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Preface

This book is based on the Author’s experience of teaching programming to students in the University of
Cambridge supervisions system. In particular, working with students for the first-year undergraduate
course “Foundations of Computer Science”, lectured for many years by Lawrence C. Paulson.

An interesting aspect of supervising students from a wide range of backgrounds — some with no
previous experience at all, taking Computer Science as an additional subject within the Cambridge Natural
Sciences curriculum, and some with a great deal of programming experience already — is the level playing
field which the functional family of languages (like Haskell) provide. Sometimes, those students with least
prior programming experience perform the best.

I have tried to write a book which has no prerequisites — and with which any intelligent undergraduate
ought to be able to cope, whilst trying to be concise enough that someone coming from another language
might not be too annoyed by the tone.

One caveat: most things in life are small and elegant, or large and unwieldy. Haskell, as practised, is
in the unusual position of being large and elegant. This may be the first Haskell book you read, but it will
probably not be the last.

Special note to those who have already written programs

When I was a boy, our class was using a word processor for the first time. I wanted a title for my story, so I
typed it on the first line and then, placing the cursor at the beginning, held down the space bar until the
title was roughly in the middle. My friend taught me how to use the centring function, but it seemed more
complicated to me, and I stuck with the familiar way — after all, it worked. Later on, of course, when I had
more confidence and experience, I realized he had been right.

When starting a language which is fundamentally different from those you have seen before, it can be
difficult to see the advantages, and to try to think of every concept in terms of the old language. I would
urge you to consider the possibility that, at the moment, you might be the boy holding down the space bar.

Acknowledgments

The book was improved markedly by the comments of the technical reviewer, Stephen Dolan. Helpful
additional review was provided by Michatl Gajda, Jim Stuttard, Stuart Kurtz, Krystal Maughan, David
Feuer, Gregory Popovitch, Steven Leiva, Charles Parker, and Dirk Markert. Any remaining errors are due
solely to the author.

vii



Copyrighted material



Getting Ready

This book is about teaching the computer to do new things by writing computer programs. Just as there
are different languages for humans to speak to one another, there are different programming languages for
humans to speak to computers.

We are going to be using a programming language called Haskell. A Haskell system might already be
on your computer, or you may have to find it on the internet and install it yourself. We will be using the
Glasgow Haskell system. You will know that you have it working when you see something like this:

GHCi, version 8.6.1: http://www.haskell.org/ghc/ :7? for help
Prelude>

Please make sure the version number is at least 8. Haskell is waiting for us to type something. Try typing

followed by the key. You should see this:

GHCi:

Prelude> 1 + 2
2

Prelude>

Haskell tells us the result of the calculation. You may use the left and right arrow keys on the keyboard to
correct mistakes and the up and down arrow keys to look through a history of previous inputs. To leave
Haskell, give the :quit command, again followed by :

GHC1i:
Prelude> :quit
Leaving GHCi.

You should find yourself back where you were before. If you make a mistake when typing, you can use
the arrow keys on your keyboard to edit the text. To abandon typing, and ask Haskell to forget what you
have already typed, enter (hold down the key and tap the |c|key). This will allow you to

start again.

We are ready to begin.

ix
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Chapter 1

Starting Off

We will cover a fair amount of material in this chapter and its questions, since we will need a solid base on
which to build. You should read this with a computer running Haskell in front of you.

Consider first the mathematical expression 1 + 2 x 3. What is the result? How did you work it out?
We might show the process like this:

1+2x3
o 1+6
e 7

How did we know to multiply 2 by 3 first, instead of adding 1 and 2? How did we know when to stop?
Let us underline the part of the expression which is dealt with at each step:

1+2x3
e 1+6
o 7

We chose which part of the expression to deal with each time using the familiar mathematical rules. We
stopped when the expression could not be processed any further.

Computer programs in Haskell are just like these expressions. In order to give you an answer, the
computer needs to know all the rules you know about how to process the expression correctly. In fact,
1+ 2 x 3is a valid Haskell expression as well as a valid mathematical one, but we must write * instead of
x, since there is no x key on the keyboard:

GHC1i:
Prelude> 1 + 2 = 3
7

Here, Prelude> is Haskell prompting us to write an expression, and 1 + 2 * 3 is what we typed (the Enter
key tells Haskell we have finished our expression). We'll see what Prelude means later. Haskell responds
with the answer 7.

Let us look at our example expression some more. There are two operators: + and x. There are three
operands: 1, 2, and 3. When we wrote the expression down, and when we typed it into Haskell, we put
spaces between the operators and operands for readability. How does Haskell process it? First, the text we
wrote must be split up into its basic parts: 1, +, 2, *, and 3. Haskell then looks at the order and sort of the



2 Chapter 1. Starting Off

operators and operands, and decides how to parenthesize the expression: (1 + (2 x 3)). Now, processing
the expression just requires doing one step at a time, until there is nothing more which can be done:

(1+(2x3)
=  (14+6)
— 7

Haskell knows that + refers not to 1 and 2 but to 1 and the result of 2 x 3, and parenthesizes the expression
appropriately. We say the x operator has higher precedence than the + operator. An expression is any
valid Haskell program. To produce an answer, Haskell evaluates the expression, yielding a special sort of
expression, a value. In our previous example, 1 + 2 x 3, 1 + 6, and 7 were all expressions, but only 7 was a
value. Here are some mathematical operators on numbers:

Operator  Description

a+b addition
a-b subtract b from a
axb multiplication

The * operator has higher precedence than the + and - operators. For any operator @ above, the expression
a ® b @ cis equivalent to (a @ b) & c rather than a & (b & ¢) (we say the operators are left associative).
Negative numbers are written with - before them, and if we use them next to an operator we may need
parentheses too:

