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Preface

Many historical processes are dynamic: growth and decline of populations, ter-
ritorial expansion and contraction of empires, trends in political centralization/
decentralization, and the spread of world religions, to name just a few examples.
A general approach to studying dynamical systems is to advance rival hypotheses
based on specific mechanisms, translate the hypotheses into mathematical models,
and contrast model predictions with empirical patterns. Mathematical modeling is
a key ingredient in this research program because quantitative dynamical phenom-
ena, often affected by complex feedbacks, cannot be fully understood at a purely
verbal level. Another important ingredient is the full use of statistical techniques
(such as time-series analysis) for quantitative and rigorous comparison between
model-predicted and observed patterns. This general approach has proved to be
extremely successful in natural sciences. Can it be instrumental in increasing our
understanding of historical processes?

Historical Dynamics is an attempt to answer this question. The specific problem
chosen for analysis is the territorial dynamics of agrarian states. In other words,
can we understand why some polities at certain times expand, while at other times
they contract? The advantage of focusing on territorial expansion/contraction is
that we have reasonably accurate empirical data on this aspect of historical dy-
namics (historical atlases). The focus on agrarian polities is motivated by the ex-
tent of empirical material (roughly, from the third millennium B.c.E. to 1800 c.E.)
and the greater simplicity of these societies compared to modern ones, potentially
making them easier to understand and model.

Although the main focus of the book is on territorial dynamics, it is clear
that the ability (or inability) of states to expand depends very much on their in-
ternal characteristics. Thus, in order to understand how and why states expand
and contract, we need to study military, economic, demographic, ethnological,
and ideological aspects of social dynamics. I consider four sociological theo-
ries potentially explaining territorial dynamics. The first is the geopolitical model
of Randall Collins. This theory has been very clearly formulated and requires
minimal work to translate into a mathematical model. The second one, by con-
trast, is an original development. Starting from ideas of the fourteenth century
Arabic thinker Ibn Khaldun and recent developments in sociobiology, I advance
a theory attempting to explain why the capacity for collective action may vary
among different societies. The third theory addresses the issue of ethnic assimila-
tion/religious conversion dynamics. Finally, the fourth theory focuses on the inter-
action between population dynamics and sociopolitical stability. The connection
between population growth and state breakdown is based on the demographic-
structural model of Jack Goldstone (another well-formulated theory that is easily
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translated into a dynamical model). To this model, I add the feedback mechanism,
postulating how state breakdown and resulting sociopolitical instability negatively
affect population numbers. The four theories address somewhat different aspects
of historical dynamics, and thus logically are not mutually exclusive. However,
alternative hypotheses about particular empirical patterns can be derived from
them and tested with data. I present several such empirical tests.
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Chapter One

Statement of the Problem

1.1 WHY DO WE NEED A MATHEMATICAL THEORY IN HISTORY?

Why do some polities—chiefdoms and states of various kinds—embark on a suc-
cessful program of territorial expansion and become empires? Why do empires
sooner or later collapse? Historians and sociologists offer a great variety of an-
swers to these and related questions. These answers range from very specific
explanations focusing on unique characteristics of one particular polity to quite
general theories of social dynamics. There has always been much interest in un-
derstanding history, but recently the theoretical activity in this area has intensified
(Rozov 1997). Historical sociology is attempting to become a theoretical, mature
science.

But why do historical sociologists use such a limited set of theoretical tools?
Theory in social sciences usually means careful thinking about concepts and def-
initions. It is verbal, conceptual, and discursive. The theoretical propositions that
are derived are gualitative in nature. Nobody denies the immense value of such
theoretical activity, but it is not enough. There are also formal, mathematical ap-
proaches to building theory that have been applied with such spectacular success
in physics and biology. Yet formalized theory employing mathematical models
is rarely encountered in historical sociology (we will be reviewing some of the
exceptions in later chapters).

The history of science is emphatic: a discipline usually matures only after it
has developed mathematical theory. The requirement for mathematical theory is
particularly important if the discipline deals with dynamic quantities (see the next
section). Everybody is familiar with the paradigmatic example of classical me-
chanics. But two more recent examples from biology are the synthetic theory of
evolution that emerged during the second quarter of the twentieth century (Ruse
1999), and the ongoing synthesis in population ecology (for example, Turchin
2003). In all these cases, the impetus for synthesis was provided by the develop-
ment of mathematical theory.

