maximum with huge variations (thrashing). At this point
one loses essentially all predictability.

1600 - 100
o X .
1400 S p M o0
[: l ~
A wa/‘/\ﬁ LA A
L : A S | 80
1200 - L T i EEEE RS
L i : P S R
S Yo oo oy oo
@ 41000 | P I] | | o E
£ o L e §
o A) | | I i =
E 1 v Pl b =
800 - X 1o Lo s 2
$ 1 . 1 Pl I
% X] i ‘ 4140 2
c 680OF i A \ z
I 1 1 g s, 4 U
* P v 4 a0
w0 L
. B { 20
S 1l 1l] |
200 F I ! P
IJ,Z | ' ' | 4 10
0 — : : L4 | o 0
0 50 100 150 200 250
Reguests/Second
Response Time Server Utilization =

Fig. 11. Response time and CPU utilization of a single server as a function of requests per second, using Poisson
distribution with exponential inter-arrival times.

Ch. 2 Scaling data centre services 37

300 l 300
|
E 200 E 200
5 150 § 150
100 100
50 50
0 o =
] 250 0 50
Response time MWW —
300 T 300 r
|
250 ’ 250
|
E 200 | ,§ 200
‘ f
5 150 / | 5 150 /
/
100 100
50 50 |
/
i e . " 0 r et . = -
0 50 100 150 200 250 300 350 400 450 [+] 100 200 300 400 500 600
Requests/Second Requests/Second
MW - M4 Response time MM — MW Response time

Fig. 12. A comparison of M /M /n and (M /M /1)" queue estimators with response times from a Poisson traffic
on real web servers.

Experiments show that, as long as one keeps all servers in a server farm underneath this
critical threshold, performance scales approximately linearly when adding identical servers
hence we can easily predict the effect of adding more servers as long as load balancing
dispatchers themselves behave linearly. Figure 13 shows the addition of servers in four
traffic saturation experiments. In the first graph we see that the response time is kept low in
all scenarios. This fits with the assumption that even a single server should be capable of
handling requests. The next graph shows double this, and all scenarios except the one with
a single server are capable of handling the load. This fits the scaling predictions. With four
times as much load, in the third graph, four servers just cut it. In the fourth graph we request
at six times the load we see that the response rate is high for all scenarios. These results
make approximate sense, yet the scaling is not exactly linear; there is some overhead when
going from having 1 server to start load balancing between 2 or more servers.

As soon as a server crosses the maximum threshold, response times fall off exponen-
tially. The challenge here is how to prevent this from happening in a data centres of inho-
mogeneous servers with different capacities. Dispatchers use one of a number of different
sharing algorithms:

e Round robin: the classic load sharing method of taking each server in turn, without

consideration of their current queue length or latency.

38 M. Burgess Part 1

1400 1400
3
1200 - 1200 - 5
W @
E 1000 | E 1000 |
g g
= 800 - = 800 - Y
S 600 | 5 600 | |
@ @
2 400t 2 400}
200 | . 200 - %
0 “"-s---.....-........r......-.a 0 L 1 “‘1 ———————— P Spappp——— x
0 1 2 3 4 5 6 Q 1 2 3 4 5 6
No. of machines No. of machines
100 requests per second ——* 200 requests per second %
1400 - 1400 = .
1200 + T 1200 + Fooe e =
= \ -
E 1000 | | E 1000 |
2 2
= 800 = B0O
& 3
5 600 | 5 600 -
& @
£ 400 ' £ 400
200 | 200 -
0 1 1 1 0 L 1 L i
0 1 2 3 4 5 6 Q 1 2 3 4 5 6
No. of machines No. of machines
400 requests per second --x-- 600 requests per second -----

Fig. 13. How response rates scale when adding extra servers. For low traffic, adding a new server results in a
discontinuous improvement in response time. At very high load, adding a server seems to reduce performance,
leading to the upward curve in the last figure as the limitations of the bottleneck dispatcher become apparent.

e Least connections: the dispatcher maintains state over which back end server currently
has fewest on-going TCP connections and channels new arrivals to the least connected
host.

e Response time: the dispatcher measures the response time of each server in the back
end by regularly testing the time it takes to establish a connection. This has many
tunable parameters.

Tests show that, as long as server load is homogeneous, a round robin algorithm is most
efficient. However the Least Connections algorithm holds out best against inhomogeneities

[9].

10. Configuration and change management

A flexible organization is ready to adapt and make changes at any time. Some changes
are in response to need and some are preemptive. All change is fraught with risk however.
It is therefore considered beneficial to monitor and control the process of change in an
organization in such a way that changes are documented and undergo a process of review.
Two phrases are used, with some ambiguity, in this connection:

Ch. 2 Scaling data centre services 39

e Change management.

e Configuration management.
Change management is the planning, documentation and implementation of changes in
system practices, resources and their configurations. The phrase configuration management
invites some confusion, since it is used with two distinct meanings that arise from different
cultures. In system administration arising from the world of Unix, configuration manage-
ment is used to refer to the setup, tuning and maintenance of data that affect the behavior of
computer systems. In software engineering and management (e.g., ITIL and related prac-
tices) it refers to the management of a database (CMDB) of software, hardware and com-
ponents in a system, including their relationships within an organization. This is a much
higher level view of ‘configuration’ than is taken in Unix management.

10.1. Revision control

One of the main recommendations about change management is the use of revision control
to document changes. We want to track changes in order to:

e Be able to reverse changes that had a negative impact.

e Analyze the consequences of changes either successful or unsuccessful.

Some form of documentation is therefore necessary. This is normally done with the aid of
a revision control system.

Revision control is most common in software release management, but it can also be
used to process documentation or specifications for any kind of change (Figure 14). A re-
vision control system is only a versioning tool for the actual change specification; the actual
decisions should also be based on a process. There are many process models for change,
including spiral development models, agile development, extreme change, followed by
testing and perhaps and regret and reversal, etc. In mission critical systems more care in
needed than ‘try and see’. See for instance the discussions on change management in ITIL
[25,26].

Revision

(version)

Test
Branch

Production
Branch

Fig. 14. Revision control — changes are tested and only later committed to production.

40 M. Burgess Part 1
10.2. ‘Rollback’

In software engineering one has the notion of going back to an earlier version in the revi-
sion control system is a change is evaluated to have negative consequences. Many service
managers and data centre engineers would like to have a similar view of live production
systems, however there are problems associated with this.

The difference between software code and a live system is that code does not have run-
time operational state. The behavior of a system depends in general on both system con-
figuration and learned state that has been acquired through the running of the system. Even
if one undoes changes to the configuration of a system, one cannot easily undo operational
state (e.g. user sessions in an extended transaction). Thus simply undoing a configuration
change will not necessarily return the behavior of a system to its previous condition. An
obvious example of this is: suppose one removes all access control from a system so that
it becomes overrun by hackers and viruses etc, simply restoring the access control will not
remove these users or viruses from the system.

11. Human resources

In spite of the density of technology in a data centre, humans are key pieces of the service
delivery puzzle. Services are increasingly about user-experience. Humans cannot therefore
be removed from the system as a whole — one deals with human—computer systems [6].
Several issues can be mentioned:

e Redundancy of workforce is an important security in an organization. A single expert
who has knowledge about an organization is a single point of failure just as much as
any piece of equipment. Sickness or even vacation time places the organization at
risk if the human services are not available to the organization.

e Time management is something that few people do well in any organization. One must
resist the temptation to spend all day feeling busy without clearing time to work on
something uninterrupted. The state of being busy is a mental state rather than a real
affliction. Coping with the demands on a person’s time is always a challenge. One has
to find the right balance between fire-fighting and building.

e Incident response procedures are about making a formal response to a system event
that is normally viewed to be detrimental to the system. This is a human issue because
it usually involves human judgment. Some responses can be automated, e.g. using a
tool like cfengine, but in general more cognition is required. This might involve a
fault, a security breach or simply a failure to meet a specification, e.g. a Service Level
Agreement (SLA).

e Procedural documentation of experience-informed procedures is an essential asset to
an organization, because:

— Past experience is not necessarily available to every data centre engineer.
— People do not easily remember agreed procedures in a stressful situation or emer-
gency.
— Consistent behavior is a comfort to customers and management.
These matters are all a part of managing system predictability.

Ch. 2 Scaling data centre services 41
12. Concluding remarks

Data centres are complex systems that are essential components in a holistic view of IT
service delivery. They require both intelligence and experience to perfect. There are many
issues in data centres that system administrators have to deal with that are not covered in
this overview. An excellent introduction to heuristic methods and advice can be found in
ref. [23].

The main slogan for this review is simple: well designed systems fail rarely to meet
their design targets and when they do so, they do so predictably. They are the result of
exceptional planning and long hard experience.

Acknowledgements

I have benefited from the knowledge and work of several former students and colleagues in
writing this chapter: Claudia Eriksen, Gard Undheim and Sven Ingebrigt Ulland (all now
of Opera Software) and Tore Mgller Jonassen. This work was supported in part by the EC
IST-EMANICS Network of Excellence (#26854).

References

[1]1 G.M. Amdahl, Validity of a the single processor approach to achieving large scale computer capabilities,
Proceedings of the AFTPS Spring Joint Computer Conference (1967).

[2] J.H. Bjgrnstad and M. Burgess, On the reliability of service level estimators in the data centre, Proc. 17th
IFIP/IEEE Integrated Management, volume submitted, Springer-Verlag (2006).

[3] British Standard/International Standard Organization, BS/ISO 17799 Information Technology — Code of
Practice for Information Security Management (2000).

[4] British Standards Institute, BS/5000 IT Service Management (2002).

[5] M. Burgess, Principles of Network and System Administration, Wiley, Chichester (2000).

[6] M. Burgess, Analytical Network and System Administration — Managing Human—-Computer Systems, Wiley,
Chichester (2004).

[7]1 M. Burgess and G. Canright, Scalability of peer configuration management in partially reliable and ad hoc
networks, Proceedings of the VIII IFIP/IEEE IM Conference on Network Management (2003), 293.

[8] M. Burgess and G. Canright, Scaling behavior of peer configuration in logically ad hoc networks, IEEE
eTransactions on Network and Service Management 1 (2004), 1.

[9] M. Burgess and G. Undheim, Predictable scaling behavior in the data centre with multiple application
servers, Proc. 17th IFIP/IEEE Distributed Systems: Operations and Management (DSOM 2006), volume
submitted, Springer (2006).

[10] I. Cao, W.S. Cleveland, D. Lin and D.X. Sun, On the nonstationarity of Internet traffic, SIGMETRICS "01:
Proceedings of the 2001 ACM SIGMETRICS International Conference on Measurement and Modeling of
Computer Systems, ACM Press (2001), 102-112.

[11] PM. Chen, E.K. Lee, G.A. Gibson, R.H. Katz and D.A. Patterson, RAID: High-performance, reliable sec-
ondary storage, ACM Comput. Surv. 26 (2) (1994), 145-185.

[12] H.-K. Choi and J.O. Limb, A behavioral model of web traffic, ICNP'99: Proceedings of the Seventh Annual
International Conference on Network Protocols, IEEE Computer Society, Washington, DC (1999), 327.

[13] R.B. Cooper, Stochastic Models, Handbooks in Operations Research and Management Science, Vol. 2,
Elsevier (1990), Chapter: Queueing Theory.

[14] M.E. Crovella and A. Bestavros, Self-similarity in world wide web traffic: Evidence and possible causes,
IEEE/ACM Trans. Netw. 5 (6) (1997), 835-846.

42

[15]

[16]
[17]
(18]

[19]
[20]

(21]
(22]

[23]
[24]

[25]
[26]

[27]

[28]
[29]
[30]
[31]
[32]
(33]
[34]

[35]

M. Burgess Part 1

G.R. Ganger, B.L. Worthington, R.Y. Hou and Y.N. Patt, Disk subsystem load balancing: Disk striping vs.
conventional data placement, Proceeding of the Twenty-Sixth Hawaii International Conference on System
Sciences, Vol. 1 (1993), 40-49.

G.R. Ganger, B.L. Worthington, R.Y. Hou and Y.N. Patt, Disk arrays: High-performance, high-reliability
storage subsystems, Computer 27 (3) (1994), 30-36.

K.I. Hopcroft, E. Jakeman and J.O. Matthews, Discrete scale-free distributions and associated limit theo-
rems, J. Math. Phys. A37 (2004), L635-L642.

A. Hgyland and M. Rausand, System Reliability Theory: Models and Statistical Methods, Wiley, New York
(1994).

R. Jain, The Art of Computer Systems Performance Analysis, Wiley Interscience, New York (1991).

T. Karagiannis, M. Molle and M. Faloutsos, Long-range dependence: Ten years of Internet traffic modeling,
IEEE Internet Computing 8 (5) (2004), 57-64.

A_H. Karp and H.P. Flatt, Measuring parallel processor performance, Comm. ACM 33 (5) (1990), 539-543.
W.E. Leland, M.S. Taqqu, W. Willinger and D.V. Wilson, On the self-similar nature of ethernet traffic
(extended version), IEEE/ACM Trans. Netw. 2 (1) (1994), 1-15.

T. Limoncelli and C. Hogan, The Practice of System and Network Administration, Addison—Wesley (2003).
R. Menuet and W.P. Turner, Continuous cooling is required for continuous availability, Technical report,
Uptime Institute (2006).

Office of Government Commerce, ed., Best Practice for Service Delivery, ITIL: The Key to Managing IT
Services, The Stationary Office, London (2000).

Office of Government Commerce, ed., Best Practice for Service Support, ITIL: The Key to Managing IT
Services, The Stationary Office, London (2000).

K. Park, G. Kim and M. Crovella, On the relationship between file sizes, transport protocols, and self-
similar network traffic, ICNP'96: Proceedings of the 1996 International Conference on Network Protocols
(ICNP’96), IEEE Computer Society, Washington, DC (1996), 171.

V. Paxson and S. Floyd, Wide area traffic: The failure of Poisson modeling, IEEE/ACM Trans. on Netw.
3 (3) (1995), 226-244.

K. Raatikainen, Symptoms of self-similarity in measured arrival process of ethernet packets to a file server,
Preprint, University of Helsinki (1994).

G.B. Rodosek, Quality aspects in it service management, IFIP/IEEE 13th International Workshop on Dis-
tributed Systems: Operations and Management (DSOM 2002) (2002), 82.

H. Simitci and D.A. Reed, Adaptive disk striping for parallel input/output, 16th IEEE Symposium on Mass
Storage Systems (1999), 88—-102.

L.P. Slothouber, A model of web server performance, The 5th International World Wide Web Conference,
Paris, France (1996).

W.P. Turner, J.H. Seader and K.G. Brill, Tier classifications define siet infrastructure performance, Techni-
cal report, Uptime Institute (1996), 2001-2006.

R.D. van der Mei, R. Hariharan and PK. Reeser, Web server performance modeling, Telecommunication
Systems 16 (March 2001), 361-378.

J. Walrand, Stochastic Models, Handbooks in Operations Research and Management Science, Vol. 2, Else-
vier (1990), Chapter: Queueing Networks.

-1.3-

Automating System Administration: Landscape,
Approaches and Costs

Aaron B. Brown!, Joseph L. Hellerstein?, Alexander Keller?
LiBM Software Group, Route 100, Somers, NY 10589, USA
E-mail: abbrown@us.ibm.com
zMicrosaﬁ Corporation, One Microsoft Way, Redmond, WA 98052, USA
E-mail: Joehe @microsoft.com

3IBM Global Technology Services, 11 Madison Avenue, New York, NY 10010, USA
E-mail: alexk@us.ibm.com

1. Introduction

The cost of systems administration in Information Technology (IT) systems often exceeds
the cost of hardware and software. Our belief is that automating system administration can
reduce these costs and increase the business value provided by IT.

Making progress with automating system administration requires addressing three ques-
tions. What to automate? How should this automation be done? When does the automation
provide business value?

What to automate is often answered in a simplistic way — everything! The problem here
is that automation requires investment and inevitably causes some disruption in the ‘as-
is’ IT environment. As a result, it is important to target aspects of System Administration
where automation provides the most value. We believe that a process-based perspective
provides the kind of broad context in which such judgments can be made.

How to automate system administration can be approached in many ways. Among these
are rule-based techniques, control theory and automated workflow construction. These ap-
proaches provide different kinds of benefits, and, in many ways, address different aspects
of the automation challenge.

HANDBOOK OF NETWORK AND SYSTEM ADMINISTRATION
Edited by Jan Bergstra and Mark Burgess
© 2007 Elsevier B.V. All rights reserved

43

<4 A.B. Brown et al. Part 1

When to automate is ultimately a business decision that should be based on a full un-
derstanding of the costs and benefits. The traditional perspective has been that automation
is always advantageous. However, it is important to look at the full costs imposed by au-
tomation. For example, automating software distribution requires that: (a) the distribution
infrastructure be installed and maintained; (b) software packages be prepared in the format
required by the distribution infrastructure; and (c) additional tools be provided to handle
problems with packages that are deployed because of the large scale of the impact of these
problems. While automation often provides a net benefit despite these costs, we have ob-
served cases in which these costs exceed the benefits.

There is a variety of existing literature on systems administration. One of the earli-
est efforts in automating systems administration is an expert systems for managing main-
frame systems [39]. More recently, [9] addresses distributed resource administration using
cfengine. Historically, authors have addressed various aspects of systems administration
[21,23,24,47,49] and [36]. There has been theoretical work as well such as [46], who dis-
cusses how to structure actions for systems administration in configuration management,
and [50], who addresses automated responses to anomalies using immunological algo-
rithms.

The remainder of this chapter provides more detail on the questions of what, how and
when to automate.

2. What system administrators do

We start our consideration of automating system administration by examining what system
administrators do, as these tasks are the starting points for building automation.

System administrators are a central part of IT operations. Anyone who has owned a per-
sonal computer knows some elements of system administration. Software must be installed,
patched and upgraded. Important data must be backed up, and occasionally restored. And,
when a problem occurs, time must be spent on problem isolation, identification, and reso-
lution.

In many ways, system administrators perform the same activities as individuals. There
are, however, some important differences. The first is scale. Data centers consist of hun-
dreds to tens of thousands of servers, and administrators are typically responsible for tens
to hundreds of machines. This scale means that management tools are essential to deal with
repetitive tasks such as software installation.

A second important difference is that system administrators are usually responsible for
mission critical machines and applications. Seconds of downtime at a financial institution
can mean millions of dollars of lost revenue. Failures in control systems for trains and
aviation can cost lives. These considerations place tremendous emphasis on the speed and
accuracy with which administrators perform their jobs.

Large data centers structure system administration by technology.

Examples of these technology areas are servers, databases, storage and networks. Ad-
ministrators will typically train and develop specialized expertise in one technology area —

Ch. 3 Automating system administration: Landscape, approaches, and costs 45

for example a database administrator (DBA) becomes an expert in the details of database
installation, tuning, configuration, diagnosis and maintenance. However, the different tech-
nology areas often contain similar tasks, such as diagnosis and capacity planning, so the
techniques developed in one area will often translate relatively easily to others. Even so, the
tools used to accomplish these tasks in the separate areas remain different and specialized.

The remainder of this section is divided into four parts. The first two parts describe sys-
tem administration in the words of experts. We focus on two technology areas — database
administration and network administration. The third part of the section is a broader look
at system administration based on a USENIX/SAGE survey. The section concludes with a
discussion of best practices.

2.1. Database administration

We begin our look at expert system administration in the area of database administration.
The material in this section is based on a database administration course [10].

The job of a database administrator (DBA) is largely driven by the needs of the organiza-
tion. But at the heart of this job is a focus on managing data integrity, access, performance
and security/privacy. Typical tasks performed by a DBA might include:

e designing and creating new databases;

e configuring existing databases to optimize performance, for example by manipulating
index structures;
managing database storage to ensure enough room for stored data;
diagnosing problems such as ‘stale’ database data and deadlocks;
ensuring data is replicated to on-line or off-line backup nodes;
federating multiple independent database instances into a single virtual database;
interfacing with other administrators to troubleshoot problems that extend beyond the
database (e.g., storage or networking issues);

e generating reports based on database contents and rolling up those reports across mul-

tiple database systems.

The tools that a DBA uses to perform tasks like these vary greatly depending on the scale
and needs of the organization. Small organizations and departments may use simple tools
such as Paradox, Visual FoxPro, or Microsoft Access to maintain data. Larger organiza-
tions and governments with corporate-wide data requirements demand industrial-strength
database tools such as IBM DB2, Oracle database, Microsoft SQL Server, Ingres, etc. And
for organizations with multiple databases (often a situation that occurs after acquisitions, or
when independent departments are transitioned to a centralized system), additional tools,
often called ‘middleware’, will be necessary to federate and integrate the existing data-
bases across the corporation. Middleware poses its own administration considerations for
installation, configuration, optimization, and maintenance.

In addition to the core tools — the database engine(s) and middleware — DBAs use many
specialized administration tools. These may be scripts developed by the DBA for specific
situations, or they may be vendor-supplied tools for monitoring, administration and report-
ing.

46 A.B. Brown et al. Part 1

As we look toward automation of a DBAs system administration responsibilities, we
must recognize the challenges faced by a DBA. First is the integration of large numbers
of tools. It should be clear from the discussion above that anything larger than a small
department environment will involve multiple database engines, possibly middleware and
a mix of home-grown and vendor-supplied tools. Second is the need to ‘roll-up’ data in
large environments, e.g., integrating department reports into corporate-wide reports. Part
of the challenge of the roll-up is the need for processes to scrub data to ensure correctness
and consistency. The challenge of providing roll-ups creates a tension between the small
scale systems with ease of entry and the large scale systems that provide robustness and
scalability.

Finally, DBAs do not operate in a vacuum. There is considerable interaction with
other administration ‘towers’, such as network and storage management. The following
from [10] provides an illustrative example:

Unfortunately, one situation that can occur more often than planned, or more accurately, more than
it should, is when the database does not update despite the careful steps taken or the time involved
in trying to accomplish a successful update [...]

The first step is to investigate the problem to learn the true ‘age’ of the data. Next, the DBA
would attempt to update a recent set of data to determine what may have occurred. It could have
been a malfunction that day, or the evening the update was attempted. Assuming the situation does
not improve by this upload, the next step is to contact the network administrator about possible
server malfunctions, changes in standard record settings, or other changes that might affect the
upload of data.

Occasionally, the network server record lock settings were changed to ‘disallow’ any upload
to a network server over a certain limit [...] If the DBA is lucky, or has positive karma due for
collection, all that may be required is for the network administrator to reset the record lock setting
at a higher level. Updates can then be repeated and will result in current data within the business
unit database for purposes of management reporting.

However, on a bad day, the DBA may learn from the network administrator that the server was
or is malfunctioning, or worse, crashed at the precise time of the attempted update [...] In this
situation the investigation must retrace the steps of data accumulation to determine the validity of
the dataset for backup and experimental upload (network administrators at ringside) to watch for
any type of malfunction.

In environments such as the foregoing, automation usually proceeds in an incremental
manner, starting with special-purpose scripts that automate specific processes around the
sets of existing tools, to generalizations of those scripts into new management tools, to rich
automation frameworks that integrate tools to close the loop from detecting problems to
reacting to them automatically.

2.2. Network administration

Next, we look at another technology area for system administration: network administra-
tion. The material in this section is based on a course on network administration [54]. We
have included quotes as appropriate.

Network administrators are responsible for the performance, reliability, and scalabil-
ity of corporate networks. Achieving these goals requires a substantial understanding of
the business for which these services are being delivered as well as the nature and trends

Ch. 3 Automating system administration: Landscape, approaches, and costs 47

in network technologies. In particular, in today’s network-connected, web-facing world,
network administrators have gone from supporting the back-office to enabling the online
front-office, ensuring the network can deliver the performance and reliability to provide
customer information, sales, support, and even B2B commerce online via the Internet. The
network administrator’s job has become a critical function in the revenue stream for many
businesses.

Typical tasks performed by a network administrator might include:

e designing, deploying, and redesigning new networks and network interconnections;

e deploying new devices onto a network, which requires a good understanding of the

network configuration, the device requirements, and considerations for loads imposed
by network traffic;

e setting and enforcing security policies for network-connected elements;

e monitoring network performance and reconfiguring network elements to improve per-

formance;

e managing network-sourced events;

e tracking the configuration of a network and the inventory of devices attached to it;

e detecting failures, diagnosing their root causes, and taking corrective actions such as

reconfiguring the network around a failed component.

Network administrators make use of a variety of tools to perform these tasks. Some are as
simple as the TCP ping, traceroute and netstat commands, which provide simple
diagnostics. Administrators responsible for large corporate networks frequently make use
of network management systems with sophisticated capabilities for filtering, eventing, and
visualization. Examples of such systems are Hewlett—Packard’s OpenView product and
IBM’s NetView product. Administrators of all networks will occasionally have to use low-
level debugging tools such as packet sniffers and protocol decoders to solve compatibility
and performance problems. No matter the scale of the network, tools are critical given the
sizes of modern networks and the volumes of data that move across them. To quote from
the advice for network administrators in [54], ‘A thorough inventory and knowledge of the
tools at your disposal will make the difference between being productive and wasting time.
A good network administrator will constantly seek out ways to perform daily tasks in a
more productive way’.

As we look toward automation of a network administrator’s activities, there are two
key aspects to consider. First is to provide more productive tools and to integrate existing
tools. Here, automation must help administrators become more productive by absorbing the
burden of monitoring, event management, and network performance optimization. Again
this kind of automation progresses incrementally, starting with better scripts to integrate
existing tools into situation-specific problem solvers, moving to integrated tools that, for
example, merge monitoring with policy-driven response for specific situations, and culmi-
nating in integrated frameworks that close the loop and take over management of entire
portions of a corporate network from the human administrator’s hands.

The second key aspect of automating a network administrator’s activities is to improve
the task of problem diagnosis. Here, we refer to both proactive maintenance and reactive
problem-solving. In the words of [54]:

Resolving network, computer, and user related issues require the bulk of an administrator’s time.
Eventually this burden can be lessened through finding permanent resolutions to common prob-

48 A.B. Brown et al. Part 1

lems and by taking opportunities to educate the end user. Some reoccurring tasks may be auto-
mated to provide the administrator with more time [...] However, insuring the proper operation of
the network will preempt many problems before the users notice them.

Finally, it is important to point out that for any system administration role, automation
can only go so far. There always is a human aspect of system administration that automa-
tion will not replace; in the case of network administration, again in the words of [54], this
comes in many forms.

Apart from the software and hardware, often the most difficult challenge for a network administra-
tor is juggling the human aspects of the job. The desired result is always a productive network user,
not necessarily just a working network. To the extent possible, the administrator should attempt
to address each user’s individual needs and preferences. This also includes dealing with the issues
that arise out of supporting user skill levels ranging from beginner to knowledgeable. People can
be the hardest and yet most rewarding part of the job.

As problems are addressed, the solutions will be documented and the users updated. Keeping
an open dialogue between the administrator and users is critical to efficiently resolving issues.

2.3. The broader view

Now that we have looked at a few examples of system administration, next we move up
from the details of individual perspectives to a survey of administrators conducted by
SAGE, the Special Interest Group of the USENIX Association focusing on system ad-
ministration. Other studies support these broad conclusions, such as [4].

The SAGE study [20] covered 128 respondents from 20 countries, with average expe-
rience of 7 years, 77% with college degrees, and another 20% having some college. The
survey focused on server administration. Within this group, each administrator supported
500 users, 10-20 servers, and works in a group of 2 to 5 people. As reported in the survey,
administrators have an ‘atypical day’ at least once a week.

With this background, we use the survey results to characterize how administrators spend
their time, with an eye to assessing the opportunity for automation. This is done along two
different dimensions. The first is what is being administered:

o 20% miscellaneous;

e 12% application software;

e 12% email;

e 9% operating systems;

o 7% hardware;

e 0% utilities:

e 5% user environment.

There is a large spread of administrative targets, and the reason for the large fraction of
miscellaneous administration may well be due to the need to deal with several problems at
once.

Broad automation is needed to improve system administration.

Automation that targets a single domain such as hardware will be useful, but will not
solve the end-to-end problems that system administrators typically face. Instead, we should

Ch. 3 Automating system administration: Landscape, approaches, and costs 49

consider automation that takes an end-to-end approach, cutting across domains as needed
to solve the kinds of problems that occur together. We will address this topic in Section 4
in our discussion of process-based automation.

Another way to view administrators’ time is to divide it by the kind of activity. The
survey results report:

e 11% meetings;

e 11% communicating;

9% configuring;

8% installing;

8% ‘doing’;

7% answering questions;

7% debugging.

We see that at least 29% of the administrator’s job involves working with others. Some-
times, this is working with colleagues to solve a problem. But there is also substantial time
in reporting to management on progress in resolving an urgent matter and dealing with
dissatisfied users. About 32% of the administrator’s job involves direct operations on the
IT environment. This is the most obvious target for automation, although it is clear that
automation will need to address some of the communication issues as well (e.g., via better
reporting).

The survey goes on to report some other facts of interest. For example, fire fighting only
takes 5% of the time. And, there is little time spent on scheduling, planning and designing.
The latter, it is noted, may well be reflected in the time spent on meetings and communi-
cating. We can learn from these facts that automation must address the entire lifecycle of
administration, not just the (admittedly intense) periods of high-pressure problem-solving.

The high pressure and broad demands of system administration may raise serious ques-
tions about job satisfaction. Yet, 99% of those surveyed said they would do it again.

2.4. The promise of best practices and automation

One insight from the foregoing discussion is that today systems administration is more of
a craft than a well-disciplined profession. Part of the reason for this is that rapid changes
in IT make it difficult to have re-usable best practices, at least for many technical details.

There is a body of best practices for service delivery that is gaining increasing accep-
tance, especially in Europe. Referred to as the Information Technology Infrastructure Li-
brary (ITIL), these best practices encompass configuration, incident, problem management,
change management, and many other processes that are central to systems administra-
tion [27]. Unfortunately, ITIL provides only high level guidance. For example, the ITIL
process for change management has activities for ‘authorizing change’, ‘assign priority’
and ‘schedule change’. There are few specifics about the criteria used for making deci-
sions, the information needed to apply these criteria, or the tools required to collect this
information.

The key element of the ITIL perspective is its focus on process.

ITIL describes end-to-end activities that cut across the traditional system administra-

50 A.B. Brown et al. Part 1

tion disciplines, and suggests how different ‘towers’ like network, storage, and applica-
tion/database management come together to design infrastructure, optimize behavior, or
solve cross-cutting problems faced by users. ITIL thus provides a philosophy that can
guide us to the ultimate goals of automation, where end-to-end, closed-loop activities are
subsumed entirely by automation, the system administrators can step out, and thus the costs
of delivering IT services are reduced significantly.

We believe that installations will move through several phases in their quest to reduce
the burden on systems administrators and hence the cost of delivering IT services. In our
view, these steps are:

I. Environment-independent automation: execution of repetitive tasks without system-
dependent data within one tower, for example static scripts or response-file-driven
installations.

2. Environment-dependent automation: taking actions based on configuration, events,
and other factors that require collecting data from systems. This level of automa-
tion is often called ‘closed-loop’ automation, though here it is still restricted to one
discipline or tower.

3. Process-based automation: automation of interrelated activities in best practices for
IT service delivery. Initially, this tends to be open-loop automation that mimics ac-
tivities done by administrators such as the steps taken in a software install. Later on,
automation is extended to closed-loop control of systems such as problem detection
and resolution.

4. Business level automation: automation of IT systems based on business policies, pri-
orities, and processes. This is an extension of process-based automation where the
automation is aware of the business-level impact of various IT activities and how
those IT activities fit into higher-level business processes (for example, insurance
claim processing). It extends the closed-loop automation described in (3) to incorpo-
rate business insights.

Business-level automation is a lofty goal, but the state of the art in 2006 is still far
from reaching it outside very narrowly-constrained domains. And, at the other extreme,
environment-independent automation is already well-established through ad-hoc mecha-
nisms like scripts and response files. Thus in the remainder of our discussion we will
focus on how to achieve environment-dependent and process-based automation. Section
3 describes a strategy for reaching process-based automation, and follows that with a de-
scription of some automation techniques that allow for environment-dependent automation
and provide a stepping stone to higher levels of automation.

3. How to automate

This section addresses the question of how to automate system administration tasks.

3.1. Automation strategies

We start our discussion of automating IT service delivery by outlining a best-practice ap-
proach to process-based automation (cf. [7]). We have developed this approach based on

Ch. 3 Automating system administration: Landscape, approaches, and costs 51

our experiences with automating change management, along with insight we have distilled
from interactions and engagements with service delivery personnel. It provides a roadmap
for achieving process-level automation.

Our approach comprises six steps for transforming existing IT service delivery processes
with automation or for introducing new automated process into an IT environment. The first
step is to

(1) identify best practice processes for the domain to be automated.

To identify these best practices we turn to the IT Infrastructure Library (ITIL), a widely
used process-based approach to IT service management. ITIL comprises several disciplines
such as infrastructure management, application management, service support and delivery.
The ITIL Service Support discipline [27] defines the Service Desk as the focal point for
interactions between a service provider and its customers. To be effective, the Service Desk
needs to be closely tied into roughly a dozen IT support processes that address the lifecycle
of a service. Some examples of IT service support processes for which ITIL provides best
practices are: Configuration Management, Change Management, Release Management,
Incident Management, Problem Management, Service Level Management and Capacity
Management.

ITIL provides a set of process domains and best practices within each domain, but it
does not provide guidance as to which domain should be an organization’s initial target for
automation. Typically this choice will be governed by the cost of existing activities.

After identifying the best practices, the next step is to

(2) establish the scope of applicability for the automation.

Most ITIL best practices cover a broad range of activities. As such, they are difficult to
automate completely. To bound the scope of automation, it is best to target a particular
subdomain (e.g., technology area). For example, Change Management applies changes in
database systems, storage systems and operating systems.

We expect that Change Management will be an early focus of automation. It is our fur-
ther expectation that initial efforts to automate Change Management will concentrate on
high frequency requests, such as security patches. Success here will provide a proof point
and template for automating other areas of Change Management. And, once Change Man-
agement is automated to an acceptable degree, then other best practices can be automated
as well, such as Configuration Management. As with Change Management, we expect
that the automation of Configuration Management will be approached incrementally. This
might be structured in terms of configuration of servers, software licenses, documents,
networks, storage and various other components.

The next step in our roadmap follows the ITIL-based approach:

(3) identify delegation opportunities.

