SYNGRESS

ADVANCED TOPICS
IN INFORMATION SECURITY

HANDBOOK OF SYSTEM i
SAFETY AND SECURITY

Cyber Risk and Risk Management, Cyber Security, Tt 'r‘ |
Functional Safety, Software Systems, and Cyber P!hy

\‘ \!

il
|

: !
i
] .
=N
1 . "
3 N R
] Y
= S
X
=

[} | \\‘
' t i 't
! 1 : &5
] | : =
i ! :
. !
|
' — -"__
| — e
| =
4 —
| —— =
1 — =
| —— — =
3 =
i — =
§ el —
= — =
] — =
] —
’ : | $
}
| F

Edited by == ¢ v
Edward Griffor e

W

HANDBOOK OF SYSTEM
SAFETY AND SECURITY

Cyber Risk and Risk Management,
Cyber Security, Threat Analysis,
Functional Safety, Software Systems,
and Cyber Physical Systems

Edited by
EDWARD GRIFFOR

National Institute of Standards and Technology (NIST),
Gaithersburg, MD, United States

AMSTERDAM « BOSTON « HEIDELBERG » LONDON « NEW YORK « OXFORD

;~’ i
£ Slks PARIS « SAN DIEGO SAN FRANCISCO * SINGAPORE + SYDNEY » TOKYO
ELSEVIER Syngress is an imprint of Elsevier

Syngress is an imprint of Elsevier
50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

Copyright © 2017 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or any information storage and retrieval system, without
permission in writing from the publisher. Details on how to seek permission, further information about the
Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance
Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher
(other than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our
understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any
information, methods, compounds, or experiments described herein. In using such information or methods they
should be mindful of their own safety and the safety of others, including parties for whom they have a professional
responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability
for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or
from any use or operation of any methods, products, instructions, or ideas contained in the material herein.
British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

ISBN: 978-0-12-803773-7

For Information on all Syngress publications
visit our website at https://www.elsevier.com

qh Working together
—AM8 1o grow libraries in
Pookad developing countries

£l
ELSEVIER

www.elsevier.com ¢ www.bookaid.org

Publisher: Todd Green

Acquisition Editor: Chris Katsaropoulos

Editorial Project Manager: Anna Valutkevich

Production Project Manager: Punithavathy Govindaradjane
Cover Designer: Mark Rogers

Typeset by MPS Limited, Chennai, India

CONTENTS

A o To JUR A d aT=J0 =te 11 (o T Xi
FAN o Yo 101 A { aT=J 0 Y o 18]« 11 1] = xiii
e} (o Lo K0T o] AT 0 o T xXxiii

Part | SYSTEMS

Chapter 1 Editor's Preface.........cnsssssssssssss s sessssenss 3
E. Griffor
1.1 The Need for a Broadly Targeted Handbook of System Safety
=T Le Y= Tod U]) 4V S 4
Chapter 2 Composition and Compositionality in CPS ... 15
J. Sztipanovits, T. Bapty, Z. Lattmann, and S. Neema
2.7 INTrOAUCTION Luuiice et e e s e e e e e e s s e e e e e e anaaes 15
2.2 Horizontal Integration Platforms in the OpenMETA Tool Suite 18
2.3 AVM Component Modelcooiuuiiiiiiiiiieiieiiiiee e e eaaaee e e e 21
2.4 Use Case for Semantic Integrationcccccvveeviiiiiiiiiiiiiiineeseessceeeeeens 24
2.5 Component Interfaces and Composition Semantics
L L 172 =Y 1 1 27
2.6 Formalization of the Semantic Interface for Modeling
- T Yo T T To [T OO P PUUSN 32
A B 010 Y o Tod [V F=1 o Y o TP SO PSP TRRN 34
AcCKNOWIEAdgMENTS .c.eeiii e e 36
T (=T E=] ot = T T TSP PPPPN 36

Chapter 3 Software Engineering for Model-Based Development
by Domain EXPerts........cecesesensssessser s s senssssesssnsssssessnseans 39
M. Bialy, V. Pantelic,]. Jaskolka, A. Schaap, L. Patcas, M. Lawford, and A. Wassyng

3.1 Introduction and MotiVatioN.......cciiiiiieeie e ee v e e 39
3.2 Development Process: How Do You Engineer Software?................ 41

vii

viii CONTENTS

3.3 Requirements: What Should Your Software Do?ccccceeevevveiineeenns 45
3.4 Design: How Will Your Software Do What It Does?ccceevvvuvvnennns 49
3.5 Implementation: Generating Code........ccoiiiiiiiiiiiniiir e 56
3.6 Verification and Validation: How Do You Know Your

SOftWAre 1S GOOU? ... et e e e e e e e e e e e e ssnaneeeeennnan 58
3.7 Conclusion and Future Work......... i s e 61
(2T =] = o =T 62

Part Il PERSPECTIVES ON SAFETY AND SECURITY

Chapter 4 Evolving SeCUrity.......oeircrerceeecsss s sessessss sesensesssssseesenns 67
A. Sonalker and E. Griffor
4.1 Need for Security in a Cyber-Physical System ... 67
4.2 New Adversary Modeling ... 73
4.3 “Connected” System Security Modeling ..., 78
4.4 Directional Threat ASSESSMENTccuiiiieiciiiereie e e eean e eneens 80
4.5 Big Picture CPS Systems—I0T ... 81
L G e T Td L= Lo Y o PO PPPPPPPPPRP 81
RETEIENCES oo 82

Chapter 5 The Business of Safety..........cccccoevevrnrrrsnsrnssesssssesesss e 83
J.D. Miller
B.T1 INTrOdUCTION .o e e e s s 83
5.2 Life Cycle Of Safety....iiieiccee e e e 84
5.3 Management of Functional Safety.....ccccccceeeeeercceeeeeeees 91
oI S 0o Ty [L= o Y o OO PPUPPRPPRRRR 95
RETBIENCES e e e e s 96

Chapter 6 Cybersecurity for Commercial Advantage...........cccocereercerenrenne. 97
I.M. Kaplan
6.1 Turbulence Along the Value Chainccoooivuiiiiiiiiiiiiieeecee e, 99

6.2 Resilience for Commercial Advantagecccccceeeeevieiiiiiieieeceeeeeeennnen. 104

CONTENTS iX

Chapter 7 Reasoning About Safety and Security:

The Logic of ASSUIANCE..........coceeevrveresreresersess s sessssesssssssssssessens 113
A. Piovesan and E. Griffor
7.1 INTrOAUCTION Lo et et e e e e e e b e an e ennaas 113
7.2 A Strategy for Safety Case Construction......ccccccviiiiiiiiiiiiiiiiiinnnnn. 114
7.3 Decomposing the Functions of a Safety Critical System 117
7.4 Formal Reasoning for Safety Propertiescccccveveiiiiiieiiiiiiiviinnnn, 122
7.5 ASSUrance Case LOGIC uuuuuuiiiiiieieiiieiiiiee s s s e e e e e e e e e e e e s saann s 125
7.6 Future ChallenNgesccccoivuiiiiiiiiiiiiiiieeie et e e e e er e e e e s e e eenns 127
7.7 CONCIUSION 1ot e e e e e e e e e e e e e e e e s eaan s 128
RETEIENCES. ..oiiiiiieciie e e e e e e e e e e 128
Annex: Electronic Throttle Control (ETC)coeeeeiiiiiiiiiiiiiiiiee e 129
Chapter 8 From Risk Management to Risk Engineering:
Challenges in Future ICT Systems.........cccoovvvcrrrcnrcerecncesesnnens 131
M. Huth, C. Vishik, and R. Masucci
8.7 INTrOAUCTION i e s e e e a s sna s 131
8.2 Key Aspects of Future ICT SyStemsSccccuviiiiiiiiiiiicric e eenaseenins 132
8.3 Evolution of Risk Approaches and Modelsccoeveviiiiiiiiiiivinieeennnns 140
8.4 Risk ENGINEEIING...ciiiiiiiiiiiiiiiiii i s s s enn 142
8.5 Case Study: Block-Chain Technologyccccoiiimiiiiiiciccceeniieeee, 155
8.6 Model-Based and Language-Based Risk Engineering.................... 165
8.7 Summary and CONCIUSIONScuuiiiiiiiiiiee e eeeeeeeeeeeviae e e e s ea e eeenns 169
AcknowledgmeEnts ... s 170
RETEIENCES . ottt e e e e e e e e e e et b e e eaaaae 171
Part Ill APPLICATIONS OF SYSTEM SAFETY AND SECURITY
Chapter 9 A Design Methodology for Developing Resilient Cloud
SBIVICESouecceresees s s s s s s s sassss sasssssssssssassnssssenssnssssnas 177
C. Tunc, S. Hariri, and A. Battou
9.T MOTIVATIONS e ieeeeeeeeir e e e e e e e e e e e e e e nn e e e e e e e e eeen s 177
9.2 Resilient Cloud Services Design Methodology.....cccccvvevvevievvenneeneees 179
9.3 RCS ArChitECIUIE ..eeeeeeeeeiciie e e s e rr s 180

X CONTENTS

9.4 Experimental Results and Evaluation......ccccceevvviiiiiiiiiiencineenneneeee, 188
9.5 Conclusions and Future Workuuueceiiiiiiieeeeeeeccess e 194
AcCKNOWIEdgmMENTS ... e 195
R I BN CES . ettt e e e aa e e anaannas 195
Chapter 10 Cloud and Mobile Cloud Architecture,
Security and Safetyccccvvnn e ———— 199
C. Mahmoudi
10.1 Introduction to Cloud Computingccceviiiiiiiiiiiiiiccccieeeeeeeeeeas 199
10.2 Architecture: From the Cloud to the Mobile Cloud....................... 204
10.3 Safety CONCOINS ..ottt e r e e e e e 212
L0 O o YU T BT =T T U | Y PR 216
RETEIENCES et r e e e e e e e ennen 222
Chapter 11 A Brief Introduction to Smart Grid Safety and Security.......225
S. Khoussi and A. Mattas
11.1 Introduction to the Smart Grid.....cccccueceiiiiiiiiiicec e, 225
11.2 Safety Analysis for the Gridccooviiiiiiiiiiiiir e, 235
11.3 A Security Analysis for the Smart Grid System........ccccceeeeervvennnen. 240
RETEIBNCES vttt s e e e e n e e e e e e e e eeeaann 249
Appendix A: An example of the Hazard Analysis and
Risk Assessment Model Worksheetcoooeveiiiiiiiiiiiicccccccee e 252
Chapter 12 The Algebra of Systems and System Interactions
with an Application to Smart Gridccccoveeerercernerssnsssennnns 253
C. Mahmoudi, H. Bilil, and E. Griffor
12.1 Design Behind Success of a Smart Gridcooevviiiiieiiiiiiieeciieenann, 253
12.2 Trends in Renewable Energy Integrationcccoovviviiivenccvinnccnnnn. 254
12.3 Power SYStEMS LAWS ...ttt et e e e 257
12.4 A Cyber-Physical System Algebra ..., 257
T2.5 HUSTrAtION (ot e em e e e e saa e aaneans 264
12.6 CONCIUSION cetuiiiiieeee i e eeee e e e ee et e st s e e e e e e e e e ernnssbsr e e s s e e e e e eennnnnnnns 265
RETEIENCES i e e e e anaae 265

ABOUT THE EDITOR

Dr. Edward Griffor is the Associate Director for Cyber-Physical
Systems at the National Institute of Standards and Technology
(NIST) in the US Department of Commerce. Prior to joining
NIST in July of 2015, he was a Walter P. Chrysler Technical
Fellow, one of the highest technical positions in the automotive
industry and one that exists in multiple industry sectors, includ-
ing transportation, aerospace, science, defense, energy, and
medical. He served as Chairman of the Chrysler Technology
Council until 2015 and continues to serve as Chairman of The
MIT Alliance, a professional association of scientists, engineers,
and business experts trained at the Massachusetts Institute of
Technology.

He completed doctoral studies in Mathematics at MIT and
was awarded Habilitation by the Mathematics and Engineering
Faculty of the University of Oslo. He was named National
Science Foundation/NATO Postdoctoral Fellow in Science and
Engineering in 1980. He was on the faculty of Uppsala
University in Uppsala, Sweden, from 1980 to 1997 and returned
to the United States to lead advanced research in Electrical
Engineering in the automotive industry.

He has been on the faculties of the University of Oslo in
Norway, Uppsala University in Sweden, the Catholic University
of Santiago in Chile as well as those of Harvard, MIT, and Tufts
University in the United States. He is regarded as one of the
world experts in the use of mathematical methods for the
design and assurance of technologies used in developing
advanced, adaptive cyber-physical systems, including those
used to ensure the safety and security of autonomous systems.
In addition to his work at Chrysler, he has led research in bio-
system modeling and simulation. He is an Adjunct Professor at
the Wayne State University School of Medicine in Detroit, MI,
at the Center for Molecular Medicine and Genetics.

His work in the automotive industry provided advanced algo-
rithms for Voice Recognition and Autonomous and Connected
Vehicles. He has published three books previously, including
Handbook of Computability by Elsevier, Theory of Domains, by
Cambridge University Press, and Logic’s Lost Genius: The Life
of Gerhard Gentzen, by American Mathematical Society. He has
published extensively in professional journals and has given

Xi

xii

ABOUT THE EDITOR

invited presentations for the American Mathematical Society,
Association for Symbolic Logic, North American Software
Certification Consortium, Society of Automotive Engineers, the
Federal Reserve Bank, and US government agencies, including
NIST, DARPA, DOE, DOT, and NASA.

ABOUT THE CONTRIBUTORS

Ted Bapty is a Research Associate Professor and Senior
Researcher at the Institute for Software Integrated Systems. He
is interested in and leads research projects in Model-Integrated
Systems as applied to: Cyber Physical System Design, Large-
Scale & Distributed Real-Time Embedded Systems, C4ISR sys-
tems, Digital Signal Processing and Instrumentation Systems,
and tools for Rapid System Prototyping and System Integration.
Current and recent projects include DARPA AVM/META Cyber-
Physical Design Tools and Model-Based tools for the Future
Airborne Capabilities Environment (FACE) Standard. He holds a
BSEE from the University of Pennsylvania and a PhD from
Vanderbilt University, and has served as a Captain in the US Air
Force. He is cofounder of Metamorph Software, a spin-off com-
pany formed to transition model-based engineering tools.

Abdella Battou is the Division Chief of the Advanced Network
Technologies Division, within The Information Technology Lab
at NIST. He also leads the Cloud Computing Program. Before
joining NIST in 2012, he served as the Executive Director of The
Mid-Atlantic = Crossroads (MAX) GigaPop founded by
The University of Maryland, The George Washington University,
The Georgetown University, and The Virginia Polytechnic
Institute. From 2000 to 2009, he was Chief Technology Officer,
and Vice President of Research and Development for Lambda
Optical Systems, where he was responsible for overseeing the
company’s system architectures, hardware design, and software
development teams. Additionally, he served as senior research
scientist for the Naval Research Laboratory’s high-speed net-
working group, Center for Computational Sciences from 1992 to
2000. He holds a PhD and MSEE in Electrical Engineering from
the Catholic University of America.

Monika Bialy is a PhD student in the Department of
Computing and Software at McMaster University, Hamilton,
ON, Canada. She received her master’s degree in software engi-
neering (“http://MASc” MASc) from McMaster University in
2014, and Honours Bachelor of Computer Science (“http://
BCoSc” BCoSc) in 2012 from Laurentian University, Sudbury,

Xiii

Xiv

ABOUT THE CONTRIBUTORS

ON, Canada. Monika currently holds an NSERC Alexander
Graham Bell Canada Graduate Scholarship-Doctoral (CGS D).
Her main research interests include model-based development,
safety-critical systems, and software engineering design
principles.

Hasnae Bilil was born in Rabat, Morocco, in 1986. She received
the Dipl.-Ing in 2010 and the PhD degree in 2014 in electrical
engineering from Mohammadia School of Engineers, Rabat,
Morocco. She is now a teaching assistant at Mohammadia
School of Engineers, University Mohammed V in Rabat,
Morocco. Since August 2015, she has been conducting research
on “Smart grid” and “Information-centric networking” as guest
researcher at National Institute of Standards and Technology.
Her current research interests include renewable energy
sources, power system, smart grid, and power management into
a power system integrating renewable energy source.

Chris Greer is Senior Executive for Cyber Physical Systems,
Director of the Smart Grid and Cyber-Physical Systems Program
Office, and National Coordinator for Smart Grid Interoperability
at the National Institute of Standards and Technology. Prior to
joining NIST, he served as Assistant Director for Information
Technology R&D in the White House Office of Science and
Technology Policy (OSTP) and Cybersecurity Liaison to the
National Security Staff. His responsibilities there included net-
working and information technology, research and develop-
ment, cybersecurity, and digital scientific data access. He has
also served as Director of the National Coordination Office for
the Federal Networking and Information Technology Research
and Development (NITRD) Program. This program coordinates
IT R&D investments across the Federal government, including
the cyber-physical systems research portfolio.

Salim Hariri is the Director of the NSF Center for Cloud and
Autonomic Computing and Professor in the Electrical and
Computer Engineering Department at the University of Arizona,
2004 to present. He holds PhD from the Computer Engineering
Dept. in University of Southern California, Los Angeles, CA, and
MSc from Electrical Engineering in The Ohio State University,
Columbus, OH. His research areas include, but not limited to,
autonomic computing, self-protection of networks and compu-
ters, high-performance distributed computing, cyber security,
proactive network management, cloud computing, resilient sys-
tem architecture, Internet of Things (IoT).

ABOUT THE CONTRIBUTORS XV

Michael Huth is Professor of Computer Science, Director of
Research, and Head of the Security Research Group in the
Department of Computer Science at Imperial College London.
He is a Diplom-Mathematiker (TU Darmstadt, Germany),
obtained his PhD in 1991 (Tulane University of Louisiana,
USA), and completed several postdoctoral studies in the
United States, Germany, and the United Kingdom on program-
ming language semantics and design, formal verification, and
probabilistic modeling. His present research focuses on cyber-
security, especially modeling and reasoning about the interplay
of trust, security, risk, and economics. Currently funded pro-
jects of his include work on confidence building in arms verifi-
cation and work on blockchain technology for centrally
governed systems such as [oT. He is a member of the ACM
and active as research and product advisor in the London
Cybersecurity startup scene.