GHCi:
Prelude> 5 % (-2)
-10

Of course, there are many more things than just numbers. Sometimes, instead of numbers, we would like
to talk about truth: either something is true or it is not. For this we use boolean values, named after the
English mathematician George Boole (1815-1864) who pioneered their use. There are just two boolean
things:

True
False

How can we use these? One way is to use one of the comparison operators, which are used for comparing
values to one another:

GHCi:

Prelude> 99 > 100

False

Prelude> 4 + 3 + 2 + 1 ==10
True

Here are the comparison operators:
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Operator  Description

a== true if 2 and b are equal

a<b true if a is less than b

a<=b true if a is less than or equal to b
a>b true if 4 is more than b

a>=b true if a is more than or equal to b
a/=b true if a is not equal to b

Notice that if we try to use operators with things for which they are not intended, Haskell will not accept
the program at all:

GHCi:
Prelude> 1 > True

<interactive>:2:1: error:
* No instance for (Num Bool) arising from the literal '1'
e In the first argument of '(>)', namely '1'
In the expression: 1 > True
In an equation for 'it': it =1 > True

Do not expect to understand the details of this error message for the moment. We shall return to them
later on. You can find more information about error messages in Haskell in the appendix “Coping with
Errors” on page 197.

There are two operators for combining boolean values (for instance, those resulting from using the
comparison operators). The expression a & b evaluates to True only if expressions a and b both evaluate
to True. The expression a | | b evaluates to True if a evaluates to True or b evaluates to True, or both do.
In each case, the expression a will be tested first — the second may not need to be tested at all. The &&
operator (pronounced “and”) is of higher precedence than the | | operator (pronounced “or”),soa & b | |
cis thesameas (a & b) || c.

We shall also be using characters, such as ‘a’ or ‘?". We write these in single quotation marks:

GHCi:
Prelude> 'c'
gH

So far we have looked only at operators like +, == and && which look like familiar mathematical ones. But
many constructs in programming languages look a little different. For example, to choose a course of
evaluation based on some test, we use the 1f ... then ... else construct:

GHCi:
Prelude> if 100 > 99 then 0 else 1
0

The expression between if and then (in our example 100 > 99) must evaluate to either True or False,
and the expression to choose if true and the expression to choose if false must be the same sort of thing as
one another - here they are both numbers. The whole expression will then evaluate to that sort of thing too,
because either the then part or the else part is chosen to be the result of evaluating the whole expression:
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boolean number number

if 100 > 99 then 0 else 1

~~
number

We have covered a lot in this chapter, but we need all these basic tools before we can write interesting
programs. Make sure you work through the questions on paper, on the computer, or both, before moving
on. Hints and answers are at the back of the book.
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Questions

1. What sorts of thing do the following expressions represent and what do they evaluate to, and why?

17

1+2=*3+ 4

400 > 200

1 /=1

True || False

True && False

if True then False else True
iy

2. These expressions are not valid Haskell. In each case, why? Can you correct them?

1+ -1

A==a

false || true

if 'A' > 'a' then True
'a' + 'b'

3. A programmer writes 1+2 * 3+4. What does this evaluate to? What advice would you give them?

4. Haskell has a remainder operator, which finds the remainder of dividing one number by another.
It is written " rem’. Consider the evaluations of the expressions 1 + 2 “rem” 3, (1 + 2) “rem’ 3,
and 1 + (2 “rem’ 3). What can you conclude about the + and " rem” operators?

5. Why not just use, for example, the number 0 to represent falsity and the number 1 for truth? Why
have a separate True and False at all?

6. What is the effect of the comparison operators like < and > on alphabetic characters? For example,
what does 'p' < 'q' evaluate to? What about 'A' < 'a'? What is the effect of the comparison
operators on the booleans True and False?
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So Far

Numbers ...-3 -2 -1 0 1 2 3...Booleans True and
False. Characters like 'X' and ' !'.

Mathematical operators + - * which take two numbers
and give another.

Operators == < <= > >= /= which compare two values
and evaluate to either True or False.

The “conditional” construct if expression1 then expression2
else expression3, where expression] evaluates to something
boolean and expression2 and expression3 evaluate to the
same sort of thing as one another.

The boolean operators && and | | which allow us to build
compound boolean expressions. The remainder operator
‘rem’.
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Chapter 2

Names and Functions

So far we have built only tiny toy programs. To build bigger ones, we need to be able to name things so as
to refer to them later. We also need to write expressions whose result depends upon one or more other
things. Before, if we wished to use a sub-expression twice or more in a single expression, we had to type it
multiple times:

GHCi:
Prelude> 200 = 200 * 200
8000000

Instead, we can define our own name to stand for the expression, and then use the name as we please:

GHCi:

Prelude> x = 200
Prelude> x * X * X
8000000

To write this all in a single expression, we can use the let ... = ... in ... construct:

GHCi:

Prelude> let x = 200 in x * X #* X

8000000

Prelude> let a = 500 in (let b = a * a in a + b)
250500

Prelude> let a = 500 in let b =a *xa ina + b
250500

We can use the special name it for the value resulting from the most recently evaluated expression, which
can be useful when we forget to name something whilst experimenting:

GHCi:

Prelude> 200 % 200
40000

Prelude> it * 200
8000000
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Prelude> it * 200
1600000000

The it name is not a part of the Haskell language — it is just a shortcut to make experimenting easier.