Each ITIL best practice defines (explicitly or implicitly) a process flow consisting of multi-
ple activities linked in a workflow. Some of these activities will be amenable to automation,
such as deploying a change in Change Management. These activities can be delegated to an
automated system or tool. Other activities will not be easy to automate, such as obtaining
change approvals from Change Advisory Boards. Thus, an analysis is needed to deter-
mine what can be automated and at what cost. Sometimes, automation drives changes in
IT processes. For example, if an automated Change Management system is trusted enough,
change approvals might be handled by the Change Management System automatically.

52 A.B. Brown et al. Part 1

The benefit of explicitly considering delegation is that it brings the rigor of the best-
practice process framework to the task of scoping the automation effort. The best practice
defines the set of needed functionality, and the delegation analysis explicitly surfaces the
decision of whether each piece of functionality is better handled manually or by automa-
tion. Using this framework helps prevent situations like the one discussed later in Section 4
of this chapter, where the cost of an automation process outweighs its benefits in certain
situations.

With the delegated activities identified, the fourth step in our automation approach is to

(4) identify links between delegated activities and external activities, processes and data

sources.

These links define the control and data interfaces to the automation. They may also in-
duce new requirements on data types/formats and APIs for external tools. An example in
Change Management is the use of configuration data. If Change Management is automated
but Configuration Management remains manual, the Configuration Management Database
(CMDB) may need to be enhanced with additional APIs to allow for programmatic access
from the automated Change Management activities. Moreover, automation often creates
induced processes, additional activities that are included in support of the automation.
Examples of induced processes in automated software distribution are the processes for
maintaining the software distribution infrastructure, error recovery and preparation of the
software packages.

The latter point motivates the following step:

(5) Identify, design, and document induced processes needed to interface with or main-

tain the automation.
This step surfaces many implications and costs of automation and provides a way to do
cost/benefit tradeoffs for proposed automation.

The last step in our automation approach is to

(6) implement automation for the process flow and the delegated activities.

Implementing the process flow is best done using a workflow system to automatically
coordinate the best-practice process’ activities and the flow of information between them.
Using a workflow system brings the additional advantage that it can easily integrate auto-
mated and manual activities.

For the delegated activities, additional automation implementation considerations are re-
quired. This is a non-trivial task that draws on the information gleaned in the earlier steps.
It uses the best practice identified in (1) and the scoping in (2) to define the activities” func-
tionality. The delegation choices in (3) scope the implementation work, while the interfaces
and links to induced process identified in (4) and (5) define needed APIs, connections with
external tools and data sources, and user interfaces. Finally, the actual work of the activity
needs to be implemented directly, either in new code or by using existing tools.

In some cases, step (6) may also involve a recursive application of the entire method-
ology described here. This is typically the case when a delegated ITIL activity involves a
complex flow of work that amounts to a process in its own right. In these cases, that activity
sub-process may need to be decomposed into a set of subactivities; scoped as in steps (2)
and (3), linked with external entities as in (4), and may induce extra sub-process as in (5).
The sub-process may in turn also need to be implemented in a workflow engine, albeit at a
lower level than the top-level best practice process flow.

Ch. 3 Automating system administration: Landscape, approaches, and costs 53
3.2. Automation technologies

This section introduces the most common technologies for automation. Considered here
are rules, feedback control techniques, and workflows technology.

3.2.1. Rule-based techniques
Rules provide a condition—action representation for automation.

An example of a rule is

e Rule: If there is a SlowResponse event from system ?S1 at location ?L1 within 1
minute of another SlowResponse event from system ?S2 # ?S1 at location ?L1

and there is no SlowResponse event from system S3 at location ?L2 # ?L1, then
alert the Network Manager for location ?L1.
In general, rules are if-then statements. The if-portion, or left-hand side, describes a sit-
uation. The then-portion, or right-hand side, specifies actions to take when the situation
arises.

As noted in [52], there is a great deal of work in using rule-based techniques for root
cause analysis (RCA). [39] describes a rule-based expert system for automating the opera-
tion of an IBM mainframe, including diagnosing various kinds of problems. [22] describes
algorithms for identifying causes of event storms. [28] describe the application of an expert
system shell for telecommunication network alarm correlation.

The simplicity of rule-based systems offers an excellent starting point for automation.
However, there are many shortcomings. Among these are:

1. A pure rule-based system requires detailed descriptions of many situations. These

descriptions are time-consuming to construct and expensive to maintain.

2. Rule-based systems scale poorly because of potentially complex interactions between
rules. Such interactions make it difficult to debug large scale rule-based systems, and
create great challenges when adding new capabilities to such systems.

3. Not all automation is easily represented as rules. Indeed, step-by-step procedures are
more naturally expressed as workflows.

There are many approaches to circumventing these shortcomings. One of the most
prominent examples is [32], which describes a code-book-based algorithm for RCA. The
practical application of this approach relies on explicit representations of device behaviors
and the use of configuration information. This has been quite effective for certain classes
of problems.

3.2.2. Control theoretic approaches
Control theory provides a formal framework for optimizing systems.

Over the last sixty years, control theory has developed a fairly simple reference architec-
ture. This architecture is about manipulating a target system to achieve a desired objective.
The component that manipulates the target system is the controller.

As discussed in [15] and depicted in Figure 1, the essential elements of feedback control
system are:

54

A.B. Brown et al. Part 1

Disturbance Noise
Input Input

Reference Control Control l l Measured

Input Error Input Output
»| Target -
—48 }—- Controller ™ system >

T— Transducer |-

Transduced
Qutput

Fig. 1. Block diagram of a feedback control system. The reference input is the desired value of the system’s
measured output. The controller adjusts the setting of control input to the target system so that its measured
output is equal to the reference input. The transducer represents effects such as units conversions and delays.

e target system, which is the computing system to be controlled;
e control input, which is a parameter that affects the behavior of the target system and

can be adjusted dynamically (such as the MaxClients parameter in the Apache
HTTP Server);

measured output, which is a measurable characteristic of the target system such as
CPU utilization and response time;

disturbance input, which is any change that affects the way in which the control input
influences the measured output of the target system (e.g., running a virus scan or a
backup);

noise input, which is any effect that changes the measured output produced by the
target system. This is also called sensor noise or measurement noise;

reference input, which is the desired value of the measured output (or transformations
of them), such as CPU utilization should be 66%. Sometimes, the reference input is
referred to as desired output or the setpoint;

transducer, which transforms the measured output so that it can be compared with the
reference input (e.g., smoothing stochastics of the output);

control error, which is the difference between the reference input and the measured
output (which may include noise and/or may pass through a transducer);

controller, which determines the setting of the control input needed to achieve the
reference input. The controller computes values of the control input based on current
and past values of control error.

Reference inputs specify policies.

For example, a service level agreement may specify constraints on response times for

classes of services such as “requests to browse the product catalogue should be satisfied
within two seconds”. In this case, the measured output is response time for a browse re-
quest, and the reference input is two seconds. More details can be found in [8].

The foregoing is best understood in the context of a specific system. Consider a cluster of

three Apache Web Servers. The Administrator may want these systems to run at no greater
than 66% utilization so that if any one of them fails, the other two can immediately absorb

Ch. 3 Automating system administration: Landscape, approaches, and costs 55

the entire load. Here, the measured output is CPU utilization. The control input is the max-
imum number of connections that the server permits as specified by the MaxClients
parameter. This parameter can be manipulated to adjust CPU utilization. Examples of dis-
turbances are changes in arrival rates and shifts in the type of requests (e.g., from static to
dynamic pages).

To illustrate how control theory can be applied to computing systems, consider the IBM
Lotus Domino Serveras described in [41]. To ensure efficient and reliable operation, Ad-
ministrators of this system often regulate the number of remote procedure calls (RPCs) in
the server, a quantity that we denote by RIS. RIS roughly corresponds to the number of
active users (those with requests outstanding at the server). Regulation is accomplished
by using the MaxUsers tuning parameter that controls the number of connected users.
The correspondence between MaxUsers and RIS changes over time, which means that
MaxUsers must be updated almost continuously to achieve the control objective. Clearly,
it is desirable to have a controller that automatically determines the value of MaxUsers
based on the objective for RIS.

Our starting point is to model how MaxUsers affects RIS. The input to this model is
MaxUsers, and the output is RIS. We use u(k) to denote the kth value of the former
and y(k) to denote the kth value of the latter. (Actually, u(k) and y(k) are offsets from a
desired operating point.) A standard workload was applied to a IBM Lotus Domino Server
running product level software in order to obtain training and test data. In all cases, values
are averaged over a one minute interval. Based on these experiments, we constructed an
empirical model (using least squares regression) that relates MaxUsers to RIS:

y(k + 1) = 0.43y(k) + 0.47u (k). (1)

To better facilitate control analysis, Equation (1) is put into the form of a transfer func-
tion, which is a Z-transform representation of how MaxUsers affects RIS. Z-transforms
provide a compact representation for time varying functions, where z represents a time
shift operation. The transfer function of Equation (1) is

0.47
7—043"

The poles of a transfer function are the values of z for which the denominator is 0. It
turns out that the poles determine the stability of the system represented by the transfer
function, and they largely determine its settling time. This can be seen in Equation (1).
Here, there is one pole, which is 0.43. The effect of this pole on settling time is clear if we
solve the recurrence in Equation (1). The result has the factors 0.43*+1 0.43% ... Thus, if
the absolute value of the pole is greater than one, the system is unstable. And the closer the
pole is to 0, the shorter the settling time. A pole that is negative (or imaginary) indicates an
oscillatory response.

Many researchers have applied control theory to computing systems. In data networks,
there has been considerable interest in applying control theory to problems of flow control,
such as [31] which develops the concept of a Rate Allocating Server that regulates the flow
of packets through queues. Others have applied control theory to short-term rate variations

56 A.B. Brown et al. Part 1

in TCP (e.g., [35]) and some have considered stochastic control [2]. More recently, there
have been detailed models of TCP developed in continuous time (using fluid flow approx-
imations) that have produced interesting insights into the operation of buffer management
schemes in routers (see [25,26]). Control theory has also been applied to middleware to
provide service differentiation and regulation of resource utilizations as well as optimiza-
tion of service level objectives. Examples of service differentiation include enforcing rela-
tive delays [1], preferential caching of data [37], and limiting the impact of administrative
utilities on production work [40]. Examples of regulating resource utilizations include a
mixture of queueing and control theory used to regulate the Apache HTTP Server [48], reg-
ulation of the IBM Lotus Domino Server [41], and multiple-input, multiple-output control
of the Apache HTTP Server (e.g., simultaneous regulation of CPU and memory resources)
[14]. Examples of optimizing service level objectives include minimizing response times
of the Apache Web Server [16] and balancing the load to optimize database memory man-
agement [17].

All of these examples illustrate situations where control theory-based automation was
able to replace or augment manual system administration activities, particularly in the per-
formance and resource management domains.

3.2.3. Automated workflow construction In Section 2.4, we have observed that each ITIL
best practice defines (explicitly or implicitly) a process flow consisting of multiple activi-
ties linked in a workflow. Some of these activities will be amenable to automation — such
as deploying a change in Change Management — whereas others will not (such as obtaining
change approvals from Change Advisory Boards). On a technical level, recent efforts aim
at introducing extensions for people facing activities into workflow languages [33]. The
goal is to facilitate the seamless interaction between the automated activities of an IT ser-
vice management process and the ones that are carried out by humans. Here, we summarize
work in [5] and [29] on automating system administration using workflow.

In order to provide a foundation for process-based automation, it is important to iden-
tify the control and data interfaces between delegated activities and external activities,
processes, and data sources. The automation is provided by lower-level automation work-
flows, which consist of atomic administration activities, such as installing a database man-
agement system, or configuring a data source in a Web Application Server. The key ques-
tion is to what extent the automation workflows can be automatically generated from
domain-specific knowledge, instead of being manually created and maintained. For ex-
ample, many automation workflows consist of activities whose execution depends on the
current state of a distributed system. These activities are often not specified in advance.
Rather, they are merely implied. For example, applications must be recompiled if they use
a database table whose schema is to change. Such implicit changes are a result of var-
ious kinds of relationships, such as service dependencies and the sharing of the service
provider’s resources among different customers. Dependencies express compatibility re-
quirements between the various components of which a distributed system is composed.
Such requirements typically comprise software pre-requisites (components that must be
present on the system for an installation to succeed), co-requisites (components that must
be jointly installed) as well as ex-requisites (components that must be removed prior to in-
stalling a new component). In addition, version compatibility constraints and memory/disk

Ch. 3 Automating system administration: Landscape, approaches, and costs 57

space requirements need to be taken into account. All of this information is typically cap-
tured during the development and build stages of components, either by the developer, or
by appropriate tooling. Dependency models, which can be specified e.g., as Installable
Unit Deployment Descriptors [53] or System Description Models [38], are a key mecha-
nism to capture this knowledge and make it available to the tools that manage the lifecycle
of a distributed system.

An example of a consumer of dependency information is the Change Management Sys-
tem, whose task is to orchestrate and coordinate the deployment, installation and configu-
ration of a distributed system. Upon receiving a request for change (RFC) from an admin-
istrator, the change management system generates a Change Plan. A change plan describes
the partial order in which tasks need to be carried out to transition a system from a workable
state into another workable state. In order to achieve this, it contains information about:

e The type of change to be carried out, e.g., install, update, configure, uninstall;

e the roles and names of the components that are subject to a change (either directly

specified in the RFC, or determined by the change management system);

e the precedence and location constraints that may exist between tasks, based on com-
ponent dependency information;

e an estimate of how long every task is likely to take, based on the results of previous
deployments. This is needed to estimate the impact of a change in terms of downtime
and monetary losses.

The change management system exploits dependency information. The dependency in-
formation is used to determine whether tasks required for a change must be carried out
sequentially, or whether some of them can be parallelized. The existence of a dependency
between two components — each representing a managed resource — in a dependency graph
indicates that a precedence/location constraint must be addressed. If a precedence con-
straint exists between two tasks in a workflow (e.g., X must be installed before Y), they
need to be carried out sequentially. This is typically indicated by the presence of a link;
any task may have zero or more incoming and outgoing links. If two tasks share the same
predecessor and no precedence constraints exist between them, they can be executed con-
currently. Typically, tasks and their constraints are grouped on a per-host basis. Grouping
on a per-host basis is important because the actual deployment could happen either push-
based (triggered by the provisioning system) or pull-based (deployment is initiated by the
target systems). An additional advantage of grouping activities on a per-host basis is that
one can carry out changes in parallel (by observing the presence of cross-system links) if
they happen on different systems. Note that parallelism on a single host system is diffi-
cult to exploit with current operating systems as few multithreaded installers exist today.
In addition, some operating systems require exclusive access to shared libraries during
installation.

Different types of changes require different traversals through the dependency models:
If a request for a new installation of a component is received, one needs to determine which
components must already be present before a new component can be installed. On the other
hand, a request for an update, or an uninstall of an component leads to a query to determine
the components that will be impacted by the change.

Precedence constraints represent the order in which provisioning activities need to be
carried out. Some of these constraints are implicit (e.g., by means of a containment hier-

58 A.B. Brown et al. Part 1

archy expressed as ‘HasComponent’ relationships between components), whereas others
(typically resulting from communication dependencies such as ‘uses’) require an explicit
representation (e.g., the fact that a database client needs to be present on a system whenever
a database server located on a remote host needs to be accessed).

3.2.3.1. Example for software Change Management The example is based on the sce-
nario of installing and configuring a multi-machine deployment of a J2EE based enter-
prise application and its supporting middleware software (including IBM’s HTTP Server,
WebSphere Application Server, WebSphere MQ embedded messaging, DB2 UDB data-
base and DB2 runtime client). The specific application we use is taken from the SPEC-
JAppServer2004 enterprise application performance benchmark [51]. It is a complex,
multi-tiered on-line e-Commerce application that emulates an automobile manufacturing
company and its associated dealerships. SPECjAppServer2004 comprises typical manu-
facturing, supply chain and inventory applications that are implemented with web, EJB,
messaging, and database tiers. We jointly refer to the SPECjAppServer2004 enterprise ap-
plication, its data, and the underlying middleware as the SPECjAppServer2004 solution.
The SPECjAppServer2004 solution spans an environment consisting of two systems: one
system hosts the application server along with the SPECjAppServer2004 J2EE applica-
tion, whereas the second system runs the DBMS that hosts the various types of SPEC-
jAppServer2004 data (catalog, orders, pricing, user data, etc.). One of the many challenges
in provisioning such a solution consists in determining the proper order in which its compo-
nents need to be deployed, installed, started and configured. For example, ‘HostedBy’ de-
pendencies between the components ‘SPECjAppServer2004 J2EE Application’ and ‘Web-
Sphere Application Server v5.1" (WAS) state that the latter acts as a hosting environment
for the former. This indicates that all the WAS components need to be operating before one
can deploy the J2EE application into them.

A provisioning system supports the administrator in deploying, installing and configur-
ing systems and applications. As mentioned above, a change plan is a procedural descrip-
tion of activities, each of which maps to an operation that the provisioning system exposes,
preferably by means of a set of interfaces specified using the Web Services Description
Language (WSDL). As these interfaces are known well in advance before a change plan is
created, they can be referenced by a change plan. Every operation has a set of input para-
meters, for example, an operation to install a given software component on a target system
requires references to the software and to the target system as input parameters. Some of
the parameters may be input by a user when the change plan is executed (e.g., the host-
name of the target system that will become a database server) and need to be forwarded to
several activities in the change plan, whereas others are produced by prior activities.

3.2.3.2. Executing the generated change plan Upon receiving a newly submitted change
request, the change management system needs to determine on which resources and at
what time the change will be carried out. The change management system first inspects
the resource pools of the provisioning system to determine which target systems are best
assigned to the change by taking into account which operating system they run, what their
system architecture is, and what the cost of assigning them to a change request is. Based
on this information, the change management system creates a change plan, which may be

Ch. 3 Automating system administration: Landscape, approaches, and costs 59

composed of already existing change plans that reside in a change plan repository. Once the
change plan is created, it is submitted to the workflow engine of the provisioning system.
The provisioning system maps the actions defined in the change plan to operations that are
understood by the target systems. Its object-oriented data model is a hierarchy of logical
devices that correspond to the various types of managed resources (e.g., software, storage,
servers, clusters, routers or switches). The methods of these types correspond to Logical
Device Operations (LDOs) that are exposed as WSDL interfaces, which allows their in-
clusion in the change plan. Automation packages are product-specific implementations of
logical devices: e.g., an automation package for the DB2 DBMS would provide scripts
that implement the software.install, software.start, software.stop, etc. LDOs. An automa-
tion package consists of a set of Jython scripts, each of which implements an LDO. Every
script can further embed a combination of PERL, Expect, Windows scripting host or bash
shell scripts that are executed on the remote target systems. We note that the composition
pattern applies not only to workflows, but occurs in various places within the provisioning
system itself to decouple a change plan from the specifics of the target systems.

The workflow engine inputs the change plan and starts each provisioning operation by
directly invoking the LDOs of the provisioning system. These invocations are performed
either in parallel or sequentially, according to the instructions in the change plan. A major
advantage of using an embedded workflow engine is the fact that it automatically performs
state-checking, i.e., it determines whether all conditions are met to move from one activity
in a workflow to the next. Consequently, there is no need for additional program logic in
the change plan to perform such checks. Status information is used by the workflow engine
to check if the workflow constraints defined in the plan (such as deadlines) are met and to
inform the change management system whether the roll-out of changes runs according to
the schedule defined in the change plan.

3.2.3.3. Recursive application of the automation pattern The automation described in
this section essentially makes use of three levels of workflow engines: (1) top-level coordi-
nation of the Change Management workflow; (2) implementation of the generated change
plan; and (3) the provisioning system where the LDOs are implemented by miniature-
workflows within their defined scripts. This use of multiple levels of workflow engine
illustrates a particular pattern of composition that we expect to be common in automa-
tion of best-practice IT service management processes, and recalls the discussion earlier in
Section 3.1 of recursive application of the automation approach.

In particular, the delegated Change Management activity of Distribute and Install
Changes involves a complex flow of work in its own right — documented in the change
plan. We can see that the approach to automating the construction of the change plan fol-
lows the same pattern we used to automate change management itself, albeit at a lower
level. For example, the creation of the change workflow is a lower-level analogue to using
ITIL best practices to identify the Change Management process activities. The execution
of change plan tasks by the provisioning system represents delegation of those tasks to
that provisioning system. The provisioning system uses external interfaces and structured
inputs and APIs to automate those tasks — drawing on information from the CMDB to de-
termine available resources and invoking lower-level operations (automation packages) to
effect changes in the actual IT environment. In this latter step, we again see the need to

60 A.B. Brown et al. Part 1

provide such resource information and control APIs in the structured, machine-readable
formats needed to enable automation. The entire pattern repeats again at a lower level
within the provisioning system itself, where the automation packages for detailed software
and hardware products represent best practice operations with delegated functionality and
external interfaces for data and control.

One of the key benefits of this type of recursive composition of our automation approach
is that it generates reusable automation assets. Namely, at each level of automation, a set
of automated delegated activities is created: automated ITIL activities at the top (such as
Assess Change), automated change management activities in the middle (such as Install
the DB2 Database), and automated software lifecycle activities at the bottom (such as Start
DB2 Control Process). While created in the context of change management, it is possible
that many of these activities (particularly lower-level ones) could be reused in other au-
tomation contexts. For example, many of the same lower-level activities created here could
be used for performance management in an on-demand environment to enable creating,
activating, and deactivating additional database or middleware instances. It is our hope that
application of this automation pattern at multiple levels will reduce the long-term costs of
creating system management automation, as repeated application will build up a library of
reusable automation components that can be composed together to simplify future automa-
tion efforts.

3.2.3.4. Challenges in workflow construction An important question addresses the prob-
lem whether the change management system or the provisioning system should perform
error recovery for the complete change plan in case an activity fails during workflow ex-
ecution or runs behind schedule. One possible strategy is not to perform error recovery
or dealing with schedule overruns within the change plan itself and instead delegate this
decision instead to the change management system. The reason for doing so is that in ser-
vice provider environments, resources are often shared among different customers, and a
change of a customer’s hosted application may affect the quality of service another cus-
tomer receives. Before rolling out a change for a given customer, a service provider needs
to trade off the additional benefit he receives from this customer against a potential mon-
etary loss due to the fact that an SLA with another customer may be violated because of
the change. The scheduling of change plans, a core change management system function,
is the result of solving an optimization problem that carefully balances the benefits it re-
ceives from servicing one customer’s change request against the losses it incurs from not
being able to service other customers. In an on-demand environment, the cost/profit sit-
uation may change very rapidly as many change plans are concurrently executed at any
given point in time. In some cases, it may be more advantageous to carry on with a change
despite its delay, whereas in other cases, aborting a change and instead servicing another
newly submitted request that is more profitable may lead to a better global optimum. This
big picture, however, is only available to the change management system.

Another important requirement for provisioning composed applications is the dynamic
aggregation of already existing and tested change plans. For example, in the case of SPEC-
JAppServer2004 and its underlying middleware, change plans for provisioning some of its
components (such as WebSphere Application Server or the DB2 DBMS) may already ex-
ist. Those workflows need to be retrieved from a workflow repository and aggregated in a

Ch. 3 Automating system administration: Landscape, approaches, and costs 61

new workflow for which the activities for the remaining components have been generated.
The challenge consists in automatically annotating the generated workflows with metadata
so that they can be uniquely identified and evaluated with respect to their suitability for
the specific request for change. The design of efficient query and retrieval mechanisms for
workflows is an important prerequisite for the reuse of change plans.

4. When to automate

Now that we have identified the opportunities for automation and discussed various ap-
proaches, we now step back and ask: when is it appropriate to deploy systems management
automation? The answer is, surprisingly, not as straightforward as one might expect.

Automation does not always reduce the cost of operations.

This is not a new conclusion, though it is rarely discussed in the context of automating
system administration. Indeed, in other fields practitioners have long recognized that au-
tomation can be a double-edged sword. For example, early work with aircraft autopilots
illustrated the dangers of imperfect automation, where pilots would lose situational aware-
ness and fail to respond correctly when the primitive autopilot reached the edge of its
envelope and disengaged [44], causing more dangerous situations than when the autopilot
was not present. There are many other well-documented cases where either failures or un-
expected behavior of industrial automation caused significant problems, including in such
major incidents as Three Mile Island [43,45].

How are we to avoid, or at least minimize, these problems in automation of system
administration? One solution is to make sure that the full consequences of automation
are understood before deploying it, changing the decision of ‘when to automate?’ from a
simple answer of ‘always!’ to a more considered analytic process.

In the next several subsections, we use techniques developed in [6] to consider what
this analysis might look like, not to dissuade practitioners from designing and deploying
automation, but to provide the full context needed to ensure that automation lives up to its
promises.

4.1. Cost-benefit analysis of automation

We begin by exploring the potential hidden costs of automation. While automation obvi-
ously can reduce cost by removing the need for manual systems management, it can also
induce additional costs that may offset or even negate the savings that arise from the trans-
fer of manual work to automated mechanisms. If we take a process-based view, as we have
throughout this paper, we see that automation transforms a manual process, largely to re-
duce manual work, but also to introduce new process steps and roles needed to maintain,
monitor, and augment the automation itself.

Figure 2 illustrates the impact of automation on an example system management
process, drawn from a real production data center environment. The process here is soft-
ware distribution to server machines, a critical part of operating a data center. Software

Part 1

62 A.B. Brown et al.
(a) Manual Software Distribution
5
E
B (il ¥ Confipre Parlorm Install Verity ok Y
c Met? Irestallon Instaltation Succends?, Installation
§ o Femove
0 Installation §—ef Fix Problem
Fy Remnants 1
(b) Automated Software Distribution
Maintenance
° B prren
2 8 |+ souce p:::...
Ex Dist'n Irestall
5§
oo
5
i
k']
c
E
-
<
E
2
2
w
o
23
3%
BE
E)
E =
5 Irvoke Validale
- “ Wiapper N Preregs.
£
£
3
<
Fig. 2. Manual and automated processes for software distribution. Boxes with heavy lines indicate process steps

that contribute to variable (per-target) costs, as described in Section 4.2.

distribution involves the selection of software components and their installation on target
machines. We use the term ‘package’ to refer to the collection of software resources to
install and the step-by-step procedure (process) by which this is done. We represent the
process via ‘swim-lane’ diagrams — annotated flowcharts that allocate process activities
across roles (represented as rows) and phases (represented as columns). Roles are typi-
cally performed by people (and can be shared or consolidated); we include automation as
its own role to reflect activities that have been handed over to an automated system.

Figure 2(a) shows the ‘swim-lane’ representation for the manual version of our example
software distribution process, and Figure 2(b) shows the same process once automated
software distribution has been introduced.

Notice that, while key parts of the process have moved from a manual role to an auto-
mated role, there are additional implications. For one thing, the automation infrastructure is
another software system that must itself be installed and maintained, creating initial tran-
sition costs as well as periodic costs for update and maintenance. (For simplicity, in the

Ch. 3 Automating system administration: Landscape, approaches, and costs 63

figure we have assumed that the automation infrastructure has already been installed, but
we do consider the need for periodic updates and maintenance.) Next, using the automated
infrastructure requires that information be provided in a structured form. We use the term
software package to refer to these structured inputs. These inputs are typically expressed in
a formal structure, which means that their creation requires extra effort for package design,
implementation, and testing. Last, when errors occur in the automated case, they happen on
a much larger scale than for a manual approach, and hence additional processes and tools
are required to recover from them. These other impacts manifest as additional process
changes, namely extra roles and extra operational processes to handle the additional tasks
and activities induced by the automation.

We have to recognize as well that the effects of induced processes — for error recovery,
maintenance, and input creation/structuring — are potentially mitigated by the probabil-
ity and frequency of their execution. For example, if automation failures are extremely
rare, then having complex and costly recovery procedures may not be a problem. Further-
more, the entire automation framework has a certain lifetime dictated by its flexibility and
generalization capability. If this lifetime is long, the costs to create and transition to the au-
tomated infrastructure may not be an issue. But even taking this into account, it is apparent
from inspection that the collection of processes in Figure 2(b) is much more complicated
than the single process in Figure 2(a). Clearly, such additional complexity is unjustified if
we are installing a single package on a single server. This raises the following question —
at what point does automation stop adding cost and instead start reducing cost?

The answer comes through a cost-benefit analysis, where the costs of induced process
are weighted by their frequency and balanced against the benefits of automation. Our ar-
gument in this section is that such analyzes are an essential part of a considered automa-
tion decision. That is, when considering a manual task for automation, the benefits of
automating that task (reduced manual effort, skill level, and error probability) need to be
weighed against the costs identified above (extra work from induced process, new roles
and skills needed to maintain the automation, and potential consequences from automation
failure).

In particular, this analysis needs to consider both the changes in tasks (tasks replaced by
automation and tasks induced by it) and the changes in roles and required human skills.
The latter consideration is important because automation tends to create induced tasks
requiring more skill than the tasks it eliminates. For example, the tasks induced by au-
tomation failures tend to require considerable problem-solving ability as well as a deep
understanding of the architecture and operation of the automation technology. If an IT
installation deploys automation without having an experienced administrator who can per-
form these failure-recovery tasks, the installation is at risk if a failure occurs. The fact that
automation often increases the skill level required for operation is an example of an irony
of automation [3]. The irony is that while automation is intended to reduce costs overall,
there are some kinds of cost that increase. Many ironies of automation have been iden-
tified in industrial contexts such as plant automation and infrastructure monitoring [45].
Clearly, the ironies of automation must be taken into account when doing a cost-benefit
analysis.

64 A.B. Brown et al. Part 1
4.2. Example analysis: software distribution for a datacenter

To illustrate the issues associated with automation, we return to the example of software
distribution. To perform our cost-benefit analysis, we start by identifying the fixed and
variable costs for the process activities in Figure 2. The activities represented as boxes
with heavy outlines represent variable-cost activities, as they are performed once for each
machine in the data center. The other activities are fixed-cost in that they are performed
once per software package.

A key concept used in our analysis is that of the lifetime of a software package. By the
lifetime of a package, we mean the time from when the package is created to when it is
retired or made obsolete by a new package. We measure this in terms of the number of
target machines to which the package is distributed.

For the benefits of automation to outweigh the cost of automation, the variable costs
of automation must be lower than the variable costs of the manual process, and the fixed
cost of building a package must be amortized across the number of targets to which it
is distributed over its lifetime. Using data from a several computer installation, Figure 3
plots the cumulative fraction of packages in terms of the lifetimes (in units of number of
targets to which the package is distributed). We see that a large fraction of the packages are
distributed to a small number of targets, with 25% of the packages going to fewer than 15
targets over their lifetimes.

Next, we look at the possibility of automation failure. By considering the complete view
of the automated processes in Figure 2(b), we see that more sophistication and people are
required to address error recovery for automated software distribution than for the manual
process. Using the same data from which Figure 3 is extracted, we determined that 19%
of the requested installs result in failure. Furthermore, at least 7% of the installs fail due to
issues related to configuration of the automation infrastructure, a consideration that does
not exist if a manual process is used. This back-of-the envelope analysis underscores the

Cumulative Fraction of Packages

0 100 200 300 400 500
Number of Targets

Fig. 3. Cumulative distribution of the number of targets (servers) on which a software package is installed over
its lifetime in several data centers. A larger number of packages are installed on only a small number of targets.

Ch. 3 Automating system administration: Landscape, approaches, and costs 65

importance of considering the entire set of process changes that occur when automation
is deployed, particularly the extra operational processes created to handle automation fail-
ures. Drawing on additional data from IBM internal studies of software distribution and
netting out the analysis (the details can be found in [6]), we find that for complex software
packages, there should be approximately 5 to 20 targets for automated software distribution
to be cost effective. In terms of the data in Figure 3, these numbers mean that from 15% to
30% of the installs in the data centers we examined should not have been automated from
a cost perspective.

Automation can be a double-edged sword.

While in these datacenters automation of software distribution provided a net cost benefit
for 70-85% of installs, it increased costs for the remaining 15-30%. In this case the choice
was made to deploy the automation, with the assessment that the benefit to the large frac-
tion of installs outweighed the cost to the smaller fraction. The insight of a cost-benefit
analysis allows such decisions to be made with eyes open, and full awareness of the trade-
offs being made.

We note in passing that cost models for system administration have been developed
based on other frameworks. For example, [12] models direct costs (e.g., salaries of system
administrators) and indirect costs (e.g., diminished productivity due to downtime). Clearly,
different cost models can yield different results in terms of when to employ automation.

4.3. Additional concerns: adoption and trust

Automation is only useful if it is used. Even the best automation — carefully designed
to maximize benefit and minimize induced process and cost — can lack traction in the
field. Often these situations occur when the automation fails to gain the trust of the system
management staff tasked with deploying and maintaining it.

So what can automation designers do to help their automation gain trust? First, they
must recognize that automation is a disruptive force for IT system managers. Automation
changes the way system administrators do their jobs. It also creates uncertainty in terms of
the future of the job itself. And since no automation is perfect, there is concern about the
extent to which automation can be trusted to operate correctly.

Thus adoption of automation is unlikely without a history of successful use by adminis-
trators. This observation has been proven in practice many times. Useful scripts, languages,
and new open-source administration tools tend to gain adoption via grass-roots movements
where a few brave early adopters build credibility for the automation technology. But, not
all new automation can afford to generate a community-wide grass-roots movement behind
it. And in these cases we are left with a kind of circular logic — we cannot gain adoption
without successful adoptions!

In these situations, the process-based view can help provide a transition path. From a
process perspective, the transition to automation can be seen as an incremental delegation
of manual process steps to an automated system. And by casting the automation into the
same terms as the previously-manual process steps (for example, by reusing the same work

66 A.B. Brown et al. Part 1

products and tracking metrics), the automation can provide visibility into its inner workings
that assuages a system administrator’s distrust. Thus the same work that it takes to do the
cost/benefit analysis for the first cut at an automation decision can be leveraged to plan out
an automation deployment strategy that will realize the automation’s full benefits.

We believe that the process-based perspective described above can provide the basis
for making a business case for automation. With a full understanding of the benefits of
automation as well as all the cost factors described above, we finally have a framework to
answer the question of when to automate. To determine the answer we compute or estimate
the benefits of the proposed automation as well as the full spectrum of costs, and compute
the net benefit. In essence, we boil the automation decision down to the bottom line, just
as in a traditional business case.

The process for building an automation business case consists of 5 steps:

1. Identify the benefit of the automation in terms of reduction in ‘core’ manual activity,
lower frequency of error (quantified in terms of the expected cost of errors, e.g., in
terms of business lost during downtime), and increased accuracy of operations.