Can something similar be done in historical sociology? Several attempts have
been made in the past (e.g., Bagehot 1895; Rashevsky 1968), but they clearly
failed to make an impact on how history is studied today. I think there are two
major reasons explaining this failure. First, these attempts were inspired directly
by successes in physical sciences. Yet physicists traditionally choose to deal with
systems and phenomena that are very different from those in history. Physicists



2 CHAPTER 1

tend to choose very simple systems with few interacting components (such as
the solar system, the hydrogen atom, etc.) or systems consisting of a huge num-
ber of identical components (as in thermodynamics). As a result, very precise
quantitative predictions can be made and empirically tested. But even in physical
applications such systems are rare, and in social sciences only very trivial ques-
tions can be reduced to such simplicity. Real societies always consist of many
qualitatively and quantitatively different agents interacting in very complex ways.
Furthermore, societies are not closed systems: they are strongly affected by ex-
ogenous forces, such as other human societies, and by the physical world. Thus,
it is not surprising that traditional physical approaches honed on simple systems
should fail in historical applications.

The second reason is that the quantitative approaches typically employed by
physicists require huge amounts of precisely measured data. For example, a physi-
cist studying nonlinear laser dynamics would without further ado construct a
highly controlled lab apparatus and proceed to collect hundreds of thousands of
extremely accurate measurements. These data would then be analyzed using so-
phisticated methods on a high-powered computer. Nothing could be further from
the reality encountered by a historical sociologist, who typically lacks data about
many aspects of the historical system under study, while possessing fragmentary
and approximate information about others. For example, one of the most impor-
tant aspects of any society is just how many members it has. But even this kind
of information usually must be reconstructed by historians on the basis of much
guesswork.

If these two problems are the real reason why previous attempts failed, then
some recent developments in natural sciences provide a basis for hope. First,
during the last 20-30 years, physicists and biologists have mounted a concerted
attack on complex systems. A number of approaches can be cited here: non-
linear dynamics, synergetics, complexity, and so on. The use of powerful com-
puters has been a key element in making these approaches work. Second, bi-
ologists, and ecologists in particular, have learned how to deal with short and
noisy data sets. Again, plentiful computing power was a key enabler, allowing
such computer-intensive approaches as nonlinear model fitting, bootstrapping, and
cross-validation.

There is another hopeful development, this time in social sciences. I am refer-
ring to the rise of quantitative approaches in history, or cliometrics (Williamson
1991). Currently, there are many investigators who collect quantitative data on
various aspects of historical processes, and large amounts of data are already
available in electronic form.

These observations suggest that another attempt at building and testing quan-
titative theories in historical sociology may be timely. If we achieve even partial
success, the potential payoff is so high that it warrants making the attempt. And
there are several recent developments in which application of modeling and quan-
titative approaches to history have already yielded interesting insights.
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1.2 HISTORICAL DYNAMICS AS A RESEARCH PROGRAM

Many historical processes are dynamic. Generally speaking, dynamics is the sci-
entific study of any entities that change with time. One aspect of dynamics deals
with a phenomenological description of temporal behaviors—trajectories (this is
sometimes known as kinematics). But the heart of dynamics is the study of mech-
anisms that bring about temporal change and explain the observed trajectories.
A very common approach, which has proved its worth in innumerable applica-
tions, consists of taking a holistic phenomenon and mentally splitting it up into
separate parts that are assumed to interact with each other. This is the dynami-
cal systems approach, because the whole phenomenon is represented as a system
consisting of several interacting elements (or subsystems, since each element can
also be represented as a lower-level system).

As an example, consider the issue raised at the very beginning of the book.
An empire is a dynamic entity because various aspects of it (the most obvious
ones being the extent of the controlled territory and the number of subjects)
change with time: empires grow and decline. Various explanations for imperial
dynamics address different aspects of empires. For example, we may be concerned
with the interacting processes of surplus product extraction and warfare (e.g.,
Tilly 1990). Then we might represent an empire as a system consisting of such
subsystems as the peasants, the ruling elite, the army, and perhaps the merchants.
Additionally, the empire controls a certain territory and has certain neighboring
polities (that is, there is a higher-level system—or metasystem—that includes
the empire we study as a subsystem). In the dynamical system’s approach, we
must describe mathematically how different subsystems interact with each other
(and, perhaps, how other systems in the metasystem affect our system). This
mathematical description is the model of the system, and we can use a variety of
methods to study the dynamics predicted by the model, as well as attempt to test
the model by comparing its predictions with the observed dynamics.