In Chapter 1, we talked about how values could be different “sorts of things” such as numbers and
booleans and characters, but in fact Haskell knows about this idea — these “sorts of things” are called types,
and every value and indeed every expression has a type. For example, the type of False is Bool. We can
ask Haskell to tell us the type of a value or expression by using the : type command:

GHCi:

Prelude> :type False

False :: Bool

Prelude> :type False && True
False && True :: Bool
Prelude> :type 'x
'x' :: Char

Note that commands like : type are not part of the Haskell language, and so cannot form part of ex-
pressions. We can read False && True :: Bool as “The expression False && True has type Bool”. An
expression always has same type as the value it will evaluate to. There is a further complication, which we
shall only explain in detail later, but which we must confront on its surface now:

GHCi:
Prelude> :type 50
50 :: Num a => a

We might expect the type of 50 to be something like Number but it is the rather more cryptic Num a = a.
You can read this as “if a is one of the types of number, then 50 can have type a”. In Haskell, integers and
other numbers are sorts of Num. For now, we will not worry too much about types, just making sure we
can read them without being scared. The purpose is to allow, for example, the expression 50 to do the job
of an integer and a real number, as and when required. For example:

GHCi:

Prelude> 50 + 0.6
50.6

Prelude> 50 + 6
56

In the first line, 50 is playing the part of a real number, not an integer, because we are adding it to another
real number. In the second, it pays the part of an integer, which is why the result is 56 rather than 56.0.

The letter a in the type is, of course, arbitrary. The types Num a = a and Num b = b and Num frank
= frank are interchangeable. In fact, Haskell does not always use a first. On the author’s machine our
example reads:

GHCi:
Prelude> :type 50
50 :: Num p => p

However, we shall always use the letters a, b etc. Let us move on now to consider functions, whose value
depends upon some input (we call this input an argument — we will be using the word “input” later in the
book to mean something different):
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GHCi:

Prelude> cube x = x * x * X
Prelude> cube 200

8000000

We chose cube for the name of the function and x for the name of its argument. If we ask for its type,
Haskell will reply by telling us that its type is Num a = a — a. This means it is a function which takes a
number as its argument, and, when given that argument, evaluates to the same sort of number. To use the
function, we just write its name followed by a suitable argument. In our example, we calculated 2003 by
giving the cube function 200 as its argument.

The cube function has type Num a = a — a, we gave it a number 200, and so the result is another
number. Thus, the type of the expression cube 200 is Num a = a (remember that the type of any expression
is the type of the thing it will evaluate to, and cube 200 evaluates to 8600000, a number of type Num a =
a). In diagram form:

Numa =a —+a Numa= a
e, PRIV

cube 200

Num a = a

It might be easier to see what is going on if we imagine missing out the part to the left of the => symbol in
each type:

a—a a

o —
cube 200
Y

If we try an argument of the wrong type, the program will be rejected:

GHCi:
Prelude>cube False

<interactive> error:
* No instance for (Num Bool) arising from a use of 'cube'
* In the expression: cube False
In an equation for 'it': it = cube False

You can learn more about how to understand such messages in “Coping with Errors” on page 197. Here is
a function which determines if a number is negative:

GHC1i:

Prelude> neg x = if x < 0 then True else False
Prelude> neg (-30)

True

But, of course, this is equivalent to just writing

GHCi:

Prelude> neg x = x < 0
Prelude> neg (-30)
True
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because x < 0 will evaluate to the appropriate boolean value on its own — True if x < 0 and False
otherwise. What is the type of neg?

GHCi:

Prelude> neg x = x < 0

Prelude> :type neg

neg :: (Num a, Ord a) => a -> Bool

We can read this as “The argument to our function can have type a if a is an one of the class of types Num
and also one of the class of types Ord. The result of the function is of type Bool”. The class of types, or
typeclass Ord is for things which can be ordered — in other words, ones on which we can use < and other
comparison operators. A type which is one of a class of types is called an instance of that class. Here is
another function, this time of type Char — Baol. It determines if a given character is a vowel or not:

GHCi:

Prelude> isVowel ¢ = c == 'a' || ¢ = 'e' || c = "'i' || c = "0' || ¢ = "u'
Prelude> :type isVowel

isVowel :: Char -> Bool

Prelude> isVowel 'x'

False

The line is getting a little long. We can type a function (or any expression) over multiple lines by preceding
it with : { and following it with :}, pressing the Enter key between lines as usual. Haskell knows that we
are finished when we type : } followed by the Enter key. Notice also that we press space a few times so
that the second line appeared a little to the right of the first. This is known as indentation.

GHCi:

Prelude> :{

Prelude| isVowel c =

Prelude| c="'a'"||]c="'e || c="'1" || ¢=="0" ||] € == "'U’
Prelude| :}

The start of the second line must be to the right of the name of the function: Haskell is particular about
this. There can be more than one argument to a function. For example, here is a function which checks if
two numbers add up to ten:

GHCi:

Prelude> :{

Prelude| addToTen a b =
Prelude| a+b==10

Prelude| :}
Prelude> addToTen 6 4
True

We use the function in the same way as before, but writing two numbers this time, one for each argument
the function expects. The type is (Eq a, Num a) = a — a — Bool because the arguments are both numbers,
and both capable of being tested for equality (hence Eq) and the result is a boolean.

GHCi:
Prelude> :{
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Prelude| addToTen a b =
Prelude| a + b == 10

Prelude| :}
Prelude> :type addToTen
addToTen :: (Eq a, Num a) => a -> a -> Bool

Note that Eq and Ord are different. Not everything which can be tested for equality with == can be put in
order with < and similar operators.

A recursive function function is one which uses itself. Consider calculating the factorial of a given
number — the factorial of 4 (written 4! in mathematics), for example, is 4 x 3 x 2 x 1. Here is a recursive
function to calculate the factorial. Note that it uses itself in its own definition.