2. Identify and elucidate the induced processes that result from delegation of the manual
activity to automation, as in the software distribution example above. ‘Swim-lane’
diagrams provide a useful construct for structuring this analysis.

3. Identify or estimate the probability or frequency of the induced processes. For exam-
ple, in software distribution we estimate how often new packages will be deployed or
new versions released, as those events require running the packaging process. Often
estimates can be made based on existing runtime data.

4. Assess the possible impact of the ‘automation irony’. Will the induced processes
require additional skilled resources, or will they change the existing human roles
enough that new training or hiring will be needed?

5. Collate the collected data to sum up the potential benefits and costs, and determine
whether the automation results in net benefit or net cost.

These steps are not necessarily easy to follow, and in fact in most cases a rough, order-of-
magnitude analysis will have to suffice. Alternately, a sensitivity analysis can be performed.
For example, if the probability of automation failure is unknown, a sensitivity analysis can
be used to determine the failure rate where costs break even. Say this is determined to be
one failure per week. If the automation is thought to be stable enough to survive multiple
weeks between failures, then the go-ahead decision can be given.

Furthermore, even a rough business-case analysis can provide significant insight into
the impact of automation, and going through the exercise will reveal a lot about the ulti-
mate utility of the automation. The level of needed precision will also be determined by
the magnitude of the automation decision: a complete analysis is almost certainly unnec-
essary when considering automation in the form of a few scripts, but it is mandatory when
deploying automation to a datacenter with thousands of machines.

4.4. Measuring complexity

In this chapter, we have provided a variety of reasons why IT departments of enterprises
and service providers are increasingly looking to automation and IT process transformation

Ch. 3 Automating system administration: Landscape, approaches, and costs 67

as a means of containing and even reducing the labor costs of IT service management.
However, Section 4.2 provides evidence of a reduction in efficiencies and productivity
when automation is introduced into business operations. This raises a critical question from
the point of view of both the business owners and CIOs as well as service and technology
providers: how can one quantify, measure and (ultimately) predict whether and how the
introduction of a given technology can deliver promised efficiencies?

Many automation strategies focus on the creation of standardized, reusable components
that replace today’s custom-built solutions and processes — sometimes at a system level,
sometimes at a process level. While both service providers and IT management software
vendors heavily rely on qualitative statements to justify investment in new technologies,
a qualitative analysis does not provide direct guidance in terms of quantitative business-
level performance metrics, such as labor cost, time, productivity and quality.

Our approach to measuring complexity of IT management tasks is inspired by the widely
successful system performance benchmark suites defined by the Transaction Processing
Council (TPC) and the Standard Performance Evaluation Corporation (SPEC). In addi-
tion, we have borrowed concepts from Robert C. Camp’s pioneering work in the area of
business benchmarking [11]. Furthermore, the system administration discipline has started
to establish cost models: The most relevant work is [13], which generalizes an initial model
for estimating the cost of downtime [42], based on the previously established System Ad-
ministration Maturity Model [34].

In [5], we have introduced a framework for measuring IT system management com-
plexity, which has been subsequently extended to address the specifics of IT service man-
agement processes [18]. The framework relies on categorical classification of individual
complexities, which are briefly summarized as follows:

Execution complexity refers to the complexity involved in performing the tasks that make
up the configuration process, typically characterized by the number of tasks, the context
switches between tasks, the number of roles involved in an action and their degree of au-
tomation. Decision complexity, a sub-category of execution complexity, quantifies decision
making according to: (1) the number of branches in the decision, (2) the degree of guid-
ance, (3) the impact of the decision, and (4) the visibility of the impact.

Business item complexity addresses the complexity involved in passing data between the
various tasks within a process. Business items can be nested; they range from simple scalar
parameters to complex data items, such as build sheets and run books.

Memory complexity takes into account the number of business items that must be re-
membered, the length of time they must be retained in memory, and how many intervening
items were stored in memory between uses of a remembered business item.

Coordination complexity represents the complexity resulting from coordinating between
multiple roles. The per-task metrics for coordination complexity are computed based on the
roles involved and whether or not business items are transferred.

While we have found it useful to analyze and compare a variety of configuration pro-
cedures and IT service management processes according to the aforementioned four com-
plexity dimensions, a vector of complexity scores reflecting such a categorization does not
directly reveal the actual labor reduction or cost savings. For both purchasers and vendors
of IT service management software, it is this cost savings that is of eminent concern.

68 A.B. Brown et al. Part 1

BEFORE PROCESS H
TRANSFORMATION

", Sat

Rep! lon!
of Process v1

r i
T r 2 ———

Measured
Business-level

Performance
Metrics

Business-level
Performance
\ Metrics

| AFTER PROCESS

| TRANSFORMATION

1

: Representation

! of Process v2 '-\.,") Comple;
1 CHHH Analysis
b (W)

]

1

1

| 0

1

1

1

1

'“h.&

xity |
R

ey el -

Fig. 4. Approach to constructing and applying a quantitative model.

In order to address this issue, one needs to relate the metrics of our I'T management
complexity framework to key business-level performance metrics (such as labor cost, effort
and duration; cf. Section 4.4.2). In [19], we have developed a quantitative model based on
a qualitative description of IT complexity parameters together with quantitative calibration
data of the IT process. We found that such a hybrid approach is more practical than a pure
qualitative or quantitative approach, since extensive quantitative I'T process measurements
are notoriously difficult to obtain in the field.

Our approach to predicting labor cost through IT management complexity metrics is
depicted in Figure 4. It consists of four distinct steps, which can be summarized as follows:

4.4.1. Step I: collecting complexity metrics As depicted in the upper part of Figure 4, an
administrator configures one or more managed systems, according to the goals he wants
to accomplish. To do so, he follows a process that may either be described in authoritative
documents, or as a workflow in an IT process modeling tool.

Ch. 3 Automating system administration: Landscape, approaches, and costs 69

This process (called ‘Process version 1’ in the figure) reflects the current (‘as-is”) state
of the process, which serves as a baseline for our measurements. While carrying out the
configuration process, an administrator logs — by interacting with a web-based graphical
user interface [18] — the various steps, context switches and parameters that need to be input
or produced by the process. In addition, the administrator assesses the complexity for each
of the parameters, as perceived by him. The complexity data that an administrator records
by means of the web-based graphical user interface is recorded by our tooling on a step-
by-step basis. The key concept of the process representation is that it is ‘action-centric’,
i.e., the representation decomposes the overall process into individual, atomic actions that
represent the configurations steps an administrator goes through.

Once the process has been carried out, the process capture is input to a complexity
analysis tool that we implemented, which contains the scoring algorithms for a variety of
complexity measures from the four complexity dimensions mentioned above. The tool also
outputs aggregated complexity metrics, such as the maximum number of parameters that
need to be kept in memory during the whole procedure, the overall number of actions in
the process, or the context switches an administrator needs to perform. Both the individual
and the aggregated complexity metrics are used to construct the quantitative model.

We note that by assigning a complexity score to each configuration action, it is possible
to identify those actions in the process (or combinations of actions) that have the greatest
contribution to complexity (i.e., they are complexity hotspots). As a result, the methodol-
ogy facilitates the task of process designers to identify targets for process transformation
and optimization: If, for example, a given step has a very high complexity relative to other
steps in the process, a designer obtains valuable guidance on which action(s) his improve-
ment efforts need to focus first in order to be most effective.

4.4.2. Step 2: measuring business-level performance metrics The second step consists
in measuring the business-level performance metrics. The most common example of a
business-level metric, which we use for our analysis, is the time it takes to complete each
action in the process, and the aggregated, overall process execution time. This is also com-
monly referred to as the Full Time Equivalent (FTE). Labor Cost, another key business-
level performance metric, is derived in a straightforward way by multiplying the measured
FTEs with the administrator’s billable hourly rate.

When assessing the time it takes to complete a task or the overall process, great care
must be taken to distinguish between the effort (how long it actually takes to carry out a
task) and the duration, the agreed upon time period for completing a task, which is often
specified in a Service Level Agreement. While, for example, the effort for the installation
of a patch for a database server may be only 30 minutes, the overall duration may be
2 days. Often, the difference is the time period that the request sits in the work queue of
the administrator.

While our tooling allows an administrator to record the time while he captures the ac-
tions in a configuration process, the time measurements are kept separate from the com-
plexity metrics.

4.4.3. Step 3: model construction through calibration The step of constructing a quan-
titative model by means of calibration, depicted in the middle of Figure 4, is at the heart

70 A.B. Brown et al. Part 1

of the approach. Calibration relates the complexity metrics we computed in step 1 to the
FTE measurements we performed in step 2. To do so, we have adapted techniques we ini-
tially developed in [30] (where we were able to predict the user-perceived response time
of a web-based Internet storefront by examining the performance metrics obtained from
the storefront’s database server) to the problem domain of IT management complexity.
The purpose of calibration is to set the time it takes to execute a configuration process in
relation to the recorded complexity metrics, i.e., the former is being explained by the latter.

4.4.4. Step 4: predict business-level performance metrics Once a quantitative model has
been built based on the ‘as-is’ state of a process, it can be used to predict the FTEs and
therefore the labor cost for an improved process that has been obtained through process
transformation based on analyzing and mitigating the complexity hotspots that were iden-
tified in step 1. This ‘to-be’ process is referred to as ‘Process version 2’ in the bottom
part of the figure as it accomplishes the very same goal(s) as the ‘as-is’ version 1 of the
process. It is therefore possible to not only apply the quantitative model that has been de-
veloped for the ‘as-is’ state in order to estimate the FTEs from the complexity metrics of
the ‘to-be’ state, but also to directly compare both the complexity metrics and the FTEs of
the before/after transformation versions of the process. The difference between the ‘as-is’
and the ‘to-be’ FTEs and, thus, labor cost yields the savings that are obtained by process
transformation. For a detailed example of applying the approach to an install scenario, the
reader is referred to [19].

We envision a future scenario where our validated quantitative model is built directly
into an IT process modeling tool, so that a process designer can simulate the execution of
an IT management process during the design phase. The designer is then able to obtain
the predicted FTEs by running the complexity metrics that were automatically collected
from the process model — by means of a plugin — through the quantitative model. Such a
quantitative model has many benefits:

First, the model can be used to assist in return-on-investment (ROI) determination, either
a-priori or post-facto. Across multiple products (for example, IT offerings from different
providers), a customer can use models involving each product for a comparison in terms
of the impact on the bottom line. Conversely, IT sales personnel can make a substantiated,
quantitative argument during a bidding process for a contract.

Second, using the cost prediction based on the model, the customer can further use the
model output for budgeting purposes.

Third, a calibrated model for a particular process can reveal which are the important
factors that contribute to the overall complexity of the process, along with a measure of
their relative contributions. IT providers can use this data to improve their products and
offerings, focusing on areas which yield the largest customer impact.

Fourth, a particular process can also be studied in terms of its sensitivity to skill levels of
individual roles. Because labor cost of different skill levels varies, this sensitivity analysis
can be used for hiring and employee scheduling purposes.

Finally, process transformation involves cost/benefit analysis. These decisions can be
guided by the quantitative predictions from the model.

Ch. 3 Automating system administration: Landscape, approaches, and costs 71
5. Conclusions

This chapter addresses the automation of system administration, a problem that is ad-
dressed as a set of three interrelated questions: what to automate, how to automate, and
when to automate.

We address the ‘what’ question by studying what system administrators do and therefore
where automation provides value. An observation here is that tasks such as configuration
and installation consume a substantial fraction of the time of systems administrators, ap-
proximately 20%. This is fortunate since it seems likely that it is technically feasible to
increase the degree of automation of these activities. Unfortunately, meetings and other
forms of communication consume almost of third of the time of systems administrators.
Here, there seems to be much less opportunity to realize benefits from automation.

The *how’ question is about technologies for automation. We discuss three approaches
— rule-based systems, control theoretic approaches, and automated workflow construction.
All three have been used in practice. Rules provide great flexibility in building automa-
tion, but the complexity of this approach becomes problematic as the scope of automation
increases. Control theory provides a strong theoretical foundation for certain classes of
automation, but it is not a universal solution. Workflow has appeal because its procedural
structure is a natural way for humans to translate their activities into automation.

The ‘when’ question is ultimately a business question that should be based on a full
understanding of the costs and benefits. The traditional perspective has been that automa-
tion is always advantageous. However, it is important to look at the full costs imposed by
automation. For example, automating software distribution requires that: (a) the distribu-
tion infrastructure be installed and maintained; (b) software packages be prepared in the
format required by the distribution infrastructure; and (c¢) additional tools be provided to
handle problems with packages that are deployed because of the large scale of the impact
of these problems. While automation often provides a net benefit despite these costs, we
have observed cases in which these costs exceed the benefits.

As the scale of systems administration increases and new technologies for automation
are developed, systems administrators will have even greater challenges in automating their
activities.

References

[1] T.F. Abdelzaher and N. Bhatti, Adaptive content delivery for Web server QoS, International Workshop on
Quality of Service, London, UK (1999), 1563-1577.

[2] E. Altman, T. Basar and R. Srikant, Congestion control as a stochastic control problem with action delays,
Automatica 35 (1999), 1936-1950.

[3] L. Bainbridge, The ironies of automation, New Technology and Human Error, J. Rasmussen, K. Duncan
and J. Leplat, eds, Wiley (1987).

[4] R. Barrett, P.P. Maglio, E. Kandogan and J. Bailey, Usable autonomic computing systems: The system
administrators’ perspective, Advanced Engineering Informatics 19 (2006), 213-221.

[5] A. Brown, A. Keller and J.L. Hellerstein, A model of configuration complexity and its application to
a change management system, 9th International IFIP/IEEE Symposium on Integrated Management (IM
2005), IEEE Press (2005), 531-644.

72

[6]

(7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]
(28]

A.B. Brown et al. Part 1

A.B. Brown and J.L. Hellerstein, Reducing the cost of IT operations — Is automation always the answer?,
Tenth Workshop on Hot Topics in Operating Systems (HotOS-X), Santa Fe, NM (2005).

AB. Brown and A. Keller, A best practice approach for automating IT management processes, 2006
IEEE/IFIP Network Operations and Management Symposium (NOMS 2006), Vancouver, BC, Canada
(2006).

M. Burgess, On the theory of system administration, Science of Computer Programming 49 (2003).

M. Burgess and R. Ralston, Distributed resource administration using cfengine, Software Practice and
Experience 27 (1997), 1083.

P. Byers, Database Administrator: Day in the Life, Thomson Course Technology, http://www.course.com/
careers/dayinthelife/dba_jobdesc.cfm.

R.C. Camp, Benchmarking — The Search for Industry Best Practices that Lead to Superior Performance,
ASQC Quality Press (1989).

A. Couch, N. Wu and H. Susanto, Toward a cost model for system administration, 19th Large Installation
System Administration Conference (2005).

AL. Couch, N. Wu and H. Susanto, Toward a cost model for system administration, Proc. 19th Large In-
stallation System Administration Conference (LISA’05), D.N. Blank-Edelman, ed., USENIX Association,
San Diego, CA, USA (2005), 125-141.

Y. Diao, N. Gandhi, J.L. Hellerstein, S. Parekh and D. Tilbury, Using MIMO feedback control to enforce
policies for interrelated metrics with application to the Apache Web server, IEEE/IFIP Network Operations
and Management Symposium (NOMS 2002) (2002), 219-234.

Y. Diao, R. Griffith, J.L. Hellerstein, G. Kaiser, S. Parekh and D. Phung, A control theory foundation for
self-managing systems, Journal on Selected Areas of Communications 23 (2005).

Y. Diao, J.L. Hellerstein and S. Parekh, Optimizing quality of service using fuzzy control, IFIP/IEEE Inter-
national Workshop on Distributed Systems: Operations and Management (DSOM 2002) (2002), 42-53.

Y. Diao, J.L. Hellerstein, A. Storm, M. Surendra, S. Lightstone, S. Parekh and C. Garcia-Arellano, Using
MIMO linear control for load balancing in computing systems, American Control Conference (2004), 2045—
2050.

Y. Diao and A. Keller, Quantifying the complexity of IT service management processes, Proceedings of
17th IFIP/IEEE International Workshop on Distributed Systems: Operations and Management (DSOM’06),
Springer-Verlag, Dublin, Ireland (2006).

Y. Diao, A. Keller, V.V. Marinov and S. Parekh, Predicting labor cost through IT management complex-
ity metrics, 10th International IFIP/IEEE Symposium on Integrated Management (IM 2007), IEEE Press
(2007).

B. Dijker, A day in the life of systems administrators, http://www.sage.org/field/ditl.pdf.

1. Finke, Automation of site configuration management, Proceedings of the Eleventh Systems Administra-
tion Conference (LISA XI), USENIX Association, Berkeley, CA (1997), 155.

A. Finkel, K. Houck and A. Bouloutas, An alarm correlation system for heterogeneous networks, Network
Management and Control 2 (1995).

M. Fisk, Automating the administration of heterogeneous LANS, Proceedings of the Tenth Systems Admin-
istration Conference (LISA X), USENIX Association, Berkeley, CA (1996), 181.

S.E. Hansen and E.T. Atkins, Automated system monitoring and notification with swatch, Proceedings of
the Seventh Systems Administration Conference (LISA VII), USENIX Association, Berkeley, CA (1993),
145.

C.V. Hollot, V. Misra, D. Towsley and W.B. Gong. A control theoretic analysis of RED, Proceedings of
IEEE INFOCOM’01, Anchorage, Alaska (2001), 1510-1519.

C.V. Hollot, V. Misra, D. Towsley and W.B. Gong, On designing improved controllers for AQM routers
supporting TCP flows, Proceedings of IEEE INFOCOM’01, Anchorage, Alaska (2001), 1726-1734.

IT Infrastructure Library, ITIL service support, version 2.3, Office of Government Commerce (2000).

G. Jakobson, R. Weihmayer and M. Weissman, A domain-oriented expert system shell for telecommunica-
tions network alarm correlation, Network Management and Control, Plennum Press (1993), 277-288.

Ch. 3 Automating system administration: Landscape, approaches, and costs 73

[29] A. Keller and R. Badonnel, Automating the provisioning of application services with the BPELAWS work-
flow language, 15th IFIP/IEEE International Workshop on Distributed Systems: Operations and Manage-
ment (DSOM 2004), Springer- Verlag, Davis, CA, USA (2004), 15-27.

[30] A. Keller, Y. Diao, EN. Eskesen, S.E. Froehlich, J.L. Hellerstein, L. Spainhower and M. Surendra,
Generic on-line discovery of quantitative models, IEEE Eight Symposium on Network Management (2003),
157-170.

[31] S. Keshav, A control-theoretic approach to flow control, Proceedings of ACM SIGCOMM'91 (1991), 3-15.

[32] S. Kliger, S. Yemini, Y. Yemini, D. Ohlse and S. Stolfo, A coding approach to event correlation, Fourth
International Symposium on Integrated Network Management, Santa Barbara, CA, USA (1995).

[33] M. Kloppmann, D. Koenig, F. Leymann, G. Pfau and D. Roller, Business process choreography in Web-
Sphere: Combining the power of BPEL and J2EE, 1BM Systems Journal 43 (2004).

[34] C. Kubicki, The system administration maturity model — SAMM, Proc. 7th Large Installation System Ad-
ministration Conference (LISA’93), USENIX Association, Monterey, CA, USA (1993), 213-225.

[35] K. Li, M.H. Shor, J. Walpole, C. Pu and D.C. Steere, Modeling the effect of short-term rate variations on
tep-friendly congestion control behavior, Proceedings of the American Control Conference (2001), 3006—
3012.

[36] D. Libes, Using expect to automate system administration tasks, Proceedings of the Fourth Large Installa-
tion System Administrator’s Conference (LISA 1V), USENIX Association, Berkeley, CA (1990), 107.

[371 Y. Lu, A. Saxena and T.F. Abdelzaher, Differentiated caching services: A control-theoretic approach, Inter-
national Conference on Distributed Computing Systems (2001), 615-624.

[38] Microsoft, Overview of the system description model, http://fmsdn2.microsoft.com/en-us/library/
ms181772.aspx.

[39] K.R. Milliken, A.V. Cruise, R.L. Ennis, A.J. Finkel, J.L. Hellerstein, D.J. Loeb, D.A. Klein, M.J. Masullo,
H.M. Van Woerkom and N.B. Waite, YES/MVS and the automation of operations for large computer com-
plexes, IBM Systems Journal 25 (1986), 159-180.

[40] S.Parekh, K. Rose, J.L. Hellerstein, S. Lightstone, M. Huras and V. Chang, Managing the performance im-
pact of administrative utilities, 14th IFIP/IEEE International Workshop on Distributed Systems: Operations
and Management (DSOM 2003) (2003), 130-142.

[41] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, J. Bigus and T.S. Jayram, Using control theory to achieve
service level objectives in performance management, Real-time Systems Journal 23 (2002), 127-141.

[42] D. Patterson, A simple way to estimate the cost of downtime, Proc. 16th Large Installation System Ad-
ministration Conference (LISA’05), A.L. Couch, ed., USENIX Association, Philadelphia, PA, USA (2002),
185-188.

[43] C. Perrow, Normal Accidents: Living with High-Risk Technologies, Perseus Books (1990).

[44] J. Rasmussen and W. Rouse, eds, Human Detection and Diagnosis of System Failures: Proceedings of the
NATO Symposium on Human Detection and Diagnosis of System Failures, Plenum Press, New York (1981).

[45] J. Reason, Human Error, Cambridge University Press (1990).

[46] F.E. Sandnes, Scheduling partially ordered events in a randomized framework — empirical results and im-
plications for automatic configuration management, Proceedings of the Fifteenth Systems Administration
Conference (LISA XV), USENIX Association, Berkeley, CA (2001), 47.

[47] P. Scott, Automating 24 x T support response to telephone requests, Proceedings of the Eleventh Systems
Administration Conference (LISA XI), USENIX Association, Berkeley, CA (1997), 27.

[48] L. Sha, X. Liu, Y. Lu and T. Abdelzaher, Queueing model based network server performance control, IEEE
RealTime Systems Symposium (2002), 81-90.

[49] E. Solana, V. Baggiolini, M. Ramlucken and J. Harms, Automatic and reliable elimination of e-mail loops
based on statistical analysis, Proceedings of the Tenth Systems Administration Conference (LISA X),
USENIX Association, Berkeley, CA (1996), 139.

[50] A. Somayaji and S. Forrest, Automated response using system-call delays, Proceedings of the 9th USENIX
Security Symposium, USENIX Association, Berkeley, CA (2000), 185.

[51] SPEC Consortium, SPECjAppServer2004 design document, version 1.01 (2005),
http://www.specbench.org/osg/jAppServer2004/docs/DesignDocument.html.

[52] D. Thoenen, J. Riosa and J.L. Hellerstein, Event relationship networks: A framework for action oriented
analysis in event management, International Symposium on Integrated Network Management (2001).

74 A.B. Brown et al. Part 1

[53] M. Vitaletti, ed., Installable unit deployment descriptor specification, version 1.0, W3C Member
Submission, IBM Corp., ZeroG Software, InstallShield Corp., Novell (2004), http://www.w3.org/
Submission/2004/SUBM-InstallableUnit-DD-20040712/.

[54] T. Woodall, Network Administrator: Day in the Life, Thomson Course Technology,
http://www.course.com/careers/dayinthelife/networkadmin_jobdesc.cfm.

~14-

System Configuration Management

Alva L. Couch

Computer Science, Tufts University, 161 College Avenue, Medford, MA 02155, USA
E-mail: couch@cs.tufts.edu

1. Introduction

System configuration management is the process of maintaining the function of computer
networks as holistic entities, in alignment with some previously determined policy [28].
A policy is a list of high-level goals for system or network behavior. This policy — that
describes how systems should behave — is translated into a low-level configuration, infor-
mally defined as the contents of a number of specific files contained within each computer
system. This policy translation typically involves installation of predefined hardware and
software components, reference to component documentation and experience, and some
mechanism for controlling the contents of remotely located machines (Figure 1).

For example, a high-level policy might describe classes of service to be provided; a ‘web
server’ is a different kind of machine than a ‘mail server’ or a ‘login server’. Another
example of a high-level goal is that certain software must be either available or unavailable
to interactive users (e.g., programming tools and compilers) [23].

The origin of the phrase ‘system configuration management’ is unclear, but the practice
of modern system configuration management was, to our knowledge, first documented in
Paul Anderson’s paper [2] and implemented in the configuration tool LCFG [2,4]. This
paper contains several ideas that shaped the discipline, including the idea that the config-
uration of a system occurs at multiple levels, including a high-level policy, intermediate
code and physical configuration.

HANDBOOK OF NETWORK AND SYSTEM ADMINISTRATION
Edited by Jan Bergstra and Mark Burgess
© 2007 Elsevier B.V. All rights reserved

75

76 A.L. Couch Part 1

Repository of]
software

and libraries
S \

N\

high—level policy
(human—-readable)

Documentation 1 Contfiguration
Management
S~
TN
Knowledge]

and experience

low=level configuration
S~ (distributed among machines)

Fig. 1. An overview of the configuration management process.

1.1. Overview of configuration management

A typical system to be managed consists of a central-processing unit, hard disk and asso-
ciated peripherals, including network card, video card, etc. Depending upon the system,
many of these components may actually be contained on a single computer board. A sys-
tem typically starts its life with no operating system installed, often called ‘bare metal’. As
software components are installed on the hard disk, the system obtains an operating system,
system modules that extend the operating system (e.g., I/O drivers), and software packages
that provide application-level functions such as web service or compilation. During this
process, each operating system, module, or package is assigned a default configuration
specifying how it will behave. This is best thought of as a set of variables whose values
control behavior. For example, one variable determines the number of threads utilized by a
web server, while another variable determines whether certain kinds of network tunneling
are allowed. The configuration of each module or package may be contained in text files
(for Unix and Linux) or in a system database (e.g., the Windows Registry). The configu-
ration of a component may be a file of key-value associations (e.g., for the secure shell),
an XML file (e.g., for the Apache web server), or a registry key-value hierarchy in Win-
dows. Several crucial configuration files are shared by most Linux applications and reside
in the special directory /etc. Configuration management is the process of defining and
maintaining consistent configurations for each component so that they all work together to
accomplish desired tasks and objectives.

1.2. Configuration management tasks
There are several tasks involved in typical configuration management (Figure 2). First,

planning involves deciding what constitutes desirable behavior and describing an overall
operating policy. The next step is to code this policy into machine-readable form. This step

Ch. 4

B EE———

“validation
failures

! Knowledge —
about systems |~ ——"

and config
tools

| S~ /
\

\ Repository of @
source files T
and templates

~_

Repository of ~—— ™
software a—

and libraries

~_

i

System configuration management 77

Planning

high-level policy
(human-readable)

T
N

Coding verification

failures

intermediate code
(machine readable)

dliy

deployment
Lailﬂes

Deployment

Actual configuration
(distributed among machines)

U

Maintenance

I

Usage reports
Trouble tickets
Change requests

A

Fig. 2. The configuration management process includes creating high-level policies, translating them into ma-
chine-readable form, and deploying the configuration throughout a network.

utilizes knowledge about machines and configurations to create both the intermediate code
and a repository of source and template files that can be used to create individual machine
configurations. A source file is a verbatim copy of some configuration file, while an tem-
plate file is a configuration file with some details left out, to be filled in later. The next step
is to deploy the configuration on target machines, which involves changing the contents of
each machine’s disks. After deployment, the configuration must be maintained through an

78 A.L. Couch Part 1

ongoing process of quality control, including data sources such as trouble tickets and new
user requests.

At each step, there can be failures. A verification failure is a failure to create a system
with a proper configuration, while a validation failure occurs when a correctly deployed
configuration fails to meet user requirements.! For example, if a file fails to be copied to a
machine to be configured, this is a verification failure, while a validation failure results if a
machine that is intended to become a web server does not provide web services after being
configured to do so. The former is a mistake in coding; the latter is a behavioral problem.
A system fails to verify if the information that should be in configuration files on each
machine does not ever get copied there; a system fails to validate if the configuration files
are precisely as intended but the behavior fails to meet specifications.

1.3. Objectives of configuration management

It may seem to the reader at this point that configuration management is just about assuring
the behavior of machines and nothing else. If this were the only goal of configuration
management, it would be a simple and straightforward task. Configuration management
is easy if one has access to unlimited hardware, and can encapsulate each distinct service
on a separate machine. The complexities of configuration management arise from the need
to combine or compose distinct and changing needs while utilizing limited amounts of
hardware. For more details on complexity, see Section 9.5 and the chapter by Sun and
Couch on Complexity of System Configuration Management.

In fact, the true goal of configuration management is to minimize the lifecycle cost and
total cost of ownership for a computing system, while maximizing value of the computing
system to the enterprise [36]. The cost of management has several components, including
the cost of planning, deployment and maintenance. As in software engineering, the cost of
maintenance seems to dominate the others for any lifecycle of reasonable length.

The relationships between configuration management and cost are many and varied.
There is an intimate relationship between the methods utilized for configuration manage-
ment and the ability to react to contingencies such as system outages quickly and effec-
tively. One characterization of an effective configuration management strategy is that one
should be able to pick a random server, unplug it and toss it out of a second story window,
and without backup, be up and running again in an hour [73].

2. Relationship with other disciplines

2.1. System administration tasks

We define:

I'The words ‘verification’ and ‘validation’ are used here in the precise software engineering sense, though in
system administration, the word ‘validation’ has often been used to mean ‘verification’. For more details, see [8].

Ch. 4 System configuration management 79

1. Configuration management is the process of insuring that the operating system and
software components work properly and according to externally specified guidelines.

2. Package management is the process of insuring that each system contains software
components appropriate to its assigned task, and that components interact properly
when installed.

3. Resource management is the process of insuring that appropriate resources (includ-
ing memory, disk and network bandwidth) are available to accomplish each comput-
ing task.

4. User management is the process of assuring that users have access to computing
resources, through appropriate authentication and authorization mechanisms.

5. Monitoring is the process of measuring whether computing systems are correctly
performing their assigned missions.

These activities are not easily separable: one must install software through package man-
agement before one can configure it via configuration management, and monitor it via
monitoring mechanisms. Users must be able to access the configured software, and have
appropriate resources available from which to complete their tasks.

This is an inevitable convergence; part of monitoring is to ensure that configuration man-
agement is working properly, and an ideal configuration management tool would employ
both static analysis and ‘dynamic feedback” to understand whether the configuration is
working properly and whether corrective action is needed.

2.2. Configuration management and system administration

System administration and system configuration management appear on the surface to be
very similar activities. In both cases, the principal goal is to assure proper behavior of
computing systems. The exact boundary between ‘system configuration management” and
regular ‘system administration’ is unclear, but there seems to be a solid distinction between
the two at the point at which the overall configuration of a network of systems is being
managed as an entity, rather than managing individual machines that contain distinct and
unrelated configurations. At this point, we say that one is engaging in ‘system configuration
management’ rather than merely acting as a system administrator for the same network.

3. Configuration management and systems architecture

There is an implicit assumption that configuration management begins with an overall ‘ar-
chitectural plan’ of how services will be mapped to servers, and that changes in overall
architecture are not allowed after that architecture has been mapped out. This is an unfor-
tunate distinction for several reasons:

1. The choice of architecture often affects the cost of management. A classical example
of this is that cramming many services onto a single server seems to save money but
in fact, the cost of configuration management might be dramatically higher due to
conflicts and constraints between services.

80 A.L. Couch Part 1

2. The exact impact of architectural choices may not be known until one considers how
the architecture will be managed. For example, it might be unclear to someone not
involved in system administration that certain pairs of web server modules cannot
be loaded at the same time without behavior problems. Thus there could be a need
for segmentation of web services that is only known to someone in configuration
management, and not known to people who might be designing an architecture.

3. Several hard problems of configuration management can be mitigated or even elim-
inated via architectural changes. For example, one can eliminate subsystem depen-
dencies by locating potentially conflicting subsystems on disjoint or virtual operating
systems.

Separating architectural design from configuration management strategy can be a costly
and significant mistake, especially because system administrators are often the only per-
sons with enough knowledge to design an efficiently manageable solution architecture.

3.1. Other kinds of configuration management

The term configuration management has several other meanings with the potential to over-
lap with the meaning of that term in this chapter.

1. Software configuration management [52] (in software engineering) is the activity of
insuring that the components of a software product interact correctly to accomplish
the objectives of the product. The ‘configuration’ — in this case — is a set of software
module revisions that are ‘composed’ to form a particular software product.

2. Network configuration management is the activity of insuring that routers, switches,
load balancers, firewalls, and other networking hardware accomplish the objectives
set by management.

System configuration management combines the problems inherent in software configura-
tion management and network configuration management into a single problem. There is
the problem of component composition [39] that arises in software configuration manage-
ment, i.e., ensuring that a particular system contains sufficient components to accomplish
a task, along with the problem of component configuration, of limiting the behavior of
components according to some established norms.

Software configuration management in itself is only weakly related to system config-
uration management. It concentrates upon keeping versions of software components that
comprise a specific software product synchronized, so that the resulting product works
properly. The key difference between software and system configuration management is
that a software product is not usually configured ‘differently’ for different customers. The
goal of software configuration management is to produce a single product to which mul-
tiple individuals contribute, but the issue of providing distinct behavior in different en-
vironments does not arise except in very advanced cases where vendor customization is
requested. In a way, system configuration management takes over where software configu-
ration management leaves off, at the point where a product must be customized by choices
for control parameters that are not made within the structure of the software package itself.
Making these choices is typically distinct from software compilation.

Ch. 4 System configuration management 81

Network configuration management is closely related to system configuration manage-
ment, with almost the same objectives. The principal difference is that network devices —
unlike computing systems — are seldom extensible in function by adding new programs
to the ones they already execute. There is a single program running on each networking
device that does not change. The key issues in network configuration management include:

1. Choosing an appropriate version for the single program executing on each device, so

that this program interoperates well with programs running on other devices.

2. Determining values for parameters that affect this program and its ability to interop-

erate with programs on other devices.
Choices for these two parts of configuration are often determined more by device limita-
tions rather than human desires; devices have limited interoperability and not all combi-
nations of software versions will work. Once the component composition has been deter-
mined (usually by either reading documentation or by experience), programs that enforce
parameter choices usually suffice to manage network configuration.

There are a few issues that arise in system configuration management and nowhere else.
First, we must compose and configure software components to accomplish a large variety
of tasks, where the success of composition is sometimes unsure. Second, the systems being
configured are also mostly active participants in the configuration, and must be given the
capability to configure themselves via a series of bootstrapping steps. This leads to prob-
lems with sequencing, and requirements that changes occur in a particular order, in ways
that are less than intuitive.