The conceptual representation of any holistic phenomenon as interacting sub-
systems is always to some degree artifical. This artificiality, by itself, cannot be
an argument against any particular model of the system. All models simplify the
reality. The value of any model should be judged only against alternatives, taking
into account how well each model predicts data, how parsimonious the model is,
and how much violence its assumptions do to reality. It is important to remember
that there are many examples of very useful models in natural sciences whose
assumptions are known to be wrong. In fact, all models are by definition wrong,
and this should not be held against them.

Mathematical models are particularly important in the study of dynamics, be-
cause dynamic phenomena are typically characterized by nonlinear feedbacks,
often acting with various time lags. Informal verbal models are adequate for
generating predictions in cases where assumed mechanisms act in a linear and
additive fashion (as in trend extrapolation), but they can be very misleading when
we deal with a system characterized by nonlinearities and lags. In general, non-
linear dynamical systems have a much wider spectrum of behaviors than could be
imagined by informal reasoning (for example, see Hanneman et al. 1995). Thus,



4 CHAPTER 1

a formal mathematical apparatus is indispensable when we wish to rigorously
connect the set of assumptions about the system to predictions about its dynamic
behavior.

1.2.1 Delimiting the Set of Questions

History offers many puzzles and somehow we must select which of the questions
we are going to address in this research program. I chose to focus on territorial
dynamics of polities, for the following reasons. Much of recorded history is con-
cerned with territorial expansion of one polity at the expense of others, typically
accomplished by war. Why some polities expand and others fail to do so is a
big, important question in history, judging, for example, by the number of books
written about the rise and fall of empires. Furthermore, the spatiotemporal record
of territorial state dynamics is perhaps one of the best quantitative data sets avail-
able to the researcher. For example, the computer-based atlas CENTENNIA (Reed
1996) provides a continuous record of territorial changes during 1000-2000 c.E.
in Europe, Middle East, and Northern Africa. Having such data is invaluable to
the research program described in this book, because it can provide a primary
data set with which predictions of various models can be compared.

The dynamic aspect of state territories is also an important factor. As I ar-
gued in the previous section, dynamic phenomena are particularly difficult to
study without a formal mathematical apparatus. Thus, if we wish to develop a
mathematical theory for history, we should choose those phenomena where math-
ematical models have the greatest potential for nontrivial insights.

Territorial dynamics is not the whole of history, but it is one of the central
aspects of it, in two senses. First, we need to invoke a variety of social mech-
anisms to explain territorial dynamics, including military, political, economic,
and ideological processes. Thus, by focusing on territorial change we are by
no means going to be exclusively concerned with military and political history.
Second, characteristics of the state, such as its internal stability and wealth of
ruling elites, are themselves important variables explaining many other aspects of
history, for example, the development of arts, philosophy, and science.

1.2.2 A Focus on Agrarian Polities

There are many kinds of polities, ranging from bands of hunter-gatherers to the
modern postindustrial states. A focus on particular socioeconomic formation is
necessary if we are to make progress. The disadvantages of industrial and postin-
dustrial polities are that the pace of change has become quite rapid and the
societies have become very complex (measured, for example, by the number of
different professions). Additionally, we are too close to these societies, making
it harder for us to study them objectively. The main disadvantage of studying
hunter-gatherer societies, on the other hand, is that we have to rely primarily
on archaeological data. Agrarian societies appear to suffer the least from these
two disadvantages: throughout most of their history they changed at a reasonably
slow pace, and we have good historical records for many of them. In fact, more
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than 95% of recorded history is the history of agrarian societies. As an additional
narrowing of the focus for this book, I will say little about nomadic pastoralist
societies and leave out of consideration thalassocratic city-states (however, both
kinds of polities are very important, and will be dealt with elsewhere).

This leaves us still with a huge portion of human history, roughly extending
from —4000 to 1800 or 1900 c.E.,! depending on the region. One region to which
I will pay much attention is Europe during the period 500-1900 c.E., with oc-
casional excursions to China. But the theory is meant to apply to all agrarian
polities, and the aim is to test it eventually in other regions of the world.