GHCi:

Prelude> :{

Prelude| factorial n =

Prelude| if n == 1 then 1 else n * factorial (n - 1)

Prelude| :}

Prelude> :type factorial

factorial :: (Eq a, Num a) == a -> a
Prelude> factorial 4

24

How does the evaluation of factorial 4 proceed?

factorial 4

4 x factorial (4 - 1)

4 * (3 = factorial (3 - 1))

4 % (3 % (2 * factorial (2 - 1)))
4% (3 % (2 1))

4+ (3x2)

4 x 6

24

LELLLLY

For the first three steps, the else part of the if (or conditional expression) is chosen, because the argument a
is greater than one. When the argument is equal to 1, we do not use factorial again, but just evaluate to
1. The expression built up of all the multiplications is then evaluated until a value is reached: this is the
result of the whole evaluation. It is sometimes possible for a recursive function never to finish — what if
we try to evaluate factorial (-1)?

factorial (-1)

-1 % factorial (-1 - 1)

-1 * (-2 = factorial (-2 - 1))

-1 % (-2 % (-3 = factorial (-3 - 1)))

Ll

The expression keeps expanding, and the recursion keeps going. You can interrupt this infinitely-long
process by typing Ctrl-C on your keyboard (it may take a little while to work):
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GHCi:
Prelude> factorial (-1)
~“CInterrupted.

This is an example of a problem Haskell cannot find by merely looking at the program text — it can only be
uncovered during the process of evaluation. Later in the book, we will see how to prevent people who are
using our functions from making such mistakes.

One of the oldest methods for solving a problem (or algorithim) still in common use is Euclid’s algorithm
for calculating the greatest common divisor of two numbers (that is, given two positive integers a and b,
finding the biggest positive integer ¢ such that neither a/c nor b/c have a remainder). Euclid was a Greek
mathematician who lived about three centuries before Christ. Euclid’s algorithm is simple to write as a
function with two arguments:

GHCi:

Prelude> :{

Prelude| gcd' a b =

Prelude| if b == 0 then a else gcd' b (rem a b)

Prelude| :}
Prelude> gcd' 64000 3456
128

The function built-in function rem finds the remainder of dividing a by b. If we like, we can surround the
function rem in backticks as ~ rem” (we have already seen this in Question 4 of the previous chapter). This
allows us to put its two arguments either side, making it an operator like + and | |:

GHCi:

Prelude> :{

Prelude| gcd' a b =

Prelude| if b == 0 then a else gcd' b (a “rem™ b)
Prelude| :}

Here is the evaluation:

gcd' 64000 3456

gcd' 3456 (64000 “rem” 3456)
gcd' 1792 (3456 “rem” 1792)
gcd' 1664 (1792 “rem” 1664)
gcd' 128 (1664 “rem” 128)
128

Lol

Why did we call our function gcd ' instead of gcd? Because Haskell has a built in function ged, and we
should not reuse the name. Later on, when we load our programs from files, Haskell will in fact not let us
reuse the name. This is another way in which Haskell is being rather careful, to prevent us being tripped
up when writing larger programs.

Finally, here is a simple function on boolean values. In the previous chapter, we looked at the && and
| | operators which are built in to Haskell. The other important boolean operator is the not function,
which returns the boolean complement (opposite) of its argument — True if the argument is False, and



Chapter 2. Names and Functions 15

vice versa. This is again built in, but it is easy enough to define ourselves, as a function of type Bool —
Bool.

GHCi:

Prelude> :{

Prelude| not' x =

Prelude| if x then False else True
Prelude| :}

Prelude> :type not'

not' :: Bool -> Bool

Prelude> not' True

False

Almost every program we write will involve functions such as these, and many larger ones too. In fact,
languages like Haskell are often called functional languages.
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A more formal look at types

Most readers will wish to skip this section, and the extra questions which relate to it, and not worry too much about
types, coming back to it after a few more chapters have been worked through. However, for those who refuse to take
things on trust without understanding them, it is perhaps best to tackle it now.

Every expression in Haskell has a type, which indicates what sort of thing it will eventually evaluate
to. Simple types include Bool and Char. For example, the expression False || True has the type Bool
because, when evaluated, it will result in a boolean value. So a type represents a collection of values. For
example, the Baal type has two values: True and False, but the Char type has many more.

The purpose of types is to make sure that no part of the program receives something it was not
expecting, and for which it cannot sensibly do anything. For example, the addition operator + being asked
to add a number to a boolean. This avoids, at a stroke, a huge class of possible program misbehaviours,
or bugs. Haskell can do this automatically, by working out the types of everything in the program and
making sure they all fit together, and that no function can possibly receive an argument of the wrong type.
This is called type inference, because the types are inferred (worked out) by Haskell.

When we ask Haskell what the type of 42 is, we get the surprising answer Num a = a, rather than
something simple like Number. The letters a, b, c.. . are type variables standing for types. A typeclass like
Num is a collection of types. So, a typeclass is a collection of types, each of which is a collection of values. A
type with a = symbol in it has a left-hand and right-hand part. The left-hand part says which typeclasses
one or more of the type variables on the right-hand side must belong to. So if 42 has the type Num a = a
we may say “Given that the type variable a represents a type which is an instance of the typeclass Num, 42
can have type a”. Remember our example where a number was used as both an integer and a real number,
even though it was written the same. Of course, many types do not have a = symbol, which means either
they are very specific, like Bool, or very generic, like a, which represents any type at all.