4. Cost models

The basic goal of configuration management is to minimize cost and to maximize value
(see chapter by Burgess on System Administration and Business), but many sources of
cost have been intangible and difficult to quantify. A typical administrative staff has a fixed
size and budget, so all that varies in terms of cost is how fast changes are made and how
much time is spent waiting for problem resolution. Patterson [61] quantifies the ‘cost of
downtime’ as

Cdowntime = Crevenue lost T+ Cwork lost (])
R (Cﬂvg revenue lost 1 Cﬂvg work los() (2)
X Tdowntime>

where
® Crevenue lost Tepresents the total revenue lost due to downtime,
Cwork lost Tepresents the total revenue lost due to downtime,
Cavg revenue lost Fepresents the average revenue lost per unit of downtime,
Cavg work lost Tepresents the average work lost per unit of downtime,
Tdowntime represents the downtime actually experienced.
Of course, this can be estimated at an even finer grain by noting that the revenue lost is a
function of the number of customers inconvenienced, while the total work lost is a function
of the number of workers left without services.

82 A.L. Couch Part 1

Patterson’s simple idea sparked other work to understand the nature of cost and value.
Configuration management was — at the time — completely concerned with choosing tools
and strategies that make management ‘easier’. Patterson defined the problem instead as
minimizing cost and maximizing value. This led (in turn) to several observations about
configuration management that may well transform the discipline in the coming years [36]:

1. Configuration management should minimize lifecycle cost, which is the integral of

unit costs over the lifecycle of the equipment:

tend
Cliteeyele = f ety dt, 3)

Istant

where ¢, (t) is the cost of downtime at time ¢, and #,r and fenq represent the lifespan
of the system being configured.
2. The instantaneous cost of downtime in the above equation is a sum of two factors:

cr(8) = cpm (1) + ¢ (1), (4)
where
e ¢, (1) represents constant costs, such as workers left idle (as in Patterson’s
model),
e ¢, (1) represents intangible costs, such as contingencies that occur during an
outage.

3. We can safely approximate contingencies during an outage as multi-class with Pois-
son arrival rates, so that

cr(t) =crm(t) + Z AdCd, (5)

deD,

where D, is a set of classes of contingencies, and d represents a contingency class
with arrival rate A4 and potential average cost cg.

4. To a first approximation, the cost of downtime is proportional to the time spent trou-

bleshooting.

5. Troubleshooting time is controlled by the complexity of the troubleshooting process,

as well as the sequence of choices one makes in understanding the problem.

6. The best sequence of troubleshooting tasks is site-specific, and varies with the likeli-

hood of specific outages.
The key discovery in the above discussion is that good practice is site-relative.” The prac-
tices that succeed in minimizing downtime and increasing value depend upon the likelihood
of each contingency.

One way to study potential costs is through simulation of the system administration
process [36]. We can easily simulate contingencies requiring attention using classical
queueing theory; contingencies are nothing more than multi-class queues with different
average service times for each class. We can observe arrival frequencies of classes of tasks

2The term ‘best practice’ is often used in this context, albeit speculatively.

Ch. 4 System configuration management 83

T T T
Ticket arrival and completion ——+——

2000

1500

1000

Number of tickets

500

¢] 50 100 150 200 250 300 350 400
Days

Fig. 3. Data from trouble ticket systems indicates arrival rates and service rates for common tasks. Reprinted
from [36] by permission of the authors.

in practice by using real data from trouble ticketing systems (Figure 3), and can utilize this
to form an approximate arrival and service models for requests.

Simple simulations show just how sensitive downtime costs are to the number of staff
available. In an understaffed situation, downtime costs increase rapidly when request
queues expand without bound; the same scenario with more system administrators avail-
able shows no such behavior (Figure 4).

Configuration management must balance the cost of management against the cost of
downtime. Since sites differ in how much downtime costs, there are several distinct strate-
gies for configuration management that depend upon site goals and mission.

4.1. Configuration management lifecycles

To understand the lifecycle cost of configuration management, it helps to first consider the
lifecycle of the systems to be configured. Configuration management is an integral and in-
separable part of the lifecycle of the computing systems being managed. Each system goes
through a series of configuration states in progressing from ‘bare metal’ (with no infor-
mation on disk) to ‘configured’, and finally to being ‘retired’ (Figure 5). We define a bare

84 A.L. Couch Part 1

700 T T T , : . _
one administrator
two administrators -
three administrators --------
T \\ four administrators - |
\
1
= 500 | |
£
‘®
z
=
@ 400 |- |
o
w
[0 /b\
- / N
T 300 , |
c
«
E
o
2
= 200 | |
4"' “‘l
100 ;f _.“ |
0 ‘T\—'\rt’:w‘v%-\a‘ g2y w.:-_a-,-;\“,,.f-\‘_ ANy /:L/‘,s:,.__r_r‘:”:‘ e
0 100 200 300 400 500 600 700 800

Elapsed time

Fig. 4. Chaotic interactions ensue when there are too few system administrators to handle a trouble-ticket queue;
the hidden cost is that of downtime due to insufficient staffing. Reprinted from [36] by permission of the authors.

metal system is one in which the operating system has not yet been installed; a bare-metal
rebuild involves starting from scratch, with a clean disk, and re-installing the operating
system, erasing all data on disk in the process. After system building, initial configuration
gives the system desirable behavioral attributes, after which there is an ongoing mainte-
nance phase in which configuration changes are made on an ongoing basis. Finally, the
system is retired from service in some way.

In almost precise correspondence with the system lifecycle, configuration management
itself has its own lifecycle, consisting of planning, deployment, maintenance, and retire-
ment states. Planning consists of the work needed in order to begin managing the network
as an entity. Deployment consists of making tools for configuration management avail-
able on every host to be managed. Maintenance consists of reacting to changes in policy
and contingencies on an ongoing basis, and retirement is the process of uninstalling or
de-commissioning configuration management software.

Part of what makes configuration management difficult is that the cost of beginning to
utilize a particular method for configuration management can be substantial. To decide
whether to adopt a method, one must analyze one’s needs carefully to see whether the cost
of a method is justified.

Ch. 4 System configuration management 85

Bare metal
system

Z Baselining

f Baseline

system

Initial
configuration

Re—baselining

\ Configured
‘ system

Configuration
changes
Y

Maintained
system

Maintenance

. .
Retirement

Retired
system

Fig. 5. Managed systems go through a series of states in their lifecycle, from ‘bare metal’ (unbuilt) to ‘retired’.

5. Configuration management strategies

To minimize cost and maximize value, the configuration manager adopts an overall con-
figuration management strategy to control the configuration of a network. The manage-
ment strategy details and documents how configuration changes are to be made, tracked
and tested. This strategy is best considered to be independent of the software tools used
to enforce the changes. Key components of a typical configuration management strategy
include:

I. A mechanism for making changes in the configuration, through tools or practices.

2. A mechanism for tracking, documenting and auditing configuration changes.

3. A mechanism for verifying and validating configurations.

4. A procedure for staging deployment of new configurations, including prototyping

and propagating changes.

For example, in an academic research environment, staging may often be skipped; the
prototype environment and the production environment may be the same and downtime
may not be extremely important.

86 A.L. Couch Part 1

One should not confuse a choice of configuration management strategy with a particular
choice of tools to perform configuration management. Tools can support and ease imple-
mentation of particular strategies, but are no substitute for a coherent strategic plan.

There are three main kinds of strategies for configuration management, that we shall
call ‘scripted’, ‘convergent’ and ‘generative’ [35]. A scripted strategy uses some form of
custom scripts to make and manage changes in configuration; the scripts mimic the way
an administrator would make the same changes manually [7]. A convergent strategy uti-
lizes a special kind of scripts that can be applied multiple times without risk of damage.
These scripts are usually safer to employ than unconstrained scripts, but are somewhat
more complex in character and more complex than the manual procedures they replace.
A generative strategy involves generating all of the configuration from some form of data-
base of requirements. Note that all convergent strategies are in some sense scripted, and
all generative strategies are (trivially) convergent, in the sense that generating the whole
configuration twice yields the same answer as generating it once.

These approaches differ in scope, capabilities and complexity; scripting has a low startup
cost, convergent scripting is safer than unrestricted scripting but requires recasting man-
ual procedures in convergent terms, and generative mechanisms require specification of a
comprehensive site policy, and thus incur a high startup cost. One crucial choice the practi-
cioner must make in beginning configuration management is to weigh cost and value, and
choose between one of these three base strategies.

There are several reasons for adopting a comprehensive management strategy rather than
administering machines as independent and isolated entities:

1. To reduce the cost of management by adopting standards and eliminating unnecessary

variation and heterogeneity.

2. To reduce downtime due to troubleshooting.

To assure reproducibility of systems during a contingency.

4. To increase the interchangeability of administrative staff in dealing with changes in

configuration.

5. To increase the organizational maturity of the system administration organization.

The last one of these deserves careful consideration. The basic idea of the Capabilities
Maturity Model (CMM) of software engineering [20,21] is that the quality of a software
product is affected by the ‘maturity’ of the organization that produces it. Maturity measures
include size of programming staff, consistency and documentability of engineering process

had

in creating software, interchangeability of function among programming staff, and ability
to deal with contingencies. Applying this principle to system administration [51], we find
that important factors in the maturity of a system administration organization include doc-
umentation of process, reproducibility of results, and interchangeability of staff. All of
these maturity factors are improved by the choice of a reasonable configuration manage-
ment strategy. The strategy defines how results are to be documented, provides tools for
reproducing results and allows staff to easily take over configuration management when
system administrators leave and enter the organization.

Ch. 4 System configuration management 87

5.1. The effect of site policy

Configuration management is a discipline in which the nature of one’s goals determines the
best possible management strategy. Thus the choice of tools is dependent upon the choice
of operating policies.

Let us consider two possible extremes for site policy, that we shall call ‘loose’ and
‘tight’. At a ‘tight’ site, there is a need for operations to be auditable and verifiable, and
for absolute compliance between policy and systems. Examples of ‘tight’ organizations
include banks and hospitals. In these situations, mistakes in configuration cost real money,
both in terms of legal liability and lost work. In some cases a configuration mistake could
threaten the life of a person or the organization as a whole.

By contrast, at a ‘loose’ site, the consequences of misconfiguration are less severe. In
a development lab, e.g., the risks due to a misconfiguration are much smaller. The same is
true for many academic labs.

Of course, many sites choose to function between the two extremes. For example, within
a startup firm, it is common practice to skimp on system administration and cope with
lack of reliability, in order to save money and encourage a liquid development process.
However, even in such an organization, certain systems — including accounts payable and
receivable — must be managed to a ‘tight’ set of standards. This has led many startups to
‘outsource’ critical business functions rather than running them in-house. The choice of
‘loose’ or ‘tight’, however, comes with a number of other choices that greatly affect one’s
choice of management strategy.

First, we consider the ‘tight’ site. In this kind of site:

1. Security risks are high, leading to a lack of trust in binary packages not compiled

from source code.

2. Thus many packages are compiled from source code rather than being installed from
vendor-supplied binary packages.

3. Configuration is considered as a one-time act that occurs during system building.
Changes are not routinely propagated.

4. Almost any deviation from desired configuration is handled by rebuilding the system
from scratch. Thus ‘immunizing’ methods are not considered important, and may
even obstruct forensic analysis of security break-ins.

Thus the ability to rebuild systems is most important. Day-to-day changes are not as im-
portant to handle.

The administrator of a ‘tight’ site is not expected to react to many changes. Instead,
the configuration is specified as a series of steps toward rebuilding a system. ‘Convergent’
methods are considered irrelevant, and ‘generative’ methods are simply unnecessary. All
that is needed for a ‘tight” site is a script of commands to run in order to assure the function
of the site, and no more. Thus ‘managed scripting’ is the mechanism of choice.

By contrast, consider the ‘loose’ site, e.g., a development laboratory or academic re-
search site. In this kind of site:

1. Security risks are low.

2. It might be important to have up-to-date tools and software.

88 A.L. Couch Part 1

3. Manpower is often extremely short.
4. Changes are extremely frequent, thus, it is impractical to rebuild systems from scratch
for every change.
Here some form of ‘generative’ or ‘convergent’ strategy could be advisable.

5.2. Making changes

With an understanding of the nature of one’s site in hand, the task of the configuration
manager is to choose a strategy that best fits that site’s mission. We now turn to describing
the components of an effective configuration management strategy in detail.

The most crucial component in any configuration management strategy is the ability
to make changes in configuration. Change mechanisms usually involve a configuration
description that specifies desired qualities of the resulting (possibly distributed) system in
an intermediate language, as well as some software tool or infrastructure that interprets
this and propagates changes to the network.

The process of actually making changes to configuration is so central to system config-
uration management that there is a tendency to ignore the other components of a manage-
ment strategy and concentrate solely upon the change propagation mechanism. In a simple
configuration management strategy, the configuration file suffices as documentation and
as input for auditing and verification of the results, while a software tool provides mecha-
nisms for propagating those changes. As of this writing, an overwhelming majority of sites
use an extremely simple configuration management strategy of this kind, first noted by [43]
and apparently still true today.

5.3. Tracking and auditing changes

A related problem in configuration management is that of tracking and auditing changes
to machines after they are made. Today, many sites use only a simple form of tracking,
by keeping a history of versions of the configuration description via file revision control
[70]. A small number of sites, motivated by legal requirements, must use stricter change
control mechanisms in which one documents a sequence of changes rather than a history
of configurations.

Today, few sites track why changes are made in a formal or structured way, although one
could argue that the changes themselves are meaningless without some kind of motivation
or context. A change can often be made for rather subtle reasons that are soon forgotten, for
example, to address a hidden dependency between two software packages. In the absence
of any documentation, the system administrator is left to wonder why changes were made,
and must often re-discover the constraint that motivated the change, all over again, the next
time the issue arises. Thus, effective documentation — both of the systems being configured
and the motives behind configuration features — is a cost-saving activity if done well.

Ch. 4 System configuration management 89
5.4. Verification and validation

Verification and validation are technical terms in software engineering whose meaning in
system configuration management is often identical.

L. Verification is the process of determining whether the software tools or procedures

accomplish changes in accordance with the configuration policy.

2. Validation is the process of determining whether the intermediate policy code actually

produces a system that satisfies human goals.
In the words of Fredrick Brooks [8], verification is the process of determining “whether
one is making the product right”, while validation is the process of determining “whether
one is making the right product”.

Failures of validation and verification bring ‘loops’ into the configuration management
process (see Figure 2). A failure of verification requires recoding the intermediate rep-
resentation of configuration and propagating changes again, while a failure of validation
requires modifying the original operating policy.

Currently, many software tools for configuration management have strong mechanisms
for verification: this is the root of ‘convergent’ management strategies as discussed in Sec-
tion 13. In verification, the agreement between source descriptions and target files on each
computer is constantly checked, on an ongoing basis, and lack of agreement is corrected.

Currently, the author is not aware of any tools for validation of system configurations.
While validation has been a central part of software engineering practice for the last 30
years, it has been almost ignored as part of configuration management. It is almost entirely
performed by a human administrator, either alone or by interacting with users. Tradition-
ally, validation has been mislabeled as other activities, including ‘troubleshooting’, ‘help
desk’, etc. User feedback is often utilized as a substitute for quality assurance processes.
For more details on structured testing and its role in configuration management, see [75].

Why do configurations fail to function properly? There are several causes, including:

(1) Human errors in coding the intermediate representation of configuration;

(2) Errors in propagating changes to configured nodes;

(3) Changes made to configured nodes without the administrator’s knowledge;

(4) Errors or omissions in documentation for the systems being configured.

Human error plays a predominant role in configuration failures.

3

5.5. Deployment

Deployment is the process of enforcing configuration changes in a network of computing
devices. It can take many forms, from rebuilding all workstations from scratch to invoking
an intelligent agent on each host to make small changes.

Staging is the process of implementing a configuration change in small steps to mini-
mize the effect of configuration errors upon the site (Figure 6). A typical staging strategy
involves two phases, prototyping and propagation. In the prototyping phase, a small testbed
of representative computers is assembled to test a new configuration.

3Note that some tools that perform verification are commonly referred to as ‘validation’ tools.

90 A.L. Couch Part 1

Testbed:
Representatives
of all classes

ﬁ- Prototyping | —
[Rollback H Vcnﬁcauon J
{ Rollback H Valldallon]

\

[Rollback || Verification J/
J Rollback - Validation }/
Y All machines

Failure Deployment
Handling Process

Fig. 6. A staging strategy involves prototyping, testing, actual deployment and potential rollback in case of
difficulties.

A good testbed contains at least one computer of each type available in the network. The
configuration is first tried on the prototype network, and debugging and troubleshooting
irons out the problems. Once that is complete, propagation ensues and the configuration is
enforced on all hosts. If this does not work properly, rollback may be utilized: this is the
process of restoring a previous configuration that was known to function.

Problems due to deployment can cost money in terms of work and revenue lost; see
[61] for some statistics. Testing is just one way to assure that deployment does not cause
downtime. Another way is to wait a short time before installing a security patch, rather
than installing it immediately [37].

6. Challenges of configuration management

Before discussing the traditions that led to current configuration management practices, it is
appropriate to understand why configuration management is difficult and deserves further
research. These brief remarks are intended to provide a non-practicioner with a background
on the subtle challenges and rewards of a good configuration management strategy.

Configuration management would be more straightforward if all machines were iden-
tical; then a method for configuring one machine would be reusable for all the others. It
would be more straightforward if there were no large-scale networks and no requirement
for uptime and disaster recovery; one could simply configure all machines by hand. It
would be more straightforward if policy never changed. But none of these is true.

Ch. 4 System configuration management 91

The principal drivers of configuration management as a practice include changes in pol-
icy, scale of application, heterogeneity of purpose, and need for timely response to un-
foreseen contingencies. These have influenced current approaches to configuration man-
agement, both by defining the nature of desirable behavior and by identifying problematic
conditions that should be avoided.

6.1. Change

Perhaps the most significant factor in configuration management cost is that the high-level
policy that defines network function is not constant, but rather changes over time. One
must be able to react effectively, efficiently, unintrusively and quickly to accomplish de-
sired changes, without unacceptable downtime. Mechanisms for configuration manage-
ment vary in how quickly changes are accomplished, as well as how efficiently one can
avoid and correct configuration mistakes. One recurrent problem is that it is often not ob-
vious whether it is less expensive to change an existing configuration, or to start over and
configure the machine from scratch: what practicioners call a *bare-metal rebuild’.

6.2. Scale

Another significant driver of configuration management cost and strategy is the scale of
modern enterprise networks. Tasks that were formerly accomplished by hand for small
numbers of stations become impractical when one must produce thousands of identical
stations, e.g., for a bank or trading company. Scale also poses several unique problems for
the configuration manager, no matter which scheme is utilized. In a large-enough network,
it is not possible to assure that changes are actually made on hosts when requested; the
host could be powered down, or external effects could counteract the change. This leads to
strategies for insuring that changes are committed properly and are not changed inappro-
priately by other external means, e.g., by hand-editing a managed configuration file.

6.3. Heterogeneity

Heterogeneity refers to populations of multiple types of machines with differing hardware,
software, pre-existing configuration, or mission constraints. Hardware heterogeneity often
occurs naturally as part of the maintenance lifecycle; stations persist in the network as
new stations are purchased and deployed. A key question in the choice of a configuration
management strategy is how this heterogeneity will be managed; via a centrally maintained
database of differences [2,4,40,41,44.,45], or via a distributed strategy with little or no
centralized auditing [9-11,18].

Another kind of heterogeneity is that imposed by utilizing differing solutions to the same
problem; e.g., a group of administrators might all choose differing locations in which to
install new software, for no particularly good reason. This ‘unintentional heterogeneity’

92 A.L. Couch Part 1

[31] arises from lack of coordination among human managers (or management tools) and
not from the site itself.

Unintentional heterogeneity can become a major stumbling block when one desires to
transition from one configuration management scheme to another. It creates situations in
which it is extremely difficult to construct a script or specification of what to do to accom-
plish a specific change, because the content of that script would potentially differ on each
station to be changed.

For example, consider a network in which the active configuration file for a service is
located at a different path on each host. To change this file, one must remember which file
is actually being used on a host. One thus has to remember where the file is on all hosts,
forever. This is common in networks managed by groups of system administrators, where
each administrator is free to adopt personal standards. To manage such a network, one must
remember who set up each host, a daunting and expensive task.

6.4. Contingency

A final driver of configuration management cost is contingency. A configuration can be
modified by many sources, including package installation, manual overrides, or security
breaches. These contingencies often violate assumptions required in order for a particular
strategy to produce proper results. This leads to misconfigurations and potential downtime.

Contingencies and conflicts arise even between management strategies. If two tools (or
administrators) try to manage the same network, conflicts can occur. Each management
strategy or tool presumes — perhaps correctly — that it is the sole manager of the network.
As the sole arbiter, each management strategy encourages making arbitrary configuration
decisions in particular ways. Conflicts arise when arbiters disagree on how to make deci-
sions. This also means that when an administrator considers adopting a new management
strategy, he or she must evaluate the cost of changing strategies, which very much depends
upon the prior strategy being used. More often than not, adopting a new strategy requires
rebuilding the whole network from scratch.

7. High-level configuration concepts

The first task of the system administrator involved in configuration management is to de-
scribe how the configured network should behave. There are two widely used mechanisms
for describing behavior at a high level. Machines are categorized into classes of machines
that have differing behaviors, while services describe the relationships between machines
in a network.

7.1. Classes

The need to specify similarities and differences between sets of hosts led to the concept
of classes. Classes were introduced in rdist [24] as static lists of hosts that should agree

Ch. 4 System configuration management 93

on contents of particular files. Each host in the class receives the same exact file from a
server; classes are defined and only meaningful on the server that stores master copies of
configuration files.

The idea of classes comes into full fruition in Cfengine [9-11,18], where a class instead
represents a set of hosts that share a particular dynamic property, as in some forms of
object-oriented programming. In Cfengine, class membership is a client property, deter-
mined when Cfengine runs as a result of dynamic tests made during startup. There is little
need to think of a class as a list of hosts; rather, a class is something that a client is or is
not*

In either case, a class of machines is a set of machines that should share some concept
of state or behavior, and many modern tools employ a mix of rdist-like and Cfengine-like
classes to specify those shared behaviors in succinct form. For example, the class ‘web
server’ is often disjoint from the class ‘workstation’; these are two kinds of hosts with
different configurations based upon kind.

Cfengine also introduces two different kinds of classes:

(1) hard classes define attributes of machines that cannot change during the software

configuration process, e.g., their hardware configurations;

(2) soft classes define attributes of machines that are determined by human administra-

tors and the configuration process.
For example, a ‘hard class’ might consist of those machines having more than a 2.0 GB
hard drive, while a ‘soft class’ might consist of those machines intended to be web servers.
It is possible to characterize the difference between hard classes and soft classes by saying
that the hard classes are part of the inputs to the configuration management process, while
the soft classes describe outputs of that process.

Figure 7 shows the class diagram for a small computer network with both hard and
soft classes of machines. In the figure there are two hard classes, ‘x386’ and ‘PowerPC’,
that refer to machine architectures. A number of soft classes differentiate machines by

devel—client—0) X
x386(hard): machines with Intel archietcture
devel—client—02

devel—-client= : o ft): i i
e linux(soft): machines with linux OS

devel-client—

“web—server—0h,

wel)—sivgr;()z

devel—client—()
devel=client—06

PowerPC(hard): machines with
PowerPC architecture

servers(soft) clients(soft)

Fig. 7. Classes of machines include hard classes (bold boundaries) and soft classes (regular weight boundaries).

4This is the basis of ‘client pull” configuration management, described in Section 13.1.

94 A.L. Couch Part 1

function: some machines are clients, while others are servers; among servers, there are
different kinds of services provided.

Note that the concepts of ‘hard’ and ‘soft’ depend upon the capabilities of the tools
being used and a particular machine’s state within a configuration process. During system
bootstrapping from bare metal, the operating system of the machine is a ‘soft’ class. If one
is maintaining the configuration of a live system, the same class becomes ‘hard’, because
the live maintenance process has no capacity to change the operating system itself without
bringing the system down.

7.2. Services

Classes provide a way to describe the function of machines in isolation: two machines
should exhibit common features or behavior if they are members of the same class. To
describe how machines interoperate at the network level we use the concept of ‘services’.

In informal terms, a service is a pattern of interaction between two hosts, a client re-
questing the service and a server that provides it. We say that the client binds to the server
for particular services.

Traditionally, a service has been defined as a behavior provided by a single server for
the benefit of perhaps multiple clients. In modern networks, this is too limiting a definition,
and it is better to define a service as a set of tasks undertaken by a distinguished set of hosts
for some client consumer.

Common services include:

Dynamic Host Configuration Protocol: MAC address to IP address mapping.
Domain Name Service: hostname to IP address mapping.

Directory Service: user identity.

File service: persistent remote storage for files.

Mail service: access to (IMAP, POP) and delivery of (SMTP) electronic mail.
Backup service: the ability to make offline copies of local disks.

Print service: the ability to make hard copies of files.

Login service: the ability to get shell access.

Window (or ‘remote desktop’) service: the ability to utilize a remote windowing en-
vironment such as X11 or Windows XP.

10. Web service: availability of web pages (HTTP, HTTPS),
efc.

A ‘service architecture’ is a map of where services are provided and consumed in an
enterprise network (Figure 8). In typical practice, this architecture is labeled with names
of specific hosts providing specific services.

W N R W=

8. Low-level configuration concepts

Our next step is to develop a model of the configuration itself. We describe ‘what’ system
configuration should be without discussing ‘how’ that configuration will be assured or
managed. This is a declarative model of system configuration, in the same way that a

Ch. 4 System configuration management 95

dhep.foo.com
(DHCP)

typical customer

dns.foo.com
(name service)

typical internal
client \ K \

www2.foo.com www.foo.com
(intranet www) (outside www)

file.foo.com
(file service)

Fig. 8. A service architecture includes bindings between hosts and their servers. In the diagram A — B means
that “A is a client of B” or ‘B serves A’.

‘declarative language’ in the theory of programming languages specifies ‘what™ goals to
accomplish but not *how’ to accomplish them.

8.1. Components

A component of a computer network is any device that can be considered as an entity sep-
arate from other entities in the network. Likewise, a component of an individual computing
system is a subsystem within the system that is in some sense independent from other sub-
systems. Hardware components are devices that may or may not be present, while software
components are programs, libraries, drivers, kernel modules, or other code that are optional
and/or independently controlled.

8.2. Parameters

Likewise, each component of a system may have configuration parameters that must be set
in order for it to operate properly. Parameters can take many forms, from complex hierar-
chical files describing desired behaviors (e.g., the Apache web server’s httpd. conf), to
simple key/value pairs (such as kernel parameters). A parameter value describes or limits
the behavior of a component.

8.3. Configuration

A configuration of a system usually has two parts:
1. A set of (hardware and software) components that should be present.

96 A.L. Couch Part 1

2. A collection of parameter values describing appropriate behavior for each compo-
nent.

The way that components are installed, and the way their configuration is specified, varies
from component to component. There is in all cases some form of persistent storage con-
taining the parameter values for each component, such as a file on disk (though certain
configuration parameters may be stored in unusual places, including flash memory).

In many cases, parameter values for a single component are spread out among several
files within a filesystem. For example, in implementing an FTP service, we might specify:

(1) the root directory for the FTP service;

(2) the security/access policy for the FTP service;

(3) the list of users allowed to access the FTP service
in different files. Files that specify parameters for components are called configuration files
and are considered to be part of system configuration.

8.4. Behavior

The configuration management problem is made more difficult by the lack of any effi-
cient mechanism for mapping from low-level choices to the system behaviors that results
from these choices. Usually, the behaviors that arise from configuration choices are ‘doc-
umented in the manual’, A manual is a map from behaviors to choices, and not the reverse.
This means that in practice, the meaning of a particular choice may be virtually impossible
to reverse-engineer from the list of choices.

8.5. Constraints

Configuration management is really a ‘constraint satisfaction problem’. The input is a set
of constraints that arise from two sources:

L. The hard constraints that specify which configurations will work properly. Failing to
satisfy a hard constraint leads to a network that does not behave properly.

2. The soft constraints (e.g., policies) that specify desirable options among the space
of all possible options. Failing to satisfy a soft constraint does not meet the needs of
users or enterprise.

The problem of configuration management is to choose one configuration that satisfies both
hard and soft constraints.

Constraints arise and can be described in several ways, including considering required

consistencies, dependencies, conflicts and aspects of the network to be configured.

8.6. Consistency
First, there are many consistency requirements for parameters, both within one machine

and within a group of cooperating machines. Parameters of cooperating components must
agree in value in order for the components to cooperate. As a typical example, machines

Ch. 4 System configuration management 97

wishing to share a file service must agree upon a server that indeed contains the files they
wish to share. But many simpler forms of coordination are required, e.g., a directory de-
clared as containing web content must exist and contain web content, and must be protected
so that the web server can access that content. But there are many other ways to express
the same constraints.

8.7. Dependencies

A dependency refers to a situation in which one parameter setting or component depends
upon the existence or prior installation of another component or a particular parameter set-
ting in that component [33,74]. A program can depend upon the prior existence of another
program, a library, or even a kernel module. For example, many internet services cannot
be provided unless an internet service daemon inetd or xinetd is present.

8.8. Conflicts

It is sometimes impossible to select parameter settings that make a set of components work
properly together, because components can make conflicting requirements upon parame-
ters and/or other components. The classic example is that of two components that require
different versions of a third in order to function properly. For example, two programs might
require different versions of the same dynamic library; one might only work properly if the
old version is installed, and the other might only work properly if a newer version is instead
installed. We say in that case that there is a conflict between the two sets of component re-
quirements. Equivalently, we could say that the two sets of requirements are inconsistent.

8.9. Aspects

Aspects provide a conceptual framework with which to understand and critically discuss
configuration management tools and strategies [3,17]. One key problem in configuration
management is that there are groups of parameters that only make sense when set together,
as a unit, so that there is agreement between the parts. We informally call such groups
aspects, in line with the current trends in ‘aspect-oriented programming’.

Informally, an aspect is a set of parameters, together with a set of constraints that define
the set of reasonable values for those parameters. The value of an aspect is a set of values,
one per parameter in the aspect, where the individual parameter values conform to the
constraints of the aspect.

The notion of aspects here is somewhat different than the notion of aspects in ‘aspect-
oriented programming” but there are some similarities. In aspect-oriented programming, an
aspect is a snippet of code that changes the function of an existing procedure, perhaps by
modifying its arguments and when it is invoked. It is most commonly utilized to describe
side-effects of setting a variable to a particular value, or side-effects of reading that value.
Here, an aspect is a set of parameters whose values must conform to some constraints.

98 A.L. Couch Part 1

8.10. Local and distributed aspects

There are many kinds of aspects. For example, in configuring Domain Name Service and
Dynamic Host Configuration Protocol, the address of a hostname in DHCP should corre-
spond with the same address in DNS. It makes no sense to set this address in one service
and not another, so the host identity information (name, IP address, MAC address) form
a single aspect even though the (name, IP address) pair is encoded in DNS and the (IP
address, MAC address) pair is encoded in DHCP. Further, it is possible that the DNS and
DHCP servers execute on different hosts, making this a distributed aspect that affects
more than one machine at a time.

By contrast, a local aspect is a set of parameters that must agree in value for a single
machine. For example, the host name of a specific host appears in multiple files in /etc,
so that the parameters whose value should reflect that host name form a single aspect.

There are many cases in which configuration information must be replicated. For ex-
ample, in the case of an apache web server, there are many places where parameters must
agree in value (Figure 9). Each required agreement is an aspect.

Another example of a distributed aspect is that in order for web service to work properly,
there must be a record for each virtual server in DNS. The parameter representing each
virtual name in the server configuration file must appear in DNS and map to the server’s
address in DNS.

Another example of a distributed aspect is that for clients to utilize a file server, the
clients must be configured to mount the appropriate directories. For the set of all clients
and the server, the identity of the directory to be mounted is an aspect of the network; it
makes no sense to configure a server without clients or a client without a corresponding
server. The constraint in this aspect is that one choice — that of the identity of a server —

httpd.conf Filesystem

TypesConfig /etc/mime.types /_—1

<VirtualHost 192 .0

" 280>
DocumantRoot

Fig. 9. Aspects of an apache web server include many local configuration parameters whose values must be
coordinated. Reprinted from [68] with permission of the authors.

Ch. 4 System configuration management 99

determines the choices for where clients will receive the service. A binding is a simple
kind of aspect relationship between a client and a server, in which a single client takes
service from a server known to provide that service.

8.11. Aspect consistency

Aspects can overlap and set differing constraints on the same parameters. There might be
an aspect of web service that says that we need at least 2 GB of space in the web root
directory, and another aspect that says the web root directory must be on a local disk. The
complete configuration must satisfy the constraints of both aspects. As another example,
the individual aspects for each host DHCP+DNS record overlap with any aspect determin-
ing the whole configuration of the DHCP or DNS server.

A set of several (potentially overlapping) aspects is consistent if there are no inherent
conflicts between the constraints of the aspects. A set of (potentially overlapping) aspects
is inconsistent if not. A set of inconsistent aspects represents a system that is not likely to
function properly.

As another example, a particular web server could be described by specifying several
aspects of the service:

(1) where files for each site to be served are stored;

(2) how much space must be available in that directory;

(3) the URL that is used to access each site;

(4) the way that users are authorized to view site materials,
etc.

Aspects need not be limited to a single machine, but can be properties of an entire
network. The scope of an aspect is the number of components to which it applies. For
example,

e the identity of the mail server,

e the identity of the server containing home directories,

e the identity of the gateway to the internet
are all aspects whose scope might be that of an entire network.

Anderson [3] refers to aspects as units of configuration managed by different admin-
istrators. This is very similar to our definition, because the administrators are typically
responsible for different service layers requiring coordination of the kind we describe. We
utilize a lower-level, mathematical definition for the purpose of separating the problem of
configuration from that of mapping humans to configuration tasks. Our aspects exist as
mathematical boundaries, without reference to human administrative structure. Thus,

PRINCIPLE 1. A configuration is a consistent composition of aspects.

This view of configuration management, as compositional in nature, motivates the chap-
ter by Sun and Couch on the complexity of configuration management.

100 A.L. Couch Part 1
9. An operational model of configuration management

So far, we have considered configuration management as an abstract process of declaring
specific state for a set of machines. In practice, however, this is not enough; we must also
consider how to implement and manage that state on an on-going basis. Burgess formalized
this discussion by introducing the notion of configuration operators with Cfengine, whose
behavior can then be discussed in terms of certain properties [10,12,14], based on whether a
system is in a known state or an unknown state. An operation would then bring the systems
into conformance with specified requirements or a desired final state.