Jason Jaskolka is a US Department of Homeland Security
Cybersecurity Postdoctoral Scholar at Stanford University within
the Center for International Security and Cooperation (CISAC).
He received his PhD in Software Engineering in 2015 from
McMaster University, Hamilton, ON, Canada. His research inter-
ests include cybersecurity assurance, distributed multiagent
systems, and algebraic approaches to software engineering.

James M. Kaplan is a partner with McKinsey & Company in
New York. He leads McKinsey's global Cybersecurity Practices
and server banks, manufacturers, and health institutions on a
range of technology issues. In addition to publishing on enter-
prise technology topics in the McKinsey Quarterly, McKinsey on
Business Technology, the Wall Street Journal, and the Financial
Times, he is also the lead author of Beyond Cybersecurity:
Protecting Your Digital Business.

Siham Khoussi graduated from the Mohammadia School of
Engineers (EMI) as an Electrical Engineer majored in
Automation and Industrial Computer Science. She has worked
with the Research Institute for Solar Energy and New Energies
(IRESEN). She is currently working at the National Institute of
Standards and Technology (NIST). Her research of interests
include smart grid and renewable energies, smart cities, Named
Data networks (NDN), and Network verification.

Zsolt Lattmann is currently a Staff Engineer II at the Institute
for Software Integrated Systems at Vanderbilt University. He has

Xvi

ABOUT THE CONTRIBUTORS

an undergraduate degree in Electrical Engineering from
Budapest University of Technology and Economics in Hungary
(2009), MSc and PhD degrees from Vanderbilt University in
Nashville, TN, in 2010 and 2016, respectively. He was one of the
lead developers on the META project of the Adaptive Vehicle
Make program sponsored by DARPA between 2010 and 2014,
He had joined this project in 2010 and had been researching,
developing, and implementing solutions in a metamodel-based
environment using various domain models and applications.
He integrated an open-source optimization tool (OpenMDAQ)
to the OpenMETA tool chain to provide a higher level of
abstraction for end users. He is currently the Principal
Investigator of the WebGME project since 2015. WebGME is an
open-source Web-based collaborative metamodeling environ-
ment. Domain-specific languages and tools can be developed
using WebGME to improve engineer’s productivity and reduce
design time and cost. His primary interest includes electrical,
mechanical, multibody, fluid, and thermal domains in model-
ing, simulation, and parametric and discrete design space stud-
ies. He has experience with the OpenMETA tool chain and
WebGME, developing new domain-specific modeling languages,
and implementing model transformation tools.

Mark Lawford is a Professor in McMaster University's
Department of Computing and Software and the Associate
Director of the McMaster Centre for Software Certification. He
is a licensed Professional Engineer in the province of Ontario
and a Senior Member of the IEEE. He received his PhD in 1997
from the Systems Control Group in Electrical and Computer
Engineering at the University of Toronto and then worked at
Ontario Hydro as a real-time software verification consultant on
the Darlington Nuclear Generating Station Shutdown Systems
Redesign project, receiving the Ontario Hydro New Technology
Award for Automation of Systematic Design Verification of
Safety Critical Software in 1999. He joined McMaster
University’s Department of Computing and Software in 1998
where he helped to develop the Software Engineering programs
and Mechatronics Engineering programs. He served as the
Section Chair for Computer Systems on the Computer Science
Evaluation Group for the 2010 NSERC Discovery Grant
Competition. From 2006 to 2007, he was a Senior Researcher in
the Software Quality Research Lab at the University of Limerick,
and in August 2010, he was a visiting researcher at the Center
for Devices and Radiological Health, Office of Science and
Engineering Laboratories of the US FDA. In 2014 he was a

ABOUT THE CONTRIBUTORS XVii

corecipient of the Chrysler Innovation Award for his work with
Dr. Ali Emadi on the Automotive Partnership Canada (APC)
project entitled “Next Generation Affordable Electrified
Powertrains with Superior Energy Efficiency and Performance-
Leadership in Automotive Powertrain (LEAP).” His research
interests include software certification, application of formal
methods to safety critical real-time systems, supervisory control
of discrete event systems, and cyber physical systems.

Charif Mahmoudi received the MSc and PhD degrees in com-
puter engineering from the University of Paris-EST (France) in
2009 and 2014, respectively. Since then, he has been a PostDoc
at the National Institute of Standards and Technology. He par-
ticipated as consultant then software architect to several suc-
cessful telecommunication projects within France Telecom and
Bouygues Telecom. His areas of research are on distributed sys-
tems, cloud-computing, mobile computing, and loT.

Riccardo Masucci is a public policy professional. He currently
works as Senior Manager at Intel Corporation and leads the
activities related to data protection and cybersecurity policies
in Europe, Middle East, and Africa. He previously served as
policy advisor to Members of the Justice and Home Affairs
Committee in the European Parliament. He studied in Italy
and Austria and he holds a Master’s Degree in International
Relations.

Andreas Mattas is a member of the teaching stuff of the School
of Economic Sciences of the Aristotle University of
Thessaloniki. He holds a Diploma in Applied Mathematics of
Aristotle University of Thessaloniki, Greece, and a Doctor’s
degree (PhD) in Information Security from the Aristotle
University of Thessaloniki, Greece. His research interests
include information security, information modeling and
optimization.

Joseph D. Miller has served as the chairman of the United
States Technical Advisory Group since 2005 which developed
ISO 26262: Road Vehicles — Functional Safety. This was recog-
nized by the SAE Technical Standards Board Outstanding
Contribution Award. He provided the Technical Keynote at the
Safety Critical Systems sessions of the 2011 SAE World
Congress, teaches an SAE Webinar introduction to 1SO 26262,
and serves on the boards for the VDA safety conference in
Berlin and the CTI safety conference in the United States. He is

xviii

ABOUT THE CONTRIBUTORS

the Chief Engineer of Systems Safety at TRW Automotive
responsible for the systems safety process. Prior to this, he has
managed systems engineering, manufacturing planning, and
program control for electric steering. He has also engineered
communication, avionics, infrared, and radar systems, as well
as and thick and thin film components. He has 20 US patents, a
Master of Engineering (EE), and a Master of Business
Administration.

Sandeep Neema is a Research Associate Professor of Electrical
Engineering and Computer Science at Vanderbilt University,
and a Senior Research Scientist at Institute for Software
Integrated Systems. His research interests include Cyber
Physical Systems, Model-based Systems Design and Integration,
Mobile Computing, and Distributed Computing. He received his
PhD from Vanderbilt University in 2001.

Vera Pantelic received the BEng in Electrical Engineering from
the University of Belgrade, Belgrade, Serbia, in 2001, and MASc
and PhD in Software Engineering from McMaster University,
Hamilton, ON, Canada, in 2005 and 2011, respectively. She is
working as a Principal Research Engineer with the McMaster
Centre for Software Certification, and McMaster Institute for
Automotive Research and Technology (MacAUTQ), McMaster
University. Her research interests include development and cer-
tification of safety-critical software systems, model-based
design, and supervisory control of discrete event systems.

Lucian Patcas is a Postdoctoral Fellow in the Department of
Computing and Software at McMaster University in Hamilton,
ON, Canada, and also a Principal Research Engineer with the
McMaster Centre for Software Certification (McSCert) and
McMaster Institute for Automotive Research and Technology
(MacAUTO). His main research interests lie in the area of formal
methods for real-time and safety-critical software. Currently, he
is involved in several research projects related to the safety of
automotive software, simulation of CAN networks, and model-
based development of automotive software. He received his
PhD in Software Engineering from McMaster University in 2014,
master’s in Computer Science from University College Dublin,
Ireland in 2007, and bachelor’s in Software Engineering from
Politehnica University of Timisoara, Romania in 2004.

Andrea Piovesan was born in Italy and received his Master of
Science degree in Engineering Physics from the University of

ABOUT THE CONTRIBUTORS XiX

Turin, Torino, Italy. He has started his professional career at Fiat
Research Centre where he gained over 10 years’ experience in
safety and reliability of embedded electronic systems, for auto-
motive and aeronautic industries. Always looking for new chal-
lenges in applying new processes and innovative technologies,
Andrea is an R&D specialist focused on the development of
complex, safety-critical systems. After a long experience spent
on by-wire systems and innovative powertrain systems, he was
assigned to the ISO Working Group 16 as a technical expert for
the development of the automotive functional safety standard
ISO 26262. Andrea is Functional Safety Expert at Metatronix
S.rl, a company of the Metatron Group, worldwide leader in
research and development of Engine Control Systems dedicated
to CNG, LNG, and LPG alternative fuels.

Alexander Schaap received his bachelor’s degree in Computer
Science in the Netherlands in 2013. After returning to Canada,
he continued his studies, doing a master’s degree in software
engineering at McMaster University. He is currently a part of
Leadership in Automotive Powertrain (LEAP) project. His
research interests include not only the application of generative
programming techniques and functional programming lan-
guages but also proper software engineering as a whole.

Dr. Anuja Sonalker, PhD, is founder of STEER auto cyber,
where she leads development of cyber security for advanced
and future vehicles. Prior to STEER she was Vice President of
Engineering & Operations, North America, for TowerSec where
she led engineering, operations, and market facing R&D for the
North American market. She established the global engineering
services division and led several new business contracts. She is
an expert in cyber security for embedded and distributed net-
worked systems. She brings together a broad set of technical
skills, demonstrated leadership, and experience from working
with government, academia, and industry leaders. She has led
various efforts in the past 16 + years in automotive cyber secu-
rity, intrusion detection, Internet infrastructure security, wireless
systems security, sensor networks, security protocol design, and
cryptography. She is currently the Vice Chair of the SAE
Committee on Automotive Security Guidelines and Risk
Development under Electrical Systems. Prior to TowerSec, she
led innovation in automotive cyber security at Battelle. At
Battelle she was co-inventor of the world’s first and only Sigma
Six accurate Intrusion Detection System for cars. She holds two
patents in the area of automotive cyber security. She also

XX

ABOUT THE CONTRIBUTORS

executed field trials on decoupled projects with several auto-
makers paving the way for carmakers to accept IDS as a neces-
sity and issue requirements. She maintained industry outreach
and was invited speaker to several technical and nontechnical
venues across the world on automotive cyber security issues.
She served as an advisory member of the Battelle Senior
Technical Council. Prior to Battelle she worked as a PI/Branch
Chief at Sparta, and was a Research Staff Member of security at
IBM TJ Watson, and Fujitsu Labs. She had worked in various
security domains during the time from Internet Infrastructure
to wireless handhelds, and enterprise security. During this time,
she was also a contributing author to several standardization
activities including IEEE 802.11S, ANSI T11 cyber security, and
IETF Secure Inter Domain Routing (SIDR). She completed her
doctoral studies from the University of Maryland, College Park,
in Electrical Engineering with her thesis in Wireless Distributed
Systems Security. Her thesis was on securing collaborative ser-
vices in wireless sensor networks in highly adversarial scenarios.
In her spare time, she mentors high school kids toward STEM
disciplines and women through the Scholarships for Women
Studying Information Systems (SWSIS).

Dr. Janos Sztipanovits is currently the E. Bronson Ingram
Distinguished Professor of Engineering at Vanderbilt University
and founding director of the Vanderbilt Institute for Software
Integrated Systems. Between 1999 and 2002, he worked as pro-
gram manager and acting deputy director of DARPA
Information Technology Office. He leads the CPS Virtual
Organization and he is co-chair of the CPS Reference
Architecture and Definition public working group established
by NIST in 2014. In 2014/15 he served as academic member of
the Steering Committee of the Industrial Internet Consortium.
He was elected Fellow of the IEEE in 2000 and external member
of the Hungarian Academy of Sciences in 2010.

Dr. Cihan Tunc is a Research Assistant Professor in the
Electrical and Computer Engineering Department at the
University of Arizona and associated with the Autonomic
Computing Lab (ACL) in the University of Arizona. Ile holds
PhD from the Electrical and Computer Engineering Department
of the University of Arizona. His research areas include auto-
nomic power, performance, and security management for the
cloud computing systems, loT, and cyber security.

ABOUT THE CONTRIBUTORS XXi

Claire Vishik is Trust & Security Director at Intel Corporation.
Her work focuses on hardware security, Trusted Computing, pri-
vacy enhancing technologies, and some aspects of encryption
and related policy issues. She is a member of the Permanent
Stakeholders Group of the European Network and Information
Security Agency (ENISA). She holds leadership positions in stan-
dards development and is on the Board of Directors of the
Trusted Computing Group (TCG) and a Council Member of the
Information Security Forum. She is an active member of
research organizations and initiatives; she is a Board member
for Trust in Digital Life (TDL) and member of the Cybersecurity
Steering Group for the UK Royal Society. She serves on advisory
and review boards of a number of research initiatives in security
and privacy in Europe and the United States. Prior to joining
Intel, she worked at Schlumberger Laboratory for Computer
Science and AT&T Laboratories. She is the author of a large
number of peer-reviewed papers, as well as an inventor on 30 +
pending and granted US patents. She received her PhD from
the University of Texas at Austin.

Dr. Alan Wassyng is the Director of the McMaster Centre for
Software Certification (McSCert). He has been working on safety-
critical software-intensive systems for more than 25 years, and is
licensed as a Professional Engineer in Ontario. After spending 14
years as an academic, he consulted independently on critical
software development for more than 15 years. He helped Ontario
Hydro (OH) develop methods for safety-critical systems, and was
a key member of the team that designed the methodology and
built the software for the shutdown systems for the Darlington
Nuclear Station. In 1995 he was awarded an OH New Technology
Award for “Development of Safety-Critical Software Engineering
Technology.” In 2002 he returned to academia. He publishes on
software certification, and the development of safe and depend-
able software-intensive systems. He is a cofounder of the
Software Certification Consortium (SCC), and has served as
Chair of the SCC Steering Committee since its inception in 2007.
He has consulted for the US Nuclear Regulatory Commission,
and in July 2011, he was a visiting researcher in the Center for
Devices and Radiological Health at the US Federal Drug
Administration. In 2012 he was invited to give a keynote talk at
Formal Methods (the premier conference in the field), and a key-
note at FormaliSE 2013. In 2006 he was awarded the McMaster
Students Union Award for Teaching Excellence in the Faculty of
Engineering. He has served as a PI or co-PI on a number of
funded projects at McMaster University.

This page intentionally left blank

INTRODUCTION

C. Greer
National Institute of Standards and Technology, Gaithersburg, MD,
United States

With expectations for between 50 and 200 billion connected
devices worldwide by 2020, the global Internet of Things market
is predicted to expand at a compound annual growth rate of over
31%, exceeding $9T by the 2020 milestone.!

Internet of Things (IoT) concepts are expected to drive prog-
ress across nearly all sectors of the global economy. GE esti-
mates of the Industrial Internet could add $10T to $15T to
global GDP over the next 20 years. Gartner predicts that there
will be 250 million connected vehicles on the road by 2020.
Navigant predicts that the worldwide installed base of smart
meters will grow from over 300 million today to more than 1 bil-
lion by 2022. IDC predicts that the wearable connected fitness
device market will grow from 45 million units in 2015 to 126
million in 2019.

The impact of networking and information technology (NIT) is
stunning. Virtually every human endeavor is affected as advances
in NIT enable or improve domains such as scientific discovery,
human health, education, the environment, national security,
transportation, manufacturing, energy, governance, and
entertainment.”

Realizing the full benefits of these emerging IoT concepts
will require advances in science and engineering to meet the
grand challenges posed by emerging IoT applications in terms
of scale, connectivity, complexity, and interdependence. The
numbers above speak to the issue of scale. The largest growth
in connectivity is expected for devices not traditionally net-
work-connected—devices like home thermostats, street lights,

'See, for example, http://www.intel.com/content/dam/www/public/us/en/images/
iot/guide-to-iot-infographic.png; http://www.technavio.com/pressrelease/the-global-
internet-of-things-market-is-expected-to-grow-at-a-cagr-of-3172-percent.
“president’s Council of Advisors on Science and Technology, Designing a Digital
Future: Federally Funded Research and Development in Networking and Information
Technology, January 2013.

XXiv

INTRODUCTION

and automobiles—creating new markets for systems-of-systems
designs. This connectivity is often multinodal—a connected
vehicle may interact not just with the driver, but with other
vehicles, road infrastructure, transportation management sys-
tems, public safety systems, and more—creating increased
levels of complexity and new interdependencies.

These new connections and interdependencies create new
safety and security concerns. Connectivity means that physical
incidents in IoT systems may arise not only from physical
means but from cybersources as well, increasing the attack vec-
tors for important infrastructures with significant economic and
life safety implications. And new interdependencies mean that
a failure or an attack may not be limited to a single technology
or sector.

Removing the cyber-physical barriers in an urban environment
[smart city] presents a host of opportunities for increased
efficiencies and greater convenience, but the greater connectivity
also expands the potential attack surface for malicious actors. In
addition to physical incidents creating physical consequences,
exploited cyber vulnerabilities can result in physical
consequences, as well.”

These safety and security challenges are not limited to a sin-
gle sector. Smart grid, intelligent vehicles, next-generation air
traffic control, and smart cities are just a few examples of sec-
tors where IoT concepts with new safety and security concerns
are being developed and deployed.

The inherent level of automation and controllability of positive
train control systems makes vulnerabilities particularly
dangerous if a malicious actor can exploit them. After obtaining
system-level access, an actor could execute a variety of
commands, many of which could cause a chain of automated
reactions with little or no human oversight.”

Tackling these safety and security challenges requires an
approach that embraces highly complex systems at scale and
encompasses the full system life cycle from conceptualization

“Department of Homeland Security, The Future of Smart Cities: Cyber-Physical
Infrastructure Risk. https://ics-cert.us-cert.gov/sites/default/files/documents/OCIA%
20-%20The%20Future%200f%20Smart%20Cities%20-%20Cyber-Physical %
20Infrastructure%20Risk.pdf, August 2015.