1.2.3 The Hierarchical Modeling Approach

There is a heuristic “rule of thumb” in modeling dynamical systems: do not at-
tempt to encompass in your model more than two hierarchical levels. A model
that violates this rule is the one that attempts to model the dynamics of both in-
teracting subsystems within the system and interactions of subsubsystems within
each subsystem. Using an individual-based simulation to model interstate dynam-
ics also violates this rule (unless, perhaps, we model simple chiefdoms). From
the practical point of view, even powerful computers take a long time to simulate
systems with millions of agents. More importantly, from the conceptual point of
view it is very difficult to interpret the results of such a multilevel simulation.
Practice shows that questions involving multilevel systems should be approached
by separating the issues relevant to each level, or rather pair of levels (the lower
level provides mechanisms, one level up is where we observe patterns).

Accordingly, in the research program described in this book I consider three
classes of models. In the first class, individuals (or, perhaps, individual house-
holds) interact together to determine group dynamics. The goal of these models
is to understand how patterns at the group level arise from individual based mech-
anisms. In the second class, we build on group-level mechanisms to understand
the patterns arising at the polity level. Finally, the third class of models addresses
how polities interact at the interstate level. The greatest emphasis will be on the
second class of models (groups—polity). I realize that this sounds rather abstract
at this point; in particular, what do I mean by “groups”? The discussion of this
important issue is deferred until chapter 3. Also, I do not wish to be too dogmatic
about following the rule of two levels. When we find it too restrictive, we should
break it; the main point is not to do it unless really necessary.

1.2.4 Mathematical Framework

The hard part of theory building is choosing the mechanisms that will be mod-
eled, making assumptions about how different subsystems interact, choosing func-
tional forms, and estimating parameters. Once all that work is done, obtaining
model predictions is conceptually straightforward, although technical, laborious,

!'Negative sign refers to years B.C.E.
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and time consuming. For simpler models, we may have analytical solutions avail-
able (to solve a model analytically means to derive a formula that gives a pre-
cise solution for all parameter values). However, once the model reaches even a
medium level of complexity we typically must use a second method: solving it
numerically on the computer. A third approach is to use agent-based simulations
(Kohler and Gumerman 2000). These ways of obtaining model predictions should
not be considered as strict alternatives. On the contrary, a mature theory employs
all three approaches synergistically.

Agent-based simulation (ABS), for example, is a very powerful tool for investi-
gating emerging properties of a society consisting of individuals who are assumed
to behave in a certain way (by redefining agents to mean groups of individuals
or whole polities, we can also use this approach to address higher-level issues).
Agent-based models are easily expandable, we can add various stochastic factors,
and in general model any conceivable mechanisms. In principle, it is possible
to build a theory by using only agent-based simulations. In practice, however, a
sole emphasis on these kinds of models is a poor approach. One practical limita-
tion is that currently available computing power, while impressive, is not infinite,
putting a limit on how much complexity we can handle in an agent-based sim-
ulation. More importantly, ABSs have conceptual drawbacks. Currently, there is
no unified language for describing ABSs, making each particular model opaque
to everybody except those who are steeped in the particular computer language
the model is implemented in. Small details of implementation may result in big
differences in the predicted dynamics, and only in very rare cases do practitioners
working with different languages bother to cross-translate their ABS (for a rare
exception, see Axelrod 1997). And, finally, the power of ABSs is at the same
time their curse: it is too easy to keep adding components to these models, and
very soon they become too complex to understand.

The more traditional language for modeling dynamical systems, based on
differential (or difference) equations, has several advantages. First, it has been
greatly standardized, so that a model written as a system of differential equations
is much easier to grasp than the computer code describing the same assump-
tions. This, of course, assumes that the person viewing the model has had much
experience with such equations, which unfortunately is not the case with most
social scientists, or even biologists, for that matter. Still, one may hope that the
level of numeracy in nonphysical sciences will increase with time, and perhaps
this book will be of some help here. Second, analytical results are available for
most simple or medium-complexity models. Even if we do not have an explicit
analytical solution (which is the case for most nonlinear models), we can ob-
tain analytical insights about qualitative aspects of long-term dynamics predicted
by these models. Third, numerical methods for solving differential models have
been highly standardized. Thus, other researchers can rather easily check on the
numerical results of the authors. To sum up, differential (difference) equations
provide an extremely useful common language for theory building in dynamical
applications.