9.1. Baselining

The first step in an operational model of configuration management is to define a baseline
state of each machine to which changes will be applied (see Figure 5). This might be a
machine state, a state created by a differing management method, or a ‘clean’ system state
created by a fresh install of the operating system onto a blank or erased disk. The choice
of baseline state is one of many factors that influences which configuration management
strategies may be least costly.

9.2. Pre-conditions and post-conditions

Operations utilized to configure a system are often dependent upon its current state; their
outcome thus depends upon the order in which they are performed. This is particularly true
during bootstrapping scripts, in which there is often only one order in which to complete the
bootstrapping steps. Technically, we say that each change to a system has pre-conditions
that must be true before the change can be accomplished properly, and post-conditions that
will be true after the change, if the pre-conditions were true before the change.

PRINCIPLE 2. Every configuration operation can be associated with a set of pre-conditions
that must be true for proper function, and a set of post-conditions that will be true after the
operation if pre-conditions are met beforehand.

Preconditions and post-conditions of operations are often ignored but have an overall
effect upon management. For example, many operations must be applied to previously
configured systems; and almost all configuration management scripts presume that the
system being configured has already been built by some other means.

Alternatively, we say that each operation depends upon the execution of its predeces-
sors for success. For example, one must install and configure the network card driver and
configuration before software can be downloaded from the network.

There are two kinds of dependencies: known and hidden (or latent). A known depen-
dency is something that is documented as being required. A hidden dependency or ‘latent
precondition’ [35,48] is a requirement not known to the system administrator. Many con-
figuration changes can create latent pre-conditions. A typical example would be to set

Ch. 4 System configuration management 101

security limits on a service and forget that these were set. As long as the service is never
turned on, the latent precondition of security policy is never observed. But if the service
is later turned on, mysteriously, it will obey the hidden security policy even though the
system administrator might have no intent of limiting the service in that way.

Looking more carefully at this example, we see that there is another very helpful way to
look at latent pre-conditions. Rather than simply being hidden state, they involve asserting
behaviors that were not known to be asserted. Accordingly,

PRINCIPLE 3. Every latent precondition is a result of violating a (perhaps forgotten) aspect
constraint.

In other words, since an aspect is (by definition) the functional unit of behavior, pro-
ducing unexpected behavior is (by definition) equivalent with violating the atomicity of an
aspect.

9.3. Properties of configuration operations

Suppose that we define a configuration operation to be a program that, when executed on
a system or on the network, effects changes in configuration. There is some controversy
amongst designers about how one should choose and define configuration operations.

One school of thought, introduced in the tool Cfengine [9-11,18], is that *all operations
should be declarative’, which is to say that every operation should assert a particular system
state or states, and leave systems alone if those states are already present. The more tradi-
tional school of thought claims that ‘imperative operations are necessary’ in order to deal
with legacy code and systems, such as software that is installed and configured through use
of make and similar tools.

The solution to this quandary is to look carefully at the definitions of what it means to be
declarative or imperative. A set of declarative operations is simply a set in which the order
of operation application does not matter [68]. Likewise, an imperative set of operations
may have a different effect for each chosen order in which operations are applied. A set of
operations where each one operates on a distinct subset parameters is trivially declarative,
as the order of changing parameters does not affect the total result. Likewise, a set of
operations each of which assigns a different value to one shared parameter is trivially
imperative.

The impact of certain properties of configuration operations upon configuration man-
agement has been studied in some detail in [34]. Properties of configuration operations
include:

1. Idempotence: an operation p is idempotent if its repetition has the same effect as

doing the operation once. If p is an idempotent operation, then doing pp in sequence
has the same result as doing p.

2. Sequence idempotence: a set of operations P is sequence idempotent if for any se-
quence Q taken from P, applying the sequence Q twice (Q Q) has the same effect
as applying it once. L.e., if one has a sequence of operations pgr, then the effect of
pqrpqr is the same as the effect of pgr applied once. This is a generalization of
individual operation idempotence.

104 A.L. Couch Part 1

9.5. Configuration operators

The above arguments show that aspect consistency is an important property of configura-
tion operations. There has been much study of how to make operations consistent, which
has led to a theory of configuration operators. There is an important distinction to be made
here:
e Configuration operations include any and all means of effecting changes in configu-
ration parameters.
e Configuration operators (in the sense that Cfengine attempts to approximate) are oper-
ations that are fixed-point convergent in a strict mathematical sense, as defined below.
An alternative and more general view of convergence and configuration management
turns the whole concept of classical configuration management upside down [12]. We view
the system to be configured as a dynamical system, subject to the influences of multiple
external operators that determine configuration. We specify configuration by specifying
operators to apply under various circumstances, and cease to consider any parameters at
all, except in the context of defining operators.

DEFINITION 1. A set of operators P is fixed-point convergent if there is a set of fixed
points of all operators that are achieved when the operators are applied in random order
with repeats, regardless of any outside influences that might be affecting the system. These
fixed points are equilibrium points of the dynamical system comprising hosts and opera-
tors.

Whereas in the classical formulation, a policy is translated into ‘parameter settings’,
in the dynamical systems characterization, a policy is translated into and embodied as a
set of operators to apply under various conditions. We employ the equivalence between
operation structure and parameters characterized in Section 9.3 in reverse, and substitute
operators for parameters in designing a configuration management strategy.

The differences between classical configuration management and the dynamical systems
characterization are profound. While most configuration management strategies assume
that the configuration management problem lives in a closed world devoid of outside in-
fluences, the dynamical systems theory of configuration management views the system as
open to multiple unpredictable influences, including ‘configuration operators’ that attempt
to control the system and other operators and influences such as hacking, misbehaving
users, etc. While the goal of traditional configuration management is to manage the con-
figuration as a relatively static entity, the dynamical systems characterization views the
configuration of each target system as dynamic, ever-changing, and open to unpredictable
outside influences.

Traditional configuration management considers policy as a way of setting parameters,
and the dynamical systems theory views the role of policy as specifying bindings between
events and operators to apply. While the goal of traditional configuration management is
deterministic stability, in which the configuration does not change except through changes
in policy, the goal of dynamical system configuration management is equilibrium; a state in

Ch. 4 System configuration management 105

which the system is approximately behaving in desirable ways, with counter-measures to
each force that might affect its behavior adversely. This is the key to computer immunology
[10,14].

The ramifications of this idea are subtle and far-reaching. If one constitutes an appro-
priate set of (non-conflicting) operators as a policy, and applies them in any order and
schedule whatsoever, the result is still equilibrium [14,66]. This has been exploited in sev-
eral ways to create immunological configuration management systems that implement self-
management functions without the feedback loops found in typical autonomic computing
implementations. Because these solutions are feedback-free and self-equilibrating without
a need for centralized planning, they are typically easier to implement than feedback-based
self-management solutions, and inherently more scalable to large networks.

There are several applications of this theory already, with many potential applications as
yet unexplored. By expressing the problem of managing disk space as a two-player game
between users and administrator, one can solve the problem through random application
of convergent ‘tidying’ operators that clean up after users who attempt to utilize more than
their share of disk space [11]. By defining operators that react to abnormal conditions,
a system can be ‘nudged’ toward a reasonable state in a statespace diagram. These appli-
cations go far beyond what is traditionally considered configuration management, and it is
possible to model the entire task of system administration, including backup and recovery,
via dynamical systems and operators [19].

9.6. Fixed points of configuration operators

The base result for configuration operators concerns the relationship between configuration
operations and constraints. A common misconception is that we must predefine constraints
before we utilize configuration management. If we consider the configuration operations
as operators upon a space, we can formulate convergent operators as applying parame-
ter changes only if parameters are different, by use of the Heaviside step function. This
characterizes configuration operations as linear operators upon configuration space.

This relatively straightforward and obvious characterization has far-reaching conse-
quences when one considers what happens when a ser of such operators is applied to a
system:

THEOREM 3. Let P be a set of convergent operators represented as linear operators on
parameter space, and let p represent a randomly chosen sequence of operators from P.
As the length of p increases, the system configured by p approaches a set of states S in
which all operators in P are idempotent, provided that S exists as a set of fixed points for
the operators in P.

In other words, for any p long enough, and for any ¢ € P, ¢ p = p. Paraphrasing the
theorem, provided that one selects one’s operators upon configuration so that they are con-
vergent and that there is a consistent state that is a fixed point, this state will be reached
through any sufficiently long path of random applications of the operators. Thus the con-

106 A.L. Couch Part 1

sistent state need not be planned in advance; if is an emergent property of the system of
operations being applied.’

This is our second example of an emergent property theorem. Recall that previously, we
observed that the concept of a parameter emerges from the structure of operations. Here
we observe that the result of a set of operators over time is a fixed point that need not be
known in advance.

This result challenges the concept that the configuration itself is a static aggregate state
that does not change between configuration operations. Within the operator theory, a con-
figuration can and does change due to ‘outside influences’ and the only way to bound it
is via application of particular operators. Security violations are seen in traditional con-
figuration management as being somewhat outside the scope of the management process;
when formulating management in terms of operators, they are simply contingencies to be
repaired. In the operator theory, security violations are just another operator process that
occurs asynchronously with the operator process of ongoing management. A properly de-
signed set of operators can automatically repair security problems and one can consider
security violations as just one more aspect of typical operation.

The purport of this theorem is subtle and far-reaching. As network components increase
in complexity, the act of planning their entire function becomes impractical and one must
be content with planning parts of their function and leaving other parts to the components
themselves. It says that if we control only parts of a thing, and the controls on parts are
not conflicting, then the thing will eventually be configured in a consistent and compliant
state, even though the exact nature of that state is not known in advance.

In our view, the controversy over operators is a problem with the definition of the prob-
lem, and not the operators. If configuration management consists just of controlling the
contents of particular files, then operators are a difficult way of granting that kind of con-
trol, but if configuration management is instead a process instead of assuring particular
behaviors, then operators can help with that process. The operators are behavioral controls
that — instead of controlling the literal configuration — control the behavior that arise from
that configuration.

The belief that one must control specific files seems to arise from a lack of trust in the
software base being managed [72]. If minor undocumented differences in the configuration
files can express latent effects, then one must indeed manage the fine structure of config-
uration files in order to assure particular behaviors. In that environment, operators upon
the physical configuration do not seem useful, because there are parts of configuration that
must be crafted in specific and complex ways so that applications will function properly.

This is again a problem with how we define configuration management as a practice. If
we define the practice as controlling the entire configuration so that errors cannot occur,
we then must do that and any operators that establish only partial control are unsuitable.
If, conversely, we define the practice as assuring behaviors, then operators can be crafted
that assure particular behaviors by direct feedback, and whose composition converges to a
consistent network state in which all behaviors are assured, regardless of exactly how that
state is accomplished, or even its nature.

SThis is a similar result to that of the Maelstrom theorem for troubleshooting, which demonstrates that the
optimal order for troubleshooting steps is an emergent property of the results of the steps [29].

Ch. 4 System configuration management 107

9.7. Observability

In the previous section, we discussed the intimate relationship between configuration op-
erators and behaviors, and how the operators — by assuring behaviors — both give rise to
an implicit notion of parameter, as well as an implicit notion of consistency. But what is
meant by behavior?

In [35], the concept of ‘observability’ is used to build a model of the effects of opera-
tions, using the idea that systems that behave equivalently are effectively indistinguishable.
The configuration process is represented as a state machine, where operations cause transi-
tions between behavioral states, represented as sets of tests that succeed. The configuration
operators discussed above are then simply ways to accomplish state transitions, and the
fixed points of Theorem 3 are simply a set of states achieved by repeated application of the
operators.

The main result of [35] is that:

THEOREM 4. One can determine whether the configuration state machine is deterministic
by static analysis of the structure of its operations.

The meaning of this result is that the state machine is deterministic if an operation ap-
plied to one observed state always leads to another observed state, which in turn means
that there is no hidden state information that is (i) not observed and (ii) utilized during
the application of an operation. This is a property of configuration operations that can be
statically verified. Thus the theorem can be summarized:

PRINCIPLE 6. Itis possible to assure freedom from latent configuration effects by careful
design of convergent operators.

In other words, a good set of operators are all that one needs to accomplish configuration
management.

9.8. Promises

Previous sections defined the idea of configuration operators and demonstrated how those
operators can be constructed. But what are appropriate configuration operators? One is-
sue of interest is whether it is possible to manage the configuration of a network without
centralized authority or control. Can a network self-organize into a functional community
when no component of the network has authority over another? Recently, Burgess et al.
have suggested that this is possible, through a mathematical idea known as “promise the-
ory’ [15,16].

The basic idea of promise theory is that stations in a network are autonomous com-
petitors for resources who only collaborate for mutual gain, like animals in a food chain.
Autonomous agents in the network are free to ‘promise’ facts or commitments to others.
Thus there is a concept of ‘service’ from one station to another, in the form of ‘promises

108 A.L. Couch Part 1

kept’. This involves a kind of reciprocal trust agreement between computers who other-
wise have no reason to trust one another. Preliminary results show that networks managed
in this way do indeed converge to a stable state, even in the presence of harmful influences,
simply because promises can be viewed as convergent operators in the sense of Theorem 3.

Many practicioners of configuration management are in opposition to the idea that com-
puters will broker their own services; the definition of the job of configuration manager
is to insure that there is no disruption of services. Politically, many people who practice
configuration management do not yet accept the idea that systems could manage their own
configurations and services. But as networks become larger, more heterogeneous and more
complex, something like promise theory will be necessary to manage them.

9.9. Myths of configuration management operations

The above section lays to rest several ideas that have plagued the practice for years. One
cannot sidestep the complexities of configuration management via a simple choice of lan-
guage. Nor is the process of defining network state actually necessary in order to achieve
appropriate behaviors. But there are other myths that also misdirect practicioners in creat-
ing effective and cost-effective configuration management strategies.

Let us consider these:

PRINCIPLE 7. Configuration management is not undecidable.

The conjecture that it is undecidable, proposed in [72], is easily proven false by a sim-
ple proof that no finite system can be undecidable, only intractable. The intractability of
configuration management was partly refuted in [35], by showing that most configuration
operations take a simple form whose completion is statically verifiable.

There has been some controversy about whether it is possible to ‘roll back’ systems from
a new state into an older state. This stems partly from disagreement about what rollback
means, i.e. whether it means a complete return to previous behavior. The argument has
been that since it is impossible to roll back state using certain tools (including ISConf and
Cfengine) that rollback is impossible in general. We assert that, as long as this refers to the
managed state only, this is a limitation of the tools, not a theoretical limit:

PRINCIPLE 8. Rollback of configuration operations is in fact possible.

Any state that is not managed, like runtime or operational data, that affects the operation
of a computer will, in general, prevent a computer from behaving identically after rollback.
10. Traditions of configuration management
In the above sections, we have discussed many theoretical issues that control the practice
of configuration management. We now turn to the practice itself, and describe how practi-

cioners actually accomplish the task of configuration management. Our first step is to study
and analyze the traditions from which current practices arose.

Ch. 4 System configuration management 111

11.1. File distribution

The difficulties inherent in writing unconstrained scripts led to several alternative ap-
proaches that attempt to accomplish the same end results as scripts, while improving main-
tainability of the final result. Alternatives to scripting arose opportunistically, automating
parts of the operations traditionally accomplished by scripts and leaving other operations
to be done by scripts at a later time.

File distribution is the practice of configuring systems solely or primarily by copying
files from a master repository to the computers being configured. This has its roots in the
practice of using file copying commands in scripts. File distribution in its simplest form is
accomplished by a script that copies files from a locally mounted template directory into
system locations, using a local file copying command. More sophisticated versions of file
distribution include use of remote copying commands (‘rep’, ‘sep’, ‘rsync’, etc.), which
naturally evolved into file distribution subsystems such as ‘rdist’ [24], and related tools
[26].

Rdist is a simple file distribution system that functions by executing on a machine with
administrative privilege over managed machines. An input file, usually called Distfile,
describes files to copy, the target hosts to which to copy them, and the locations for which
they are destined. The input file can also direct rdist to execute appropriate remote com-
mands on the hosts to be configured, after a file is distributed.

For example, the Dist file entries in Figure 11 direct rdist to ensure that /usr/1ib/
sendmail and all header files in /usr/include are the same for the source host as for
the target hosts host01 and host02. Additionally, whenever /usr/lib/sendmail
has to be copied, rdist will run a command to recompile the sendmail ruleset (/usr/1ib/
sendmail-bz).

Rdist improved greatly upon the robustness of custom scripts, and exhibits several fea-
tures that have become standard in modern configuration management tools. A file reposi-
tory contains master copies of configuration files. This is copied to a target host via a push
strategy in which the master copy of rdist (running on an rdist master server) invokes a
local agent to modify the file on each client host. A class mechanism allows one to cate-
gorize hosts into equivalent classes and target specific file content at classes of hosts. Files
are not copied unless the timestamp of the target is older than the timestamp of the source.
This minimizes intrusiveness of the distribution process; ‘gratuitous’ copying that serves
no purpose is avoided. Finally, after a file is copied, ‘special’ post-copying commands can
be issued, e.g., to email a notification to a system administrator or signal a daemon to
re-read its configuration.

HOSTS (host0l1l host02)
FILES (/usr/lib/sendmail /usr/include/{*.h})
${FILES} -> S${HOSTS}
install ;
special /usr/lib/sendmail "/usr/lib/sendmail -bz"

Fig. 11. A simple Distfile instructs rdist to copy some files and execute one remote command if appropriate.

112 A.L. Couch Part 1

File movement

File
Storage

[

master
server

= client

network

;] .- - - - - - ==

A 1 client

1
\

|

} — 1 client
configuration
description
Fig. 12. A push strategy for file distribution stores all configuration information on a master server, along with

files to be distributed.

— client

Rdist implements what is often called a server-push strategy (also sometimes called
‘master-slave’) for configuration management. A push strategy has several advantages and
disadvantages (Figure 12). First, all information about what is to be configured on clients
must be contained on the master server in a configuration file. This means that the master
server must somehow be informed of all deviations and differences that distinguish hosts
on the network. This includes not only soft classes that designate behaviors, but also hard
classes that indicate hardware limitations. One advantage of push strategies is that they are
relatively easy to set up for small networks.

File distribution of this kind was useful on moderate-size networks but had many draw-
backs on networks of large scale or high heterogeneity. First, in a highly heterogeneous
network, the file repository can grow exponentially in size as new copies of configuration
files must be stored; there is a combinatorial explosion as file repository size is an exponen-
tial function of heterogeneity. A more subtle limit of rdist’s push strategy is that (originally)
only one host could be configured at a time; running rdist for a large network can take a
very long time. Attempts at utilizing parallelism [24] address the problem somewhat, but
utilizing push-based file distribution on large networks remains relatively time-consuming.

Server-push configuration management becomes impractical for large and complex net-
works for other reasons. In a push strategy, each host must receive content from a master
host that has been configured specifically to contact the target. This requires configuring
the master with a /ist of hosts to be contacted. If there are a very large number of hosts,
keeping this list up to date can be expensive. For example, every new host to be managed
must be ‘registered’ and data must be kept on its hardware configuration, etc.

File distribution used alone is impractical for large networks in two other ways:

1. Distribution to a large number of clients is a slow process, involving maintenance of

client databases and inherently serial transactions.

2. The size of files that must be stored in the repository is proportional to the number

of classes, including all combinations of classes actually employed to describe some
host.

Ch. 4 System configuration management 113

In other words, there is little economy that comes with scale. This has led to innovations
that address each weakness.

11.2. Client pull strategies

The slowness of server push strategies can be eliminated via client pull strategies, in which
clients instead contact a server regularly to check for changes. Cfengine has championed
this approach [9-11,18]. In a pull strategy, each client has a list of servers (Figure 13).
This list is smaller and easier to maintain. The clients make decisions about which servers
to employ, allowing extremely heterogeneous networks to be managed easily.

Another related strategy developed earlier this year is that of pull-push. This is a hybrid
strategy in which a centralized server first polls clients for their configurations, and then
pushes a configuration to each one. This allows one to customize each client’s configu-
ration according to properties obtained by querying the client. This allows a centralized
planning process to utilize data about client capabilities and current configuration. Pull-
push management is a design feature of the Puppet toolset for configuration management
[62], and also implemented to some extent in both BCFG2 [40,41] and LCFG [2,4].

11.3. Generating configuration files

The second problem with file distribution is that the number of files to be stored increases
exponentially with the heterogeneity of the network. One way of dealing with the second
problem is to copy generic files to each host and then edit files on the client in order to
customize them. This is particularly viable if the changes required are minor or can be
accomplished by appending data to an existing master copy. This can be accomplished

(1) File requested
\\
\
3\ —
Fil "'____ li fi i
ile client | | configuration
Storage f Y g B dcsc?'lpuon
: i
- ! client == configuration
master L | description
server | — — [
4 = . : .
= client | configuration
(2) File / 2 description
transmitted =
client | configuration
L L | description

Fig. 13. A pull strategy for file distribution stores configuration information on clients, including the location of
one or more master file servers.

114 A.L. Couch Part 1

via scripting, use of Cfengine [9-11,18], or post-copy scripts that are invoked during file
distribution.

Another technique for avoiding an exponential explosion of files is to generate all of the
configuration files for each host from a database [44,45] rather than storing each one explic-
itly in a repository. The database contains both requirements and hardware specifications
(hard limitations) for each host. One can generate configuration files either on a centralized
master distribution host or via an agent that runs on the target host. Generation scripts are
easier to understand and maintain than scripts that modify pre-existing files. These rules
form the core logic of many current-generation configuration management tools.

A third way to deal with the combinatorial explosion is via templating [58]. This is a
compromise between generating client configuration files and editing them. In this strategy,
one stores generic templates of configuration files in a file repository with some details left
blank, and fills in these details from a master database or file. This strategy takes advantage
of the fact that in very large configuration files, such as those for web servers, much of the
configuration is fixed and need not be changed for different hosts in the network [68]. By
templating the unchanging data, and highlighting changes, one limits the number of files
being stored in a repository.

11.4. Script portability management

There remain many scripts that are not easily expressible in terms of templates, copying or
generation. One common example is a script that compiles source files into binary code.
The script management problem is to control script execution to achieve consistent results.

One form of script management evolved from mechanisms originally invented to help
in maintaining portable software. When compiling a program via the make [59] program,
there are a number of possible program parameters that change from machine to machine,
but are constant on any particular machine, such as the full pathnames of specific programs,
libraries, and include files. Imake is a program that codes these constant parameter values
into a file for reusability, and generates Makefiles for make that have the values of
these parameters pre-coded. Likewise, xmkmf is a version of Tmake that utilizes pre-
coded values for the X11 Window system, to allow building graphics applications. The
idea of Imake and xmkmf is that local dependencies can be isolated from portable code
in crafting a portable application.

It is not surprising that these tools for software configuration management have their
counterparts in network configuration management. The Process-Informant Killer Tool
(PIKT) [60] is a managed scripting environment that can be utilized for configuration man-
agement. PIKT scripts employ special variables to refer to system locations that may vary,
e.g., the exact location of configuration files for various system functions. By recording
these locations for each architecture or version of operating system, one can utilize one
script on a heterogeneous network without modification. PIKT also contains a variety of
programming aids, including a declarative mechanism for specifying loops that is remark-
ably similar to the much later XQUERY mechanism for XML databases.

Ch. 4 System configuration management 115
11.5. Managing script execution

Scripts have several major drawbacks as configuration management tools: they are sensi-
tive to their execution environments, difficult to maintain, and must be applied consistently
to all hosts in a soft class. Particularly, if a sequence of scripts is to be applied to a homoge-
neous set of hosts, the effect can differ if the scripts are applied in different orders on each
host. Consider two scripts, one of which edits a file (S1) and the other of which creates
the file to be edited (S2). Unless S2 precedes S1, the result will not be what was intended.
Again, one solution to this problem was first invented for use in software configuration
management.

ISConf [72,73] utilizes a variant of the software compilation tool make [59] to manage
system and software configuration at the same time. Since many software packages are
delivered in source form, and many site security policies require use of source code, use of
make is already required to compile and install them. The first version of ISConf utilizes
make in a similar fashion, to sequence installation scripts into linear order and manage
whether scripts have been executed on a particular host. Later versions of /SConf include
Perl scripts that accomplish a similar function.

ISConf copes with latent effects by keeping records of which scripts have been executed
on which hosts, and by insuring that every host is modified by the exact same sequence of
scripts. ISConf’s input is a set of ‘stanzas’: a list of installation and configuration scripts
that are to be executed in a particular order. Each stanza is an independent script in a
language similar to that of the Bourne shell. A class mechanism determines which stanzas
to execute on a particular host. ISConf uses time stamp files to remember which stanzas
have been executed so far on each host. This assures that hosts that have missed a cycle
of configuration due to downtime are eventually brought up to date by running the stanzas
that were missed (Figure 14).

11.6. Stateful and stateless management

A configuration management tool is stateful if it maintains a concept of state on the lo-
cal machine other than the configuration files themselves, and conditions its actions based
upon that state. Otherwise, we call the tool stateless. Because it keeps timestamps of the
scripts that have been executed on disk, ISConf supports a stateful configuration manage-
ment strategy, as opposed to Cfengine, which is (in the absence of user customizations)
a mainly stateless strategy.®

The stateful behavior of ISConf solves the problem of script pre-conditions in a very
straightforward (but limited) way: each script utilizes the post-conditions of the previous
one and assures the pre-conditions of the next, forming a ‘pipeline’ architecture. The ad-
vantage of this architecture is that — provided that one starts using /SConf on a cleanly
installed host — scripts are (usually) only executed when their pre-conditions are present,
so that repeatable results are guaranteed. There are rare exceptions to this, such as when the
environment changes drastically due to external influences between invocations of stanzas.

6Some long term state is memorized in Cfengine through machine learing and associated policies, but this is
not a part of the configuration operators.

118 A.L. Couch Part 1

A key concept in package management is that of package dependencies. The function
of a particular package often requires installation of others as prior events. This is accom-
plished by keeping track of both installed packages and the dependencies between pack-
ages. To illustrate this, consider the structure of the RedHat package manager (RPM). Each
package internally declares the attributes that it provides and the attributes that it requires,
as character strings. These are abstract attributes; there is no correspondence between re-
quirements and files in the package. The package manager command, with access to data
on which package requires which others, is able to pre-load prerequisites so that packages
are always loaded in dependency order. Correctness of dependencies is left to the package
creator. While experience with packages in major operating systems is good, incorrect-
ness of dependencies is a major problem for contributed software packages maintained by
individuals [46].

The intimate relationship between package management and configuration management
arises from the fact that most packages have a configuration that must be managed and
updated to control the function of the software in the package. Thus it is difficult to separate
delivery and updating of the software package itself from the process of configuring that
software for proper function. In a way, package management is doomed to be confused
with configuration management, forever, because of the overlaps between package and
configuration management in both mission and method.

The author is aware of at least a few sites that currently utilize a package management
mechanism to manage configuration scripts as well as software packages; each script is en-
capsulated in a package and each such package depends upon the previous. Then the pack-
age manager itself manages the ‘installation’ of the configuration scripts, and insures that
each script is run once and in the appropriate order, exactly as if ISConf were managing the
scripts. This is exactly the mechanism by which enterprise management is accomplished
in Microsoft environments, using the MSI package format [76].

13. Declarative specification

One alternative to the complexity of scripting is to recode script actions as declarative
statements about a system. We no longer execute the declarations as a script; we instead
interpret these declarations and assure that they are true about the system being config-
ured (through some unspecified mechanism). This avoids the script complexity problems
mentioned in the previous sections, and leaves programming to trained programmers rather
than system administrators.

13.1. Cfengine

The most-used tool for interpreting declarative specifications is Cfengine [9-11,18]. Un-
like rdist, whose input file is interpreted as a script, the input file for Cfengine is a
set of declarations describing desirable state. These declarations subsume all functions of
rdist and add considerably more functions, including editing of files and complete man-
agement of common subsystems such as NFS mounts. An autonomous agent (a software

Ch. 4 System configuration management 119

tool) running on the host to be configured implements these declarations through fixed-
point convergent and ‘idempotent’ operations that have desirable behavioral properties.

A ‘convergent’ operation is one that — over time — moves the target system toward a de-
sirable state. For a system in a desirable state, a ‘convergent’ operation is also ‘idempotent’;
it does not change anything that conforms to its model of ‘system health’. Convergent and
idempotent operations support an immunological model of configuration management [11,
14], in which repeated applications of an immunizing agent protect a system from harm.
This approach is distinct from most others; most configuration management tools rely upon
a single action at time of change to accomplish configuration management.

Constructing system operations that are idempotent and/or convergent is a challenging
programming task — involving many branches — that is beyond the programming skills of a
typical system administrator (Figure 16). A simple linear script becomes a multiple-state,
complex process of checking for conditions before assuring them. Thus we can view the
declarative input file for Cfengine as a form of information hiding; we specify ‘what’ is to
be done while omitting a (relatively complex) concept of ‘how’ to accomplish that thing.
The configuration manager need not deal with the complexity of ‘how’. This makes the
Cfengine input file considerably simpler in structure than a script that would accomplish
the same effect. The same strategy makes the input file for the package manager Slink [25,
32] considerably less complex in structure than a script that accomplishes the same actions.

Unfortunately, there is a cost implication in use of this strategy. Many packages are
provided to the system administrator with imperative scripts that install them, either via the

Without
atomicity
or awareness

Start

With
atomicity
and awareness

| Start — | Action | — | Action 2 — Action 3
' '

Action 1 Action 2 Action 3
Prerequisites Prerequisites Prerequisites

.

|
|
|
|
|
|
|
|
l
I Yes
|
(Action 3) ! No
|
|
|
|
|
|
|
|
|

Yes

Undo

[Fail
— Action 1

E Action 2

Undo
Action |

Fig. 16. Adding atomicity and awareness to a script causes greatly increased branch complexity.

120 A.L. Couch Part 1

make compilation control program or via a package manager post-install script written in a
shell language. To make the process of configuration ‘truly declarative’, one must reverse-
engineer the impact of these scripts and code their actions instead as declarative statements.
This is a non-trivial task, and must be repeated each time a package is updated or patched.
For example, many Redhat Package Manager packages contain post-installation scripts
that make non-trivial changes to configuration files, that must be taken into account when
installing the RPM as part of a configuration change.

Cfengine introduces several new strategies to configuration management. Unlike
rdist, which utilizes a server-push strategy (master to slave) (Figure 12), Cfengine im-
plements a client-pull strategy for file copying (Figure 13). The Cfengine agent runs on
the host to be configured and can be invoked manually, under control of the cron timing
daemon, or remotely. Once running, Cfengine can perform local edits to files and request
copies of configuration files from perhaps multiple servers. Since the action of configu-
ration is controlled from the client being configured, the server bottleneck that plagues
rdist can be effectively load-balanced (also called ‘splaying’).

Cfengine employs classes to aid in building different kinds of hosts. Cfengine’s class
variables define classes or groups of hosts differently from the way classes are defined in
other configuration tools. In many of Cfengine’s predecessors, a class is simply a list of
hosts. In Cfengine, a class is a set of conditions upon a host. This new meaning is more
consistent with the meaning of the word ‘class’ in object-oriented programming than the
former meaning. This definition, however, means that a particular instance of Cfengine
only knows whether the host being configured is a member of each class, and cannot infer
the identities of other members of a class from the class description.

Each class variable is a boolean value; either true or false. ‘Hard classes’ describe hard-
ware and other system invariants, e.g., the operating system. For example, the hard class
‘linux’ is instantiated if linux is the host operating system. ‘Soft classes’ describe the de-
sired state for the current configuration. These can be created by constructing simple scripts
that probe system state. Each action in Cfengine is only applicable to a particular system
state, which is expressed as a boolean expression of (both hard and soft) class variables.

A typical Cfengine declaration includes a stanza, guard clause, and action. For exam-
ple, the stanza in Figure 17, copies the file cf . server.edu: /repo/etc/fstabinto
/etc/fstab on every host that is in the hard class 1inux and not (!) in the soft class
server. The stanza identifier is copy, which determines what to do. The guard clause is
linux. !server, which says to perform the following actions for linux machines that
are not servers. The next line describes what to do. Note that this is a declarative, not
an imperative, specification; the English version of this statement is that /etc/fstab
should be a copy of cf.server.edu: /repo/etc/fstab; this is not interpreted as
a command, but as a condition or state to assure.

copy:
linux. !server::
/repo/etc/fstab dest=/etc/fstab server=cf.server.edu

Fig. 17. A Cfengine copy stanza includes stanza identifier, guard clause and action clauses.

Ch. 4 System configuration management 121

There is a striking similarity between Cfengine’s configuration and logic programming
languages [30]. Each Cfengine class variable is analogous to a Prolog fact. Each declaration
is analogous to a Prolog goal. This makes a link between the meaning of ‘declarative’ in
programming languages and the meaning of ‘declarative’ in system administration: both
mean roughly the same thing.

Another new idea in Cfengine is that of ‘immunization’ of an existing system to keep it
healthy [11,14]. Most configuration management systems are executed only when changes
are required. By contrast, Cfengine can be set to monitor a system for changes and correct
configuration files as needed.

Cfengine has several other unique properties as a configuration management aid. Soft-
ware subsystems, such as networking, remotely accessible disk, etc., are manageable
through convergent declarations. Cfengine introduces the possibility of randomization of
configuration actions. An action can be scheduled to run some of the time, or with a cer-
tain probability. This enables game-theoretic resource management strategies for limiting
filesystem use without quotas [11,66]. Finally, it is also possible to set up Cfengine to
react to changes in measured performance, so that it makes changes in configuration in
accordance with system load and/or deviation from normal load conditions.

Cfengine breaks down the boundaries between configuration management, resource
management, user management, and monitoring. Cfengine directives can clean up user
home directories, kill processes, and react to abnormal load conditions. The traditional
meaning of configuration management as acting on only system files is gone; all aspects of
the filesystem and process space are managed via one mechanism.

13.2. File editing

One perhaps controversial aspect of Cfengine is the ability to edit configuration files to
contain new contents. Users of Cfengine find this facility indispensable for dealing with
the ‘combinatorial explosion’ that results from file copying. Instead of simply copying a
file, one can edit the file in place. Editing operations include the ability to add lines if not
present, and to comment out or delete lines of the file in a line-oriented fashion.