“Department of Homeland Security, The Future of Smart Cities: Cyber-Physical
Infrastructure Risk, https://ics-cert.us-cert.gov/sites/default/files/documents/OCIA%
20-%20The%20Future%200f%20Smart%20Cities%20-%20Cyber-Physical%
20Infrastructure%20Risk.pdf.

INTRODUCTION XXV

to realization and assurance. This is the realm of advanced sys-
tems engineering and is the theme of this volume. Part I focuses
on the fundamentals, describing how systems in an IoT world
go beyond the ISO/IEC/IEEE 15288 definition of “a combination
of interacting elements to achieve one or more stated purposes”
to include those that are aware of, interact with, and shape the
world around them. This Part also addresses compositionality—
the fact that the properties of an IoT system emerge from the
properties of its components and their interactions. For exam-
ple, the properties of an intelligent transportation system
emerge from those of connected vehicles interacting with each
other and with intelligent intersections, which are in turn
controlled by regional traffic management system, etc. Note
that the interacting components at each level in this composi-
tion is an loT application in its own right, a cyber-physical sys-
tem that is a codesigned hybrid of information and operational
technologies (IT and OT) that operates in real time. Analysis of
cyber-physical systems—ranging from smart meters and smart
phones to continental-scale electric grids and global communi-
cations networks—is also addressed in Part I.

Part II provides a series of perspectives on safety and secu-
rity, starting with the importance of considering the perspective
of an attacker in developing a safe and secure design for an IoT
system. The perspective of those responsible for producing safe
and secure systems is also addressed, with automobile manu-
facturers as a case study. Cybersecurity as a commercial advan-
tage to a company is also discussed to provide a forward-
looking business-model perspective to make up an intelligent
transportation system. The assurance perspective—how one
may know that a system will do safely and securely what it is
designed to do and not do unsafe and insecure things—is also
addressed. New perspectives in risk management—dubbed risk
engineering—are described that embrace the intricate interde-
pendencies within complex systems that render traditional
approaches based on separation of concerns inadequate.
Finally the role of standards in providing foundations for
interoperability—effective interactions between systems and
composability—the ability of systems to serve as components
of safe and secure systems-of-systems—is described.

Part III describes application of the concepts in Parts I and II
to real-world examples, with cloud computing and smart
grid serving as the primary use cases. The first chapter
describes combining an attack perspective with concepts from
compositionality and risk engineering in designing cloud com-
puting systems that are resilient through effectively managed

XXVI

INTRODUCTION

redundancy, diversity, and reconfigurability. A systems-oriented
approach and effective methods for designed-in cybersecurity
for cloud computing systems are addressed in the next chapter.
The third chapter describes the application of systems engineer-
ing and IoT concepts for a safe and secure smart grid. The
final chapter describes the development of formal methods and
languages for IoT applications, using smart grid as an example.

Collectively, the perspectives set out in this volume provide
a foundation for considering the safety and security challenges
posed by complex systems in the digital era. Only by meeting
these challenges will IoT concepts emerge that can truly
enable a world that is safer, more secure, sustainable, livable,
and workable.

SYSTEMS

This page intentionally left blank

EDITOR'S PREFACE

E. Griffor
National Institute of Standards and Technology (NIST), Gaithersburg, MD,
United States

A system is a set of interacting components that frequently
form a complex whole. Each system has both spatial and tem-
poral boundaries. Systems operate in, are influenced by and
influence their environment. Systems can be described structur-
ally, as a set of components and their interactions, or by refer-
ence to its purpose. Alternatively, a system can be referenced in
terms of its functions and behaviors.

The notion of a system is ubiquitous. It is not simply a tech-
nical concept but it lies at the heart of how the mind deals with
and conceives of and understands the surrounding world. It is
the essence of how we design and build or make things and
how we ultimately garner assurance about their behavior.
Indeed, the phrase “what we make, makes us” captures a funda-
mental truth about the relationship between the act of altering
our world and how it is we understand that world—we make
the world over in the image of our thoughts. Thought, through
sensing and perception and abstraction or conception, strives to
bring order to our experience.

But what of the case where the products of significantly differ-
ent ways of thinking begin to interact? Their interactions are not
likely to meet the purposes of any of the designers. What about a
world of systems that are allowed to interact, despite the fact that
they were not engineered to do so, that they were not intended to
do so? This is the world we live in where the Internet provides ubig-
uitous and unhindered connectivity, possibilities for interaction
and composition. Some of the ways these systems interact were
intended (or by design), but so many others were not intended or
designed. Sometimes the results are beneficial, but sometimes they
have the potential for harm, they are hazardous. The hazards asso-
ciated with this type of emergent system behaviors may result in
harm to person and property—this is the topic of system safety.
Additionally a system may be vulnerable, may be subject to

Handbook of System Safety and Security. DOIL: http://dx.doi.org/10.1016/B978-0-12-803773-7.00001-2
© 2017 Elsevier Inc. All rights reserved.

4 Chapter 1 EDITOR'S PREFACE

unauthorized access and modification—this is the topic of system
security.

In this preface to the Handbook of System Safety and
Security, we discuss the concept of a system, system safety and
security and review the chapter topics.

1.1 The Need for a Broadly Targeted
Handbook of System Safety and
Security

The word system is overloaded, that is, has different mean-
ings to different people. The effort to understand a particular
system leads one to ask a few key questions:

e What are the componentor parts of the system?

e What are the interactions between the system’s components?
¢ What are its spatial and temporal boundaries?

* What is its environment?

* What is its structure?

* What function or functions does the system perform?

The interactions between systems, due to the connectivity
between systems and to their environment, including human
operators, complicate the answers to questions about system
safety and security. For example, our need to monitor, measure
and control must take into account system connectivity. Hence
there is a need to revisit traditional approaches to design for criti-
cal concerns such as safety and security. There are also new costs
associated with this change in approach. Costs can range from
additional component cost, to time delays, to process disruption
until new mechanisms are streamlined in. In other words, revisit-
ing these topics must be done from the perspective of all risks.

Though our understanding of systems, as they are rapidly
being deployed in our communities and in our nations and
across the sectors of the economy, is changing and our
approaches to the topics of safety and security are correspond-
ingly diverse, there is a need to begin a broader dialog in order
to keep pace with these developments in technology, business,
and government. For this reason, the chapters of this Handbook
reflect the perspectives of experts in each of these sectors. The
topics of the chapters are a selection, some technical and others
business- and policy-related. It is the hope of the editor, and
the contributors, that this volume will serve to inform and
stimulate cross-disciplinary discussion, study and research on
system safety and security.

Chapter 1 EDITOR'S PREFACE 5

Part I: Systems
Chapter 1: Editor's Preface and Introduction
Edward Griffor

Chapter 1 contains a preface and a brief introduction to the
concept of a system (including a discussion of cyber-physical
systems or CPS), more commonly known as the Internet of
Things (1oT). CPS are systems that include both logical opera-
tions (such as control and feedback) and physical interactions,
such as gathering information from the physical realm using
sensors or taking an action or actuating that impacts the physi-
cal realm. CPS and IoT are the focus of current discussions due
to the accelerating deployment of information systems to
become the “smarts” of business, industry, government, as well
as our cities and nation.

Finally we discuss the concepts of system safety and security
that treated in this volume and how they relate to one another.

Chapter 2: Composition and Compositionality
in CPS—Janos Sztipanovits, Ted Bapty,
Zsolt Lattmann, and Sandeep Neema

Chapter 2 introduces composition and compositionality of
systems, one of the key challenges to our understanding of
systems and of their behaviors. These two notions raise the
important questions about how to study and how to gain confi-
dence about the composition of systems.

Cyber-physical systems (CPS) are engineered systems where
functionalities and essential properties emerge through the
interaction of physical and computational components. One of
the key challenges in the engineering of CPS is the integration
of heterogeneous concepts, tools, and languages. In order to
address these challenges, the authors review a model-integrated
development approach for CPS design that is characterized
by the pervasive usage of modeling throughout the design pro-
cess, including application models, platform models, physical
system models, environment models, and models of interaction
between these modeling aspects. The authors also discuss
embedded systems where both the computational processes
and the supporting architecture are modeled in a common
modeling framework.

6 Chapter 1 EDITOR'S PREFACE

Chapter 3: Software Engineering for Model-
Based Development by Domain Experts—
Monika Bialy, Vera Pantelic, Jason
Jaskolka, Alexander Schaap, Lucian Patcas,
Mark Lawford, and Alan Wassyng

Chapter 3 discusses the model-based development (MBD)
practices that have impacted the development of embedded soft-
ware in many industries, especially in safety-critical domains.
The models are typically described using domain-specific
languages and tools that are readily accessible to domain experts.
Domain experts, despite not having formal software engineering
training, find themselves creating models from which embedded
code is generated and therefore contributing to the design and
coding activities of software development. This new role of the
domain experts can create new and different dynamics in the
interactions with software engineers, and in the development
process. In this chapter, the authors describe their experiences as
software engineers in multiyear collaborations with domain
experts from the automotive industry, who are developing
embedded software using the MBD approach. The authors aim
to provide guidelines meant to strengthen the collaboration
between domain experts and software engineers, in order to
improve the quality of embedded software systems, including
the safety and security of their systems.

Part II: Perspectives on Safety and Security
Chapter 4: Evolving Security—Anuja
Sonalker and Edward Griffor

The topic of system security, and in particular that of cyberse-
curity differs in a critical way from the other concerns we have
about systems. Though concerns like safety and resilience do
have challenges associated with design, realization, and valida-
tion to an ever changing operating environment, security faces
an ever evolving adversary. When faced with constantly chang-
ing conditions under which a system must continue to deliver
its function, designers attempt to model those conditions and
test their design against that model. Modeling also becomes
important from a measurement standpoint. In order to assess
systems and determine their overall risk, their overall security

Chapter 1 EDITOR'S PREFACE 7

posture, design countermeasures, and then re-assess systems to
determine the effectiveness of countermeasures in a provable,
reproducible, repeatable quantitative manner, we must be able
to model the security, vulnerability, and risk of these systems.

In this chapter the authors introduce new modes of model-
ing for security adversaries and discuss some basic foundations
for adversary modeling. They also discuss how connectivity of
systems increases the complexity of system interactions. These
complexities also need to be identified and modeled to under-
stand the derivative effect on the overall security posture.

Chapter 5: The Business of Safety—dJoseph
D. Miller

Chapter 5 discusses system safety from the perspective of
system producers. The author illustrates the practice of product
or system safety, using the example of system safety in the auto-
mobile industry.

Automobiles are some of the most widely deployed, complex
systems in our society. While their drivers have a minimal
amount of preparation or training to operate them, these systems
are growing more complex by the day. Current aspirations are to
deploy connected, autonomous vehicles. All involved will face
challenges. The title of this chapter “The Business of Safety” is
intended to address and discuss several questions, like: What is
system safety about? What is it made up of? What do people in
this “business” do? What are their fundamental activities and
concerns? What do they need to carry on their business? What
do they actually produce and how does that relate to the other
activities necessary for producing the whole product, other activ-
ities necessary for producing the product and addressing other
relevant concerns?

Chapter 6: Cybersecurity for Commercial
Advantage—James M. Kaplan

Many elements of the work required for a business’s offer-
ings are viewed as noncommercial, such as cybersecurity. They
are regarded by business managers simply as an additional cost
that cannot be passed on to customer and that therefore are
not recoverable. Many of these elements, and in particular
cybersecurity, differ in a critical way from the other concerns
that business has. Uneven adoption, including adoption by

8 Chapter 1 EDITOR'S PREFACE

current or potential business partners, can be a cause of delays
in achieving cross-business agreements and can make it much
more difficult and costly to achieve and follow your own busi-
ness’s policies regarding those concerns.

In this chapter the author discusses the business of cyberse-
curity and describes how cybersecurity policies and implemen-
tation can be turned into a commercial advantage.

Chapter 7: Reasoning About Safety and
Security: The Logic of Assurance—Andrea
Piovesean and Edward Griffor

An approach to system safety that emphasizes the work pro-
ducts of the design, verification, and validation activities forces
us, in the system’s evaluation, to reconstruct the argument and
even then there is no standard against which to assess the types
of reasoning used. Some constraints on the argumentation are
captured in standards that describe how these activities should
be performed but only implicitly in the dictates of the standards
and not through explicit constraints on the argument itself.

In this chapter we introduce a framework for developing a
safety case that clearly distinguishes the part of this reasoning
that is common to the analysis of any system and the patterns
of acceptable reasoning, identified in standards for specific clas-
ses of cyber-physical systems. Examples of these prescribed pat-
terns of reasoning can be found in ISO 26262, a standard for
automotive software safety and in its predecessors in similar
standards in other domains. This framework provides guidance
both for the construction of argumentation in a case for system
safety and also for assessing the soundness of that safety case.

Chapter 8: From Risk Management to Risk
Engineering: Challenges in Future ICT
Systems—Michael Huth, Claire Vishik, and
Riccardo Masucci

Information and communications technology (ICT) is an
umbrella term that includes any communication device or
application, as well as the various services and applications
associated with them. Conventional approaches to the design,
implementation, and validation of ICT systems deal with one

Chapter 1 EDITOR'S PREFACE 9

core system concern or two system concerns at a time, for
example, the functional correctness or reliability of a system.
Additional aspects are often addressed by a separate engineer-
ing activity. This separation of concerns has led to system engi-
neering practices that are not designed to reflect, detect, or
manage the interdependencies of such aspects. For example,
the interplay between security and safety in modern car
electronics, or between security, privacy, and reliability in
connected medical devices.

Current trends and innovation suggest a convergence of
disciplines and risk domains in order to deal effectively and
predictively with such interdependencies. However, identifica-
tion and mitigation of composite risks in systems remains a
challenge due to the inherent complexity of such interdepen-
dencies and the dynamic nature of operating environments.

This environment requires risk management and mitigation
be a central and integral part of engineering methods for future
systems. In order to address the requirements of the modern
computing environment, the authors argue that one needs a
new approach to risk, where risk modeling is included in design
as its integral part. In this chapter the authors identify some of
the key challenges and issues that a vision of risk engineering
brings to current engineering practice; notably, issues of risk
composition, the multidisciplinary nature of risk, the design,
development, and use of risk metrics, and the need for an
extensible risk language. This chapter provides an initial view
on the foundational mechanisms needed in order to support
the vision of risk engineering: risk ontology, risk modeling and
composition, and risk language.

Part lll: Applications of System Safety and
Security

Chapter 9: A Design Methodology for
Developing Resilient Cloud Services—Cihan
Tunc, Salim Hariri, and Abdella Battou

Cloud Computing is emerging as a new paradigm that aims to
deliver computing as a utility. For the cloud computing para-
digm to be fully adopted and effectively used, the authors argue
that it is critical that the security mechanisms are robust and
resilient to malicious faults and attacks. Security in cloud com-
puting is of major concern and a challenging research problem

10 Chapter 1 EDITOR'S PREFACE

since it involves many interdependent tasks, including applica-
tion layer firewalls, configuration management, alert monitoring
and analysis, source code analysis, and user identity manage-
ment. It is widely accepted that one cannot build software and
computing systems that are free from vulnerabilities and cannot
be penetrated or attacked. Therefore it is widely accepted that
cyber resilient techniques are the most promising solutions to
mitigate cyberattacks and to change the game to the advantage
of the defender over the attacker.

Moving Target Defense (MTD) has been proposed as a
mechanism to make it extremely difficult for an attacker to
exploit existing vulnerabilities by varying the attack surface of
the execution environment. By continuously changing the envi-
ronment (e.g., software versions, programming language, oper-
ating system, connectivity, etc.), we can shift the attack surface
and, consequently, evade attacks.

In this chapter the authors present a methodology for
designing resilient cloud services that is based on redundancy,
diversity, shuffling, and autonomic management. Redundancy is
used to tolerate attacks if any redundant version or resource is
compromised. Diversity is used to avoid the software monocul-
ture problem where one attack vector can successfully attack
many instances of the same software module. Shuffling is
needed to randomly change the execution environment and is
achieved by “hot” shuffling of multiple functionally equivalent,
behaviorally different software versions at runtime. The authors
also present their experimental results and evaluation of the
RCS design methodology. Their experimental results show that
their proposed environment is resilient against attacks with less
than 7% in overhead time.

Chapter 10: Cloud and Mobile Cloud
Architecture, Security and Safety—Charif
Mahmoudi

In Chapter 10 the author reviews the notions of cloud com-
puting or, more simply, cloud architecture. He discusses security
and safety as it relates to cloud implementation of systems.
This chapter aims to provide guidance about the cloud and the
mobile cloud, needed to analyze and make choices, regarding
cloud implementation, that are optimal with respect to security

Chapter 1 EDITOR'S PREFACE 11

and safety constraints. The guidance provided by this chapter
can help the software architect to understand the cloud archi-
tecture in a manner that will assist in integrating security and
safety aspects in an organization’s information technology
architecture. This chapter targets also technologists, research-
ers, and scientists; this chapter provides a survey of state-of-
the-art techniques, recommendations, and approaches used to
make the cloud platform-based systems secure and safe.

In short, the author provides guidance on cloud architecture
for security and safety. Small and medium businesses, research-
ers, and government agencies that are planning to implement
solutions based on the cloud may find this guidance useful in
developing cloud architectures that are suitably adapted to their
businesses. The guidance provided will contribute to the
success of their cloud implementation even if it is an imple-
mentation of a private, hybrid cloud, or an implementation of
software components as services in the cloud. Moreover this
guidance will assist in ensuring the security and the safety of
their implementation.

Chapter 11: A Brief Introduction to Smart
Grid Safety and Security—Siham Khoussi
and Andreas Mattas

Chapter 11 is intended as a brief introduction to the
concepts of the Smart Grid and notions of safety and security
for the Smart Grid. It can serve as a guidance for those working
within multiple domains related to smart grid and smart grid
systems and even for readers interested in understanding what
the Smart Grid is, what its basic elements are, and how it differs
from the conventional electric power grid. The intended audi-
ence includes those working in government, industry, as well as
academia in areas related to electric power generation and the
environmental aspects of electric power generation.