Note that I am not arguing against the use of ABSs. In fact, I find the re-
cently proposed agenda for doing social science from the bottom up by growing
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artifical societies (Epstein and Axtell 1996) extremely exciting (for an excellent
volume illustrating the strength of this approach when applied to real problems in
the social sciences, see Kohler and Gumerman 2000). Rather, I suggest that the
ABS should always be supplemented by other approaches, which may lack the
power of ABSs, but are better at extracting, and communicating, the important
insights from the chaos of reality. The best approach to building theory is the one
that utilizes all the available tools: from pencil-and-paper analysis of models to
numerical solutions to agent-based simulations.

1.3 SUMMARY

To summarize the discussion in this introductory chapter, here is my proposal for
a research program for theory building in historical dynamics.

® Define the problem to be addressed: the territorial dynamics of agrarian poli-
ties. The main questions are, why do some polities at certain times expand?
And why do they, at other times, contract, or even completely disappear?
More luridly, what are the causal mechanisms underlying the rise and demise
of empires?

¢ Identify the primary data set: the spatiotemporal record of territorial dynam-
ics within a certain part of the world and a certain period of time. The data
set serves as the testing bed for various mechanistic theories. The success
of each theory is measured by how well its predictions match quantitative
patterns in the primary data.

® Identify a set of hypotheses, each proposing a specific mechanism, or a
combination of mechanisms, to explain territorial expansion/contraction of
polities. Many of these hypotheses have already been proposed, others may
need to be constructed de novo. The list of hypotheses does not have to
be exhaustive, but it should include several that appear most likely, given
the present state of knowledge. Hypotheses also do not need to be mutually
exclusive.

® Translate all hypotheses in the list into mathematical models. Typically, a
single hypothesis will be translated into a spectrum of models, using alter-
native assumptions about functional forms and parameter values.

® Identify secondary data. These are the data that we need for each specific hy-
pothesis and its associated spectrum of models. For example, if a hypothesis
postulates a connection between population growth and state collapse, then
we need data on population dynamics. Secondary data provide the basis for
auxiliary tests of hypotheses (in addition to tests based on the primary data).
Thus, predictions from a hypothesis based on population dynamics should
match the observed patterns in the population data. On the other hand, a
hypothesis based on legitimacy dynamics does not need to predict popula-
tion data also; instead, its predictions should match temporal fluctuations of
legitimacy.



8

CHAPTER 1

* Solve the models using appropriate technology (that is, analytical, numerical,

and simulation methods). Select those features of the models’ output where
there is a disagreement among hypotheses/models, and use the primary data
set to determine which hypothesis predicts this aspect better than others.
Take into account the ability of each hypothesis to predict the appropriate
secondary data, how parsimonious is the model into which the hypothesis
is translated, and any degree of circularity involved (for example, when the
same data are used for both parameter estimation and model testing). Make
a tentative selection in favor of the model (or models) that predicts various
features of the data best with the least number of free parameters.

Repeat the process, by involving other hypotheses and by locating more data
that can be used to test various models.

Clearly this is a highly idealized course of action, which sounds almost naive in

its positivistic outlook. In practice, it is unlikely that it will work just as described
above. Nevertheless, there is a value in setting the goal high. The rest of the book
presents a deliberate attempt to follow this research program. As we shall see,
reality will intrude in a number of sobering ways. Yet I also think that the results,
while failing to achieve the lofty goals set out above, prove to be instructive. But
this is for the readers to judge.



Chapter Two

Geopolitics

Geopolitics, in the narrow sense that I use in this book, concerns itself with the
spatial aspects of historical dynamics. There are two major kinds of mechanisms
invoked in geopolitical models: the ability to project power at distance, and the
effect of spatial position. Thus, geopolitics is a natural place to start in my review
of theories for territorial dynamics of states. Additionally, it is one of the best-
theorized areas in historical sociology (for example, Collins 1978, 1986, 1995),
and perhaps enjoys the greatest number of already existing formal models (see
below). However, my argument in this chapter indicates that geopolitical models
(in the narrow sense) are insufficient for the explanation of empirical patterns; in
particular, they fail to account for a sustained decline of formerly powerful and
territorially extensive polities.

2.1 A PRIMER OF DYNAMICS

Rather than starting immediately with geopolitical models, I first review some
basic facts about general kinds of behaviors that can be exhibited by dynamical
systems. Although these facts are fairly elementary, they are worth discussing,
because (1) they may not be well known to people lacking extensive experience
with dynamic models, and (2) it gives me a chance to introduce a simple clas-
sification scheme, to which I can then refer throughout the book. An excellent
introduction to dynamical social systems can be found in Fararo (1989).