What makes file editing controversial is that — although undoubtedly useful, and indeed
very widely used — file editing is particularly vulnerable to pre-existing conditions within
a file. For example, suppose one is trying to edit a configuration file where duplicate in-
stances are ignored, e.g., /etc/services, and the line for the ssh service in the existing
file differs slightly from the established norm. Then using the AppendIfNotPresent
operation of Cfengine to append a line for ssh will result in having two lines for ssh in the
file; the prior line will be treated as different even though it describes the same service. De-
pending upon how this file is interpreted by the resolver, either the first line or the second
line will be used, but not both. In other words, file editing must be utilized with great care to
avoid creating latent conditions that can manifest later as behavior problems. One solution
to the file-editing quandary is to provide operators that treat files as database relations with
local and global consistency constraints [31]. Convergent operators for such ‘higher-level
languages’ are as yet an unsolved problem, which Cfengine only approximates.

122 A.L. Couch Part 1

One effective strategy for dealing with editing pre-conditions is to copy in a ‘baseline’
version of the file before any edits occur. This assures that edits will be performed on a file
with previously known and predictable contents. If this is done, file editing can be as reli-
able as generating files from databases. Unfortunately, there is a downside to this strategy
when used within Cfengine; the file being edited goes through two ‘gratuitous’ rewrites
every time the tool is invoked to check the configuration. This can lead to anomalous be-
havior if a user is trying to use a program that consults the file at the time the file is being
updated.

13.3. Change control

Disciplined use of Cfengine requires a different regimen of practice that of ISConf, but
for the exact same reasons [35]. One cannot ever be sure that a// machines in a network
are in complete compliance with a Cfengine configuration, any more than one can be sure
that all machines are synchronized with respect to ISConf. This lack of confidence that all
machines have been synchronized leads to somewhat non-intuitive requirements for edits
to Cfengine configuration files.

The fundamental requirement for distributed uniformity is the principle of management
continuity: once a file is ‘managed’ (copied, edited, etc.) by Cfengine, it must continue to
be managed by Cfengine in some fashion, for as long as it remains constrained by policy.
It is a normal condition for some hosts to be down, physically absent (e.g., laptops), or
just powered off. Thus there is no way that one can be sure that one has ‘reverted’ a file
to an unmanaged (or perhaps one should say ‘pre-managed’) state. Although not unique to
Cfengine, this is part of the Cfengine ethos of ‘living with uncertainty’ [12].

14. Cloning

Another configuration management strategy arises from the tradition of file copying. Often,
in creating a system that should perform identically to another, it is easier to copy all system
files than to modify just the configuration files. This is called cloning a system. Then a
manager (or a script, or a tool) can change only the files that have customized contents on
each host, e.g., the files representing the identity of the host as a network entity.

Simple forms of cloning include Norton Ghost, which simply copies a master version
of a system onto a client and allows simple one-time customizations via scripting. After
the cloning and customization operations, there is no capability for further control or cus-
tomization. To make changes, one must change the master device and/or customization
script and then reclone each client.

Cloning can be expensive in time and potential downtime. To make a clone of an iso-
lated system, all system information must flow over the network, and this flow generally
occurs at a substantively lower rate than when compressed files are copied from disk and
uncompressed, depending on network conditions.

Advanced cloning approaches are intimately related to monitoring technologies. Rad-
mind [38] and its predecessors (including Synctree [54]) take an immunological approach

Ch. 4 System configuration management 125
15.3. Common information models

File copying, generation, or editing are bulky procedures compared to the simple process
of setting a configuration parameter. To ease the process of setting parameters on network
devices, the Simple Network Management Protocol (SNMP) [57] allows individual pa-
rameters to be set by name or number. The Common Information Model (CIM) [42] is
an attempt to generalize SNMP-like management to computing systems. The basic con-
figuration of a computing system is encoded as parameters in a management information
base (MIB), which can be changed remotely by SNMP. Much of the configuration and
behavior of a host can be managed by utilizing this interface; it encompasses most system
parameters but fails to address some complexities of software and package management.
This approach is implemented in several commercial products for enterprise configuration
management.

16. Simplifying configuration management

It comes as no surprise that configuration management is difficult and even — in some
sense — computationally intractable. One of the major outgrowths of theoretical reasoning
about configuration management is an understanding of why configuration management
is difficult and steps that one can take to make it a simpler and less costly process [69].
The system administrator survives configuration management by making the problem eas-
ier whenever possible. We limit the problem domain by limiting reachable states of the
systems being configured. The way in which we do this varies somewhat, but the aim is
always simplicity:

L. By using a particular sequence of operations to construct each host, and not varying
the order of the sequence. E.g., script management systems such as ISConf enforce
this.

2. By exploiting convergence to express complex changes as simple states.

3. By exploiting orthogonality to break the configuration problem up into independent
parts with uncoupled behavior and smaller state spaces.

4. By exploiting statelessness and idempotence to prune undesired states from the
statespace of an otherwise unconstrained host.

5. By constructing orthogonal subsystems through use of service separation and virtu-
ality.

6. By utilizing standards to enforce homogeneity.

Note that most of these are outside the scope of what is traditionally called ‘configura-
tion management’ and instead are part of what one would call ‘infrastructure architecture’
[71]. But in these methods, we find some compelling solutions to common configuration
management problems.

16.1. Limiting assumable states

All approaches to configuration attempt to limit the states a system can achieve. Script
management enforces a script ordering that limits the resulting state of the system. Con-

126 A.L. Couch Part 1

vergent management attempts to reduce non-conforming states to conforming ones, hence
reducing the size of the statespace. In both cases, the goal is to make undesirable states
unreachable or unachievable.

A not-so-obvious way of limiting assumable states is to promptly retire legacy hardware
so that it does not remain in service concurrently with newer hardware. This limits states
by limiting the overall heterogeneity of the network, which is a help in reducing the cost
of management and troubleshooting.

16.2. Exploiting orthogonality with closures

Another simple way configuration management is made tractable is by viewing the sys-
tem to be configured as a composition of orthogonal and independent subsystems. If we
can arrange things so that subsystem configurations are independent, we can forget about
potential conflicts between systems.

A closure [31] is an independent subsystem of an otherwise complex and interdependent
system. It is a domain of ‘semantic predictability’; its configuration describes precisely
what it will do and is free of couplings or side effects. Identifying and utilizing closures is
the key to reducing the complexity of managing systems; the configuration of the closure
can be treated as independent of that of other subsystems. Systems composed of closures
are inherently easier to configure properly than those containing complex interdependen-
cies between components.

A closure is not so much created, as much as it is discovered and documented. Closures
already exist in every network. For example, an independent DHCP server represents a
closure; its configuration is independent of that of any other network element. Likewise,
appliances such as network fileservers form kinds of closures. Building new high-level clo-
sures, however, is quite complex [68], and requires a bottom-up architecture of independent
subsystems to work well.

16.3. Service isolation

One way of achieving orthogonality is through service isolation. Service isolation refers
to the practice of running each network service on a dedicated host that supports no other
services. There are several advantages to service isolation:

1. Each service runs in a completely private and customized environment.

2. There is no chance of application dependencies interfering with execution, because

there is only one application and set of dependencies.

Thus configuration management is greatly simplified, compared to configuring a host that
must provide multiple services. Thus service isolation simplifies configuration by avoiding
potential dependency conflicts, but costs more than running a single server.

Ch. 4 System configuration management 127

16.4. Virtualization

One can reduce the costs of service isolation by use of virtualization. Virtualization is the
process of allowing one physical host to emulate many virtual hosts with independent con-
figurations. There are several forms of virtualization. One may virtualize the function of
a whole operating system environment to form an ‘information appliance’ [67] that func-
tions independently from all other servers and is free of service conflicts. One may instead
virtualize some subpart of the execution environment. For example, the PDS system [1]
virtualizes the loading of dynamic libraries by applications, without virtualizing the oper-
ating system itself. The result is that each program runs in a custom operating environment
in which it obtains access only to the library versions that it desires, and no version conflicts
are possible in one application’s execution environment.

16.5. Standardization of environment

A final practice with some effect upon configuration management is that of standardization.
The Linux Standard Base (LSB) [53] attempts to standardize the locations of common
configuration files, as well as the link order and contents of system libraries. Applications
expecting this standard are more likely to run on systems conforming to the standard.

The standard consists of three parts:

L. A specification of the contents of specific files and libraries.

2. An environment validator that checks files for compliance.

3. A binary application validator that checks that applications load proper libraries and

make system calls appropriately.
LSB is based upon a logic of ‘transitive validation’ (Figure 18). If an environment
E1 passes the environment validator, and an application A passes the binary validator, and
A functions correctly in E'1, and another environment E2 passes the environment valida-
tor, then A should function correctly in £2. This means that if LSB functions as designing,
testing an application once suffices to guarantee its function in all validated environments.

Alas, LSB falls short of perfection for a few theoretical reasons. First, there is no way
of absolutely being sure that binary code conforms to system call conventions (especially
when subroutine arguments are computed rather than literal). This is equivalent to the
intractable problem of assuring program correctness in general. Thus there is no way to
address this problem.

A second issue with LSB is that the environment validator only validates the ‘standard’
environment, and does not take into account changes that might be made at runtime, e.g.,
adding a dynamic library to the library path. If this is done, the environment validation may
become invalid without the knowledge of the LSB validator.

However, the important point to take from this is that standards reduce system com-
plexity, and thus reduce potential conflicts and other issues in configuration management.
Thus standardization is not to be ignored as a major cost-saving factor in configuration
management.

128 A.L. Couch Part 1

Initial testing
Environment Proper
Validator Environment
Computer
System 1
S
Explicit Expected
. —— .
Testing Behavior
-
Applicatio \ .
Program Expected behavior
N
Application Properuse " When deployed
 — .
Validator of environment
e

Deployment instance

Computer Environment Proper
System 2 Validator Environment

Fig. 18. Standardization and validation lead to claims of correct program behavior in environments in which
explicit testing has not occurred.

17. Critique

In this chapter, we have outlined many different techniques, practices, and methods for
solving the configuration management problem. In these practices, there emerge some cen-
tral trends and patterns from which one can characterize the field.

First, the goal of current configuration management strategies is not simply to provide
appropriate network behavior, but to minimize the cost of doing so. There are several fac-
tors that can minimize costs, including:

. Limiting hardware heterogeneity:

(a) By promptly retiring legacy systems.
(b) By purchasing large numbers of identical computers.

2. Limiting gratuitous complexity in configurations:

(a) By negotiating and implementing highly homogeneous policies for use of com-
puters.
(b) By opposing policies that contribute to higher cost without added value.
3. Limiting the possible configuration states of each computer:
(a) By always starting from a blank disk and replaying the same scripts in order.

Ch. 4 System configuration management 129

(b) By generating consistent configuration files from databases.
(c) By use of idempotent and stateless operations to reduce potential states of each
target machine.

4. Splitting statespaces into orthogonal subspaces:

(a) By identifying behaviorally independent subsystems and closures.
(b) By synthesizing independence through service independence and virtualization.

5. Pre-validation of results of deployment:

(a) By validating results for each target platform.
(b) By combining environment and application standards and validators to exploit
transitive validation properties of software.
This list of strategies is a fairly good summary of the state of the art. Note that in the list
of strategies, the choice of tool for configuration management is not even mentioned. It is
instead a side-effect of adopting best practices, which can be summed up in one imperative:
minimize complexity.

We have thus come full circle. We started by discussing tools and how they work, as
part of a configuration management strategy. We are now at the level where the tools are
no longer important, and are replaced by the goals that they accomplish. These are goals
of practice, not tool choices, and many of them require human interaction and decision
making to reduce cost and maximize value. The true art of configuration management
is in making the strategic decisions that define mission in a way that reduces cost. For
example, one administrator recently computed a savings of roughly $100,000 by replacing
all desktop computers in a hospital with linux thin clients. This savings had nothing to
do at all with the tools used to manage the network. The complexity of the network itself
was reduced, leading to a reduction in cost by design rather than by practice, i.e. when one
manages the whole enterprise as a single community of cooperating humans and computers
[13].

18. Current challenges

We have seen above that the practice of configuration management arises from two tra-
ditions: high-level policy definition and low-level scripting. At the present time, the two
traditions continue as relatively separate practices with little overlap. A majority of the
world uses some form of scripting, including convergent scripting in Cfengine, to accom-
plish configuration management. Very few sites have adopted overarching tools that gen-
erate configuration from high-level policies, and in a recent informal poll of configuration
management users, most users of high-level (‘generative’) tools wrote their own instead of
employing an existing tool.

In our view, the principal challenge of configuration management is that the cost of man-
agement is only very indirectly related to its value [36]. The cost of high-level strategies
seems higher, and their value cannot be quantified. Meanwhile, the average practicioner
has limited ability to justify approaches that cost significant startup time but have unquan-
tifiable benefits. For example, it takes significant effort to re-engineer software packages
so that their installation is declarative rather than imperative. Thus, one main challenge of

132

[31]

[32]
[33]

[34]
[35]
[36]
[37]
[38]
(391

[40]

[41]
[42]

[43]
[44]

[45]
[46]
[47]
[48]

[49]
[50]

[51]
[52]
[53]
[54]
[55]
[56]

[57]
[58]

[59]
[60]
[61]

A.L. Couch Part 1

A. Couch, J. Hart, E. Idhaw and D. Kallas, Seeking closure in an open world: A behavioral agent approach
to configuration management, Proc. LISA-XVII, USENIX Association, San Diego, CA (2003).

A. Couch and G. Owen, Managing large software repositories with SLINK, Proc. SANS-95 (1995).

A. Couch and Y. Sun, Global impact analysis of dynamic library dependencies, Proc. LISA-XV, USENIX
Association, San Diego, CA (2001).

A. Couch and Y. Sun, On the algebraic structure of convergence, Proc. DSOM’03, Elsevier, Heidelberg,
DE (2003).

A. Couch and Y. Sun, On observed reproducibility in network configuration management, Science of Com-
puter Programming, Special Issue on Network and System Administration, Elsevier, Inc. (2004).

A. Couch, N. Wu and H. Susanto, Toward a cost model for system administration, Proc. LISA-XVIII,
USENIX Association, San Diego, CA (2005).

Cowan et al., Timing the application of security patches for optimal uptime, Proc. LISA 2002, USENIX
Association (2002).

W. Craig and PM. McNeal, Radmind: The integration of filesystem integrity checking with filesystem man-
agement, Proc. LISA-XVII, USENIX Association (2003), 1-6.

I. Crnkovic and M. Larsson, eds, Building Reliable Component-Based Software Systems, Artech House
(2002).

N. Desai, R. Bradshaw, R. Evard and A. Lusk, Befg: A configuration management tool for heterogeneous
environments, Proceedings of the 5th TEEE International Conference on Cluster Computing (CLUSTERO03),
IEEE Computer Society (2003), 500-503.

N. Desai et al., A case study in configuration management tool deployment, Proc. LISA-XVII, USENIX
Association (2005), 39-46.

Distributed Management Task Force, Inc., Common information model (CIM) standards,
http:/fwww.dmtf.org/standards/cim/.

R. Evard, An analysis of UNIX machine configuration, Proc. LISA-XI, USENIX Association (1997).

1. Finke, An improved approach for generating configuration files from a database, Proc. LISA-XIV,
USENIX Association (2000).

1. Finke, Generating configuration files: The director’s cut, Proc. LISA-XVII, USENIX Association, San
Diego, CA (2003).

J. Hart and J. D’ Amelia, An analysis of RPM validation drift, Proc. LISA-XVI, USENIX Association,
Philadelphia, PA (2002).

M. Holgate and W. Partain, The Arusha project: A framework for collaborative Unix system administration.,
Proc. LISA-XV, USENIX Association, San Diego, CA (2001).

L. Kanies, Isconf: Theory, practice, and beyond, Proc. LISA-XVII, USENIX Association, San Diego, CA
(2003).

G. Kim and E. Spafford, Monitoring file system integrity on UNIX platforms, InfoSecurity News 4 (1993).

G. Kim and E. Spafford, Experiences with TripWire: Using integrity Checkers for Intrusion Detection, Proc.
System Administration, Networking, and Security-1II, USENIX Association (1994).

C. Kubicki, The system administration maturity model — SAMM, Proc. LISA-VII, USENIX Association
(1993).

A. Leon, Software Configuration Management Handbook, 2nd edn, Artech House Publishers (2004).

The Linux Standard Base Project, The linux standard base, http://www.linuxbase.org.

I. Lockard and J. Larke, Synctree for single point installation, upgrades, and OS patches, Proc. LISA-XII,
USENIX Association (1998).

M. Logan, M. Felleisen and D. Blank-Edelman, Environmental acquisition in network management, Proc.
LISA-XVI, USENIX Association, Philadelphia, PA (2002).

K. Manheimer, B. Warsaw, S. Clark and W. Rowe, The depot: A framework for sharing software installation
across organizational and UNIX platform boundaries, Proc. LISA-IV, USENIX Association (1990).

D.R. Mauro and K.J. Schmidt, Essential SNMP, 2nd edn, O’Reilly and Associates (2005).

T. Oetiker, Templatetree I: The post-installation setup tool, Proc. LISA-XV, USENIX Association, San
Diego, CA (2001).

A. Oram and S. Talbot, Managing Projects with Make, 2nd edn, O’Reilly and Associates (1991).

R. Osterlund, PIKT: problem informant/killer tool, Proc. LISA-XIV, USENIX Association (2000).

D. Patterson, A simple model of the cost of downtime, Proc. LISA 2002, USENIX Association (2002).

Ch. 4

[62]
[63]

[64]
[65]

[66]

[67]

[68]

[69]
[70]
[71]
[72]

[73]
[74]
[75]

[76]
[77]

System configuration management 133

Reductive Labs, Inc., Puppet, http:/freductivelabs.com/projects/puppet/.

D. Ressman and J. Valds, Use of cfengine for automated, multi-platform software and patch distribution,
Proc. LISA-XIV, New Orleans, LA (2000).

M.D. Roth, Preventing wheel reinvention: The psgconf system configuration framework, Proc. LISA-XVII,
USENIX Association, San Diego, CA (2003).

J.P. Rouillard and R.B. Martin, Depot-lite: A mechanism for managing software, Proc. LISA-VIII, USENIX
Association (1994).

F.E. Sandnes, Scheduling partially ordered events in a randomised framework — empirical results and im-
plications for automatic configuration management, Proc. LISA-XV, USENIX Association, San Diego, CA
(2001).

C. Sapuntzakis, D. Brumley, R. Chandra, N. Zeldovich, J. Chow, J. Norris, M.S. Lam and M. Rosenblum,
Virtual appliances for deploying and maintaining software, Proc. LISA-XVII, USENIX Association, San
Diego, CA (2003).

S. Schwartzberg and A. Couch, Experience in implementing an HTTP service closure, Proc. LISA-XVIIIL,
USENIX Association, San Diego, CA (2004).

Y. Sun, The Complexity of System Configuration Management, Ph.D. Thesis, Tufts University (2006).

W.E Tichy, RCS — A system for version control, Software — Practice and Experience 15 (1985), 637-654.
S. Traugott, Infrastructures.Org Website, http://www.infrastructures.org.

S. Traugott and L. Brown, Why order matters: Turing equivalence in automated systems administration,
Proc. LISA-XVI, USENIX Association, Philadelphia, PA (2002).

S. Traugott and J. Huddleston, Bootstrapping an infrastructure, Proc LISA-XII, USENIX Association,
Boston, MA (1998).

Y.-M. Wang, C. Verbowski, J. Dunagan, Y. Chen, C. Yuan, H.J. Wang and Z. Zhang, STRIDER: A black-box,
state-based approach to change and configuration management and support, Proc. LISA-XVII, USENIX
Association, San Diego, CA (2003).

J. Watkins, Testing IT: An Off-the-Shelf Software Testing Process, Cambridge University Press (2001).

P. Wilson, The Definitive Guide to Windows Installer, Apress, Inc. (2004).

W.C. Wong, Local disk depor — customizing the software environment, Proc. LISA-VII, USENIX Associa-
tion (1993).

This page intentionally left blank

2. The Technology

2.1. Commentary

Network and System Administration is often perceived as a technology-centric enterprise.
One thing is clear: dealing with a vast array of frequently changing technologies is a key
part of a system administrator’s lot. In this part the authors describe a handful of technolo-
gies, from the old to the new.

Unix has played a major role in developing system administration technologies and has
bridged the gap between large systems and personal computing successfully, owing to its
openness and great flexibility. However, mainframe business solutions developed by IBM
in the 1960s are still very much in use today, albeit by only a few, and these offer benefits
such as low-level redundancy and reliability at a high price. Stav sketches the relationship
between the mainframes and better-known Unix. More well-known operating systems such
as Windows and Unix have been omitted as they are dealt with in a vast array of training
manuals and textbooks. VMS, AS400 and mainframe OS390, now z/OS are still used in
some spheres of industry, particularly in the banking world.

Dealing with device diversity has always been one of the important challenges of sys-
tem administration. Many devices had only the most rudimentary operating systems. In the
beginning it was thought that special protocols (e.g., SNMP) could be designed to apply
external intelligence to dumb devices; today it is common to find Unix-like images as em-
bedded operating systems on many devices, thus allowing great flexibility of management.

Diversity is the price one pays for vibrant commercial development and this leads to
other technologies to manage the lower level technologies, resulting in a many-layered ap-
proach. For some, the answer has been to attempt standardization, through organizations
such as POSIX, IETF, and the DMTF etc. For others, the diversity is an evolutionary ap-
proach that leads to more rapid benefits and can be sewn together by meta-technologies. As
Alvin Toffler wrote in his book Future Shock: “As technology becomes more sophisticated,
the cost of introducing variations declines.” [1].

E-mail is one of the most arcane and Byzantine systems on the Internet today. It is typ-
ical of many technologies that were designed in isolation as playful academic exercises
during the early days of Unix and the network and which took root in social conscious-
ness. At the other end of the spectrum, we see Web services entering as a form of ad hoc
“standardization” today. Using XML as a protocol design tool, and the Hypertext Transfer
Protocol as the transport layer, everything that was once old becomes new again in Web
services.

136 HANDBOOK OF NETWORK AND SYSTEM ADMINISTRATION Part 2

Reference

[1] A. Toffler, Future Shock, Random House (1970).

Ch. 2 Unix and z/OS 139

Table 1

Decade Architecture (O} Addressing
1964 $/360 MVT 24-bit
1970s S/370 MVS/370 24-bit
1980s S/370-XA MVS/XA 31-bit
1990s S/390-ESA MVS/ESA /0S/390 31-bit
2000 z/Arch. z/0S 64-bit

investments and thus the backward compatibility is essential to protect these investments.
The ‘traditional’ applications are able to coexist with 64-bit code in the z/OS environment.

There has been a major architectural expansion every decade. Table 1 gives a simplified
overview [4], page 4.

z/OS is a 64-bit operating system introduced in March 2001, and runs on the System z
family of computers. z/OS is based on 0S/390, which again is based on the strengths
of Multiple Virtual Storage (MVS) from the mid-1960s. z/OS is even today occasionally
referred to as MV S by system programmers and in literature. z/OS has a fully fledged Unix
environment integrated into the operating system, called Unix System Services (USS),
which is POSIX compliant, has HFSes, common Unix utilities and tools, and a Unix shell.
The next subsection gives a short historical presentation of Unix.

2.2. Unix

The development of Unix started in the early 1970s at AT&T Bell Labs on a DEC PDP-7,
initially by Ken Thompson and Dennis Ritchie [3]. It was designed to be a portable op-
erating system. The C programming language was developed in order to rewrite most of
the system at high level, and this contributed greatly to its portability. Unix was made
available cheaply for universities, and throughout the 1970s and 1980s it became popular
in academic environments. In the mid-1980s, AT&T started to see a commercial value in
Unix. During the 80s, Unix branched out in two variants because the commercial version,
System V, did not include the source code any more. The other variant, called Berkeley
Software Distribution continued to be developed by researchers at Berkeley. There exists a
myriad of Unix dialects today, e.g. HP-UX, AIX, Solaris, *BSD, GNU/Linux and IRIX.

3. User interfaces

z/OS generally requires less user intervention than Unix systems, although there is cur-
rently an interest in ‘autonomic’ computing which aims to make Unix and Windows oper-
ating systems less human-dependent. The z/OS is highly automated, and a lot of routines
exist for handling unexpected situations without operator help. In fact, almost 50 percent
of the operating system code belongs to recovery and monitoring routines. The traditional
user interface to z/OS was the 3270-terminal; these were dedicated computers attached to
the mainframe.

140 K. Stav Part 2

These days the 3270-terminals are replaced by 3270 emulators running on PCs, like
IBM Personal Communications (for Windows) or x3270 (for most Unix operating systems,
including GNU/Linux). Users can interact with z/OS through the 3270 interface, using
Time Share Option (TSO), or Interactive Systems Productivity Facility (ISPF). TSO is a
command line environment for executing programs, editing, printing, managing data and
monitoring the system. TSO is rarely used any more, and largely replaced by the more user
friendly and many driven ISPF.

In Unix, users have traditionally interacted with the systems through a command line
interpreter called a shell. This is still the most powerful interface to many system services,
though today Graphical User Interfaces (GUI) are growing in popularity for many tasks.
A shell is command driven, and the original shell was the Bourne shell ‘sh’. The shell is
still the primary user interface for Unix administration, but most Unix systems offers a
GUI, which makes the interaction with the operating system more user friendly for novice
users. This is why many regards Unix systems as more user friendly than z/OS.

4. Files and data-sets

The differences in system data organization deserve an explanation. For a person who is
used to the Unix-way of organizing data, the way z/OS does it may seem a little strange. In
the Unix-world, file data are stored in a sequential byte oriented manner. z/OS organizes
data in data-sets, which are record oriented. A record is simply a chunk of bytes, that can
either be of a fixed or variable size. A Unix file does not have a common internal structure,
from an operating systems point of view. The file is just a sequence of bytes. The internal
structure is organized by the application or the user.

Data stored in a data-set can be organized in several ways. The most common are sequen-
tial data-sets, where the records are organized in a sequential manner. Partitioned data-set
(PDS) and Partition data-set extended (PDSE) contains a set of sequential members. Each
of these sequential members is accessed through a directory in the data-set. A PDS is also
called a library, and used among other things to store parameters, source programs and job
control language (JCL) statements. JCL will be explained later.

Virtual Storage Access Method (VSAM) is yet an access method, used to organize
records in a more flexible way than the PDS and sequential data-sets. Examples of VSAM
data-sets are Key Sequence data-sets (KSDS), Entry Sequence data-sets (ESDS), Relative
Record data-sets (RRDS) and Linear data-sets (LDS). VSAMs are used by applications,
not by users. VSAM data-sets cannot be edited manually through an ISPF editor.

The way data-sets are organized also differs from how files are organized in Unix. The
data-set structure in z/OS is not hierarchical, like Unix systems are, hence data-sets are not
stored in directories. Information of the data-sets is stored in catalogues, such as data-set
name and on which volume the data-set is stored. A system has one master catalogue, and
multiple user catalogues to organize the data-sets. Data-set names must be unique, since
no hierarchical structure (path) separates one data-set from another.

Naming conventions are also different. Names of data-sets must be in upper case, with
maximum number of characters 44. A data-set name is divided into qualifiers, sepa-
rated by periods. Each qualifier can contain maximum eight characters. The first qual-

Ch. 2 Unix and z/OS 141

ifier is called the high-level qualifier or alias, and indicates which catalogue the data-
set resides in. A member in a PDS is given in parenthesis. An example of a PDS data-
set is SYS1.PARMLIB(IEASYS00) with a member called IEASYS00. PARMLIB is the
most important library for z/OS and contains system control parameters and settings.
SYS1.PARMLIB can be compared to Unix’s etc-directory.

Here follows an example of a source file to illustrate the differences. In Unix, the file is
denoted by a file path and a file name, like this:

e /home/bob/project/source.c.

In z/OS the source code can be stored in a data-set like this:

e BOB.PROJECT.SOURCE.C.

This data-set is stored in a catalogue called BOB.

File security is managed in two completely different ways in Unix and z/OS. In Unix
systems, security attributes are tightly attached and stored with the file on the file system.
The default Unix file security scheme is robust and simple. In z/OS file security is managed
by a centralized system component, a security server. This authorized component controls
authorization and authentication for all resources in the system, including data-sets. All
access to these resources must go through this facility. The security server offers more
security control than any Unix system does, and has more fine grained security settings
than the Unix approach.

5. 1/O operations

The way 1/0 operations are managed differs a lot between z/OS and Unix systems. The
z/Architecture is tailor-built for high-throughput and performs I/O operations in a very
efficient way [6]. I/O management is offloaded to dedicated processors, called System
Assist Processors (SAP) and other specialized hardware and software components, while
general processors can concentrate on user related work in parallel. Big level-two caches,
fast data buses and many 1/0 interconnects make sure that a large number of I/O operations
can be handled simultaneously in a controlled and efficient manner.

6. Task- and resource management

The dispatcher and queue manager in z/OS is fairly sophisticated compared to most Unix
systems, and executes different workloads in parallel. Average processor utilization in z/OS
during normal operations is typically 80-100 percent, in contrast to maximum 20 percent
on a Unix system.

Job control language (JCL) [4], page 128, is a language to control and execute jobs in
z/OS. It is used to control execution order of programs, prepare and allocate resources, and
define input and output data-sets. This is an area where the mainframe differs a lot from
the Unix variants. z/OS ‘pre-allocate’ resources before programs are executed. This applies
for disk usage (data-sets), processor power and memory. In contrast, Unix systems allocate
resources dynamically during runtime. This makes z/OS very predictable, and it is possi-
ble to set specific goals for different classes of work. The dispatcher will, together with

142 K. Stav Part 2

Workload Manager (WLM), Job Entry Subsystem (JES) and Intelligent Resource Director
(IRD) do whatever necessary dynamically to meet these requirements. Setting these kinds
of goals is not possible in Unix. Because of the advanced queue and resource management
in /08, it is capable of running many different types of work in parallel in a controlled
and efficient way. In contrast, Unix systems tend to host a single or a few services per OS
instance, hence the difference in the resource utilization. While the mainframe can host
multiple databases by a single z/OS image, in the Unix world, more servers are needed,
generally one server per database or application. In the next section we will see what kind
of work z/OS and Unix typically do.

7. Platform applicability and typical workloads

Mainframes have traditionally been used mainly for hosting big databases, transaction han-
dling and for batch processing. The current line of System z mainframes has generally be-
come much more function rich and versatile compared to its predecessors. It is capable of
hosting almost any kind of services running under z/OS. Many mainframe installations to-
day run traditional CICS and IMS transactions concurrently with modern enterprise appli-
cations using J2EE technology and/or service oriented architecture (SOA) concepts. These
machines have become more and more universal, and are still being the highest ranking
alternative for security, scalability and availability.

z/OS is typically used for:

Handling large amounts of users simultaneously
Batch processing

Online transaction processing

Hosting (multiple) bigger databases

Enterprise application servers

Multiple operating systems can run in parallel on the same System z machine, with a
virtualization technology built into the hardware, which divides the hardware resources
into logical partitions (LPARs). Each LPAR is assigned a dedicated portion of the real
storage (memory), and processors and 1/O channels can be shared dynamically across the
LPARs or be dedicated to the LPARs.

Unix systems are becoming more stable and secure. Unix systems are capable of han-
dling many users in parallel, but it is typically not capable of handling the same amounts
as mainframe systems, particularly if the requests require database access.

Unix systems are typically used as:

Application servers

Hosting single databases

Powerful workstations

Internet and infrastructure services like mail, web servers, DNS and firewalls
Processing intensive workloads

Please note that the typical usage stated above are a very simplified view of both z/OS
and Unix systems. It is important to understand that the platforms are not limited to these
characteristics.

Ch. 2 Unix and z/OS 143

Unix systems may outperform the mainframe on compute intensive work, like weather
forecasting, solving complex mathematical equations, etc., where raw processor power is
the single most important factor. These machines are often referred to as ‘supercomputers’.
Linux is a popular operating system in such environments because of its lightweight kernel,
and flexible and modular design. The fact that GNU/Linux is open source software makes
it possible to customize the kernel for almost whatever purpose, thus it is very popular in
academic and research environments. Linux is widely used in commercial environments as
well. The fact that Linux is cost effective, stable and portable makes it popular as a server
operating system, also on the System z servers. Read more about Linux on the mainframe
in the following section.

8. Linux on the mainframe

In today’s market, Linux is the fastest growing server operating system, and one of Linux’s
big strengths is platform interdependency. It runs on all kinds of processors, from small em-
bedded computers to big mainframe installations. Linux can run on the System z servers
natively in an LPAR or under z/VM. z/VM is a mainframe operating system that virtual-
izes the z/Architecture. It provides a very sophisticated virtualization technology that has
evolved for more than 35 years.

Linux makes the System z hardware platform an alternative to small distributed servers,
and combines the strengths of Linux with the high availability and scalability characteris-
tics of the z/Architecture hardware. Linux complement z/OS in supporting diverse work-
load on the same physical box; it gives more choices for the z platform.

Some of the benefits of running Linux on System z are better hardware utilization and
infrastructure simplification. A System z server is capable of running hundreds of Linux
images simultaneously. z/VM makes it possible to set up virtual LANs and virtual network
switches between the guest operating systems, and data transfer across these virtual net-
work interconnects is as fast as moving data from one place in memory to another. This
kind of IP connectivity has a major performance gain compared to data transportation over
a physical wire, and this is especially beneficial in infrastructures where the applications
are hosted on the same engine as the databases, which very often applies.

9. The future of the mainframe

The history of the mainframe goes back over 40 years, more than any other computer
platform. The current line of System z servers has evolved from the System 360 in the
mid sixties. The mainframes dominated the IT industry during the 1970s and the 1980s. In
the late 1980s and the 1990s cheap microprocessors-computers and distributed computing
became increasingly popular. In fact, some people predicted the mainframe’s death, when
they saw more and more Unix systems in IT infrastructures throughout the 1990s. But this
prediction failed; the mainframe is still a strong platform and the reasons are evident.
IBM invests considerable resources in future development and innovation in the Sys-
tem z, both on hardware-, os- and middleware level. In addition to still improve mainframe

146 K. Srav Part 2
Table 2

Continued

Mainframe Unix Comments

EBCDIC ASCII Native text encoding standard

Processing unit (PU)

SYS1.PARMLIB
(including others)

Assembler, PL/S

Record oriented
(Blocks of data)

Control blocks stored in each
address space, called

the ‘common area’ and consist
of System Queue Area (SQA),

Central Processing Unit

letc/

Assembler, C

Byte oriented
(Streams of data)

/proc/ (represented as virtual files)

used

Default repository for system
wide configurations

Default kernel development
language

Traditional data format

on file system level [1, p. 130]

Control and information
repository for the kernel,
where important kernel/
nucleus structures are held

Link Pack Area (LPA) and during runtime

Common Area (CSA)

Supervisor call (SVC) System call User processes invoking
operating system services,
which often run in privileged
mode

SDSF ps, kill Program management

ISPF editor emacs, ed, vi, sed ... Text editors

References

[1] M. Ebbers et al., Introduction to the New Mainframe: z/OS Basics, IBM (2006).
[2] E.Irv, The Architecture of Computer Hardware and System Software, An Information Technology Approach,

Wiley (2000).