The authors provide the reader with an overview of the grid
and the smart grid architectures, including their component
elements and general operation. Based on safety and security
paradigms in other domains, the authors highlight some
concepts for safety and security of the Smart Grid. Finally the
authors provide examples of harm, to both individuals and sys-
tem assets, that can be caused by not provisioning specific

12 Chapter 1 EDITOR'S PREFACE

efforts toward understanding system vulnerabilities or hazards.
They also give examples of some vulnerabilities and hazards
and how they can be addressed in design and operation of the
smart grid.

Chapter 12: The Algebra of Systems and
System Interactions With an Application to
Smart Grid—Charif Mahmoudi, Hasnae Bilil,
and Edward Griffor

The existing electric power grid has components for genera-
tion, for transmission, and finally for distribution of electric
power to large and small users. Power flows from generation
components over transmission components to distribution
components, servicing large commercial and public facilities, as
well as our homes. Growth in demand is responded to by
augmenting the grid with additional generation, transmission,
and distribution capacity. This enhanced capacity is costly and
takes years to provision. Failure to accurately predict growth in
demand or inaccurate estimates of grid performance can lead
to excessive and unnecessary cost or inadequate capacity. Some
have concerns about the impact of less than optimal operation
of the power grid and about the impact of continued use of
fossil fuels for generation that have increased.

As a result, societal leadership and the public are increasingly
aware of alternative approaches to meeting the demand for elec-
tric power. As a result, there are current discussions about how
one might reshape the electric power “grid” as a “Smart Grid.” The
proposed changes pose challenges to traditional approaches to
grid infrastructure and organization. The “smartness” of the Smart
Grid consists in two distinct innovations. The first involves our
integrating new technologies into the power grid and the second
involves our radically changing the ways that grid elements relate
to one another. A Smart Grid manages distributed generation and
bidirectional power flow. In the Smart Grid, each new component
could potentially affect adversely the performance of other
elements of the grid and so one must have a means of expressing
and evaluating these proposed grid innovations.

In this chapter the authors propose a language, for expressing
the elements of a Smart Grid, and a composition operator for
composing grid elements. The authors show how this representa-
tion of grid elements forms an algebra, under this composition
operator, that can facilitate the assessment of architectures for

Chapter 1 EDITOR'S PREFACE 13

smart grid. They argue that this approach can assist planners
and engineers design the Smart Grids of the future and that it
can enable planners and engineers to design, and ultimately
simulate the composition and the integration of future grid
system. This “smart grid algebra” is based on a formal language
that offers the expressive power needed to capture the observable
behavior and interactions of smart grid components, enables the
study of existing smart grid systems, and supports a metho-
dology for the study of critical concerns about the grid such as
safety and security.

This page intentionally left blank

COMPOSITION AND
COMPOSITIONALITY IN CPS

J. Sztipanovits, T. Bapty, Z. Lattmann, and S. Neema
Vanderbilt University, Nashville, TN, United States

2.1 Introduction

Cyber-physical systems (CPS) are engineered systems where
functionalities and essential properties emerge from the net-
worked interaction of physical and computational components.
One of the key challenges in the engineering of CPS is the inte-
gration of heterogeneous concepts, tools, and languages [1]. In
order to address these challenges, a model-integrated development
approach for CPS design was advocated by Karsai and Sztipanovits
[2], which is characterized by the pervasive use of models
throughout the design process, such as application models, plat-
form models, physical system models, environment models,
and the interaction models between these modeling aspects. For
embedded systems, a similar approach is discussed in Ref. [3],
in which both the computational processes as well as the
supporting architecture (hardware platform, physical architecture,
and operating environment) are modeled within a common
modeling framework.

The primary challenge in model-based CPS design flows is
improving predictability of system properties “as manufactured”
at the end of the design process. A typical characteristic of the
current systems’ engineering practice is that limited predictabil-
ity forces the development process to iterate over lengthy
design — build/manufacture — integrate — test —» redesign cycles
until all essential requirements are achieved. There are three
fundamental contributors to radically shortening systems devel-
opment time:
¢ selecting the level and scope of abstractions in the design

flow,
¢ reusing design knowledge captured in component model (CM)

libraries and using compositional design methods, and

Handbook of System Safety and Security. DOIL: http://dx.doi.org/10.1016/B978-0-12-803773-7.00002-4
© 2017 Elsevier Inc. All rights reserved.

15

16 Chapter 2 COMPOSITION AND COMPOSITIONALITY IN CPS

« introducing extensive automation in the design flow for exe-
cuting rapid requirements evaluation and design trade-offs.
The most notable example for highly automated model- and

component-based design processes is VLSI design supported by

electronic design automation tools. While there are arguments
that this experience is not portable for a broader category of
engineering systems [4], our experience showed that significant
improvements can be achieved with the development of hori-
zontal integration platforms for heterogeneous modeling, tool

chains, and tool execution [5,6].

The need for establishing horizontal integration platforms
for CPS design flows is the consequence of the traditional engi-
neering approach to dealing with heterogeneity and complexity
by adopting the “separation of concerns” principle. Sources of
heterogeneity in the CPS design space are structured along
three dimensions in Fig. 2.1:

e Hierarchical component abstractions that represent CPS
designs on different levels of details and fidelity.

* Modeling abstractions that span a wide range of mathemati-
cal models such as static models, discrete event models,
lumped parameter dynamic models represented as ordinary
differential equations, hybrid dynamics, geometry and par-
tial differential equations.

* Physical phenomena including mechanical, electrical, ther-
mal, hydraulic, and other.

Heterogeneous domains & Heterogeneous tools & asset
abstractions: model integration libraries: tool integration
Hierarchical
component ; . o >
bstracti - IG=RT Lo
abstractions Cyber-physical design space . 25 DUMOLA
| A
| Z
P ﬁ%f e Loy ired SIMULIA
E-CAD ~ | mABAQUS
] 7
AN
- | .

' MO nm v CTe0 pmm

A PTC Product -

Integrated engineering tools

1]
Static Discrete Ordinary Hybrid Geometry Partial Modeling

event

diff.eqs aynamics

diffeqs abstractions

Figure 2.1 Heterogeneity of CPS domains and design tools.

Chapter 2 COMPOSITION AND COMPOSITIONALITY IN cPS 17

While CPS design requires the exploration of the integrated
design space, the separation of concerns principle establishes
“slices” in this complex space such as physical dynamics domain,
computer-aided design (CAD) domain, electronic CAD (E-CAD)
domain, or finite element analysis (FEA) domain. These individual
design domains are relatively isolated, linked to different engineer-
ing disciplines, and supported by domain-specific tool suites (right
side of Fig. 2.1). Since the existing tool suites represent enormous
value in terms of design knowledge, established modeling lan-
guages, and model libraries, the only reasonable approach to pro-
viding support for CPS design flows is to reuse existing assets. This
approach works well if the design concerns are independent—but
in most cases this is not the case—unless the system is specifically
architected for decoupling selected design concerns [1]. Neglecting
interdependences across design concerns is one of the primary
sources of anomalies and unexpected behaviors detected during
system integration. In conclusion, finding solution for the model
integration and tool integration challenges are the only practical
approach for creating CPS design tool suites.

Heterogeneity of CPS has a significant impact on the central
issue of all model- and component-based design methods and on
the establishment of a semantically precise composition frame-
work that enable the construction of system models from the
models of components. The general requirement for any compo-
sition framework is the establishment of composability and com-
positionality [7]. Composability means that the components
preserve their properties in a composed system. Compositionality
is achieved if selected essential properties of a system can be
computed from the properties of its component. Different engi-
neering disciplines usually have their domain-specific composi-
tion frameworks that are synergistic with the modeling
abstractions, modeling domains, and properties to be composed.
The challenge is to understand how the integration platforms
interfere with domain-specific composition and how composi-
tionality can be provided for different properties simultaneously.

In this chapter we discuss some issues of heterogeneous
composition for CPS design. The example we use is based on
our experience with the development of a model- and
component-based design automation tool suite, OpenMETA as
part of DARPA’s AVM program [8]. The goal of our project was
the design, integration, and validation of an end-to-end tool
suite for vehicle design. The OpenMETA tool suite [5] gave us
opportunity for experimenting with design automation
approaches for CPS and for assessing their effectiveness in a
sequence of CPS design challenges.

18 Chapter 2 COMPOSITION AND COMPOSITIONALITY IN CPS

We focus on two issues that are central to model- and
component-based design of CPS: model composition and tool
composition. First, we show an example of a CPS component
model that comprises a suite of domain models with heteroge-
neous interfaces. The interfaces are designed for supporting
domain-specific composition operators and cross-domain inter-
actions. Second, we show that tool integration platforms also
bring about composition challenges that interact with model
composition. We restrict our discussion to model and tool inte-
gration methaods for lumped parameter dynamics, which is in
itself a complex multifaceted problem.

2.2 Horizontal Integration Platforms in the
OpenMETA Tool Suite

Model- and component-based CPS design flows implement
a design space exploration process that proceeds from early
conceptual design toward detailed design using models and vir-
tual prototyping. This progressive refinement process starts with
the composition of abstract system models from CMs that cap-
ture essential aspects of the system behavior. The system mod-
els are evaluated against requirements using simulation and
verification tools. The promising designs are refined using high-
er fidelity CMs and more detailed modeling abstractions. The
design process is completed by optimizing relatively few high-
fidelity models. The automation of this design process has been
a fundamental goal of the OpenMETA tool suite [9—-12].

To facilitate the seamless integration of heterogeneous mod-
els and tools, OpenMETA complemented the traditional, verti-
cally structured, and isolated model-based tool suites with
horizontal integration platforms [13] for models, tools, and
executions as shown in Fig. 2.2 [14]. The function of the integra-
tion platforms are summarized below.

The modeling functions of the OpenMETA design flow are
built on the introduction of the following model types:

1. Component Models (CMs) that include a range of domain
models representing various aspects of component proper-
ties and behaviors, a set of standard interfaces through
which the components can interact and the mapping
between the component interfaces and the domain models.

2. Design Models (DMs) that describe system architectures
using components and their interconnections.

3. Design Space Models (DSM) that define architectural and
parametric variabilities of DMs.

Chapter 2 COMPOSITION AND COMPOSITIONALITY IN CPS 19

Model Integration Platform
Components]n— Designs }—m— Test benches]1— Pararne?rlc. W
exploration
v v Composed analysis/Simulation models v
Component N Model o Static | i Dynamics | Verification Cyber Analysis/Sim.
exporter COMPOSErsS 7| analysis Y models models specifications
Tool Integration Platform
v v v A hd Y
Job manager ‘
v v v v v v v
H = Simulation| CAD Impact Verif. SW Open
Execution Integratlon Platform Tools Tools | Tools Tools Synth. HLA MDAO
v v v ¥ v ¥ ¥
Local file system and/or Cloud Storage Simulation trace files, analysis results, computed metrics

Figure 2.2 Integration platforms.

4. Test Bench Models (TBM) that specify analysis models and
analyzes flows for computing key performance parameters
linked to specific requirements.

5. Parametric Exploration Models (PEM) that specify regions in
the design space to be used for optimizing key performance
parameters.

The first three model types focus on the designed system,
while the last two represent models of evaluation/optimization
processes implemented by test benches. Each test bench con-
tains a link to a system design (the “system under test” object).
The system design can be a crude system mock-up composed
of low-fidelity CMs at the early stages of the design process,
with placeholders for certain subsystems and components
whose implementation is not yet clear. Hierarchical DMs define
the architecture of a system with its subsystems. Individual
designs can be extended to form a design space by adding alter-
native components and subsystems [15]. The root of a design
space has the same interfaces for all design points. Accordingly,
even if the number of architectural variants is very large, all
associated test benches will remain functional and can be used
to evaluate the associated requirements across all point designs
generated from the design space. Thus by defining test benches
early and executing them periodically, the design space will
continually evolve toward containing only satisfying designs.

The fundamental model-integration challenge for OpenMETA
is the integration of the five model types described above with

20 Chapter 2 COMPOSITION AND COMPOSITIONALITY IN CPS

the different domain models encapsulated by the components.

For example, mobility requirements for a power train, such as

“Maximum Speed Hill Climb Sand,” are evaluated by a test

bench that utilizes lumped parameter dynamic simulation of the

power train model with appropriate terrain data. For a given
power train architecture, the OpenMETA model composer for
lumped parameter dynamics accesses the dynamics models of
the individual components in the architecture and composes
them into a system model that can be simulated by the Modelica

[16] simulation engine. The CMs and the composition mecha-

nism must be flexible enough to enable the use of CMs of differ-

ent levels of fidelity, even represented in different modeling
languages (e.g., Modelica models, Simulink/Stateflow models,

Functional Mockup Unit (FMUs), or Bond Graph models) [9]. The

TBM links the environment model and the integrated system

model to the simulator and creates an executable specification for

the evaluation of the “Maximum Speed Hill Climb Sand” perfor-
mance parameter. Since all design points in the overall design
space have the same interface, the TBM can be linked to a design
space with many alternative, parameterized architectures. Using the

Open MDAO (Multidisciplinary Design Analysis and Optimization)

optimization tool, a multiobjective parametric optimization can be

performed if the exploration process requires it.

Lumped parameter dynamics and simulation-based evalua-
tion of system designs against mobility requirements is just one
example for the many different kinds of test benches required
for evaluating alternative powertrain designs. However the gen-
eral pattern in the overall integration architecture can be clearly
seen:

1. Model Integration Platform: Heterogeneous models repre-
sented in different domain-specific modeling languages are
encapsulated in CM libraries. To facilitate model integration,
heterogeneous CMs are established with precise composition
interfaces and composition operators.

2. Tool Integration Platform: Model composers automatically
synthesize DMs for test benches by extracting the appropri-
ate CMs from the CM libraries and composing them accord-
ing to the specification of a candidate architecture. Using
models of test benches and parameter exploration processes,
analysis flows are integrated for execution on the high-level
architecture (HLA) [17] or on Open MDAO."

'http://openmdao.org/.

Chapter 2 COMPOSITION AND COMPOSITIONALITY IN cPS 21

3. Execution Integration Platform: Executable TBMs are associ-
ated with resources and scheduled for execution on cloud
platforms.

Composition of models deposited in the CM libraries,
composition of analysis flows inside test benches using simu-
lation and verification tools, and composition of execu-
table analysis images on cloud platforms are in the center of
the OpenMETA horizontal integration platforms. In this chap-
ter we restrict our discussion to the selected heterogeneous
CM (named AVM component model after the overall program
name) and to the composition approach for lumped parame-
ter dynamics.

23 AVM Component Model

In a component- and model-based design flow, system mod-
els are composed of CMs guided by architecture specifications.
To achieve correct-by-construction design, the system models
are expected to be heterogeneous multiphysics, multiabstrac-
tion, and multifidelity models that also capture cross-domain
interactions. Accordingly, the CMs, in order to be useful, need
to satisfy the following generic requirements:

1. Elaborating and adopting established, mathematically sound
principles for compositionality. Composition frameworks are
strongly different in physical dynamics, structure, and com-
puting, which need to precisely defined and integrated.

2. Inclusion of a suite of domain models (e.g., structural, multi-
physics lumped parameter dynamics, distributed parameter
dynamics, and manufacturability) on an established number
of fidelity levels with explicitly represented cross-domain
interactions.

3. Precisely defined component interfaces required for hetero-
geneous composition. The interfaces need to be decoupled
from the modeling languages used for capturing domain
models. This decoupling ensures independence from the
modeling tools selected by the CM developers.

4. Established bounds for composability expressed in terms of
operating regimes where the CM remains valid.

These requirements are accepted, but not necessarily prac-
ticed in engineering design where component-based
approaches are used. A common misconception in physical sys-
tem modeling is that useful models need to be handcrafted for
specific phenomena. One explanation for this is the quite com-
mon use of modeling approaches that do not support

22 Chapter 2 COMPOSITION AND COMPOSITIONALITY IN CPS

Caterpillar C9 Diesel Engine : AVM Component
Param./property I

i Weight | | Height | Number of cylinders | Maximum RPM
interfaces 680kg || 1070 mm ‘ 6 | 2300 pm

= Characterize

Length | Width | Maximum power Minimum RPM
« Configure 1245 mm | | £94.08 mm 330 kW , ,y

Signal interfaces = High-fidelity modelica dyWi
A " Rotational F
+ Causal/directional --I il /|/ Signal port &
* Logical conn.
|
* No power transfer map Low-fidelity modelica dynamics model map
= | ::3::0::; | Signal port &
Power interfaces : = : Throtite |B
” Power out _ro Ie
Acausal Rotational — | Bond graph dynamics model Shang it 5
* Physical phen. | Eeerport | Rotaticnal | [e 1 -
L wer port | Signal port L5 D '/ d
(torque/angle..) B | P efaile geomef/y
* Power flow 1 — '
Structural Bell housing|
3 structural
interfaces G tEAs

* Named datums
« Surface/axis/point &
* Mapped to CAD

map

Structural 3 " 5
interface | = " Mount
f structural
) | interface
. "
Structural . I 7 W
interface

FEA geometry

Figure 2.3 Conceptualization of the AVM component model.

compositionality. The AVM component model (Fig. 2.3) placed
strong emphasis on compositional semantics that can resolve
this problem [18].

A CPS component model must be defined according to the
needs of the design process that determines (1) the type of
structural and behavioral modeling views required, (2) the type
of component interactions to be accounted for, and (3) the type
of abstractions that must be utilized during design analytics.
We believe that it does not make sense to strive for a “generic”
CPS component model, rather, CMs need to be structured to be
the simplest that is still sufficient for the goal of “correct-
by-construction” design in the given context.

The AVM component model was designed to integrate multi-
domain, multiabstraction, and multilanguage structural, behav-
ioral and manufacturing models, and to provide the
composition interfaces for the OpenMETA model composers
consistently with the needs of power train and hull design [11].
In Fig. 2.3 we illustrate the overall structure of the AVM compo-
nent model. The main elements of the CM are the followings:

Chapter 2 COMPOSITION AND COMPOSITIONALITY IN CPS 23

1. The model is a container of a range of domain models
expressed using domain-specific languages. The actual
domain models are referenced from the CMs but stored in
separate repositories.