We have also introduced functions, which have types like a — b. For example, if a is Char and b is Bool,
we may have the type Char — Bool. Of course, functions may have a left-hand part too. For example, the
function which adds two numbers may have the type Num a = a — a — a. That is to say, the function
will add any two things both of a type a which is an instance of the typeclass Num, and the result is a
number of the same type.

So this is what is rather confusing to us about the type Num a = a: it is actually rather harder to
understand for the beginner than the function types in the previous paragraph, and yet it represents what
we expect to be a simple concept: the number. All will be explained in Chapter 12.

We can have more than one constraint on a single type variable, or constraints on multiple type
variables. They are each called class constraints, and the whole left hand part is sometimes called the context.
For example, the type (Num a, Eq b) = a — b — ais the type of a function of two arguments, the first of
which must be of some type from typeclass Num and the second of some type from typeclass Eq.

Further complicating matters, sometimes every type of a certain typeclass is by definition also part of
one or more other ones. In the case of the typeclasses we have seen so far, every type in the typeclass Ord
is also in the typeclass Eq. What this means is that if we list the constraint Ord we need not also list Eq.
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Questions
1. Write a function which multiplies a given number by ten. What is its type?
2. Write a function which returns True if both of its arguments are non-zero, and False otherwise.
What is the type of your function?
3. Write a recursive function sum' which, given a number n, calculates thesum 1 +2+3+ ... +n.

What is its type?

4. Write a function power x n which raises x to the power n. Give its type.

5. Write a function isConsonant which, given a lower-case character in the range 'a'...'z"', deter-

mines if it is a consonant.

. What is the result of the expression let x = 1 in let x = 2 in x + x?

7. Can you suggest a way of preventing the non-termination of the factorial function in the case of

a zero or negative argument?

For those who are confident with types and typeclasses. To be attempted in the first instance without the computer.

8.

10.

11.

12,

Here are some expressions and function definitions and some types. Pair them up.

1 Ord a = a — a — Bool

1+ 2 (Ord a, Num a) = a — a — Bool
T oy =gy Numa=a—-b—-c—a
gXy=x<y+2 Num a = a

hxy=8 Numa=b —+c—a
ixyz=x+10 Numa = a

. Infer (work out) types for the following expressions or function definitions.

46 = 10 2>1
fx=x+x gxyz=x+1l<y
iabc=5>b

Why are the following expressions or function definitions not accepted by Haskell?
True + False
6 + '6'
fxyz=(x<y)<i(z+1)

Which of the following types are equivalent to one another and which are different? Which are not
valid types?

Numa=b Numtl = t1
Numb=1b —a Numa=a—b
(Ord a, Num a) = a — a Numa=a—a
(Numa, Orda) =a — a Numa = a

These types are correct, but have some constraints which are not required. Remove them.
(Eqa, Orda) =a —>b—a
(Ord a, Eqa, Egqb) = b —>b —a
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So Far

Numbers ...-3 -2 -1 0 1 2 3...Booleans True and
False. Characters like 'X' and ' !'.

Mathematical operators + - * which take two numbers
and give another.

Operators == < <= > >= /= which compare two values
and evaluate to either True or False.

The “conditional” construct if expression1 then expression2
else expression3, where expression] evaluates to something
boolean and expression2 and expression3 evaluate to the
same sort of thing as one another.

The boolean operators && and | | which allow us to build
compound boolean expressions. The remainder operator
‘rem’.

Assigning a name to an expression using the name =

expression construct. Building compound expressions
using let namel = expression] in Let name2 = expression2
in...

Functions, introduced by nante argument1 argument?2 ... =
expression. These have typea — b, a — b — c etc. for
some types a, b, ¢ etc. Recursive functions. Turning a two-
argument function into an operator with backticks like
“rem".

The types Bool and Char. The typeclasses Num, Ord, and
Eg. A function from values of type a to type b with 2 in
typeclass Eq and b in typeclass Ord would have type (Eq
a,0rdb)=a—b.

The special value it. The command : type and the use of
Ctrl-C to interrupt a computation.
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Using Scripts

From now on, instead of showing the actual Haskell session. ..

GHCi:

Prelude> :{

Prelude| factorial n =

Prelude| if n == 1 then 1 else n * factorial (n - 1)
Prelude| :}

... we will usually just show the program in a box, together with its type:

factorial :: (Eqa, Numa) = a — a

factorial n =
if n == 1 then 1 else n * factorial (n - 1)

In fact, this is just how Haskell programs are normally written, in a text file with the . hs (haskell script)
extension, rather than typed directly into Haskell. We can include the type in our . hs file, or leave it out
and let Haskell infer it.

We can use the :load and : reload commands to access the program from Haskell. Assuming we
have a file Script.hs which looks like the contents of the box above, we can use it like this:

GHCi:
Prelude> :load Script.hs
[1 of 1] Compiling Main ( Script.hs, interpreted )

0Ok, one module loaded.
*Main> factorial 24
620448401733239439360000

When we have made a change to the file Script.hs in our text editor (and saved the file), we can reload
the new one:

GHCi:
*Main> :reload
[1 of 1] Compiling Main ( Script.hs, interpreted )

0Ok, one module loaded.

21
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Chapter 3

Case by Case

In the previous chapter, we used the conditional expression if ... then ... else to define functions whose
results depend on their arguments. For some of them we had to nest the conditional expressions one
inside another. Programs like this are not terribly easy to read, and expand quickly in size and complexity
as the number of cases increases.