[3] D.M. Ritchie and K. Thompson, The Unix time-sharing system, Communications of the ACM 17 (7) (1974).
[4] P.Rogers et al., Abcs of Zos system programming, IBM (2003).
[5] K. Stav, Clustering of servers, a comparison of the different platform implementations, University of Oslo

(2005).

[6] D.J. Stigliani et al., IBM eserver z900 I/O Subsystem, 40, IBM (2002).

7] z/Architecture Principles of Operation, (5), IBM (2005).

-23-

Email

C.PJ. Koymamsl . J. Scheerder?

linfarmati(.'s Institute, University of Amsterdam, Kruislaan 403, 1098 SJ, Amsterdam, The Netherlands
E-mail: ckoymans @science.uva.nl

2E-mail: Js@xsdall.nl

It is surprisingly hard to write an electronic mail system without messing up.
Wietse Venema

1. Introduction

This chapter of the handbook deals with electronic mail, mostly in the familiar form com-
monly found on the Internet. Email is discussed in terms of its architecture, the protocols
that constitute it, related technology, and the surrounding problems of both technologi-
cal and non-technological nature. Where appropriate other forms of electronic mail are
addressed.

2. Mail history

As one of the oldest and most valuable applications of computers and internetworking, the
now 40 years old electronic mail has a rich history which will be described in the following
subsections.

HANDBOOK OF NETWORK AND SYSTEM ADMINISTRATION
Edited by Jan Bergstra and Mark Burgess
© 2007 Elsevier B.V. All rights reserved

147

148 C.P.J. Koymans, J. Scheerder Part 2
2.1. Pre-Internet mail

Contrary to popular belief, email! did not arrive on the scene with the Internet. Email pre-
dates the Internet, and even the ARPANET. The first email system, a messaging system
for multiple users on a single time-sharing mainframe system, MITs Compatible Time-
Sharing System, was deployed in 1965. Email message exchange between distinct com-
puters by means of a computer network started in 1971. RFC 196 [47], by Dick Watson,
dated July 1971, already described a (probably never implemented) email system, while
Ray Tomlinson sent the first actual network email message in late 1971. The vehicle for
these early email exchanges was ARPANET where messages piggybacked on the already
available File Transfer Protocol (FTP). Email was not yet a first-class-citizen, but it was a
very powerful mechanism for communication.
Quoting Ray Tomlinson [43] on the infancy of network email:

The early uses were not terribly different from the current uses: The exceptions are that there was
only plain text in the messages and there was no spam.

2.2. Internet mail’s predecessors: UUCP, BITNET and DECnet

The early 1970s saw the birth and procreation of Unix. As an asynchronous way of
loosely interconnecting otherwise unconnected computers, the Unix to Unix Copy Pro-
tocol (UUCP) was invented in 1978 at Bell Labs. UUCP provides data exchange between
computers on the basis of ad-hoc connectivity, such as direct dial-up connections between
computer systems.

Based upon UUCP, store-and-forward protocols for message exchange and message
routing were designed and globally implemented. This included not only (or even pri-
marily) email messaging: UUCPs first-class citizen, one could say, was in fact not email,
but Usenet News. This is the email and news as we know them today, although both have
long since transitioned to data transfer using Internet transmission protocols rather than
UUCP.

Similar to UUCP, the ‘Because It’'s Time Network’ (BITNET) interconnected IBM
mainframes in academia, and similar store-and-forward message exchange services were
started on BITNET in 1981.

Unlike UUCP, and much more like today’s Internet, the then prevalent computer com-
pany Digital Equipment Corporation offered inter-computer network connectivity for its
own computers by the name of DECnet, which started in 1975. DECnet included full mes-
sage exchange and message routing facilities.

2.3. The start of Internet mail

In the early 1980s, the Internet mail infrastructure was created. Most important here were
the efforts made by Postel and colleagues in creating SMTP, the Simple Mail Transfer

Iwe follow Knuth in writing email instead of e-mail [26].

Ch. 3 Email 149

Protocol, within the IETFE. In 1982, while the ARPANET was still transitioning from the
old NCP protocol to TCP/IP, the first widespread implementation of mail over SMTP was
implemented by Eric Allman. Sendmail, the followup of delivermail, was shipped with
4.1¢ BSD Unix, which promoted email to a first-class citizen on the then emerging TCP/IP-
based Internet.

At that time, several message exchange networks existed already. In order to cope with
all these different networks and addressing systems, an elaborate system for rewriting was
introduced into sendmail. This powerful rewrite engine is still present in modern versions
of sendmail, although there is a tendency to replace it by table-driven lookups in modern
MTAs (see Section 3.3.2) like postfix, gmail and the upcoming sendmail X.

A gateway between two messaging systems is a system that can accept and send mes-
sages for both messaging systems, and can direct messages between them, manipulating
them as needed. A main Internet mail relay in these early days may very well have handled
Internet mail, UUCP mail, BITNET mail and DECnet mail, gatewaying between all those.
Due to differences in several details, like addressing, this involved a lot of rewriting magic,
which sendmail handles particularly well.

From now on, when we mention email (or Internet mail), we mean SMTP-based mail
running over TCP/IP.

3. Mail architecture

In this section we will discuss the main architectural components for an email infrastruc-
ture. These components are addresses, protocols, agents and message formats.

3.1. Mail addresses

During the development of mail, several addressing schemes have been used. UUCP
used full path addresses like the famous ‘bang path’ mcvax!moskvax!kremvax!
chernenko used by Piet Beertema in his 1984 Usenet hoax, archived by Google [2].
DECnet addresses took the form host::user, where host was supposed to be unique
throughout DECnet. Several other addressing schemes existed for local or private net-
works.

The oldest mail address format was the one used in ARPANET, which was later also
used in BITNET, being user@host. Again, this presupposes a flat namespace, where every
host throughout ARPANET had a unique name. In the beginning that was reasonable, but
with the explosive growth of the Internet no longer maintainable. Hence a new, hierarchical
scheme was desperately needed.

3.1.1. Mail hierarchy and DNS The solution to the problem of the large namespace came
with the invention of DNS, the Domain Name System, in 1983. The domain name system
offers a distributed database, where administration of parts of the hierarchically organized

150 C.P.J. Koymans, J. Scheerder Part 2

namespace can be delegated to autonomous servers, which have authority over the dele-
gated subtree. The labels used for the different layers of the hierarchy are separated by
dots. Each layer only needs to check that the labels used for its own sublayers are locally
unique. Email addresses now take the form user@host.some.domain, where an arbitrary
number of layers is allowed after the @-sign.

Another extension was added to DNS in 1986: MX records. Traditionally, mail has al-
ways used a store-and-forward mechanism to route and deliver mail. There is no need for
a direct connection between the sending machine and the machine where the mail should
finally be delivered. MX records provide an abstraction layer for email addresses. For in-
stance mail to user@some.domain could be instructed towards the next hop by way of
an MX record, for example pointing to relay.some.domain. This relaying machine could
accept and store the mail in order to forward it on to its, possible final, destination.

It is even possible to forward to non-Internet destinations like machines in the UUCP net-
work. This way users on machines that are not connected to the Internet can have Internet-
style mail addresses. This option should not be confused with the use of pseudo domains
in addresses like user@host. UUCP. The UUCP top level domain does not exist in DNS,
and only lives inside rewrite rules of sendmail or similar programs.

It is an established ‘best practice’ to make use of DNSs possibilities to create a hier-
archical layer whenever this is possible within an organisation. System engineers should
arguably also try to mimic this same hierarchy when the email infrastructure is set up, even
in the case of a centralised administration. This results in more flexibility, scalability and
the option to reorganise the infrastructure more easily or treat certain groups in special
ways.

3.2. Mail protocols

Now that addressing has been taken care of, we can start looking at the protocols used for
mail transport and pickup. As already mentioned, email became a first-class citizen only
after the specification of SMTP in August 1982 in RFC 821 [37]. This protocol is used
for mail transport. Later on protocols like POP?> and IMAP? were introduced to facilitate a
network based interaction with mail readers.

3.2.1. (Extended) Simple Mail Transfer Protocol SMTP was indeed a very simple proto-
col intended for mail transport. It lacked some of the more advanced features of the X.400
message service. In the original specification only a few commands were defined.
The most important commands are
e The Hello command (HELO) is used to introduce the sending SMTP client to the
receiving SMTP server. In the response to this command the server introduces itself
to the client.

21’\’[05tly version 3. We will write POP instead of POP3.
3M0slly version 4rev]. We will write IMAP instead of IMAP4rev].

Ch. 3 Email 153

3.3.2. Mail Transport Agents The heart of the email infrastructure is formed by the mail
transport agents,” that take care of mail routing (see Section 4) and mail transport across
the Internet. MTAs talk SMTP to each other to accomplish this task. MTAs need to under-
stand email addressing formats, might do gatewaying to non-Internet mail systems, must
implement a queueing system for mail in transit, handle bounces and other error conditions
and take care of forwarding, aliases and special delivery to programs or mailing lists. It is
important that MTAs implement some security mechanism and/or access control in order
to thwart abuse, see Sections 6 and 8.1. At the ingress MTAs talk to MUAS (or sometimes
MSAs) and at the egress they deliver mail to MDAs.

Examples of MTAs are Sendmail, Postfix, gmail and Exim. More on these mail servers
can be found in Section 5.1.

3.3.3. Mail Submission Agents Not all mail user agents are able to inject email into the
system in a completely satisfactory way. For instance, domains used in the SMTP-envelope
should be fully qualified domain names. And also the syntax of header fields inside the
message from the SMTP-DATA transfer might need some extra attention. This is where
the mail submission agent plays its role, as an intermediate step between MUA and MTA.
One often sees that this MSA-functionality is built into the mail transfer agent itself.
More on the specific tasks of mail submission agents can be found in RFC 2476 [16].

3.3.4. Mail Delivery Agents When an email has reached its final destination, it should be
put in the user’s incoming mailbox, often called ‘INBOX’. Traditionally this was a plain file
in mbox format (see Section 3.4), but mailbox storage can also be implemented differently,
e.g., as mail directories or mail databases. It is up to the mail delivery agent to perform the
task of storing incoming mail in a permanent place for subsequent access by the user. An
MDA can operate as simple as the old /bin/mail-program that just appends incoming
mail to the user’s INBOX or as sophisticated as the procmail-program that exercises all
kinds of operations like user filtering, header manipulation or forwarding on the incoming
mail before final delivery.

LMTP, as defined in RFC 2033 [32], is a protocol designed for the purpose of passing
messages by a mail delivery system to the final delivery agent. This final delivery agent
may run on the local host, but it can also run on a remote host. LMTP can be viewed as a
simplification of the SMTP protocol, with the queueing mechanism taken out. Using it pro-
vides a little extra functionality, since ESMTP extensions can be catered for. Additionally,
LMTP can be used to abstract from actual mail delivery in such a way that mail accep-
tance and mail delivery become many-to-many relations instead of one-to-one relations,
thus offering virtually boundless scalability. It is supported by the main MTAs mentioned
before.

3.3.5. Mail Access Agents After a mail message has been sent by a user, transported by
MTAs and delivered by an MDA, it waits for the intended recipient to access his email.
Most of the time the recipient’s user agent does not have direct access to the mail store
and contacts a mail access agent to interact with the message store on its behalf. The

5Sometimes ‘transport agents’ are referred to as ‘transfer agents’.

154 C.P.J. Koymans, J. Scheerder Part 2

MAA talks with the user agent using an access protocol like POP or IMAP, as discussed in
Section 3.2.2.
Examples of MAAs are Courier, Cyrus, UW IMAP, Dovecot and Qpopper.

3.3.6. Mail Retrieval Agents Sometimes it is not a user agent that directly (or indirectly
via an MAA) checks for new incoming mail, but an automated agent that works on behalf
of the user, called a mail retrieval agent. The MRA accesses the mail store without explicit
user intervention, using an MAA when needed. After local processing it might reinject
the mail into the mail system for further routing and processing. It is often used to access
secondary mailboxes users might have on different servers in order to integrate them with
the primary mailbox.

As can be seen in Fig. 1, as illustrated with the dashed lines, this might lead to several
iterations of the mail cycle, hopefully not creating non-terminating loops. Typical examples
of MRAs are fetchmail and getmail.

3.4. Mail message formats

A companion document to RFC 2821 on SMTP is RFC 2822 [39], titled ‘Internet Message
Format’.® In this specification the format of the actual message itself, which is transferred
during the SMTP DATA phase, is defined. The first part of a message consists of a number
of mail header lines, followed by an empty line, followed by the message body. Lines
consist of US-ASCII (1-127) characters and are terminated by the combination CRLF of a
carriage return followed by a line feed, as is prescribed customary in text-oriented Internet
protocols. Lines are allowed to contain up to 998 characters, but it is good practice to limit
lines to 78 characters in order for the mail to be readible on 80 character wide terminal
displays.

3.4.1. Mail headers Each header line consists of a field name (made out of printable
ASCII characters (33-126)7), a colon(*:’), a space character (‘_,"), and the field body, in
this order. To keep header lines readable they may be ‘folded’ over separate physical lines
by preceding existing whitespace in the field body with a linebreak, effectively creating
continuation lines that start with whitespace. The body of a message is essentially free-
format, although the MIME specification introduces new subformats.

Mail headers contain important meta-information for the content of the message. The
headers contain information like the date of mail composition (Date:), originator fields
like author (From:) and actual sender (Sender:), destination address fields like recipient
(To:) and carbon copy recipients (Cc:), identification fields like a unique message identi-
fier (Message-1D:) and referencing information (In-Reply-To:, References:), informational
fields like subject (Subject:), trace fields which contain parts of the SMTP-envelope like in-
termediate MTAs (Received:) and return envelope-sender address (Return-Path:), but also
a whole range of (optional) fields added by user agent or filtering software.

OThis title is a little bit more compact than the title of its predecessor, RFC 822, being ‘Standard for the format
of ARPA Internet text messages’, but it still does not explicitly mention Mail.
TWith the exception of 58, which represents a colon.

Ch. 3 Email 157

Another important purpose of the alias mechanism is the ability to deliver email to a
program instead of storing it in the mail store. For security reasons it is forbidden to mail
directly to programs, but the administrator of a mail domain can enable this possibility
indirectly by using an alias, for example to support mailing lists, see Section 4.3.

4.3. Mailing lists

Mailing lists are used to expand one email address into a lot of email addresses in order to
reach a community of users interested in the same topic. It is possible to implement this
behaviour by using the alias mechanism just described. In order to have more flexibility,
to be able to rewrite or extend the mail message, to be able to archive messages and so
on, an implementation often uses the alias file to deliver the email to a program that takes
the responsibility of expanding the mailing list address into the list of subscribers to the
list while also performing additional administrative tasks. With very large mailing lists,
a subscriber is often itself the address of a mailing list exploder. An important property
of properly configured mailing lists is that it replaces the original envelope sender address
with a predetermined envelope sender address of the mailing list owner, this in contrast
with what happens during normal exploding or forwarding. The idea here is that error
messages are sent to the mailing list owner in stead of to the mail originator, because the
mailing list owner is the one able to act upon these errors.

4.4. Mail relaying

If a machine accepts incoming SMTP mail and forwards it through an outgoing SMTP
connection to another MTA, this machine is called a relay. Within organisations this mech-
anism is often used to transport mail from or to a central machine, which operates as the
main mail relay for a certain domain. Mail routing between domains is mostly taken care
of in one hop, but sometimes the MX mechanism supplies a fallback mechanism for mail
delivery in case direct delivery is (temporarily) not possible. This is an intended and useful
way of relaying.

If a machine accepts arbitrary incoming SMTP connections with envelope recipients to
arbitrary other domains, this machine is called an ‘open relay’. An open relay can easily
be abused by spammers and other abusers to inject large volumes of unwanted mail. More
about this can be read in Section 8.1 on mail abuse.

4.5. Virtual domains

A mail server can be configured to accept email not only for its principal domain, but also
for many other domains. These domains are called virtual domains. The mechanism by
which mail arrives at the correct server is again the MX mechanism. What happens after
that depends on the kind of virtual hosting. One possibility is to map virtual mail addresses
to addresses in the real principal domain or even in foreign domains by making use of

158 C.P.J. Koymans, J. Scheerder Part 2

some virtual domain table lookup. Another possibility is to have real separate mail stores
for your virtual domains, but this requires a virtual domain aware POP or IMAP server to
make the mail store accessible on a per domain basis.

4.6. Delivery status notification

RFCs 1891-1894 [30,31,44,45] define an extension to SMTP (see Section 3.2.1) that is
meant to be used as a more concise and complete way of generating success and failure
messages related to mail transport and delivery. Mail clients can ask per recipient for a
combination of notifications of success, failure or delay, while specifying whether the full
message or only the message headers should be returned.

4.7. Mail error notification

An important aspect of mail handling is error notification in case something prohibits nor-
mal delivery of email. Because error notification uses the mail infrastructure itself, great
care has to be taken that no mailing loops arise, see also Section 4.9. Many error conditions
exist, ranging from syntax errors in commands or parameters to problems with delivery like
non-existing mailboxes, storage limit excess, or authorisation errors. In most cases errors
are processed by the sending mail transport agent, which generates a (new) bounce email
addressed towards the envelope sender of the email. Every mail receiving domain is re-
quired to have a ‘postmaster’ mailbox or alias which ultimately should be read by a human
responsible for fixing errors and problems with the mail system. The postmaster in charge
of the sending mail transport agent gets a copy of this bounce message with the mail body
of the original mail suppressed.

In case the specially constructed error message generates a bounce itself, a so-called
‘double bounce’, this double bounce should be delivered to a local postmaster able to
resolve any configuration errors. Triple bounces should never occur.

In sending bounces a special convention is used for the envelope sender address, be-
ing <>. This special address can not occur as a normal recipient address, but should always
be accepted as a valid sender address.

4.8. Mail address rewriting

In the course of mail processing it is often the case that addresses, sender and recipient,
envelope and header, have to be rewritten. This is evident for envelope recipient addresses
in case of alias expansion or forwarding. This is also evident for calculating return ad-
dresses for envelope senders. A need for rewriting header addresses occurs when domains
want to rewrite addresses into preferred canonical forms. Often these rewrites can be im-
plemented with the help of table lookups. The pre-X versions of sendmail have a very
powerful rewriting engine based on regular-expression-like pattern matching on tokenised
address strings. The art of crafting one’s own rewriting rulesets and rules, as practised by

Ch. 3 Email 159

sendmail magicians, has been dying slowly and steadily though, and these days sendmail’s
configuration files are usually generated by m4-based macros from high level option spec-
ifications. Additionally, the need for a general rewriting engine for address formats has
largely disappeared because of standardisation on Internet style mail addressing.

4.8.1. Masquerading Masquerading is a special form of address rewriting that is applied
in order to hide the specific details of the mail infrastructure of an organisation for outgoing
and incoming mail. At the boundary of a mail domain any mail addresses referring to
internal hosts or domains in outgoing mail are rewritten to refer to a top level domain only.
Incoming mail, addressed to users at this unified top level domain, can be routed to the
specific internal destinations by using rewriting or table lookup.

4.8.2. Canonical mapping Canonical mapping is a special form of rewriting of the lo-
cal part of a mail address in order to format these local parts according to conventions an
organisation wishes to use in the outside world. In most cases it is used to rewrite a login
account name to a FirstName.Surname or Initials.Surname convention. Canonical map-
ping is often combined with masquerading to completely transform internal addresses to
addresses exposed to the outside world at the boundary mail relays.

For any canonicalisation of addresses care needs to be taken to avoid potential conflicts.
The larger the user base, the more potential for conflict. Furthermore, the canonicalisation
scheme is important: the lesser distinguishing characteristics appear in the canonical form,
the more likely a clash will be. For example, FirstName.Surname can be expected to gen-
erate fewer clashes than Initials.Surname, since two persons sharing a surname might very
well have identical initials, even though their first names differ. John and Jane Doe have
unique canonical addresses in the former canonicalisation scheme, but not in the latter.

Canonical mapping almost always uses table lookups, because there is usually no regular
pattern in the substitution.

4.9. Mail loops

One of the dangers that mail systems have to be careful about is the occurrence of a mailing
loop. Most mailing loops are generated by automailers, be it bouncers, vacation programs
or user scripts. There is no foolproof system to avoid mailing loops, but several precautions
can be taken to avoid them. Let us first look at some scenarios.

4.9.1. Mail loop scenarios

SCENARIO 1. The classic example of a mailing loop is created when a user has two email
addresses and forwards email from the first to the second address and vice versa. Some
hop limit count will finally bounce the message to the original sender. If the user not only
forwards the mail but also delivers a local copy, multiple copies of the email, equal to the
hop count, will be delivered to the combined addresses.

162 C.P.J. Koymans, J. Scheerder Part 2

5.1.2. Postfix, gmail and Exim Both postfix and gqmail are MTAs that aim for a com-
pletely different architecture from sendmail’s. A central notion in both software packages
is that of a queue manager that assigns work coming from a number of queues, for incom-
ing, outgoing, deferred or erroneous messages, to a number of processing agents, for local
or remote delivery and for address rewriting and lookup. This architecture accounts for the
modularity and scalability of mail processing these MTAs are known for.

Starting in 1995 Philip Hazel’s Exim, based on ideas from an earlier program called
Smail-3, was developed as a stand-in replacement for sendmail. Its properties are a more
user friendly configuration than sendmail, a good security record, extensive facilities for
checking incoming mail and extendability.

5.2. Mail clients

Email clients abound. We only discuss the different classes of email clients, with a few ex-
amples. An obvious distinction can be made between clients with a graphical user interface
and clients with a terminal-based text interface. A more important distinction is whether
the client is native (speaking IMAP, POP and/or SMTP itself) or is in fact accessing a
proxy, using for instance a web interface, to do the mail handling.

5.2.1. Native clients Examples in this category are Eudora, Mozilla Thunderbird, Evo-
lution and KMail as graphical clients and mutt or pine as text based clients. Microsoft
Outlook is also a messaging client, using something similar, but not quite identical, to
standard Internet mail.

Graphical clients are often considered easier to use, but have also given rise to a habit
of sending HTML-based mail instead of plain text mail, even in situations where plain
text is the essential content of the message, unnecessarily complicating the task of reading,
understanding and replying to email messages.

Being able to use a terminal based client offers the capability to access your email in
situations where only minimal support is available and a graphical client is not present.
Email clients like mutt are quite advanced and support access to your mail via IMAP,
securely if needed, and with support for content encryption via PGP, GnuPG or S/MIME,
see also Section 6.

5.2.2. Proxy clients: Webmail In certain situations no access is available to a graphical
mail client and also not to terminal emulation and a text mail client. One example of this
is most Internet cafes. Already in 1995 a startup called Hotmail, acquired in 1998 by Mi-
crosoft, was offering email services through a browser interface as a first step to make the
Internet experience browser centric, leading many people into the belief that the Internet
and the Web are synonyms.

The almost universal availability of browser access is the main advantage of webmail.
Disadvantages are that offline preparation of email is relatively clumsy, many commercial
providers of webmail offer rather limited mail storage quota and organisation of mail on
a local hard drive is not possible. Webmail, at this point, is no universal replacement for a
true email client.

Ch. 3 Email 163

One of the more popular, open and extensive webmail server packages is SquirrelMail
[6].

5.2.3. User filtering Whatever email client one is using, an important feature is the abil-
ity to do user filtering. Server side filtering is certainly an option, made available to users
on an opt-in basis, but most flexibility is retained by using client side filtering. Marking
messages as belonging to a certain category is a server side feature that helps in client side
filtering. Filtering is used to organise mail into folders, to recognize and act upon spam,
junk mail or mail containing malware and to auto-reply to certain kinds of messages, like
when on vacation.

On Unix systems mail filtering is often implemented as a separate program acting on
behalf of the mail recipient. Procmail is a well-known and advanced mail filter and delivery
agent. Email clients often have built-in filtering rules for detecting junk email, most of them
based on Bayesian filtering, as pioneered by SpamCop [17] and Microsoft Research [28].
More on spam and junk mail in Section 8.1.1.

Sieve [42] is a mail filtering language designed for filtering email messages at final
delivery time. It is designed to be implementable on either a mail client or mail server.
Dovecot’s mail delivery agent, LDA, implements it, as does the Cyrus IMAP server. In the
past, the Mulberry MUA allowed users to create user-level Sieve filters in such a way that
the resulting filters could be pushed to the server, thus combining direct user manipulation
of mail filters with actual delivery-time mail filtering.

6. Mail security

Pondering the Tomlinson quote (Section 2) one could say that email in the early days did
not need security because it was used in an open and collaborative environment. Times
have changed. Malware and other nuisances have substantially turned email’s playground
more hostile, so it needs to exercise caution too.

When discussing security five aspects are often distinguished: authentication, authoriza-
tion, integrity, confidentiality and non-repudiation (accountability).

In this section we will look at mail security from the angles of transport protection by
way of encrypted and (asymmetrically) authenticated connections and content protection
by way of encryption and signing of message bodies.

6.1. Transport security

When transporting email over the Internet via SMTP or accessing an MAA to collect email
by IMAP or POP, it would be nice to know that the client is talking to the correct, intended
mail server: typically, one wants to disclose authentication information to the proper server
only, not to just any system that (maliciously?) tries to assume its identity. On the other
hand, a server may wish to know what client it is talking to. Differently put: the client and
server may need to certify each others authenticity.

164 C.P.J. Koymans, J. Scheerder Part 2

For IMAP and POP it is essential to establish the user’s identity prior to granting access
to the user’s mailbox, that is to authenticate the user prior to authorizing access. For SMTP,
client authentication might help against spam and other nuisances. Without SMTP authen-
tication, anyone can inject any message under any identity, so any message can be sent by
anyone. Without message authenticity there is no non-repudiation.

Traditionally authentication is performed using a plain text username and password that
can easily be intercepted in transit. The risks of spoofing and password sniffing make tradi-
tional authentication (and, therefore, authorization) highly vulnerable for potential abuse.

However, the risks do not stop there. In fact, it is not just the authentication details of
a traditional SMTP, POP or IMAP session that can easily be ‘sniffed’. The full details,
including the potentially confidential message content, are open to prying eyes this way:
confidentiality is poor. Additionally, the sessions may even be intercepted and tampered
with, putting data integrity at risk.

In the web world mechanisms for resolving these issues have existed since Netscape
specified its Secure Socket Layer. Using certificates a server can prove its identity to clients
and, if asked for, clients can prove their identity with certificates of their own. An encryp-
tion key is negotiated to make the connection confidential. This has the extra benefit of pro-
tecting a username/password protocol for authentication from snooping. This web world
mechanism can also easily be applied to mail protocols.

6.1.1. SSL, TLS and STARTTLS SSL (Secure Socket Layer) has been invented by
Netscape for use in e-business applications on the Web. SSL version 3.0 has later been
adopted by the IETF and renamed, with minor modifications, to TLS (Transport Layer Se-
curity) version 1.0 in 1999 [10]. It provides mechanisms for host identity verification as
well as data encryption in order to prevent spoofing, sniffing and tampering. This mech-
anism was used to protect Hyper Text Transfer Protocol (HTTP) transmissions, turning it
into https, secure http, with default TCP port 443 instead of the usual port 80.

These same techniques can also be applied to IMAP and POP, leading to secure imap
(imaps; default port 993 instead of 143) and secure pop (pop3s; default port 995 instead
of 110). Somehow, understandably so considering Section 6.3, the same mechanism for
SMTP, secure smtp (smtps; default port 465 instead of 25) is hardly used and was never
formally acknowledged. IANA [20] even lists ‘URL Rendesvous Directory for SSM’ (urd)
as using 465/tcp.

An alternative mechanism, STARTTLS [18] (an SMTP service extension), is used to
‘upgrade’ an existing, unprotected TCP connection to a TLS-based, protected TCP con-
nection. STARTTLS is also available in many IMAP and POP implementations, usually
in the form of an advertised capacity, with ‘sensitive’ features, such as authentication,
becoming available only after successfully establishing encryption for the existing con-
nection first. That way, only the standard SMTP port needs to be assigned and published,
while still offering the facility of network transport encryption. No dedicated port to pro-
vide the encrypted variant for SMTP or other protocols is needed when using STARTTLS.
A special port is assigned by IANA (submission 587/tcp) for connections to MSAs where
authentication via a secure connection is preferred. Most mail systems still use port 25 for
submission and transport without any protection or authentication.

Ch. 3 Email 165

6.2. Authentication frameworks

For IMAP and POP, after a secure connection is established between client and server, the
usual builtin commands specifying user and password can be used safely. SMTP does not
have a standard authentication command. In RFC 2554 [34] an ‘SMTP Service Extension
for Authentication’ was defined, using the ‘AUTH’ command which is based on the ‘Sim-
ple Authentication and Security Layer’ (SASL [33]) mechanism. SASL enables several
authentication schemes, like Kerberos, One Time Passwords and GSSAPI-based schemes,
and is currently widely used.

6.3. Mail content security

Another matter is when users feel the urge to protect the content of their mail messages
from prying eyes.

When that need arises, one should take notice of the fact that the very store-and-forward
nature of the SMTP protocol itself acts contrary. Even with full transport security at the
network level for an SMTP transaction between two hosts, the messages will still, typically,
be stored in order to be queued for further forwarding. This process will repeat itself for
any ‘hop’ on the way to the final message destination. Any host on this delivery path gets
the full message, without protection. Any mail host kan keep copies of the messages it
passes on, and it can even change the messages when doing so.

When confidentiality, integrity and/or authenticity of the message itself is important, the
MUA therefore needs to apply some extra measures in order to encrypt and/or sign the
message content, using MIME to deliver the encrypted message and/or the signature. The
two most prominent standards implementing privacy enhanced mail, not to be confused
with the first ‘secure email standard’ called Privacy-Enhanced Mail (PEM [1,21,22,27]),
are OpenPGP/MIME and S/MIME. Another standard is MIME Object Security Standard
(MOSS [8]). For an overview of the different mechanisms and the pitfalls of the simple
sign-&-encrypt habit see [9].

6.3.1. PGP, GnuPG and OpenPGP PGP stands for ‘Pretty Good Privacy’ and was devel-
oped by Phil Zimmermann to provide privacy and authentication of documents in general.
Many subtly different versions of PGP have been released during the years. This led to
the development of the OpenPGP [5] standard and an open source implementation called
the Gnu Privacy Guard (GnuPG [25]). Both PGP and GnuPG have been used to encrypt
and sign messages inline. Later the MIME standard was used to separate the content of the
mail message from the signature or to convey an ASClI-armored encrypted message [11].
MIME types ‘multipart/signed’ and ‘multipart/encrypted’ are used for this purpose.

The trust model proposed by OpenPGP is that of a web of trust. There is no centralised
hierarchy of authorities, but a loosely coupled system of users signing other user’s public
keys. Keyservers collect these public keys with attached signatures in order to distribute
these on demand to MUAs who need them to send secure email.

166 C.P.J. Koymans, J. Scheerder Part 2

6.3.2. S/MIME S/MIME stands for Secure/MIME [38], which describes how to add
cryptographic signature and encryption services to MIME data. It is based on the ‘Crypto-
graphic Message Syntax’ (CMS [19]), which is derived from PKCS #7 as specified by RSA
Laboratories. S/MIME uses ‘application/pkcs7-mime’ and ‘application/pkcs7-signature’
as MIME types for encryption and signing.

The trust model used in S/MIME is based on X.509 certificates and a centralised hierar-
chy of Certification Authorities.

7. Relations to other technologies

On the Internet several other technologies exist that have an intimate relationship with
email, or that serve a similar purpose.

7.1. Directory services

Email cannot exist without proper functioning directory services. A crucial directory ser-
vice used by email is DNS, without which no Internet application could survive. Specific
use of DNS is made by mail transport agents by looking at MX records to find the next hop
mail server.

Directory services are needed by mail upon local delivery as well. When accepting a
message for a purported local user, the mail system has to check whether that user ex-
ists. Traditionally, the mail system consulted a local user database for this purpose. Other
directory service mechanisms, such as LDAP, are gaining importance though.

Email software may additionally use directory services (again, typically LDAP) for au-
thentication, routing, aliasing or forwarding.

7.2. Usenet news

Email is designed as a medium for interpersonal message exchange: one on one, basically.
Usenet news, or simply news, is a similar medium, with the fundamental difference that
messages are directed to a collective rather than a person. News articles are very similar
in format and structure to email messages. In fact, one and the same message format RFC
applies to both email and news messages. However, instead of sent to a person’s email
address, these articles are posted to a newsgroup. Anyone who is interested can fetch the
article from any newsserver that carries the newsgroup in question.

In addition to the extensive similarities between email messages and news articles,
email and news share more common ground. Both are based on asynchronous message
exchange technologies, using a store-and-forward approach for message transport. With
this much similarity, the existence of gateways between email and news, spanning both
worlds, should not be too surprising.

Ch. 3 Email 169

8.1.4. Filtering Spam and worms confront the user with unwanted, potentially even
dangerous, messages. To help guard the user, filtering technology can be applied. Pop-
ular packages for the detection of spam and worm/virus/trojan/rootkit attachments are
SpamAssassin and ClamAYV, respectively.

In addition to common user annoyances, corporations may very well impose policy re-
strictions on email use and apply mail filters to enforce these policies. This way, the use of
mail attachments, for example, may be banned altogether or restricted to certain file types,
or files up to a certain maximum size.

Filtering can be invasive, and when applied naively prove countereffective. For example,
a virus scanner may refuse encrypted mail messages. On the one hand, that may be a
good thing. Nothing goes through unless checked. On the other hand, this policy may
unintentionally give rise to the dissemination of confidential information. If the only way
to send information is to do it insecurely, then people will be forced to do so.

8.1.5. Black- and whitelisting Immediate pass- or block-filtering based upon a few sim-
ple criteria has become increasingly popular recently. The basic idea here is that some
obvious particular message property is looked up in a list. When the particular property is
found in the list, that indicates either that the message is undesirable, in which case the list
in question is known as a blacklist, or that the message is acceptable, in which case the list
is called a whitelist.

Properties typically used in black- and whitelisting are the envelope sender, the envelope
recipient or the IP address of the host that’s offering the message.