2. Components are characterized by a range of static, physical
properties, and labels defined in established ontologies.
These static properties are extended with a set of parameters
that are changeable during the design process. Fig. 2.3 shows
examples for the properties characterizing a Caterpillar C9
Diesel Engine. The static properties and mutable parameters
are used in the early design-space exploration process [19,20].

3. Lumped parameter physical dynamics plays an essential role
in evaluating dynamic behaviors such as mobility properties
of designs. Since compositional modeling has been a funda-
mental goal for us, we chose the acausal modeling approach
for representing multiphysics dynamics [21]. In this
approach dynamics models are represented as continuous
time Differential Algebraic Equations (DAE) or hybrid DAEs.
Since model libraries may come from different sources, CMs
are potentially expressed in different modeling languages
such as Bond Graphs (although we dominantly used
Modelica-based representations). The multifidelity models
are important in assuring scalability in virtual prototyping of
systems with a large number of complex components.

4, Models of dynamics implemented computationally inside
CPS components are represented using causal modeling
approaches using modeling languages such as Simulink/
Stateflow, ESMoL [22], Functional Mock-up Units [23], or the
Modelica Synchronous Library [24].

5. Geometric structure is a fundamental aspect of CPS design.
Component geometry expressed as course or detailed CAD
models are the basis for deriving geometric features of larger
assemblies and performing detailed FEA for a range of physi-
cal behaviors (thermal, fluid, hydraulics, vibration, electro-
magnetic, and others).

6. Modeling and managing cross-domain interactions are in
the center of CPS correct-by-construction CPS design. The
component modeling language of OpenMETA (described
later) includes constructs to define parametric interactions
across domain models using formulas.

In constructing an AVM component model from a suite of
domain models (such as from Modelica models representing
lumped parameter dynamics of physical or computational beha-
viors, CAD models, models of properties and parameters, and
cross-domain interactions) and the mapping of domain modeling

24 Chapter 2 COMPOSITION AND COMPOSITIONALITY IN CPS

elements to component interfaces are time-consuming and error
prone. In order to improve productivity, the OpenMETA tools
include a full tool suite for importing domain models (such as
Modelica dynamic models), integrating them with standard AVM
component model interfaces, automatically checking compliance
with the standard, and automatically checking model properties,
such as restrictions on the types of domain models, well-
formedness rules, executability, and others. Based on our direct
experience, the automated model curation process resulted in
orders-of-magnitude reduction in required user effort for building
AVM component model libraries.

In summary, CPS component models are containers of a
selected set of domain models capturing those aspects of com-
ponent structure and behavior that are essential for the design
process. While the selected modeling domains are dependent
on CPS system categories and design goals, the overall integra-
tion platform can still be generic and customizable to a wide
range of CPS.

The remaining issue in defining a CPS component model is
the specification of component interfaces and the related com-
position operators.

24 Use Case for Semantic Integration

In a heterogeneous multimodeling component approach,
component interfaces play a crucial role in making the Model
Integration Platform and model composition infrastructure
independent from the individual domain-specific modeling lan-
guages. This is particularly important, because the different
modeling languages (such as Modelica, Simulink, Bond Graphs,
CAD, and others) offer internal component and composition
concepts that are incompatible with each other and do not
match the composition use cases needed in CPS design flows.
The design of domain model independent CM interfaces and
composition operators must reflect the needs of use cases in
the planned design flows.

Due to the complexity and richness of the OpenMETA design
flows, we discuss briefly only key elements of the lumped
parameter dynamics use cases summarized in Fig. 2.4 [25]. The
list of modeling languages used for representing lumped param-
eter dynamics are shown in the second row in the figure.
(TrueTime® is a Matlab/Simulink-based simulator for real-time

*http:/ /www.control.lth.se/truetime/.

Chapter 2 COMPOSITION AND COMPOSITIONALITY IN CPS 25

Composition
. . « Continuous time + Energy flows
CyPhyML integration + Discrete time + Signal flows
+ Discrete event
Simulink/ Hybrid Functional
ESMoL bond Modelica TrueTime mock-up
Stateflow)
graph unit
1 1 1 (| [(.
n 1 1 I 1 ol L] I 1 Equations
v L UL ° T U ™ T Modelica-XML
1 1 11 (| [(I
1 1 11 (] [(.
1 1 11 (| [(I
1 1 11 (| 1o (I
1 1 11 (] [(.
1 1 11 [11 1 1 FMU-ME
)] I | I ™ s-function
~ i ~ . ___FMU-CS
{ L] L]
High Level
v m Architecture
y [nterface (HLA)
v hd v
Formal verification Simulation Distributed cosimulation
« Relational abstraction + Open Modelica « NS-2
* Model checking + Dymola « OMNeT++
+ SMT Solvers » Simulink/StateFlow * Delta-3D
= CPN

Figure 2.4 Summary of the semantic integration concept for lumped parameter dynamics.

control systems. It enables simulation of controller task execu-
tion in real-time kernels, network transmissions in conjunction
with continuous plant dynamics.) The modeling languages
cover causal (Simulink/StateFlow, ESMol, TrueTime, and
Functional Mock-up Unit) and acausal (Modelica and Hybrid
Bond Graph) approaches, continuous, discrete time and dis-
crete event semantics, and facilities for defining physical inter-
actions and signal flows. The connection between the Hybrid
Bond Graph language and Simulink/StateFlow and ESMoL
represents existing transformation tools from bond graphs to
the other languages.

The horizontal bars (Equations, FMU-ME/S-function/FMU-
CS, and HLA) represent the target integration domains required
by the design flow. Equation-based representations are required
by various formal verification tools. The FMU-ME/S-function/
FMU-CS bars represent models in the form of input—output

26 Chapter 2 COMPOSITION AND COMPOSITIONALITY IN CPS

computation blocks that can be integrated in simulators.

Simulation tools used in OpenMETA include OpenModelica,

Dymola, and Simulink/StateFlow. The HLA® bar represents the

integration domain for distributed cosimulations. OpenMETA

uses the HLA standard as distributed simulation integration
platform. Cosimulation is effective when single-threaded simu-
lation execution is extremely slow due to the large dynamic
range in heterogeneous CPS [17]. Distributed cosimulation is
used for virtual prototyping where the simulated system is inte-
grated into and interacts with a complex environment that is
simulated by network simulators (OMNeT + + and NS-2), physi-
cal environment simulator (Delta-3D), or discrete process simu-
lator (CPN). The vertical dashed lines between the modeling
languages and the integration domains represent their rele-
vance for the individual domains. For example, Modelica mod-
els (if specified carefully) may contain specification of dynamics
in the form of equations that can be exported in Modelica-XML
format. In the same time Modelica environments (such as

OpenModelica or Dymola) can export models as compiled

input—output computation blocks using FMU-ME wrapper or

as cosimulation blocks integrated with a solver [23].

The lumped parameter dynamic models encapsulated in
AVM components are composed with each other using compo-
nent interfaces and composition operators. The abstractions
describing component interfaces and composition operators are
collected in the CyPhyML Model Integration Language (see
Fig. 2.4). As the figure suggests CyPhyML is constructed such
that the domain-specific languages used for representing com-
ponent dynamics export a subset of their modeling constructs
via a semantic interface. This semantic interface is specified as
mapping between the dynamics interface in the AVM compo-
nent model and abstractions in the different modeling lan-
guages. There are two important consequences of introducing
the model integration language concept as the cornerstone of
semantic integration.

1. Model integration languages (such as CyPhyML) are
designed for modeling interactions across domain models.
Their semantics is determined by the selected component
interfaces and composition operators and not by the
domain-specific modeling languages used for specifying
embedded CMs (such as Modelica). Accordingly, model
integration languages are designed for simplicity. They
need to be rich enough for representing cross-domain

3https:/ /standards.ieee.org/findstds/standard/1516-2010.html.

Chapter 2 COMPOSITION AND COMPOSITIONALITY IN CPS 27

interactions, but they can be significantly simpler than the

various modeling languages they integrate.

2. Model integration languages evolve as needed. If changing
needs of design flows extend to new modeling concepts, new
cross-domain interactions, they need to be modified. The
most important consequence of the evolving nature of
model integration languages is that their semantics need to
be formally and explicitly specified to maintain the overall
semantic integrity of the multidomain model composition
process. This need led to the design and implementation of
a Semantic Backplane [10].

The OpenMETA Semantic Backplane [26,27] is at the center
of our semantic integration concept. The key idea is to define
the structural [28] and behavioral semantics [26,29] of the
CyPhyML model integration language using formal metamodel-
ing, and use a tool-supported formal framework for updating
the CyPhy metamodels and verifying its overall consistency and
completeness as the modeling languages are evolving. The
selected tool for formal metamodeling is FORMULA from
Microsoft Research [30]. FORMULAs algebraic data types
(ADTs) and constraint logic programming (CLP)-based
semantics is rich enough for defining mathematically modeling
domains, transformations across domains, as well as constraints
over domains and transformations.

In Section 2.5 we discuss about component interfaces and
composition semantics in OpenMETA, but restrict of the discus-
sion to physical dynamics.

25 Component Interfaces and Composition
Semantics for Dynamics

As shown in Fig. 2.3, the AVM component model includes
four types of interfaces:
1. Parameter/property interface
2. Power interface for physical interactions
3. Signal interface for information flows
4. Structural interface for geometric constraints

Regarding physical interactions, we follow the acausal
modeling approach [21]: interactions are nondirectional and
there are no input and output ports. Instead, interactions estab-
lish simultaneous constraints on the behavior of the connected
components by means of variable sharing. For instance, a resis-
tor can be modeled as a two port element, where each port

28 Chapter 2 COMPOSITION AND COMPOSITIONALITY IN CPS

represents a voltage and a current, and the behavior of the

resistor is defined by the equations U1-U2 = R*I1 and I1 = I2.

In addition to acausal modeling, we adopted the Port-

Hamiltonian approach, where physical systems are modeled as

network of power-conserving elements like transformers, kine-

matic pairs, and ideal constraints, together with energy dissipat-
ing elements. In this approach, physical components
interacting via power ports. These interconnections usually give
rise to algebraic constraints between the state space variables of
the subsystems leading to a system model which is a mixed set
of differential and algebraic equations. The explanation, why
such a pair of power variables (effort and flow) is used for
describing physical connections, is out of scope in this chapter,
but the interested reader can find a great introduction to the

topic in Refs. [31,32].

Specification of the CM requires three steps:

1. Specification of the interfaces as typed power ports (electri-
cal power ports, mechanical power ports, hydraulic power
ports, and thermal power ports).

2. Specification of the static semantics of the composition by
defining constraints over the connection of power ports.

3. Specification of the semantics of connections.

Physical interactions are interpreted over continuous time-
domain. (We note here again, that by restricting our discussion
to composition of physical interactions, we omit many interest-
ing details regarding the specification of other interactions
types and their relationships to each other (e.g., composing
causal and acausal models, establishing the link between con-
tinuous time and discrete time representations, etc.). For inter-
ested readers, these issues are discussed in other papers, such
as Refs. [24,26,33—35].

Formally, a component model M from the point of view of
dynamic interactions is a tuple M={C, A, P, contain, portOf, EP,
ES} with the following interpretation:

* (s a set of components,

¢ Ais a set of component assemblies,

*« D=C u Ais the set of design elements,

e P is the union of the following sets of ports: Promvech 1S a set
of rotational mechanical power ports, Piansmech 1S @ set of
translational mechanical power ports, Ppuiinoay iS a set of
multi-body power ports, Ppydraulic is @ set of hydraulic power
ports, Pyermar 18 @ set of thermal power ports, Pejecirical IS @
set of electrical power ports, P;, is a set of continuous-time
input signal ports, Py is a set of continuous-time output

Chapter 2 COMPOSITION AND COMPOSITIONALITY IN CPS

29

signal ports. Furthermore, Pp is the union of all the power
ports, and Ps is the union of all the signal ports,

contain : D—A* is a containment function, whose range is
A*=A u f{root}, the set of design elements extended with a
special root element root,

portOf : P-D is a port containment function, which
uniquely determines the container of any port,

Epr = Pp X Py is the set of power flow connections between
power ports,

Es = Pg X Pg is the set of information flow connections
between signal ports.

The specification of the dynamics interface (including both

power and signal ports) of the AVM component model using
FORMULA ADTs is the following:

// Components, component assemblies and design elements
Component :: = new (name: String, id:Integer).
ComponentAssembly :: = new (name: String, id:Integer).
DesignElement :: = Component + ComponentAssembly.

// Components of a component assembly
ComponentAssemblyToCompositionContainment :: =

(src:ComponentAssembly, dst:DesignElement).

// Power ports

TranslationalPowerPort :: = new (id:Integer).
RotationalPowerPort :: = new (id:Integer).
ThermalPowerPort :: = new (id:Integer).
HydraulicPowerPort :: = new (id:Integer).
ElectricalPowerPort :: = new (id:Integer).

// Signal ports

InputSignalPort ::= new (id:Integer).
QutputSignalPort :: = new (id:Integer).

// Ports of a design element
DesignElementToPortContainment :: = new (src:Designtlement,
dst:Port).

// Union types for ports

Port :: = PowerPortType+ SignalPortType.
MechanicalPowerPortType :: = TranslationalPowerPort

+ RotationalPowerPort.

PowerPortType :: = MechanicalPowerPortType +
ThermalPowerPort

+ HydraulicPowerPort
+ ElectricalPowerPort.

SignalPortType ::= InputSignalPort+ QutputSignalPort.
// Connections of power and signal ports

30 Chapter 2 COMPOSITION AND COMPOSITIONALITY IN CPS

PowerFlow :: =
new (name:String,src:PowerPortType,dst:PowerPortType,...).
InformationFlow :: =

new (name:String,src:SignalPortlype,dst:SignalPortType,...).

The structural semantics for interconnecting dynamics ports
are represented as constraints over the connections expressing
that the model may not contain any dangling ports, distant con-
nections, or invalid port connections:

conforms

no dangling(_}),
nodistant(_),

no invalidPowerFlow(_),

no invalidInformationFlow(_).

For this, we need to define a set of auxiliary rules. Dangling
ports are ports that are not connected to any other ports:

dangling :: = (Port).

dangling(X) :- X is PowerPortType,

no{ P | PisPowerFlow, P.src =X},

no{ P | PisPowerFlow, P.dst =X1}.
dangling(X) :- X is SignalPortType,
no{I]IisInformationFlow, I.src=X1,
no{ 1| 1isInformationFlow, I.dst=X1}.

A distant connection connects two ports belonging to differ-
ent components, such that the components have different par-
ents, and neither component is parent of the other one:

distant :: = (PowerFlow+ InformationFlow).
distant(E) :-Eis PowerFlow+ InformationFlow,
DesignElementToPortContainment(PX,E.src),
DesignElementToPortContainment (PY,E.dst),

PX = PY,
ComponentAssemblyToCompositionContainment(PX,PPX),
ComponentAssemblyToCompositionContainment (PY,PPY),
PPX !'= PPY, PPX ! = PY, PX! = PPY.

A power flow is valid if it connects power ports of same
types:

validPowerFlow :: = (PowerFlow).
validPowerFlow(E) :- Eis PowerFlow,
X==E.src, X:TranslationalPowerPort,
Y=E.dst, Y:TranslationalPowerPort.
validPowerFlow(E) :- E is PowerFlow,
X==E.src, X:RotationalPowerPort,
Y==t.dst, Y:RotationalPowerPort.

Chapter 2 COMPOSITION AND COMPOSITIONALITY IN CPS

31

validPowerFlow(E) :- Eis PowerFlow,
X=E.src, X:ThermalPowerPort,
¥Y=E.dst, Y:ThermalPowerPort.
validPowerFlow(E) :- Eis PowerFlow,
X=~E.src, X:HydraulicPowerPort,
Y==E.dst, Y:HydraulicPowerPort.
validPowerFlow(E) :- £ is PowerFlow,
X=E.src, X:Electrical PowerPort,
Y=E.dst, Y:ElectricalPowerPaort.

If a power flow is not valid, it is invalid:

invalidPowerFlow :: = (PowerFlow).
invalidPowerFlow(E) ;- Eis PowerFlow, novalidPowerFlow(E).

An information flow is invalid if a signal port receives signals
from multiple sources, or an input port is the source of an out-
put port:

invalidInformationFlow :: = (InformationFlow).

invalidInformationFlow(X) :-X is InformationFlow,

Yis InformationFlow,

X.dst =Y.dst, X.src ! = Y.src.

invalidInformationFlow(E) :-E is InformationFlow,

X =E.src, X:InputSignalPort,

Y =E.dst, Y:OutputSignalPort.

After defining the port types and the structural semantics of
the connections, the remaining step in the specification is the
semantics of the composition operators (connections). for
power flows is represented denotationally through their transi-
tive closure. Using fixed-point logic, we can easily express the
transitive closure of connections as the least fixed-point solu-
tion for ConnectedPower. Informally, ConnectedPower(x,y)
expresses that power ports x and y are interconnected through
one Or more power port connections:

ConnectedPower :: = (src:CyPhyPowerPort, dst:
CyPhyPowerPort).

ConnectedPower{x,y) :-PowerFlow(_,x,y._._), X:
CyPhyPowerPort,

y:CyPhyPowerPort;

PowerFlow(_,y,%,_,_), x:CyPhyPowerPort, y:CyPhyPowerPort;
ConnectedPower(x,z), PowerFlow(_,z,y,_,_), y:
CyPhyPowerPort;

ConnectedPower(x,z), PowerFlow(_,y,z,_,_), ¥:
CyPhyPowerPort.