Haskell has a nicer way of expressing choices — pattern matching. For example, recall our factorial
function:

factorial :: (Eqa, Numa) = a — a
factorial n =
if n == 1 then 1 else n * factorial (n - 1)

We can rewrite this using pattern matching:

factorial :: (Eqa, Numa) = a — a

1
n = factorial (n -

factorial 1
factorial n =

1)

We can read this as “See if the argument matches the pattern 1. If it does, just return 1. If not, see if it
matches the pattern n. If it does, the resultis n * factorial (n - 1).” Patterns like n are special - they
match anything and give it a name. Remember our isVowel function from the previous chapter?

isVowel :: Char — Bool
isVowel c =
c='a'||]c=="'e || c="1"||] c= "'0' || € == "U’

23
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Here is how to write it using pattern matching;:

isVowel :: Char — Bool
isVowel 'a' = True
isVowel 'e' = True
isVowel 'i' = True
isVowel 'o' = True
isVowel 'u' = True
isVowel _ = False

The special pattern _ matches anything. If we miss out one or more cases — for example leaving out the
final case, Haskell can warn us:

<interactive> warning: [-Wincomplete-patterns]

Pattern match(es) are non-exhaustive

In an equation for 'isVowel':

Patterns not matched:
p where p is not one of {'u', 'o', 'i', 'e', 'a'}

To enable this behaviour, you must start Haskell by writing ghci -Wincomplete-patterns instead of just
ghci. Writing ghci -Wall enables all warnings. Haskell does not reject the program outright, because
there may be legitimate reasons to miss cases out, but for now we will make sure all our pattern matches
are exhaustive. Finally, let us rewrite Euclid’s Algorithm from the previous chapter:

gcd' :: Integrala=a —a— a
gcd' ab =
if b == 0 then a else gcd' b (a “rem” b)

Now in pattern matching style:

gcd' :: Integrala = a —a—a
gcd' a @ = a
gcd' a b =gcd' b (a “rem b)

We use pattern matching whenever it is easier to read and understand than if ... then... else expres-
sions.

What about this Integral typeclass? We did not try : type on the gcd' function in the last chapter, so
we did not see this. A type of number which is an Integral has an additional property to one which is
merely a Num, which is that whole-number division and remainder operations work on it. Since every
thing which is an Integral is also a Num, we do not see (Num a, Integral a), but just Integral a in the type.

Sometimes we need more than just a pattern to decide which case to choose in a pattern match. For
example, in gcd' above, we only needed to distinguish between 0 and any other value of b. Consider,
though, the function to determine the sign of a number, producing —1 for all numbers less than zero, 0 for
just the number zero, and 1 for all numbers above zero:
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sign :: (Ord a, Num a, Num b) = a — b

sign x =
if x < 0 then -1 else if x > 0 then 1 else 0

We cannot rewrite this using a pattern match with three cases. Haskell has a facility called guarded equations
to help us (each line in our pattern matched functions can also be called an equation). A guard is an extra
check to decide if a case of a pattern match is taken based upon some condition, for example x < 0. Here
is our sign function written using guarded equations:

sign :: (Ord a, Num a, Numb) = a — b
sign x | x < 0 = -1

| x>0 =1

| otherwise = 0

There is no need to line up the equals signs vertically, but we do so to make it easier to read. The cases are
considered one after another, just like when using pattern matching, and the first case which matches the
guard is taken. The otherwise guard matches anything, so it comes last. We use an otherwise case to
make sure every possibility is handled. We can read the | symbol as “when”. A function can be defined
using multiple equations, each of which has multiple guarded parts.

The layout rule

We have mentioned indentation, noting that Haskell is particular about it. Indeed, programs will not be
accepted unless they are properly indented:

GHCi:

Prelude> :{

Prelude| sign x =

Prelude| if x < 0 then -1 else if x > 0 then 1 else ©
Prelude| :}

<interactive> error:
parse error (possibly incorrect indentation or mismatched brackets)

Haskell is telling us that it cannot work out what we mean. Since the if ...then ...else...expression is
part of the sign function, it must be indented further than the beginning of the whole sign expression.
This applies at all times — even when the start of the whole expression is itself indented. In the case of if
...then ...else...itself, it is in fact permitted not to indent:

GHCi:

Prelude> :{
Prelude| if 1 < 0
Prelude| then 2
Prelude| else 3
Prelude| :}

3
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However, we shall often do so, when it is easier to read:

GHCi:

Prelude>

if

Prelude| if 1 < 0

Prelude|
Prelude|
Prelude]

3

then 2
else 3

o}

Consider again our sign function:

Chapter 3. Case by Case

sign :: (Ord a, Num a, Numb) = a — b

sign x | x <0
| x >0
| otherwise

We have already mentioned that lining up the equals signs is not necessary. However, we must always

indent the cases. Here, we start the cases on the next line:

Prelude|
Prelude|
Prelude|
Prelude|
Prelude|

sign x

| x<0=-1

| x>0=1

| otherwise = 0
:}

The layout rule is not complicated, but it can be frustrating to the beginner, especially when the error
message is not clear.
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Questions

1. Rewrite the not' function from the previous chapter in pattern matching style.

2. Use pattern matching to write a recursive function sumMatch which, given a positive integer n,
returns the sum of all the integers from 1 to n.

3. Use pattern matching to write a function which, given two numbers = and n, computes z".

4. For each of the previous three questions, comment on whether you think it is easier to read the
function with or without pattern matching. How might you expect this to change if the functions
were much larger? Write each using guarded equations too.

5. Use guarded equations to write a function which categorises characters into three kinds: kind 0 for
the lowercase letters a... z, kind 1 for the uppercase letters a... z, and kind 2 for everything else.

6. Experiment with the layout of the function definitions in this and the previous chapter. Which kinds
of layout are allowed by Haskell? Which of the allowed layouts are aesthetically pleasing, or easy to
read? Do any of your layouts make the program harder to change?
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So Far

Numbers ...-3 -2 -1 0 1 2 3...Booleans True and
False. Characters like 'X' and ' !'.