Black- and whitelist lookups are often, but not necessarily, queries of an external re-
source. Typically, these queries are implemented as DNS lookups, where a non-null re-
sponse indicates a positive match. This is commonly referred to as real-time black- and
whitelisting. Many real-time black- and whitelisting services exist, both non-profit as well
as for-profit.

8.1.6. Greylisting and other approaches A somewhat recent approach to fight mail abuse
builds upon the observation that spammers really need simple and cheap ways to spread
massive amounts of messages. To keep it simple and cheap, the observation continues,
spammers do not really play by the rules imposed by the SMTP protocol.

One approach based upon this observation can be seen in the greet_pause option
introduced in Sendmail v. 8.13. Not caring what the other end has to say, spammers typi-
cally do not pay attention to its remarks and immediately start sending SMTP commands
to inject their message once connected. With the greet_pause option set, Sendmail re-
fuses to accept messages offered by a peer before it even got the chance to greet ("HELO’,
‘EHLO’).

Similarly, Postfix’ reject_unauth_pipelining parameter makes Postfix refuse
messages from peers that send SMTP commands ahead of time.

Greylisting leverages the SMTP protocol to a somewhat deeper extent. When stumbling
upon a transient (non-fatal) error while offering a message, the SMTP protocol requires
that the message gets offered again after a brief pause, but within reasonable time. Even
without qualifying the notions of ‘brief” and ‘reasonable’ here any further, it should be
obvious that this introduces a little complication for the sending party. Greylisting looks at

170 C.P.J. Koymans, J. Scheerder Part 2

three parameters, which together are called a ‘mail relationship’: the IP address of the host
attempting a delivery, the envelope sender, and the envelope recipient. If a mail relationship
is either new or too recent, service is refused with a transient error message. However,
mail relationship is timestamped and remembered. Now when a message — probably the
same message — is offered with a mail relationship that is sufficiently old according to its
timestamp the message is accepted without further ado.

Greylisting effectively puts a stop to the typical fire-and-forget tactic often used by spam-
mers at the cost of a small, but one-time only delay for valid mail correspondences. Even if
spammers actually perform the extra work of offering their messages again at a later time,
that means that the cost of spamming has substantially increased. Furthermore, between the
first refusal and the second offering real-time blacklists and dynamic signature databases of
spam-detection mechanisms may very well have been updated for it. This way, greylisting
turns out as a measure that not only fights spam technologically, but it also affects the basic
economics of spamming.

8.2. Mail usage

8.2.1. Conventions A few conventions have historically developed. Early mail users,
working on fixed size character terminals, found ways to communicate effectively within
the confinements of their working environment.

A few habits deserve mentioning. Author attribution was conscientiously used to indi-
cate which part of a mail message was attributed to which author. In conjunction with that,
a strong discipline of quotation was maintained: when replying to a message, any exist-
ing quoted text was marked with a designated quote prefix (>). Existing quoted material
became prefixed with >> that way, and so on. This made it possible to unambiguously
determine which text parts led back to which authors.

Another notable email habit was to write remarks in context, using proper attribution and
quotation of course. Any remark to be made immediately followed the relevant (quoted)
text part in the original message, thus interweaving remarks with quoted material from the
original message. Proper context also implied that only the relevant parts of the original
message, providing sufficient context, were quoted in replies.

This way, messages were minimal in size, sufficiently self-contained as well as unam-
biguously interpretable.

8.2.2. Etiquette To help keep email communicaton effective, some basic rules are often
proposed. The established, yet besieged, ‘best practices’ described in Section 8.2.1 are
usually found back in guidelines on email etiquette. A lot more suggestions, that all fall
in the category of things that should really be painfully obvious, but somehow turn out
otherwise, can be made and float around the Internet.

9. Conclusion

Several protocols make up electronic mail as we know it, each acting one or more of the
set of roles to be played. Technology related to electronic mail, and a slew of problems

Ch. 3

Email 171

surrounding electronic mail of both technological and non-technological nature have been
discussed.

References

11
12]
[31
4]
[5]
[6]
7
[8]
191

[10]
[11]

[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]

[23]
[24]

[25]
[26]
[27]

[28]
[29]

[30]

D. Balenson, Privacy enhancement for internet electronic mail: Part iii: Algorithms, modes, and identifiers,
http://www.ietf.org/rfc/rfc1423.1xt (1993).

P. Beertema, USSR on Usenet, http://groups.google.com/group/eunet.general/msg/cf080ae70583a625.

D.J. Bernstein, gmail: the Internet’s MTA of choice, http://cr.yp.to/qmail.html.

M. Butler, J. Postel, D. Chase, J. Goldberger and J. Reynolds, Post Office Protocol: Version 2,
http://www.ietf.org/rfc/rfc0937.txt (1985).

J. Callas, L. Donnerhacke, H. Finney and R. Thayer, OpenPGP Message Format,
http:/fwww.ietf.org/rfc/rfc2440.1xt (1998).

R. Castello, SquirrelMail — Webmail for Nuts!, http://www.squirrelmail.org/.

M. Crispin, Internet Message Access Protocol — Version 4revl, http://www.ietf.org/rfc/rfc3501.txt (2003).
S. Crocker, N. Freed, J. Galvin and S. Murphy, Mime Object Security Services,
http:/fwww.ietf.org/rfc/rfc1848.txt (1995).

D. Davis, Defective Sign Encrypt in S/MIME, PKCS7, MOSS, PEM, PGP, and XML,
http://citeseer.ist.psu.edu/443200.html.

T. Dierks and C. Allen, The TLS protocol version 1.0, http:/fwww.ietf.org/rfc/rfc2246.txt (1999).

M. Elkins, D.D. Torto, R. Levien and T. Roessler, MIME Security with OpenPGP, http://www.ietf.org/
rfc/rfc3156.txt (2001).

N. Freed and N. Borenstein, Multipurpose Internet Mail Extensions (MIME) part one: Format of internet
message bodies, http://www.ietf.org/rfe/rfc2045.txt (1996).

N. Freed and N. Borenstein, Multipurpose Internet Mail Extensions (MIME) part two: Media types,
http://www.ietf.org/rfc/rfc2046.txt (1996).

N. Freed and N. Borenstein, Multipurpose Internet Mail Extensions (MIME) part five: Conformance criteria
and examples, http://www.ietf.org/rfc/rfc2049.txt (1996).

N. Freed, J. Klensin and J. Postel, Multipurpose Internet Mail Extensions (MIME) part four: Registration
procedures, http:/lwww.ietf.org/rfc/rfc2048.txt (1996).

R. Gellens and J. Klensin, Message Submission, http://www.ietf.org/rfc/rfc2476.txt (1998).

J. Haight, Spamcop.net — Beware of cheap imitations, http://www.spamcop.net/.

P. Hoffman, SMTP Service Extension for Secure SMTP over TLS, http://www.ietf.org/rfc/rfc2487.txt (1999).
R. Housley, Cryptographic Message Syntax (CMS), http://www.ietf.org/rfe/rfc3852.txt (2004).

TANA, IANA home page, http://www.iana.org/.

B. Kaliski, Privacy Enhancement for Internet Electronic Mail: Part IV: Key Certification and Related Ser-
vices, http://www.ietf.org/rfc/rfc1424.txt (1993).

S. Kent, Privacy Enhancement for Internet Electronic Mail: Part Il: Certificate-Based Key Management,
http://www.ietf.org/rfc/rfc1422.txt (1993).

1. Klensin, Simple Mail Transfer Protocol, http://www.ietf.org/rfc/rfc2821.txt (2001).

J. Klensin, N. Freed, M. Rose, E. Stefferud and D. Crocker, SMTP Service Extensions,
http:/fwww.ietf.org/rfe/rfc1869.txt (19953).

W. Koch et al., The GNU Privacy Guard — gnupg.org, http://www.gnupg.org/.

D. Knuth, Email (let’s drop the hyphen), http://www-cs-faculty.stanford.edu/~knuth/email.html.

J. Linn, Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryption and Authentication
Procedures, http:/fwww.ietf.org/rfc/rfc1421.txt (1993).

Microsoft, Microsoft Research Home, http://research.microsoft.com/.

K. Moore, MIME (Multipurpose Internet Mail Extensions) part three: Message header extensions for non-
ascii text, http:/fwww.ietf.org/rfc/rfc2047.txt (1996).

K. Moore, SMTP Service Extension for Delivery Status Notifications, http:/fwww.ietf.org/rfc/rfc1891.txt
(1996).

Subject Index

*-integrity property 484
*-property 477,478, 480
2-of-3 system, the 784
Dynamic reliability 797
3-level architecture 780
3270 139

<> 158
$GROUPNAME 967

A

absolute jump 662

absorbing state 702
abstraction 644

abuse 201

acceptable risk 732

access control

discretionary (DAC) 520
mandatory (MAC) 520
non-discretionary (NDAC) 521
role-based (RBAC) 514

list 495

accounting 826, 838

action prefix 659

actual state 625, 626, 628
ad-hoc network 331, 717
adaptivity 870

address rewriting 158
addressing 306

adjacency matrix 362, 377, 705, 717
administrative region 485
agent interaction policy 538, 539, 540, 544, 546
agreement service 754, 756, 758
air conditioning 21

algorithm 704

allowed 489,491, 492
alphabet 575, 581

alternating current 18
Amanda 217, 226-228
Amdahl’s law 10

analysis 178

ANMP 336

anomaly 735

999

antisymmetric 480

AODV 333

APl 886, 887

application integration 457

applied ethics 974

approximation 646, 648, 690

business model 730

continuum 697, 715

architecture

IPFIX 322

NETCONF 313

SNMP 307

SYSLOG 318

three tier 9

argonite 26

ARIS 879, 887

arrivals 28,711,752

ARUSHA 110

aspect orientation 570

aspects 97

composition 99

consistency 99

consistent 99

distributed 98

inconsistent or conflicting 99

local 98

scope 99

assignment

late 892

soft-state 892

associate probability 804

attitudes after outsourcing 950

authorisation policy 522, 523, 525, 526, 529,
550

authority 404, 406

automation 43, 48, 50, 53, 59, 61, 65, 867

daily operations 869

granularity 868

steps 867

autonomous agents 118

availability 806

averaging 702

1000 Subject Index

B behavioral
back-sourcing 932 models 107
backup policy 509
archive reliability 233 Bell-LaPadula model 476, 478, 500, 502, 503,
archives (long term) 213 520, 521
best practices 214 best practice 729
capacity planning 210 best-effort service 857
client/server 229 betweenness centrality 374
devices 220 BGP 725
disk block-based 232 Biba model 483, 500, 502, 503, 521
efficiency 211 billing 826
from restoration 212 bindings 99
full 225 biology 569
history data 209 Birnbaum measure 799
incremental 225 BITNET 148
media 218, 221 blacklist 169
medium DVD-ROM 219 black-listing 169
medium hard disk 219 blade 8

medium magnetic tape 219 Blocks Extensible Exchange Protocol (BEEP)
medium magneto-optical 220 314 _
234 Boolean expressions 580, 588
Border Gateway Protocol 725
bottleneck 5, 8
bottom-up 750
bounce 158
BPEL 890
bridge system 790
an example 790
minimal cut sets 790
minimal path sets 790
Bacula 217, 230 mliabmt;’ o1

bandwidth 3, 710 British thermal unit 21
bare metal 76, 84 brute force 582

numerical models
open source 217
packages commercial 216
peer-to-peer strategies 231
revocable 234

software 215

backward jumps 663
bacteria 22

diesel 20

bargaining 725

BS 15000 876

Barlow-Proschan measure 800 BS15000 730
an example 801 BSD License 200
Birnbaum measure connection 800 BSI 876
difference with the Natvig measure 802 BTU 21
baseline built to order 863
configuration 628 bus 6

state 627, 645 interface 460
baselining 122 business

basic model 816
action 661 objective 865
instructions 659 plan 736
security theorem 478, 480 process 906
Bayesian filtering 168

BayLISA 963, 966 C

behavior CA 885

computer 567
observed 625

of a configuration 96
policy guided 571

calendar integration 167
canonical mapping 159
capacity

component 27

planning 27, 729, 754
Shannon 757

case statement 670
catastrophe planning 17
category 478

set 478

causality 694, 757, 762
cause and effect 694

CBR 889

CCTA 875

CDDLM 886

CDI 490, 491

censorship 969, 974,991, 992
centrality 372, 398, 399
certification rule 488492
certified 488, 491

Cfengine 40, 108, 118, 701
chain 576

chained goto instruction 664
change 91

duration 870
management 38, 52, 58, 570
Change Advisory Board 879, 881
Emergency Committee 881
channel capacity 5

charge calculation 826
charging model 825
Chinese Wall model 504
Chomsky hierarchy 699
CIM 890

circuit switching 7

Cisco 885

Clark—Wilson model 488, 500, 521
class NP 602

class

equivalence 634

hard 93

host 120

machine 93

service 75

soft 93

classification 476, 478
clearance 476

client pull 113, 120

Clinical Information Systems Security model

504
cloning 122
closed system 704
closure 645, 646
cluster 5
clustering coefficient 371, 372
CMDB 39, 879, 887
code of ethics 969, 974, 977-981

Subject Index

code quality 202

coding 575, 576, 591
coherent system 786
combinatorial explosion 112, 123
command line interface (CLI) 313
commitment 950, 953, 954
commodity

hardware 7

service 858
communication

management protocol 178
commutation 701
commutative operations 637
commutativity 642

complete 474

completely s-p-reducible 792
complexity 571, 582, 583,718
class 568, 584

coding 578, 591
Kolmogorov 620

measure 568

NP 568, 583, 602

P 584
parsing 590
PSPACE 608

quantification 890

relationship between classes 607
compliant 198
component

behavior 93

composition 80

computing system 95

configuration 80

configuration parameter 95

conflict 97

dependency 803

graph 367

importance measure 799

in series with another component 781

in series with the system 781

network 95

parallel to another component 781

parallel to the system 781

selection 639, 640, 642, 645
composition 502, 642, 644

of operations 632, 635, 646
compositional predictability 640
compression 709
computer

behaviour 567

ethics 974, 975, 979

immunology 121

programming 567

1001

1002

science 995
virus 485, 501

computing system component 95
condensation 22
conditional

configuration 632
header instruction 666

conduction of heat 24
configuration 75, 123, 296

auditing changes 85, 88
automaton 628, 630
baseline 627

behavior of 96

change control 88
changes 570

consistency 96

defined 573

description 88
documentation 123

files 96

hypothesis 571
intermediate code 123
levels of specification 123
making changes 85, 88
management 38, 79, 623, 624, 643, 647, 700
as dynamical system 104
aspects 97

baselining 100
bindings 99

changes in strategy 124
classes hard 93

classes machine 93
classes soft 93
component conflicts 97
convergent 86
convergent operators 104
cost models 81
dependencies 97
distributed aspects 98
generative 86

hard classes 93
intractability of 108
kinds of 80

latent pre-conditions 100
lifecycle 84

local aspects 98
machine classes 93
network 80, 81
operational model of 100
policy 123
post-conditions 100
pre-conditions 100
rollback 108

Subject Index

scripted 86

service architecture 94
services 94
simplifying 125

soft classes 93
software 80
strategies 85

strategy 79

system 75,79

operation 101, 569, 571, 574, 626, 628, 629,

632, 641
convergence of 102
convergent 104, 119
declarative 101
idempotence of 101
idempotent 119
imperative 101
limits on 634
myths about 108
statelessness of 102

parameters 95, 647
exterior 647
interior 647

parts of 95

propagation 89

prototyping 89

requirements 296

rollback 90

space 576

staging 85

state 569

tracking changes 88

validation 85

verification 85

conflicts 544, 546

component 97

connected graph 364

connectivity 705

consistency 96, 642

constrained data item (CDI) 488

constraint 701, 703, 734

contingencies 92

continuum approximation 697, 715

contract 738

control

factor 941

quality 733

theory 53, 720, 747

convection 24, 26

convergence 582, 593, 637, 702

convergent

configuration management 86

operations 119, 635

Subject Index 1003

operator 104, 636 declassification 482, 483
cooling 21, 25, 26 DECnet 148
liquid 21 default configuration 76
cooperation 726 degree centrality 373
COPS-PR 340 degree of freedom 734
copyright 974, 975, 978, 980, 985-989 delivery status notification 158
CORBA 245, 248, 277 demand 747, 748
correlation 804 DEN-ng 730, 751
cost deontic logic 739
downtime 754 dependency 645, 803
minimizing 762 analysis 646
models 81 application design 8
parameters 840 association 804
poor administration 767 caused by estimation 804
power 752 caused by insufficient system description 779
covariance 804 component 97
covert channel 486 information 57
crest factor 20 package 118
CSM 888 relationships 644
cumulative distribution 795 deployment 864
current automation 868
analogy 715 model 830
repair 716 scenario
security level 482 IPFIX 321
customer service management 865, 866 IPFIX 321
interface 867 NETCONF 313
CustomerFacingService (CFS) 907 SNMP 307
customization SYSLOG 317
level of 858 design complexity 646
customized service 858, 862 determinism 734
cut sets 788 deterministic 602
cyber law 985 finite automata 629, 631
system 704
D diagram 705, 748
DAMON 349 diesel bacteria 20
data centre design 17 digital
data loss 206, 207 divide 969,972,973
data modeling rights management (DRM) 495, 985
IPFIX 323 dimensions
NETCONF 314 engineering 691
SNMP 310 direct alias 486, 487
SYSLOG 319 directed graph 363, 366-368, 370, 398, 399,
data-set 140, 141 402, 406, 407, 409, 413
database 91 acyclic 367, 398, 404
administrator 45 systems 793
Datagram Transport Layer Security (DTLS) 325 discretionary access control policy 475
decision and control score 943 discretionary security property 477, 478, 480
decision disk striping 6
factors 940 distributed aspects 98
theory 721 distribution
declarative arrivals 28,711
language 94 exponential 795

specification 118 function 795

1006

implementation 198, 857

implicit label 487

importance measures for components 799
incident response 40, 768

indirect alias 486, 487

individual service 858, 860

inergen 26

infiniband 7

information

model 430

modeling 178

mutual 710

theory 708

infrastructure

IT 729

injectivity 582, 595

insourcing 930

inspectability 201, 202

instant messaging 167
instrumentation 178

intasking 931

integer knapsack 647

integrated management 244
integrating applications 467
integrity

constraint 487

level 483

verification procedures (IVP) 488
intellectual property 974, 975, 980, 985-988
intensity traffic 28, 712

intention to quit 950

interaction pattern 462
intermediate language 660
Internet

Engineering Task Force (IETF) 306
Message Access Protocol (IMAP) 151
message format 154

pricing 829

standard 198

inventory 759

model 704, 768

investment

return on 768

involvement 950, 954

ISConf 108, 701

ISEB 876

ISO/IEC 20000 876

IT infrastructure 729

IT service 907

management 908

ITIL 39,49, 51, 730, 769, 871, 875, 881, 906
availability management 878
capacity management 877-879

Subject Index

change management 877, 879
service delivery 876

service level management 877
service support 876
ITIL-process 935

itSMF 876

ITU-T M.3050 871
IVP 490

J

J2EE 245

Java 887

jitter 693

job

control language 140, 141
function 497, 498, 503
involvement 950
satisfaction 950, 954
security 952

Joule 18

justintime 760

K

k-of-n system 792

Karp—Flatt metric 13

key performance indicators 868
kilowatt hour 752

L
label 476,478
language 699, 707
Large Installation System Administrators (LISA)
963
latent precondition 100, 629, 630
lattice model 482
layeredness 458
LDAP 887
least upper bound 481, 482
legacy 198,203
application 457
bus 462
legislating related to backup (US) 213
lifecycle
configuration management 84
system 83
limiting availability 806
limits on configuration operations 635
linear programming 748
link analysis 403, 406
Linux 138-140, 143
standard base 644
LISA 966
Little’s law 29, 714

Subject Index

load balancing 5, 30, 714, 781
local

aspects 98

averaging 702
reproducibility 630
locally reproducible 633
operations 631-633
lock-in 199

log 489

logic 689

deontic 739

modal 739

logical layer 715

logistics production 732
loose coupling 245, 278, 882
‘loose’ site policy 87
LOPSA 964, 965, 967

M
M/M/I queue 28
M/M/s queue 712
machine classes 93
mail

abuse 167

access agent (MAA) 153
address resolution 156
address rewriting 158
addresses 149

agent 152

alias 156

and directory services 166
and DNS 149

and instant messaging 167
and LDAP 166

and SSL 164

and STARTTLS 164
and TLS 164

and usenet news 166
architecture 149
authentication 1635
blacklist 169
black-listing 169

body 156

bounce 158

double 158

triple 158

canonical mapping 159
canonicalisation 159

delivery status notification
electronic 147
email 147
envelope 156, 158
recipient 151, 170
sender 151, 170
error notification 158
etiquette 170
filtering 169
forwarding 156
post-delivery 160
pre-delivery 160
grey-listing 169
header 154, 156, 158
addresses 158
history 147
list 157
loop 159
loop avoidance 160
masquerading 159
message format 154
MXrecord 150
object 156
openrelay 157
postmaster 158
pre-internet 148
proxy client 162
recipient 158
relationship 170
relay 157

retrieval agent (MRA) 154

routing 156
security 163
sender 158

authenticity 168
server 161

filtering 163
spam 167
spoofing 168

158

submission agent (MSA) 153

transport agent (MTA) 153

transport security 163
user agent (MUA) 152
user filtering 163
virtual domain 157
webmail client 162
whitelist 169
white-listing 169

client 162 worms 168
content 156 mailbox storage format 155
security 165 mailing list 157
conventions 170 mailing list exploder 157

delivery agent (MDA) 153

mainframe 9, 137-139, 141-144

1007

1008

maintenance 581

make 114,115

management 733

configuration 700

continuity 122

package 79

policy 509, 539, 540, 542, 549, 551
resource 79

strategy 79

user 79

Management Information Base (MIB) 306
mandatory access control policy 475
MANETconf 352

masquerading 159

mathematics 689

matrix

adjacency 705,717

payoff 723

representation 580

strategy 723

maximum security level 482
mean time before failure (MTBF) 716
mean time to repair (MTTR) 716
measure

complexity 568

measurement 691

requirements 300

media pools 220

media storage 223

mediation 826

melting 21

points 24

memorization 646

metering 826

method 669

micro-payment 844

Microsoft 118, 885, 887
middleware 245, 882
minimal cut sets 788

as a expansion of fault trees 789
structure function connection 788
minimal path sets 788

as a expansion of fault trees 789
structure function connection 789
minimum cover 640, 641, 647
MNM-Team 902

modal logic 739

model 305

behavior 107

business 736

discrete game 722

inventory 704, 759, 760
queueing 760, 768

Subject Index

risk 733,735

typel 721

type Il 721

model-based translation 450

modelling 689, 690

continuous 697

discrete 697

service 719

modular exponentiation 501

modus tollens 587

MOF 890

monitoring 79, 122, 869

configuration 869

requirements 298

what for? 32

Monte Carlo methods 805

morality 973, 976

MOWS 255

MPLS 884

MTBF 716

MTTR 716

multi-level security 476

multi-tasking 5

Multiple Virtual Storage (MVS) 139

multiplexing tape write operations 222

Multi-purpose Internet Mail Extensions (MIME)
155

multistate systems 808

mutual information 710

MUWS 254

MVS 138

MX record 156

myths of configuration operations 108

N

naming 305

NAS 6

Nash equilibrium 724

Natvig measure 801

Birnbaum measure connection 802

difference with the Barlow—Proschan measure
802

near shore sourcing 939

negative test instruction 662

negotiation 866

network

ad hoc 717

administrator 46

component 95

configuration management 80, 81

diameter 363

heterogeneity 644

management 174

network attached storage 6

Network Configuration Protocol (NETCONF)
312

networks

probabilistic 706

Next Generation Operations Support Systems
(NGOSS) 516

NGOSS 871,887

‘no reads down’ rule 484

‘no reads up’ rule 477, 479

‘no writes down’ rule 477

‘no writes up’ rule 484

node degree distribution 368

node degree distributions 370

noise 710, 757

non-deducible 502

non-deterministic 602

non-deterministic finite automata 629

non-interference 502

non-linear 758

normalization 704

normative ethics 976

notation 578

NP 602
class 568
hard 583

NP-completeness 640, 641, 646, 647
NP-hardness 639, 640, 642
nucleus 138

(0]
OASIS 882
object 475

orientation 570
observability 107
observed

behavior 624, 625, 627, 630
convergence 635
convergent operations 635
equivalence 628
idempotent operations 635
local reproducibility 630, 631
population reproducibility 633
state 625, 626, 628
offshore sourcing 939
0GC 875
OLSR 333
on shore sourcing 939
ontological commitment 434
ontology 433

definition 436
representation

using description logic 441

Subject Index 1009

using frames and first-order logic 441
using markup language 442
using predicate logic 440
Open Distributed Programming Reference Model
(ODP-RM) 518
open
relay 157
source 199, 203
definition 199
initiative (OSI) 199
standard 203
system 704
technology 202, 203
OpenPGP 165
Operating Level Agreement 877
operation
baseline 628
composition 627, 632
interface 674
operational state 40
operation 864
atomic 637
baseline 627
collaborative 636
commutative 638
composability of 638, 647
configuration 641
conflicting 636
consistent 638
convergent 635, 636
homogeneous set of 637
idempotent 635, 638
limits on 637, 638
locally reproducible 631-633
observably commutative 637
observably consistent 637
observably convergent 635
observably stateless 636
orthogonal 636
simplifying 647
stateless 638
operator 569, 591, 592, 701
optimization 690

Oracle 887
ORCON 495, 500, 503
ordering 864

ambiguity 701

originator 494, 503

originator-controlled access control policy
(ORCON) 494

orthogonality 645

OSI 199

0SS 887, 891

1010

0OSSJ 875, 887
outsourcing 930
overprovisioning 35, 894
oversubscription 895
OWL 465

DL 465

expressiveness 466
Full 465

Lite 465

ownership, total cost of 752

P

Pclass 584

package

dependencies 118
management 79, 117

packet switching 7

PageRank 402, 403, 406

parallel

components 787
reduction 792

set of systems 787
systems 781
availability of 806
Birnbaum measure 799
dynamic reliability 797
Natvig measure 802

parameter configuration 95

parity 6

Parlay-X 256

parsing 590

partial ordering 480

path

length 363, 364, 372
sets 788

payment 826

peer-to-peer 13

percolation 706

performance

read—write 9

server 33

Petri net 704

philosophy of science 689

physical layer 715

PIKT 114

pivot decomposition 793

planning 863

capacity 27, 35
catastrophe 17

policy 75, 123, 569, 571, 690, 701

analysis 343, 547, 554
change 91
components

Subject Index

actions 511

conditions 511

subject 511

target 511

triggers 511

conflict 543, 546, 547, 555
Core Information Model (PCIM) 515
Decision Point (PDP) 512
Execution Point (PEP) 512
guided behaviour 571

model 474, 475, 501, 504
refinement 544, 554
policy-based management 836
polynomial time 584
POP 151
population reproducibility 633, 634
portability 201
positive correlation 804
positive test instruction 662
Post Implementation Review 879, 881
Post Office Protocol (POP) 151
post-conditional composition 659
post-conditions 115, 581
postfix 162
postmaster 158
power 17

BTU 21

factor 20

UPS 20

consumption 752, 767
pre-condition 115, 581
predictability 572
preferences 571
presentation 178
Pretty Good Privacy (PGP) 165
pricing 826
principal 377

eigenvector 377

of management continuity 122
prior involvement 953

privacy 974, 975, 979, 980, 985, 989, 990, 993

probability
association 804
basic rules 776
Bayesian 777
cumulative distribution connection 795
dependent components 803
distribution function connection 795
frequentistic 777
independence 778, 781, 784, 789, 806
independent and-statements 779
independent or-statements 779
joint probability 778

reduction 792

set of systems 788
systems 780
Barlow-Proschan measure 800
Bimbaum measure 799
dynamic reliability 796, 797
Natvig measure 802

server 7

push 112,120

service 906

agreement 754,756, 758, 769
architecture 94

binding 94

client 94

commodity service 858
composition 250, 251
customer 822
customized service 858, 862
definition 856
deployment 864

design 731

functional view 746
genericity 257, 260
individual service 858, 860
interoperability 250
life-cycle 857

machine 669

model 822

modelling 719

modules 863

monitoring 869

network 754

operations 864
orchestration 251, 252
ordering 864
performance 266
planning 863

promise 819

provider 820, 821
provision 754

quality of 754

server 94

transparency 257, 258
user 822

Service Level Agreement (SLA) 40, 719, 741,
754,756, 758, 769, 824, 834, 908

Service Oriented Architecture (SOA) 274-283,
287-289, 463, 464, 731, 881, 882, 885, 886

service provisioning
challenges 865
goals 865

template 845
Service Quality Plan 878

Subject Index

Service Specification Sheet 878, 879

services 94

setuid 490

Shannon entropy 620

Shared Service Centre (SSC) 933
shared services 933

sieve 163

1013

Simple Authentication and Security Layer (SASL)

165
simple integrity property 484

Simple Mail Transfer Protocol (SMTP)

149, 150

Simple Network Management Protocol (SNMP)

125, 306

Simple Object Access Protocol (SOAP) 314

simple security property 477-480
simplification 646

simplifying configuration management

simulated annealing 636
simulation of systems 805, 806
single

instruction 664

point of failure 40,714

125

sink 367, 368, 398, 404, 406, 407, 409, 412

site policy
loose 87
tight 87

SLA 40, 278, 754, 756, 758, 769, 876, 877, 889,

890
formalization 865
negotiation 866
offers and requirements 865
SLA negotiation 835
SLO 754,756,758
small-world 365, 366, 369, 372
SmartFrog 886, 890
SMTP 148
SNMPvl 243
SNMPv2 243
SNMPv3 243

SOA see Service Oriented Architecture

SOAP 246, 248, 281, 289, 463, 882
social
aspects 969, 970, 993, 995
identity 949
theory 949, 957
judgement theory 948
soft classes 93, 120
software
configuration management 80
component composition 80
corruption 206
engineering 747
solution 860

1014

source 367, 368, 398, 404
sourcing factors 939, 943
spam 167
sparse 362
specific heat capacity 23, 24
speed-up 10
SPML 885
spoofing 168
spreading power 382, 391, 409, 413
SSL 164
stable 572
standard 198

change 881

deviation 694

error of the mean 696
open 198
standardization 198, 199, 644
standards 733

compliant 198
conformance testing 198
star graph 372
state 9, 575

absorbing 702

actual 625-629

baseline 627
configuration 296, 569
machine 624, 669
observed 625-629
operational 296
operational (runtime) 40
policy 702

reachable 627

space 644

reduction of 644, 647
stochastic 703
stateless operation 115
statelessness 115, 637, 642
static verification 630
steepest-ascent graph 416
stochastic process 748
Storage Area Networks 6
stovepipe 425
strategies

for configuration management 85
strongly connected graph 366, 368
structure function 785
minimal cut set connection 788
minimal path set connection 789
subject 475
substitutability 198
subsystem 305
Sun Microsystems 885, 891
supply and demand 747

Subject Index

survey 952
symbolic link 486, 487
Synctree 123
system
closed 704
closed world 624
definition 703
deterministic 704
dynamical 759
effectively closed 624
human—computer 690, 729
open 704
open-world 624
regulation 759
secure 15
system administration 79, 623
complexity of 623
configuration management 79
costof 623
package management 79
resource management 79
task 78
theory of 623
user management 79
system administrator 44, 643
community 961, 966
system configuration files 96
system configuration management
component configuration 80
system health 119
system high 480, 481, 486
system lifecycle 83
System Logging Protocol (SYSLOG)
system low 480, 481, 486
System z 138, 139, 142-144
System/360 138
System/370 138
systematic error 693
systems administrators
professionalization of 961-966

T
tariff 826
technologies for processing 5
technology
closed 198,201, 202
open 202,203
proprietary 198
temperature 21, 767
termination instruction 663
testing requirements 300
theorem
folk 717

317

Subject Index 1015

theory underpinning contract 877
control 747 undirected graph 362, 364, 368
of system administration 623 systems 789
promises 739 an example 790

thread algebra 659 efficiency of method for finding the reliability

three tier architecture 9 794

throughput 10, 28, 713 fault tree 793

tier rating 26 method for finding the reliability 793

‘tight’ site policy 87 uninterruptible power supply 20, 752

time units 691
management 40, 730 Unix 137-144
scales 735,748 system administrators 962, 963, 965, 966
series 692 UPS 752

time to component failure 794 Uptime Institute 26

time to system failure 794 use case 734

time-scale 692 usenet news 166

TLS 318, 320, 325 user

TMF 871,877 management 79

TOM 871 region 485

top-down 750 requirements 625

topographic 379, 415 utilitarianism 975, 976

topography 379-381 utilization 29, 713

topology 10 law 29,713

total cost of ownership 752 UuCPp 148

TP 490

TPC-W 891 \%

traffic intensity 28, 712 valid state 488

tranquility 483 validation 89

transaction 252, 488 vector 700

transformation procedure (TP) 488 verification 89

transition virtual
diagram 751 domain 157
matrix 698 machine 660

transitive 480 storage 138

Transport Layer Security (TLS) 312 virtualization 893

transport security 163 virus 407, 408, 418

triple bounce 158 prevention region 485

TripWire 123 visualization 414, 415, 419, 420

troubleshooting VLAN 8
requirements 300 VoIP 891

trust policy 532-534 Volt-Amperes 18

tuple 485 VPN 884

Turing machine 585

w

U WANMon 348

UDDI 249, 464 water cooling 21

UML 887 Watt 18

uncertainty 693, 731 wave 18
in configuration management 122 weakly connected graph 366, 398
inventory model 766 Web graph 363, 368
profit 737 web hosting

unconstrained data item (UDI) 488 commercial 898

undecidability 633 web of trust 165

1016

Web services 245, 246, 463, 885, 886, 890
coarse-grained 273
fine-grained 257
semantic 254
webmail 162
Weibull distribution 796
weight conserving process 377, 378
weighted undirected graph 362
while loop end instruction 667
while loop header instruction 667
whistleblower 978, 983-985
white-listing 169
Windows registry 76
workflow 10, 28, 56, 60, 713, 752
workstation 7
worms 168
WS-Management 255

Subject Index

WS-Resource 256
WS-RF 886

WSDL 248, 263, 885
WSRF 256

X

xmkmf 114

XML

173, 248, 257, 259, 579, 885-887

technology 174
XML-based
agent 182

manager
XML/SNMP gateway

4
z/0O8

182, 185
182, 191

137-143