More precisely, Px = {y | ConnectedPower(x, y)} is the set of
power ports reachable from power port x. The behavioral
semantics of power port connections is defined by a pair of

32 Chapter 2 COMPOSITION AND COMPOSITIONALITY IN CPS

equations generalizing the Kirchoff equations. Their form is the
following:

Vx e CyPhyPowerPort- Z e, =0

ye {y|ConnectedPower (x.y)}

Vx, y(ConnectedPower(x, y) — ex = ey)

We can formalize this FORMULA in the following way:

P : ConnectedPower — eqg+ addend.
P [[ConnectedPower]] =

eq(sum("CyPhyML_powerflow",flowl.id), 0)
addend(sum("CyPhyML_powerflow",flowl.id), flowl)
addend(sum("CyPhyML_powerflow",flowl.id), flow2)
eqleffortl, effort2)

where
x = ConnectedPower.src, y = ConnectedPower.dst, x I =y,
DesignElementToPortContainment(cx,x), cx:Component,
DesignElementToPortContainment(cy,y), cy:Component,
PP [[x]] = (effortl,flowl),
PP [[yl] = (effort2,flow2).

The specifications above are only short illustrations of the
nature and scope of the full formal specification of the AVM
component model and the CyPhyML Model Integration
Language. Together with the specification of the model compo-
sers, the size of the Semantic Backplane is nearly 20K line of
FORMULA code. It is our experience that development and
consistent application of the specification frameworks was key
in keeping the OpenMETA model and tool integration compo-
nents consistent.

2.6 Formalization of the Semantic Interface
for Modeling Languages

So far, we formally defined the semantics of the compaosi-
tional elements of CyPhyML but we have not specified the
semantic interface between the domain-specific modeling lan-
guages such as Modelica, Simulink/StateFlow, Bond Graph
Language, ESMoL, and CyPhyML. Note that we can easily add
other languages to the list following the same steps as presented
here. We show the specification of semantic interface only for
Modelica.

Chapter 2 COMPOSITION AND COMPOSITIONALITY IN CPS 33

Modelica is an equation-based object-oriented language
used for systems modeling and simulation. Modelica supports
component-based development through its model and connec-
tor concepts. Models are components with internal behavior
and a set of ports called connectors. Models are interconnected
by connecting their connector interfaces. A Modelica connector
is a set of variables (input, output, acausal flow or potential,
etc.) and the connection of different connectors define relations
over their variables. In the following we discuss the integration
of a restricted set of Modelica madels in CyPhyML: we consider
models that contain connectors that consist of either exactly
one input/output variable, or a pair of effort and flow variables.

The semantics of Modelica power ports are explained by
mapping to pairs of continuous time variables:

MPP : ModelicaPowerPort — cvar,cvar.
MPP [[ModelicaPowerPort]] =

(cvar("Modelica_potential",ModelicaPowerPort.id),
cvar("Modelica_flow",ModelicaPowerPort.id)).

The semantics of Modelica signal ports is explained by map-
ping to continuous time variables:

MSP : ModelicaSignalPort — cvar.
MSP [[ModelicaSignalPort]] =
cvar("Modelica_signal" ,ModelicaSignalPort.id).

The semantics of Modelica and CyPhyML power port map-
pings is equality of the power variables. Formally,

MP : ModelicaPowerPortMap — eq.
MP [[ModelicaPowerPortMapll =

eqicyphyEffort, modelicaEffort)
eq(cyphyFlow, modelicaFlow)

where

modelicaPort = ModelicaPowerPortMap.src,

cyphyPort = ModelicaPowerPortMap.dst,

PP [[cyphyPort]] = (cyphyEffort, cyphyFlow),

MPP [[modelicaPort]] = (modelicaEffort, modelicaFlow).

The semantics of Modelica and CyPhyML signal port map-
pings is equality of the signal variables.

MS : ModelicaSignalPortMap — eq.
MS [[ModelicaSignalPortMapl] = eq(MSP

[[ModelicaSignalPortMap.srcll],
SP [[ModelicaSignalPortMap.dst]])

34 Chapter 2 COMPOSITION AND COMPOSITIONALITY IN CPS

An interesting aspect of the specification of semantic inter-
face between CyPhyML and the domain-specific modeling lan-
guages is the assignments of physical units for power ports.
Each PortUnit assigns two units to each power port: one to its
effort variable and one to its flow variable:

PortUnit :: = [port:PowerPort = effort:Units, flow:Units].
PortUnit(x,"V","A") :- x is ElectricalPowerPort;

x is ElectricalPin;
xis ElectricalPort.

PortUnit(x,"m","N") :- x is TranslationalPowerPort;
x is TranslationalFlange.

PortUnit(x,"N","m/s") :- x is MechanicalDPort.
PortUnit(x,"rad","N.m") :- x is RotationalPowerPort;

x is RotationalFlange.

PortUnit(x,"N.m","rad/s") :- x is MechanicalRPort.
PortUnit(x,"kg/s","Pa") :- x is HydraulicPowerPort;

% 1s FluidPort:

x 1s HydraulicPort.
PortUnit(x,"K","W") :- x is ThermalPowerPaort;

x 1s HeatPort;
x 15 ThermalPaort.

FortUnit(x,"NA","NA") :- x is MultibodyFramePowerPort.
PortUnit(x,"Pa,J/kg","kg/s ,W") :- xis FlowPort.

2.7 Conclusion

We have presented an example for establishing aspects of
composition and compositionality in a CPS design flow. After
deciding the goal of the composition, the required steps are
generic: we need to establish a CM, define interfaces, define
composition operators, and make a mapping between the
modeling describing the component behavior and the modeling
language representing the composed system. Although we did
not cover many aspects and details of composition we devel-
oped in the AVM project, the example is sufficient for illustrat-
ing some general conclusions:

1. We believe that CPS design problems require different kinds
of CMs and composition methods. Components are contain-
ers of relevant and reusable design knowledge represented in
domain-specific languages. The selection of model types

Chapter 2 COMPOSITION AND COMPOSITIONALITY IN CPS 35

need to be matched with the CPS category and the type of
analyses required during the design process. It is not the par-
ticular combination of domain models are generalizable, but
the fact that the formation of CPS component models
require cross-domain modeling and model integration. This
insight led us to construct a reusable Model Integration
Platform that includes methods, tools, and libraries for creat-
ing model integration languages, specifying their formal
semantics, and structuring those in a Semantic Backplane
that provides foundation for CPS composition frameworks in
highly different application domains. The OpenMETA
Semantic Backplane is at the center of our semantic integra-
tion concept. The key idea is to define the semantics of the
CyPhyML model integration language using formal metamo-
deling, and to use a tool-supported formal framework for
updating the CyPhyML metamodels and verifying its overall
consistency and completeness as the modeling languages
are evolving. The selected tool for formal metamodeling is
FORMULA [36] from Microsoft Research. FORMULA’s ADTs
and CLP-based semantics are effective at mathematically
defining modeling domains, transformations [37] across
domains, as well as constraints over domains and transfor-
mations. At the conclusion of the AVM project, the
OpenMETA Semantic Backplane included the formal specifi-
cation of CyPhyML, the semantic interfaces to all constituent
modeling languages, and all model transformations used in
the tool integration framework. (The size of the specifica-
tions is 19,696 lines out of which 11,560 are autogenerated
and 8136 are manually written.)

Composition occurs in several semantic domains in CPS
design flows even inside a single analysis thread. For exam-
ple, the system level Modelica model for a power train using
the composition semantics described above yields a large
number of equations for which the simulation with a single
Modelica simulator may be extremely slow. In this case we
may take the composed system level model and decompose
it again, but not along the component/subsystem bound-
aries but along physical phenomena (mechanical processes
and thermal process) so that we can separate the fast and
slow dynamics [17]. This decompositions leads to two mod-
els that can be cosimulated using the HLA cosimulation plat-
form (see Fig. 2.4), so the recomposition of the system level
model occurs in a different semantic domain.

In a naive view, model and tool integration is considered to
be an interoperability issue between multiple models that

36 Chapter 2 COMPOSITION AND COMPOSITIONALITY IN CPS

can be managed with appropriate syntactic standards and
conversions. In complex design problems, these approaches
inevitably fail due to the rapid loss of control over the
semantic integrity of the diverse set of models involved in
real-design flows. The “cost” of introducing a dynamic,
evolvable model integration language is that mathematically
precise formal semantics for model integration had to be
developed under OpenMETA.

4. The dominant challenge in developing OpenMETA was inte-
gration: models, tools, and executions. The OpenMETA inte-
gration platforms included ~1.5M lines of code that is
reusable in many CPS design context. In the AVM project,
OpenMETA integrated 29 open source and 8 commercial tools
representing a code base which is estimated 2 orders of mag-
nitude larger than OpenMETA [6]. The conclusion is that inte-
gration does matter. It is scientifically challenging and yields
major benefits. This is particularly true in design automation
for CPS, where integrated design flows are still not reality.

Acknowledgments

The reported results are conclusions of research partly sup-
ported by the Defense Advanced Research Project Agency (DARPA)
under award #HRO0011-12-C-0008 and #N66001-15-C-4033, the
National Science Foundation under award #CNS-1035655 and
#CNS-1238959, and NIST Award #NIST 70-NANB15H312.

References

[1] J. Sztipanovits, X. Koutsoukos, G. Karsai, N. Kottenstette, P. Antsaklis, V.
Gupta, et al., Toward a science of cyber-physical system integration, Proc.
IEEE 100 (1) (2012) 29—44. <http://ieeexplore.ieee.org/lpdocs/epic03/wrap-
per.htm?arnumber=6008519>.

G. Karsai, J. Sztipanovits, Model-integrated development of cyber-physical
systems, Software Technologies for Embedded and Ubiquitous Systems,
Springer, 2008, pp. 46—54. <http://link.springer.com/chapter/10.1007/978-
3-540-87785-1_5>.

G. Karsai, J. Sztipanovits, A. Ledeczi, T. Bapty, Model-integrated development
of embedded software, Proc. IEEE 91 (1) (2003) 145—164. <http://ieeexplore.
ieee.org/xpls/abs_all.jsp?arnumber=1173205>.

[4] D.E. Whitney, Physical limits of modularity, MIT Working Paper Series ESD-
WP-2003-01.03-ESD Internal Symposium, 2003.

J. Sztipanovits, T. Bapty, S. Neema, X. Koutsoukos, E. Jackson, Design tool
chain for cyber physical systems: lessons learned, in: Proceedings of DAC'15,
DAC'15, 07—11 June 2015, San Francisco, CA, USA.

(2

3

[5

Chapter 2 COMPOSITION AND COMPOSITIONALITY IN CPS 37

[6] J. Sztipanovits, T. Bapty, S. Neema, X. Koutsoukos, J. Scott, The METa

Toolchain: Accomplishments and Open Challenges, No. ISIS-15-102, 2015

(Google Scholar Download: The META Toolchain_Accomplishments and

Open Challenges.pdf).

G. Gossler, J. Sifakis, Composition for component-based modeling, Sci.

Comput. Program. 55 (1-3) (2005).

[8] P Eremenko, Philosophical Underpinnings of Adaptive Vehicle Make,
DARPA-BAA-12-15. Appendix 1, December 5, 2011.

[9] Zs. Lattmann, A. Nagel, J. Scott, K. Smyth, C. van Buskirk, J. Porter, et al.,
Towards automated evaluation of vehicle dynamics in system-level design,
in: Proceedings of the ASME 2012 International Design Engineering
Technical Conferences & Computers and Information in Engineering
Conference IDETC/CIE 2012, 12—15 August 2012, Chicago, IL.

[10] G. Simko, T. Levendovszky, S. Neema, E. Jackson, T. Bapty, J. Porter, J.
Sztipanovits, Foundation for model integration: semantic backplane, in:
Proceedings of the ASME 2012 International Design Engineering Technical
Conferences & Computers and Information in Engineering Conference
IDETC/CIE 2012, 12—15 August 2012, Chicago, IL.

[11] R. Wrenn, A. Nagel, R. Owens, D. Yao, H. Neema, E Shi, K. Smyth, Towards
automated exploration and assembly of vehicle design models, in:
Proceedings of the ASME 2012 International Design Engineering Technical
Conferences & Computers and Information in Engineering Conference
IDETC/CIE 2012, 12—15 August 2012, Chicago, IL.

[12] O.L. de Weck, Feasibility of a 5 X speedup in system development due to
meta design, in: 32nd ASME Computers and Information in Engineering
Conference, August 2012, pp. 1105—1110.

[13] J. Sztipanovits, T. Bapty, S. Neema, L. Howard, E. Jackson, OpenMETA: a
model and component-based design tool chain for cyber-physical systems,
in: S. Bensalem, Y. Lakhneck, A. Legay (Eds.), From Programs to Systems—
The Systems Perspective in Computing, LNCS, vol. 8415, Springer-Verlag,
Berlin Heidelberg, 2014, pp. 235—249.

[14]]. Sztipanovits, Model integrated design tool suite for CPS, Invited Talk at
University of Hawaii, Honolulu, 9 April 2015 (Figure 2).

[15] H. Neema, S. Neema, T. Bapty, Architecture Exploration in the META Tool
Chain, ISIS-15-105, Technical Report, ISIS/Vanderbilt University, 2015.

[16] Modelica Association, Modelica—A Unified Object-Oriented Language for
Physical Systems Modeling. Language Specification, Version 3.2. <www.
modelica.org/documentas/ModelicaSpec32.pdf=, March 24, 2010.

[17] H. Neema, J. Gohl, Z. Lattmann,]. Sztipanovits, G. Karsai, S. Neema, et al.
Model-based integration platform for FMI co-simulation and heteroge-
neous simulations of cyber-physical systems, in: Proceedings of the 10th
International Modelica Conference, Lund, Sweden, 10—12 March 2014, pp.
235—-245.

[18] T. Bapty, OpenMETA Project Overview, Project Briefing, March 2012
(Figure 3).

[19] H. Neema, Z. Lattmann, P. Meijer, J. Klingler, S. Neema, T. Bapty, et al.,
Design space exploration and manipulation for cyber physical systems, in:
IFIP First International Workshop on Design Space Exploration of Cyber-
Physical Systems (IDEAL 2014), Springer-Verlag Berlin Heidelberg, 2014.

[20] E. Jackson, G. Simko,]. Sztipanovits, Diversely enumerating system-level
architectures, in: Proceedings of EMSOFT 2013, Embedded Systems Week,
September 29—October 4, 2013, Montreal, CA.

[7

38 Chapter 2 COMPOSITION AND COMPOSITIONALITY IN CPS

(21]

(22]

(23]

(24]

(25]
(26]

(27]

(28]

(29]

[30]

(31]

(32]

(33]

(34]

(35]

136
(37]

J.C. Willems, The behavioral approach to open and interconnected systems,
IEEE Control Systems Magazine, December 2007, pp. 46—99.

J. Porter, G. Hemingway, H. Nine, C. van Buskirk, N. Kottenstette, G. Karsai,
J. Sztipanovits, The ESMoL language and tools for high-confidence distrib-
uted control systems design. Part 1: Design Language, Modeling
Framework, and Analysis. Tech. Report ISIS-10-109, ISIS, Vanderbilt Univ,,
Nashville, TN, 2010.

Functional Mock-up Interface. <www.fmi-standard.org>.

Modelica Association, Modelica Language Specification Version 3.3. Revision 1.
<https://www.modelica.org/documents/ModelicaSpec33Revisionl.pdf>,
11July 2014.

J. Sztipanovits, Model Integration Challenge in Cyber Physical Systems,
Tutorial, NIST, 19 January 2012 (Figure 4).

G. Simko,]J. Sztipanovits, Model integration challenges in CPS, in: R.
Rajkumar (Ed.), Cyber Physical Systems, Addison-Wesley, 2015.

G. Simko, T. Levendovszky, M. Maroti, J. Sztipanovits, Towards a theory for
cyber-physical systems modeling, in: Proc. 3rd Workshop on Design,
Modeling and Evaluation of Cyber Physical Systems (CyPhy’'13), 08—11
April 2013, Philadelphia, PA, USA, pp. 1-6.

E. Jackson, J. Sztipanovits, Formalizing the structural semantics of domain-
specific modeling languages, J. Softw. Syst. Model. (September 2009) 451—478.
K. Chen,]. Sztipanovits, S. Neema, Compositional specification of behavioral
semantics, in: R. Lauwereins, J. Madsen (Eds.), Design, Automation, and Test
in Europe: The Most Influential Papers of 10 Years DATE, Springer, 2008.

EK. Jackson, T. Levendovszky, D. Balasubramanian, Reasoning about meta-
modeling with formal specifications and automatic proofs, in: J. Whittle, T.
Clark, T. Kiihne (Eds.), Model Driven Engineering Languages and Systems,
vol. 6981, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 653—667.
A. van der Schaft, D. Jeltsema, Port-Hamiltonian systems theory: an intro-
ductory overview, Found. Trends Syst. Control 1 (2—3) (2014) 173-378.
Available from: http://dx.doi.org/10.1561/2600000002.

D. Karnopp, D.L. Margolis, R.C. Rosenberg, System Dynamics Modeling,
Simulation, and Control of Mechatronic Systems, John Wiley & Sons,
Hoboken, NJ, 2012.

G. Simko, D. Lindecker, T. Levendovszky, E.XK. Jackson, S. Neema, J.
Sztipanovits, A framework for unambiguous and extensible specification of
dsmls for cyber-physical systems, in: Engineering of Computer Based
Systems (ECBS), 20th IEEE International Conference and Workshops on
the, IEEE, 2013, pp. 30—39.

D. Lindecker, G. Simko, 1. Madari, T. Levendovszky, J. Sztipanovits, Multi-way
semantic specification of domain-specific modeling languages, in:
Engineering of Computer Based Systems (ECBS), 2013 20th [EEE
International Conference and Workshops on the, IEEE, April 2013, pp. 20—29.
G. Simko, D. Lindecker, T. Levendovszky, S. Neema, J. Sztipanovits,
Specification of cyber-physical components with formal semantics—integra-
tion and composition, in: Model-Driven Engineering Languages and Systems,
MODELS’2013, Springer Berlin Heidelberg, 2013, pp. 471—487.
<http://research.microsoft.com/formula=.