Mathematical operators + - * which take two numbers
and give another.

Operators == < <= > >= /= which compare two values
and evaluate to either True or False.

The “conditional” construct if expression1 then expression2
else expression3, where expression] evaluates to something
boolean and expression2 and expression3 evaluate to the
same sort of thing as one another.

The boolean operators && and | | which allow us to build
compound boolean expressions. The remainder operator
‘rem’.

Assigning a name to an expression using the name =

expression construct. Building compound expressions
using let namel = expression] in Let name2 = expression2
in...

Functions, introduced by nante argument1 argument?2 ... =
expression. These have typea — b, a — b — c etc. for
some types a, b, c etc. Recursive functions. Turning a two-
argument function into an operator with backticks like
“rem".

The types Bool and Char. The typeclasses Num, Ord, and
Eg. A function from values of type a to type b with 2 in
typeclass Eq and b in typeclass Ord would have type (Eq
a,0rdb)=a—b.

The special value it. The command : type and the use of
Ctrl-C to interrupt a computation.

Matching patterns using f patternl = expressionl +

f pattern2 = expression2 etc. .. The expressions expres-
sionl, expression2 etc. must have the same type as one an-
other. Writing functions using guarded equations like f x
| guard = expression + | guard2 = expression2 | otherwise
... The typeclass Integral.
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Chapter 4

Making Lists

A list is a collection of elements. Here is a list of three numbers:
[1, 2, 3]

We write a list between square brackets [ and ], separating the elements with commas. The list above has
type Num a = [a], because it is a list of elements each of type Num a = a. All elements of the list must
have the same type. The elements in the list are ordered (in other words, [1, 2, 3] and [2, 3, 1] are
not the same list).

The first element is called the head, and the rest are collectively called the tail. In our example, the head
is the number 1 and the tail is the list [2, 3]. So you can see that the tail has the same type as the whole
list. Here is a list with no elements (called “the empty list” or sometimes “the nil list”):

(]

It has neither a head nor a tail. Here is a list with just a single element:

[5]

Its head is the number 5 and its tail is the empty list [ ]. So every non-empty list has both a head and a tail.
Lists may contain elements of any type: numbers, booleans, functions, even other lists. For example, here
is a list containing elements of type Bool:

[False, True, False] : [Bool]

Haskell defines two operators for lists. The : operator (pronounced “cons”) is used to add a single element
to the front of an existing list:

False : [True, False]
= [False, True, False]

The cons operation is completed in a constant amount of time, regardless of the length of the list. The ++
operator (pronounced “append” or “concatenate”) is used to combine two lists together:

[1, 2] ++ [3, 4, 5]
= (1, 2, 3, 4, 5]

31
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This takes time proportional to the length of the list on the left hand side of the ++ operator (that is, a list
of length 100 will take roughly twice as long as one of length 50). We will see why soon.

Now, how do we write functions using lists? We can use pattern matching as usual, with some new
types of pattern. For example, here is a function which tells us if a list is empty:

isNil :: [a] — Bool
isNil [] = True the list is empty
isNil _ = False it has at least one element

The argument has type [a] because this function does not inspect the individual elements of the list, it
just checks if the list is empty. And so, this function can operate over any type of list. Functions like this
are known as polymorphic. We can also use : in our patterns, this time using it to deconstruct rather than
construct the list:

length' :: Numb=[a] > b

length' [] = @ the list has zero elements (the “base case”)
length' (x:xs) = 1 + length' xs X is the head, xs the tail

The traditional name xs for the tail is pronounced exes. If two types are represented by the same letter they
must have the same type. If they are not, they may have the same type, but do not have to. For example,
in length', type a might happen to be in type class Num also, but it does not have to be. Here is how the
evaluation might proceed:

length' [5, 5, 5]

= 1 + length' [5, 5]

— 1+ (1 + length' [5])

e 1+ (1+ (1 + length' [])) base case

= 1+ (1+ (1+0))

= 3 (== means we are not showing all the steps)

This works by recursion over the list, then addition of all the resultant 1s. It takes time proportional to the
length of the list. Can you see why? Since x is not used in the expression 1 + length' xs, this function is
also polymorphic. Indeed we can replace x in the pattern with the special pattern _ since there is no use
giving a name to something we are not going to refer to:

length' :: Numb=[a] > b

length' [] =0
length' (_:xs) = 1 + length' xs

A very similar function can be used to add a list of numbers:
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sumElts
sumgElts

sumElts ::

Num a = [a] - a
(1 =0 the sum of no elements is zero
(x:xs) = x + sumElts xs otherwise, add the head to the sum of the tail

However, since we are actually using the individual list elements (by adding them up), this function is not
as general — it operates over lists of type Num a = [a] only. Functions can, of course, return lists too. Here
is a function to return the list consisting of the first, third, fifth and so on elements in a list:

oddElements :: [a] — [3]

oddElements [] = [] the list has zero elements
oddElements [x] = [x] the list has one element
oddElements (x:_:xs) = x : oddElements xs the list has more than one element

Consider the evaluation of oddElements [2, 4, 2, 4, 21]:

oddElements [2, 4, 2, 4, 2]

= 2 : oddElements [2, 4, 2]
= 2 : 2 : oddElements [2]
= 2 @2 & [2]

= (2, 2, 2]

You might notice that the first two cases in the pattern match return exactly their argument. By reversing
the order, we can reduce this function to just two cases:

oddElements :: [a] — [a]

oddElements (x:_:xs) = x : oddElements xs there is something to skip over
oddElements 1 = 1 there is nothing to skip over