D. Lindecker, G. Simko, T. Levendovszky, 1. Madari,]J. Sztipanovits,
Validating transformations for semantic anchoring, J. Object Technol. 14 (3)
(August 2015), pp. 2:1-25, <http://dx.doi.org/10.5381/jot.2015.14.3.a2>.

SOFTWARE ENGINEERING FOR
MODEL-BASED DEVELOPMENT
BY DOMAIN EXPERTS

M. Bialy', V. Pantelic', J. Jaskolka? A. Schaap’, L. Patcas’,
M. Lawford®, and A. Wassyng'

"McMaster University, Hamilton, ON, Canada %Stanford University, Stanford,
CA, United States

3.1 Introduction and Motivation

Early in the computer age, it was recognized that an ad hoc
programming approach was not suitable for developing nontriv-
ial software systems. In the words of a famous computer scien-
tist, Edsger Dijkstra: “To put it quite bluntly: as long as there
were no machines, programming was no problem at all; when
we had a few weak computers, programming became a mild
problem, and now we have gigantic computers, programming
has become an equally gigantic problem.” Therefore, a
systematic engineering approach including planning, problem
understanding, requirements gathering and specification,
design, programming, and verification became necessary. This
is how software engineering was born. According to ISO/IEC/
IEEE Standard 24765 [1], software engineering is defined as,
“The application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of
software, that is, the application of engineering to software.”

Unfortunately, decades later, software development and main-
tenance is still not practiced with the same discipline exercised in
other engineering fields. Developing software is often deemed
trivial by nonpractitioners. This perception is mostly due to soft-
ware's malleability. Since software itself is not physical, a modifi-
cation to software is considered “merely a code change.” This
perception, however, is wrong. Experience teaches us that soft-
ware should be modified with the same rigor as any other engi-
neering product, e.g., an engine, power inverter, or airplane

Handbook of System Safety and Security. DOIL: http://dx.doi.org/10.1016/B978-0-12-803773-7.00003-6
© 2017 Elsevier Inc. All rights reserved.

39

40 Chapter 3 SOFTWARE ENGINEERING FOR MODEL-BASED DEVELOPMENT BY DOMAIN EXPERTS

brakes. The effect of a change should be evaluated on a design
first, and then thoroughly verified. This is an approach especially
necessary in modern systems, which increasingly rely on software.
Software accounts for 80% of military aircraft functions [2] and
80% of innovations in vehicles [3]. Software has also grown to be a
significant source of accidents and product recalls [4]. Moreover,
numerous examples of software-related accidents span the safety-
critical domains of aerospace [5], medical [6], and automotive [7],
with many more examples listed in [8,9]. For such safety-critical
systems, errors can potentially result in loss of life, environmental
damage, and/or major financial loss. Therefore, practicing
software engineering with the same rigor and discipline recognized
in other areas of engineering is crucial to the successful develop-
ment and safe operation of modern software-intensive systems.

Model-Based Development (MBD) has become a predominant
paradigm in the development of embedded systems across indus-
tries, including aerospace, automotive, and nuclear. This is mostly
due to its appeal of automatic code generation from models, early
verification and validation, and rapid prototyping. Furthermore,
domain-specific modeling languages used in MBD are easily
learned and used by domain experts (experts in the field of the
application), allowing them to design, generate code, and verify
their own algorithms, using familiar terminology and abstractions.
Therefore, the MBD paradigm assigns domain experts a different
role than the one they typically have in a traditional software
development process. However, domain experts have back-
grounds in mechanical engineering, electrical engineering, or
other related fields, but typically have no formal education in soft-
ware engineering. For example, many leading Japanese software
specialists believe the majority of Japanese software developers
have not been formally educated in software engineering [10].

Our work builds on experience drawn from collaborations
between our team of software engineers and domain experts in
the automotive industry. While working on multiyear projects
with automotive Original Equipment Manufacturers (OEMs), we
have interfaced with a number of domain experts from both
academia and industry.

First, we have witnessed a large difference in terminology
used by software engineers and automotive domain experts'.
We (partially) address this communication gap between the two
communities by explaining the terminology originating in

'In fact, the term domain experts is widely known and used within the software
engineering community, while domain experts themselves are largely unaware of
the term.

Chapter 3 SOFTWARE ENGINEERING FOR MODEL-BASED DEVELOPMENT BY DOMAIN EXPERTS 41

software engineering that is commonly used in development of
embedded systems.

Second, domain experts use and/or help develop various
software artefacts, often without a clear picture of their intent
and their ultimate effect on the quality of software.

This chapter clarifies the role of some of the most commonly
used (and those that are not, but should be) software engineer-
ing principles, practices, and artefacts by viewing them from a
software engineering perspective, and presenting how they
affect software correctness, safety, and other software qualities.
Therefore, this chapter aims at strengthening the collaboration
between software engineers and domain experts, by offering
domain experts a high-level understanding of software engi-
neering practices and artefacts, enabling their more effective
use. In the process, a number of MBD misconceptions and lim-
itations are addressed. Further, we discuss issues in the indus-
trial practice of MBD, and suggest solutions whenever possible,
or point to avenues for research to address issues for which a
solution currently does not exist. The chapter is focused on the
development of embedded software using Matlab Simulink, the
de facto standard in model-based design of embedded systems.
Ironically, Simulink itself neglects some major software engineer-
ing principles, and this issue is also discussed in this chapter.
While the focus of this chapter is on the MBD of embedded sys-
tems using Matlab Simulink, many of the discussions are applica-
ble to software engineering in general. Therefore, we view this
chapter as a useful tutorial primarily for domain experts involved
in the development of software intensive systems, but also for
software practitioners in general, managers in related fields, and
any staff involved in software and/or software development.

The remainder of this chapter is organized as follows.
Section 3.2 describes the overall MBD software engineering pro-
cess and serves as a prelude to the subsequent sections. The
subsequent sections, Sections 3.3, 3.4, 3.5, and 3.6, then provide
insight into commonly encountered questions and misconcep-
tions in industry regarding requirements, design, implementa-
tion, and verification and validation, respectively. Finally,
Section 3.7 presents conclusions and directions for future work.

3.2 Development Process: How Do You
Engineer Software?

Software is not only code, and developing software is not just
programming. Software includes requirements, design, test

42 Chapter 3 SOFTWARE ENGINEERING FOR MODEL-BASED DEVELOPMENT BY DOMAIN EXPERTS

Figure 3.1 V-Model

development process for
model-based development

(MBD).

Acceptance

Requirements testing

3
Verify \ /

Architectural Integration
design testing
13
Verify *, \ /
Software Unit testing
design
¥
Verify \ /
Code
generation

reports, and other documentation which are artefacts resulting
from the different phases in the engineering process. As with
all engineering disciplines, well-defined processes must be fol-
lowed in order to construct quality systems which operate safely.
The most common description of the software engineering pro-
cess within the MBD of embedded software is known as the V-
model, shown in Fig. 3.1. Although many process models exist for
software systems, the V-model is the most widely accepted model
for embedded safety-critical systems because of its focus on test-
ing at different levels. Moreover, standards such as the automotive
standard 1SO 26262 [11] prescribe its use. In this section, we pro-
vide a summary of the phases of the V-model which are further
elaborated in the sections that follow.

3.2.1 What Are the Phases of the Engineering
Process? How Are Domain Experts
Involved?

The development process begins with the gathering and
specification of requirements. In this phase, a high-level
description of what the system should do is determined, with-
out providing any details as to how it is done. As a result of the
requirements phase, a software requirements specification
(SRS) is produced and agreed upon in order to act as a contract
between stakeholders and developers, that is, a mutual agree-
ment of the expectations from the system. This phase typically
involves close collaboration between software engineers,

Chapter 3 SOFTWARE ENGINEERING FOR MODEL-BASED DEVELOPMENT BY DOMAIN EXPERTS 43

analysts, managers, with domain experts providing technical
breadth and depth within their respective domains. For exam-
ple, our experience is that a separate team of safety experts
plays an integral role in contributing to the development and
analysis of safety requirements for automotive systems.

Once a working set of requirements for the system has
been established, a high-level architectural design is planned.
The architectural design should strive to integrate principles of
software engineering (e.g., modularity and encapsulation), that
will be further explained in Section 3.4, in order to minimize com-
plexity and facilitate component reusability. Again, managers,
software engineers, and domain experts are primarily involved at
this stage, with third-party suppliers also participating where
necessary. Architectural design is then verified by way of reviews,
simulations (if the corresponding executable specification exists),
etc. Next, a software solution that satisfies the requirements and
conforms to the architectural design is developed. In MBD, this is
largely done by constructing models in accordance with language
guidelines and standards. This phase includes defining the neces-
sary component modules, algorithms, data structures, and other
detailed design elements necessary for the implementation (or in
the case of MBD, code generation). In practice, one or more com-
ponents or modules are assigned to an individual to “own,” that is,
to develop and maintain. In current MBD practice, we have found
that domain experts design software and rapidly prototype
designs, which are later transferred to other engineers to prepare
for production as well as maintain. Ideally, these software develop-
ment activities should be performed by software engineers. They
will be well-versed in implementing software using accepted
engineering best practices and principles. Close collaboration
with a domain expert, knowledgeable about the domain-specific
context, will provide guidance toward a solution.

A major benefit of the MBD approach is the ability to automati-
cally generate the implementation code from design models. This
significantly reduces implementation errors and development time
when compared to traditional programming [12], and also enables
domain experts’ deep involvement in the development process.
The same component “owners” responsible for designing the soft-
ware will generate its corresponding code. If needed, another sep-
arate team of engineers may be responsible for code generation
rule customization, which typically comes from the recommen-
dations and suggestions of domain experts. After generating an
implementation of the software system, verification takes place
to ensure that the system that is implemented is the one that
was designed and expected. MBD offers the ability to perform

44 Chapter 3 SOFTWARE ENGINEERING FOR MODEL-BASED DEVELOPMENT BY DOMAIN EXPERTS

tests early in the development cycle, at different levels, before
the software even makes it onto the hardware. There are various
stages of testing which occur throughout the development pro-
cess. For example, unit testing verifies each software component
individually and independently from the rest of the system,
whereas integration testing combines software components to
verify the system as a whole, and acceptance testing verifies that
the system satisfies its requirements and performs as expected.
In general, the embedded system under development is modeled
as a controller, which aims to control some physical system
using supervisory logic. The physical system is described in a
plant model, which provides the controller with inputs.
Depending on the development stage of the controller and the
platform upon which the plant is simulated, different testing
strategies can be utilized throughout the MBD process:

Model-in-the-Loop (MiL): The controller and plant models

are simulated in their development environment (e.g.,

Simulink).

Software-in-the-Loop (SiL): The controller embedded code,

generated from the model into hardware-dependent code, is

simulated with the plant model, both on the same machine,
typically on PC hardware.

Processor-in-the-Loop (PiL): The controller embedded code

is loaded onto the embedded processor (hardware), and is

simulated with the plant model in real time.

Hardware-in-the-Loop (HiL): The controller embedded code

is run on the final hardware, an electronic control unit

(ECU), with a simulated plant model in real time.

The phase following software release is maintenance (not
depicted in Fig. 3.1), where either defects are fixed or software
is modified to satisfy new requirements. In fact, ease of mainte-
nance (maintainability) is one of the very important qualities of
software, that, although often not explicitly required, motivates
many of the activities in the development process from Fig. 3.1.
Software is maintained through collaborative efforts between
domain experts and software engineers. For example, in some
companies, a software engineer will be in charge of maintaining
a software feature (Simulink model). The software will be modi-
fied in collaboration with a domain expert, typically in charge
of several similar features (Simulink models).

3.22 How Important Are the Tools?

Appropriate tool support in each phase of the process by
way of a comprehensive tool-chain that facilitates different

Chapter 3 SOFTWARE ENGINEERING FOR MODEL-BASED DEVELOPMENT BY DOMAIN EXPERTS 45

activities, including change management, build management,
bug tracking, etc., is crucial for the success of a development
process [13]. Engineering a system often requires many itera-
tions of the development process and its phases. For example,
as the software design is developed, requirements can change,
making it necessary to go back and repeat the requirements
phase. In fast-paced industries such as automotive, performing
such iterations quickly is greatly facilitated through the use of
tool-chains which span the entire process, and can fully- or
semiautomate designing and implementing changes.

3.23 An lllustrative Example: Transmission
Control Software

For the purpose of illustrating and highlighting the software
engineering process for MBD described in the remainder of this
chapter, we will consider a small automotive example that was
provided by one of our industrial partners, as presented in [14].
Suppose that we need to design and develop the embedded
software to control the automatic transmission system of a
hybrid-electric vehicle based on requests made by the driver to
change gears between park (P), reverse (R), neutral (N), and
drive (D) via a “PRND” shifter, typically in the form of a lever or
knob within the vehicle console. When using the vehicle, a
driver makes requests to change the transmission gear via
the shifter (e.g., switch from park to drive), at which point
the embedded software needs to decide whether or not to
grant the driver's request based on a number of system condi-
tions, such as faults and the availability of certain components.
In the subsequent sections of this chapter, we will use this
simple illustrative example to demonstrate how to specify
software requirements, to translate those requirements into
suitable model-based designs, and to verify and validate that
the implemented design exhibits the expected system behavior.

3.3 Requirements: What Should Your
Software Do?

3.3.1 How Important Are Good Requirements?

Contrary to common belief, software rarely fails. More often
than not, the software behaved exactly as it was required to,
but it was the requirements that were flawed [15]. Some
sources assert that over 90% of software issues result from

46 Chapter 3 SOFTWARE ENGINEERING FOR MODEL-BASED DEVELOPMENT BY DOMAIN EXPERTS

deficient requirements, leaving merely 10% of issues to be
caused by design and coding problems [16]. Therefore, experi-
ence teaches us that getting requirements right as well as pre-
cisely specifying them is essential for the establishment of safe
and effective systems [17]. The terms “requirements” and
“requirements specification” are taken from software engineer-
ing, and are not a part of domain experts’ jargon. Our experi-
ence shows that domain experts would rather refer to it as
“specification” or “spec” only.

3.3.2 What Is the Purpose of a Requirements
Specification? Who Uses It?

Before building a safe and usable system, an understanding
of what it is meant to accomplish and what qualities it should
possess is required. Requirements specify what the system
should do, and a SRS is an artefact in which software require-
ments are documented and maintained. A requirements
specification acts as a contract between users and software
developers. It is also used by verifiers to show that the software
satisfies its requirements and by managers to estimate and plan
for resources. In our experience, the requirements specification
is essential for helping mitigate the impact of developer turn-
over, especially within the automotive industry which experi-
ences frequent movement of personnel.

3.3.3 Simulink Models Are NOT Requirements

Requirements should state what the system should do,
whereas design and code state how. In practice, however,
while the line between the two is not always clear, even in tradi-
tional development approaches, it is significantly blurred in
MBD. For example, a Simulink model is often considered both
the requirements specification and the detailed design specifi-
cation. Graphical models are often used to help understand
requirements. They may also provide a convenient means for
facilitating communication between domain experts and
software developers. However, Simulink models are not
requirements. Simulink models contain too many design
(implementation) details, making it difficult to see the
black-box behavior of a system. Furthermore, a Simulink model
lacks a means for specifying nonfunctional requirements and
properties of the system (e.g., confidentiality).

Chapter 3 SOFTWARE ENGINEERING FOR MODEL-BASED DEVELOPMENT BY DOMAIN EXPERTS 47

3.34 What Is Wrong With Requirements

Specifications Today?

Many organizations using MBD recognize the importance of
separating requirements specification from design. However, the
requirements are often written using natural language, and are
therefore bound to be ambiguous. Furthermore, the requirements
are often incomplete, that is, they specify the required functional-
ity of the system for particular combinations of inputs, but often
fail to specify the functionality for all the combinations.

We have also often seen inconsistent requirements specifica-
tions, that is, those containing contradictory statements. Using
a language with precise syntax and semantics (meaning) helps
alleviate these issues. Consider, for example, the requirement
captured in the tabular expression [18] shown as Table 3.1.
Tabular expressions are one of many ways to specify require-
ments. However, they offer precise and concise semantics,
and are used in the nuclear and aerospace industries due to their
understandability. They can be interpreted straightforwardly as if-
then-else statements. Consider writing a requirement for driver
request arbitration from the Park position in the illustrative
example described in Section 3.2.3 that states: “If there is no fault
and the component is unlocked, grant the driver's request; other-
wise, stay in the current gear.” This requirement can be com-
pactly specified as a tabular expression for the Park position as
shown in Table 3.1, where each row represents a subexpression of
the function such that if a Condition is evaluated to be true, the
corresponding Result cell value is the returned output.

Given the requirement specified in Table 3.1, it is straight-
forward through the use of tool support [19] to verify that

Table 3.1 Requirement for Driver
Request Arbitration From Park

fArbRequestFromPark(eDrvrRequest.enum, bUnlocked, bFaulty:bool): enum =

Result
Condition ’ eArbRequest ‘
bFaulty cPark
bUnlocked eDrvrRequest
R =bUnlocked cPark

48 Chapter 3 SOFTWARE ENGINEERING FOR MODEL-BASED DEVELOPMENT BY DOMAIN EXPERTS

the requirement is complete (requiring consideration of all
possible inputs) and consistent (ensuring determinism
through nonoverlapping input cases), both of which are
integral to safety-critical systems, as they raise the confidence
in correct system performance in all conditions, and also
aid in detecting gaps for the input cases considered.

3.3.5 Who Writes the Requirements Specification?

Ideally, domain experts would write the requirements speci-
fication themselves, without the help of software engineers.
However, this is seldom the case, with software engineers pro-
ducing the requirements specification based on communication
with domain experts. The knowledge of the domain experts is
instrumental to the specification of requirements, but the devel-
oper possesses the knowledge of how to specify the requirement
precisely and succinctly. While getting requirements right
necessitates continual interaction between domain experts and
software engineers, there is commonly a disconnect, as they
often do not “speak the same language.” Specifying require-
ments such that they are understandable to domain experts,
and the use of notations like the aforementioned tabular
expressions are integral to the development of a quality require-
ments specification. MBD notations like Simulink/Stateflow
have proven to be useful in this regard, given that they are read-
able by both domain experts and software engineers.