We have seen how to use the ++ (append) operator to concatenate two lists:

[1, 2] ++ [3, 4, 5]
=3 [1, 2, 3, 4. 5]

How might we implement ++ ourselves, if it were not provided? Consider a function append xs ys. If the
first list is the empty list, the answer is simply ys. But what if the first list is not empty? Then it has a head
x and a tail xs. So we can start our result list with the head, and the rest of the result is just append xs ys.

append

1: [a] = [a] = [a]

append [] ys = ys
append (x:xs) ys = x : append Xxs ys
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Consider the evaluation of append [1, 2, 3] [4, 5, 6]:

append [1, 2, 3] [4, 5, 6]

1 : append [2, 3] [4, 5, 6]

1: 2 : append [3] [4, 5, 6]

1:2: 3 : append [] [4, 5, 6]
1:2:3: [4,5, 6]

=t [1, 2, 3, 4, 5, 6]

Ll

This takes time proportional to the length of the first list — the second list need not be processed at all.
What about reversing a list? For example, we want reverse' [1, 2, 3, 4] toevaluate to [4, 3, 2,
1]. One simple way is to reverse the tail of the list, and append the list just containing the head to the end
of it:

reverse' :: [a] — [a]

reverse' [] = []
reverse' (Xx:xs) = reverse' Xs ++ [x]

Here is how the evaluation proceeds:

reverse' [1, 2, 3, 4]
reverse' [2, 3, 4] ++ [1]

reverse' [3, 4] ++ [2] ++ [1]

reverse' [4] ++ [3] ++ [2] ++ [1]
reverse' [] ++ [4] ++ [3] ++ [2] ++ [1]
[1 ++ [4] ++ [3] ++ [2] ++ [1]

[af 3' 2! 1]

el

This is a simple definition, but not very efficient — can you see why?
Two more useful functions for processing lists are take' and drop' which, given a number and a list,
either take or drop that many elements from the list:

take' :: (Eqa, Numa) = a — [b] — [b]
drop' :: (Eqa, Numa) = a — [b] — [b]

take' 8 _ = []
take' n (x:xs)

x : take' (n - 1) xs

drop' 8 1 =1
drop' n (_:xs)

drop' (n - 1) xs

For example, here is the evaluation for take' 2 [2, 4, 6, 8, 10]:
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take' 2 [2, 4, 6, 8, 10]

= 2 : take' 1 [4, 6, 8, 10]
— 2 : 4 : take' O [6, 8, 10]
e 2 4[]

= [2, 4]

And fordrop' 2 [2, 4, 6, 8, 10]:

drop' 2 [2, 4, 6, 8, 10]
drop' 1 [4, 6, 8, 10]
drop' © [6, 8, 10]

[6, 8, 10]

=
=

Note that these functions contain incomplete pattern matches. The function fails if the arguments are not
sensible — that is, when we are asked to take or drop more elements than are in the argument list. Later
on, we will see how to deal with that problem. Note also that for any sensible value of n, including zero,
take' n Land drop' n 1 split the list into two parts with no gap. So drop' and take' often appear in
pairs.

Lists can contain anything, so long as all elements are of the same type. So, of course, a list can contain
lists. Here is a list of lists of numbers:

[[1], [2, 3], [4, 5, 6]] :: Num a = [[3]]

Each element of this list is of type Num a = [a]. Within values of this type, it is important to distinguish
the list of lists containing no elements

[1 :: [a]
from the list of lists containing one element which is the empty list:

(011 =2 [fa]]

Other ways to build lists

Haskell provides a convenient shorthand for building useful lists of numbers by giving a starting point,

and ending point, and perhaps one other. For example, we can write [1 .. 10] to define thelist [1, 2,
3, 4,5, 6, 7, 8,9, 10]:
GHCi:

Prelude> [1 .. 10]
[1,2,3,4,5,6,7,9,10]
Prelude> [1, 3 .. 10]
[1,3,5,7,9]
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We can use what is called a list comprehension to select and process elements from one list into another. For
example, to calculate the list of squares of the numbers from 1 to 10:

GHCi:

Prelude> nums = [1 .. 10]
Prelude> [x * x | x <- nums]
[1,4,9,16,25,36,49,64,81,100]

We can read this as “Each element of the list will be calculated using the expression x * x, where x is drawn from
the list nums”. More than one name can be assigned. For example, to produce a times table:

GHCi:
Prelude> [x * y | x <- [1 .. 5], y <- [1 .. 4]]
(1,2,3,4,2,4,6,8,3,6,9,12,4,8,12,16,5,10,15,20]

You can see that, in the case of multiple names, each later one cycles more quickly than the earlier one,
sowehaver =1,y = 1 followed by x = 1,y = 2 rather than x = 2,y = 1. We can also specify guards to
select and process only those items in the initial list which meet certain criteria. For example, to find all
the even squares:

GHC1i:
Prelude> [x * x | x <- [1 .. 20], x “rem” 2 == 0]
[4,16,36,64,100,144,196,256,324,400]

When we write a function involving the [ .. ] construct, the type is different — it has an additional type
constraint:

f : (Numa) = a — [a]
g : (Num a, Enum a) = a — [a]

fx=1[1, x]
gx=1[1..x]

The typeclass Enum includes such things as can be enumerated - that is to say, given one, we can find the
next one. The integers, for example, are enumerable.

Lists of characters

A list of characters is special, and is called a string. It is printed between double quotation marks "like
this". The types String and [Char] are interchangeable - it really is a list of characters, so we can use
ordinary list functions:

GHCi:
Prelude> reverse' "stressed"
"desserts"

We will always write String instead of [Char] in our types for consistency.