3.3.6 What Information Should an SRS Contain?

The structure and content of a SRS have been thoroughly
investigated, with several standards and templates available [20].
At minimum, an SRS typically consists of the following elements:

Purpose: A clear statement of the system’s fundamental rea-
son for existence. This is meant to provide a rudimentary
understanding of the system and why it is needed.
Scope: Includes a brief overview of the system to be devel-
oped and should indicate the goals and benefits of building
the system. It also specifies the boundaries within which
these goals are met. An accurate scope definition is impor-
tant since it is often used by project managers to determine
timing and budget estimates.

Functional Requirements: A functional requirement specifies

an action or feature that needs to be included in the software

system in order for the system to be fit for purpose. Table 3.1

is an example of a functional requirement.

Chapter 3 SOFTWARE ENGINEERING FOR MODEL-BASED DEVELOPMENT BY DOMAIN EXPERTS 49

Nonfunctional Requirements: A nonfunctional requirement
specifies a property or quality that the software system shall
possess in order to judge its operation. Nonfunctional
requirements often specify the performance, security, and
usability requirements of the software system, among others.

An SRS should also contain specifications of the tolerances
on accuracies of outputs, rationale justifying the reason for the
existence of requirements (with alternatives considered, if any),
specifications of interfaces documenting how the software com-
municates with its environment, and documentation of antici-
pated changes to existing requirements so that they may be
better accommodated by the eventual design.

Once a preliminary set of requirements can be agreed upon
by the domain experts and other stakeholders, and there is a
general understanding of what the system must do, thought can
start being put into how the system is going to do what it does.
It should be noted that requirements specification is an iterative
process that continues in subsequent phases.

3.4 Design: How Will Your Software
Do What It Does?

Designing software is similar to design activities in other engi-
neering fields. It is the process of determining how a system will
perform its intended functions. The software design process is
regularly comprised of two stages: architectural design and
detailed software design. The design starts with determining the
software architecture, which is the description of the high-level
decomposition of the system into its main components, their
interfaces, and interactions between the components. Software
architecture is then gradually refined into a detailed design of
modules and algorithms. In MBD, the software design refers to
the modeling of the software in a language such as Simulink/
Stateflow, with the models effectively serving as blueprints for the
software implementation, done via automatic code generation.

3.4.1 How Is Design Different From
Requirements?

Design is directly driven by the requirements gathered in the
previous phase. Models are created and continually modified
until a design has been achieved that meets all the requirements.
Although closely tied together, it is important to emphasize again

50 Chapter 3 SOFTWARE ENGINEERING FOR MODEL-BASED DEVELOPMENT BY DOMAIN EXPERTS

that requirements are not the same as design models. As previ-
ously mentioned, this is one of the most prevalent misconcep-
tions when it comes to MBD, with MathWorks also perpetuating
this idea in the recent past [21]. Requirements and design must
be viewed as separate entities, and we can illustrate exactly why
using the automotive example given in Section 3.2.3.

Table 3.1 specifies a requirement, while Tables 3.2 and 3.3
provide two detailed Stateflow designs which both satisfy this
requirement. These Stateflow truth table designs are structured
in two sections, where the top subtable defines conditions to
check. Should the conditions be evaluated to the values given in
the columns, (T, E or -, representing true, false, or “don’t care,”
respectively), the corresponding action for the column is exe-
cuted. Actions are defined in the bottom subtable. It is apparent
that pinpointing the requirement within these designs is diffi-
cult due to the additional design details also included.
Moreover, this example demonstrates that multiple, yet distinct,
designs can implement the same requirement in different ways.
For these reasons, it is imperative to document requirements
separately from design. Just as in engineering in general, the
motivation for choosing one design over another will lie in the

Table 3.2 First Design Stateflow Truth Table

fArbRequestFromPark(eDrvrRequest:enum, bUnlocked, bFaulty:bool): enum =

| Condition 1{2|3|4,/5[6|7|8|9/|10]11
1 | eDrvrRequest == cPark T F|F|F F|(F|F|F|F|F| -
2 | eDrvrRequest == cReverse F|T|F|F|T|F|F|T|F|F]| -
3 | eDrvrRequest == cNeutral F|IF|T(F F|T|FE|F ‘ T|F| -
4 | eDrvrRequest == cDrive F F|F|T F|F|T|F|F|T]| -
5 | bUnlocked - T|T|T|-|-|-|-|-|-1-+-
6 | bFaulty -|\F|F|F|T|T|T|-|- -
Actions 1123|401 |11 |1]1]}1

7 Action

1 eArbRequest = cPark

2 eArbRequest = cReverse

3 eArbRequest = cNeutral

4 eArbRequest = cDrive

Chapter 3 SOFTWARE ENGINEERING FOR MODEL-BASED DEVELOPMENT BY DOMAIN EXPERTS 51

Table 3.3 Second Design Stateflow
Truth Table

fArbRequestFromPark(eDrvrRequest:enum, bUnlocked, bFaulty:bool): enum =

Condition 1123

1 bFaulty T|F|F

2 bUnlocked -|T|F
| Actions [1]2]1

Action

1 eArbRequest = cPark

2 eArbRequest = eDrvrRequest

added need to satisfy other requirements or accommodate con-
straints. For example, if the component containing design
implementing the requirement from Table 3.1 has a tight timing
requirement, the second design may be used due to its more
efficient condition checking. However, if maintainability over
different, but similar, software versions containing this compo-
nent, is the bigger concern, the first design will more likely be
used, as will be explained later in this section.

3.4.2 What Are Important Principles of
Software Design?

It is well known in software engineering that good designs lead
to high-quality software systems. For systems other than trivial
examples, it is necessary to decompose, or break up, the system
into manageable modules in order to improve its reusability, over-
come complexity, and to divide labor. There are typically several
ways of decomposing a system. The criteria used in the decompo-
sition of a system plays a significant role in determining the qual-
ity of a design. One of the most important principles in software
design is design for change [22] which prescribes that a developer
needs to be able to anticipate changes that the system might
undergo, and design software capable of accommodating those
changes. For example, when designing powertrain software, engi-
neers need to anticipate powertrain configurations that might
have to be supported in the future, and design software so that, if

52 Chapter 3 SOFTWARE ENGINEERING FOR MODEL-BASED DEVELOPMENT BY DOMAIN EXPERTS

the change is made, the effect of the change will be localized as
much as possible. Closely related to the design for change and
anticipation of change principles is the concept of a software prod-
uct line. A product line necessitates a core architecture of com-
mon functionality across the various configurations, but will also
provide the ability to include variations in order to create different
products within the line. For example, a large part of electrified
powertrain software can be reused throughout different power-
train configurations. All of the software versions corresponding to
different powertrain configurations will constitute products within
a software product line. As another example, the model shown in
Table 3.2 was developed to satisfy the requirement from Table 3.1,
but was also devised with the product line approach in mind,
because the logic it implements varies only slightly with different
vehicle variants. More precisely, while the conditions listed in the
columns of the first table of Table 3.2 remain the same for each
product in the product line, the set of actions on these conditions
is the only part of the design that varies throughout the different
products within the product line. Roughly speaking, the actions
are encoded as calibrations, so that they are easy to change, and
maintain. Calibrations, in fact, are often used to implement vari-
ability in software across products within a software product line.

The mechanism crucial in implementing design for change in
software engineering is information hiding [22]. Information hid-
ing seeks to decompose a system such that modules each “hide” a
requirement or design decision that is likely to change, that is, the
interface of the module does not reveal its inner workings.
Typically, design decisions creep into the interfaces of the mod-
ules, making them context-dependent, and not easily modifiable
or reusable. Design decisions typically correspond to hardware,
behavior, and software design decisions which are likely to change
in the future, and hiding their details within a module will make
future changes easier to accommodate. Continuing with the
aforementioned electrified powertrain software example, a mod-
ule that will “hide” the powertrain architecture from the rest of
powertrain software represents a hardware hiding module.
However, while the principle of information hiding has fared well
in traditional software development paradigms, it might not be as
useful and widely applicable in MBD. We are currently undertak-
ing research into the role of information hiding in MBD.

3.43 How Does Simulink Support the Application
of Software Engineering Principles?

For MBD, Simulink enables the introduction of various levels
of hierarchy in order to decompose a system into various levels

Chapter 3 SOFTWARE ENGINEERING FOR MODEL-BASED DEVELOPMENT BY DOMAIN EXPERTS 53

of abstraction. Unfortunately, a challenge in Simulink is under-
standing how to employ information hiding, how designs will
benefit from it, as well as how to decompose a system into reus-
able modules. The subsystem is the accepted Simulink equiva-
lent of a module, however, they are neither reusable, nor do
they effectively encapsulate their internal design. Degrees of
reusability can be achieved with other mechanisms such as
libraries, model references, function-call subsystems, code reuse
subsystems, and Simulink functions, however, they all fail to
encapsulate their internals with respect to hidden data flow [23].
For example, Data Store Memory blocks are able to bypass the
typical inport/outport interface of a subsystem, and read/write
data directly from/in the subsystem. Adding explicit interfaces
which include Data Store Memory blocks such as those described
in [23] can alleviate this problem. However, a new block mecha-
nism within the Simulink language is needed; one which restricts
hidden data flow to effectively encapsulate data, as well as be eas-
ily reused in multiple locations of a model. Such a mechanism is
not currently available and presents itself as a challenge when
employing information hiding in Simulink designs. Research into
the development of such mechanisms is needed.

Furthermore, Simulink lacks self-documenting capabilities of
imperative programing languages. For instance, an analog of a
module interface in C, as defined in C header files, does not
exist in Simulink [23].

3.44 How Can Guidelines Help?

When it comes to achieving a good design, as with most lan-
guages, there are conventions and guidelines available which
give best practices that should be adhered to. Likewise, for
Simulink/Stateflow, standards such as [24,25] have been devel-
oped with the aim of facilitating desirable model qualities,
mostly readability. Making models readable with appropriate
block colors and positions is comparable to including white
spaces and new lines in textual languages, and makes a differ-
ence when it comes to achieving qualities such as modifiability
and maintainability.

Nevertheless, in working with industrial-sized models from
OEMs and the currently available guidelines, we have noticed
shortcomings in the guidelines in addressing actual design princi-
ples, such as modularity. For example, using global variables in
traditional programming languages is strongly regarded as bad
practice because global variables hinder encapsulation, reuse, and
understandability. However, modeling guidelines for Simulink typ-
ically do not recommend against the use of analogous constructs

54 Chapter 3 SOFTWARE ENGINEERING FOR MODEL-BASED DEVELOPMENT BY DOMAIN EXPERTS

such as Data Store Memory blocks at the top-level of models
(which would be analogous to them being declared as global vari-
ables), or above their needed scope. Such a recommendation can
easily be formulated and automated, as done in Ref. [26] with the
Data Store Push-Down Tool. In general, more guidelines and sup-
porting tools are needed, which aim to increase the use of other
important software engineering principles.

3.45 What Information Should a Software Design

Document Contain?

As with other traditional development approaches, designs
in MBD must be properly documented. A software design
description (SDD) is an artefact documenting the design of the
software system and describing how the system will be
structured in order to satisfy its requirements. An SDD
effectively translates the requirements from the SRS into a
representation using software components, interfaces, and data.
Commonly used templates which outline the content and
format of compiling an SDD exist [27]. At minimum, an SDD
typically consists of the following elements:

Purpose: A clear statement describing what the system is
ultimately meant to accomplish. It is meant to reinforce the
understanding of why the system needs to be developed.
Rationale: Provides justification for the chosen design. This
often includes a description and justification of the design
decisions that were made in the development of a module,
and a list of the alternatives that were considered, along with
reasons why they were rejected.
Interface Design: Describes the intended behavior of a mod-
ule from an external viewpoint, such that other entities can
interact with the module without knowing its internal
design. This should include the any imported modules,
inputs, outputs, and their types, ranges, etc.
Internal Design: Describes the internal structure of a module,
including subsystems, algorithms, internal variables/data,
and constants.
Anticipated Changes: A list of the ways in which a module is
expected to change in the future. This offers insight into the
future direction of the development of a module. In this way, one
can design for change so that when requirements of the system
change, the design can accommodate those changes with only
moderate modifications, rather than with complete overhauls.

Chapter 3 SOFTWARE ENGINEERING FOR MODEL-BASED DEVELOPMENT BY DOMAIN EXPERTS 55

Although the need for documenting Simulink models has
been recognized in industry, to the best of our knowledge, there
has not been any research on how this is to be done. Our own
efforts show that the principles and content of an SDD from
traditional software engineering equally apply to documenta-
tion of Simulink models, and we have been working to develop
a template for an SDD for Simulink models.

3.46 Are Models Documentation?

In MBD, we are often met with the “models are documenta-
tion” fallacy that we believe has further perpetuated the lack
of proper documentation across industries using MBD.
However, any engineer responsible for maintaining real-world
industrial-size Simulink models understands that a Simulink
model is notoriously hard to reverse engineer or maintain
without additional information about the model that can be
documented in an SDD. For example, Simulink lacks facilities
to explicitly represent the interface inputs/outputs of a model/
subsystem. This issue was discussed and suggestions were
made in [23]. Also, a model does not contain rationale for
design decisions. However, experience teaches us that docu-
menting rationale is crucial for proper software development
and maintenance.

We illustrate the importance of having a good SDD by an
anecdotal story from our collaboration with one of our indus-
trial partners. Their newly hired engineer was tasked with main-
taining a Simulink model implementing algorithms within his
expertise area. There was no documentation associated with
the model. Although the engineer was very familiar with the
model’s algorithms and their application, comprehending the
model took approximately 2 months due to the fact that no
requirements specification, and particularly, design documenta-
tion, existed for this model. As a result, every part of the model
had to be manually examined and understood. After reverse
engineering the model, the engineer asked for our help with
documenting the model to significantly ease the maintenance
efforts in the future. This is not the only instance of such set-
backs we saw, and it clearly illustrates that even a domain
expert, with all of the relevant background knowledge, is still
hampered significantly by a lack of documentation. Again, this
is a clear example that the Simulink model is nof the require-
ments, nor effective documentation in and of itself.

56 Chapter 3 SOFTWARE ENGINEERING FOR MODEL-BASED DEVELOPMENT BY DOMAIN EXPERTS

3.47 What Is Wrong With Software Design

Documentation Today?

In general, it is a common attitude that SDDs are ultimately
nonessential to the deployment of embedded software. The com-
panies that develop and maintain large and complex embedded
software in Simulink, also develop and maintain a large number
of SDDs documenting the designs. For example, a company we
worked with documents every software feature (i.e., a large
Simulink model) with an SDD. To improve the documentation,
the company developed a template defining the format and con-
tent of SDDs and then distributed it to developers in charge of
models’ maintenance. However, the template very loosely defined
the content of SDDs, partly due to the use of undefined terminol-
ogy. This resulted in developers subjectively interpreting the tem-
plate, leading to inconsistent documentation throughout different
features of the same software. The SDDs are also consequently
ambiguous and incomplete. Under-defined content of documen-
tation is a general (not only SDD) software documentation
problem, ultimately rendering the resulting documentation mean-
ingless. Instead, the template for documentation should define
the structure of the documentation, using well-defined terminol-
ogy that includes explanation of all relevant terms, as well as the
instructions for the developers on the required content. Improving
documentation is not a short-term project—consequently, the
managers consider it a burden on the development/maintenance
process already under tight resource constraints. We feel, however,
that the benefits of producing and maintaining proper documen-
tation would by far outweigh its costs.

Additionally, a challenge we have encountered in industry,
especially those with fast development cycles, is that SDDs are
not always kept up-to-date. We contend that every model change
should also necessitate a change in the associated SDD. Ideally,
the change management should be built into software develop-
ment environments with revision control, with rules requiring
that changes to models are not allowed without an updated SDD.

3.5 Implementation: Generating Code

3.5.1 Why Is Code Generation Crucial to the
Success of MBD?

Automatic code generation in an MBD process is vital to the
cost effectiveness of development. It eliminates the manual

Chapter 3 SOFTWARE ENGINEERING FOR MODEL-BASED DEVELOPMENT BY DOMAIN EXPERTS 57

effort in coding from design, therefore, accelerating the process
while decreasing the chance of errors when compared to man-
ual coding from requirements or models. For example, GM has
attributed the success of the Chevrolet Volt’s development to
automatic code generation [28]. Since code is automatically
generated from design, traceability links are also automatically
generated. Tools exist that automatically generate code from
Simulink models and have been widely used in the industry
(e.g.,, MathWorks Embedded Coder, dSPACE TargetLink). Any
manual modification of the code after code generation is strongly
not recommended, given the high chance of introducing errors,
and maintainability issues—the manual modifications will be
overwritten upon code regeneration.

While verification that the code implements the Simulink
design is still needed (performed by, e.g., back-to-back testing”
that is well supported by current tools), verification efforts can
typically be reduced by using the “proven in use” argument
behind commercial code generation tools—the fact that those
tools have extensively been successfully used in different appli-
cations for a reasonable amount of time. Some industries go
further by certifying code generators, additionally reducing the
effort needed for verification of code against design.

Automatic code generation enables a variety of applications
including SiL, PiL, HiL, and rapid prototyping. It allows for
quick generation of code from Simulink controller implementa-
tions for deployment code on a desktop machine, instruction
set simulators, or target (the microprocessor). Further more, for
HiL, e.g., the plant model can also be coded into C (whether
from Simulink or another physical modeling tool more appro-
priate for plant modeling) and used in real time. The embedded
code generated for ECUs should also run in real time, satisfy
efficiency requirements (speed, memory usage), integration
with legacy code requirements, etc.

3.5.2 What Are the Limitations of Code
Generation?

Not all of the Matlab language and Simulink constructs are
supported by code generation tools. Furthermore, while effi-
ciency of model-generated code is comparable to hand code®,
the efficiency of code can typically be increased by hand coding

?Back-to-back testing checks whether the outputs of the model and code are the
same for the same inputs.
*In fact, model-generated code can outperform handwritten code [29].