2.1.1 Boundless Growth

The simplest possible dynamics is linear growth, obeying the differential equation
X=c 2.1

Here X is the variable that is changing, X is the rate of change of X (often written
as dX/dt), and c is a constant. A familiar application of this model is Newton’s
first law, in which X is the position of a body and ¢ a constant velocity. (The
first law states that, in the absence of any forces acting on the body, it will move
with constant velocity.) The solution of this equation is X(f) = X, + ct, where ¢
is time and X, is the initial position of the body, X(0) = X;. The solution says
that X will change linearly with time (Figure 2.1a), and that the rate of change
is c. Thus, 1 refer to this kind of dynamics as linear growth (or decline, if c is
negative).
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(a) (b)

X(t)
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X(t)

(e) (f)

X(t)

t t

Figure 2.1 Qualitative types of dynamics: (a) linear, (b) exponential, (c) asymptotic,
(d) logistic, (e) boom and bust, and (f) sustained oscillations.

Another simple model of growth obeys the following differential equation:

X=rX (2.2)
This is the exponential growth model. The parameter r is another constant, called
the relative rate of change (because the total rate of change is the product of
the relative rate r and X). Because the rate of change of X is assumed to be
proportional to X itself, this type of growth is sometimes called autocatalytic:
the more X there is, the faster it grows. The exponential equation provides the
simplest model for the growth of biological populations and can be thought of as
the first law of population dynamics (Turchin 2003). The autocatalytic part arises
because the more animals there are in the population, the faster the population

grows (since each animal can reproduce). The solution of the exponential model
is a curve bending up (Figure 2.1b).
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The linear and exponential models are examples of boundless growth. Such
models often provide good starting points for modeling dynamical systems, be-
cause they make minimal assumptions about the system. In other words, they are
null models, and that is why the first laws of mechanics and population dynamics
belong to this class. But boundless growth models, by themselves, are not good
models for the overwhelming majority of dynamic phenomena, because few real-
life systems exhibit limitless growth. We need to add other mechanisms to the
right-hand side of equations.

2.1.2 Equilibrial Dynamics

Few real-life processes grow without bound. Usually, there are some
mechanisms—generally called negative feedbacks—that act to impose upper and
lower limits on growth. One of the most important characteristics of a negative
feedback mechanism is the lag time with which it operates. Some feedback
mechanisms operate on a time scale that is much faster than the time scale at
which the modeled variable X changes. In such cases we usually neglect the
lag and assume that the feedback is instantaneous. A simple model that adds an
instantaneous negative feedback to the linear growth is

X=c—dX (2.3)

Here two processes affect the dynamics of X. One force increases X at a con-
stant rate ¢, but there is also a counteracting force, whose strength increases
proportionately to X. At some point (specifically, when X reaches X* = c/d), the
strengths of the positive push and negative pull balance each other, and X stops
growing. The point X* where the rate of change of X is zero is called an equilib-
rium. Equilibria can be stable or unstable. For this model, the equilibrium X* is
stable, because when X is below the equilibrium, the positive push overwhelms
the negative pull; and vice versa, if X somehow gets above X*, then the negative
pull will overwhelm the positive push, and return X back to the equilibrium. A
typical trajectory for X predicted by equation (2.3) is initially linear (at low X)
and then slows asymptotically as X approaches equilibrium (Figure 2.1c). I will
refer to such dynamics as linear-asymptotic or asymptotic growth, for short.

Adding a negative feedback to the model of exponential growth is also simple.
In this case, let us assume that the relative growth rate r is a linear function of
X: r(X) =ry—gX. This leads to the logistic equation

X=r(X)X =(r,—gX)X (2.4)

Logistic growth is illustrated in Figure 2.1d.

Both asymptotic and logistic dynamics belong to the class of single-
dimensional or first-order differential models. The general form of first-order
models is X = f(X), where f(X) is some arbitrary function of X. For example,
in the logistic model, f(X) = (r, —gX)X is a quadratic function of X. These
models are called first order (or one dimensional) because there is only one
structural variable, X. (In mathematical applications structural variables are
called state variables, because they describe the state of the system. The use
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of this standard terminology in dynamical systems, however, would create
unnecessary confusion because the main subject of this book is states in the
meaning of polities.)

In addition to the kinds of dynamics illustrated by the asymptotic and logis-
tic models, in which the system is always attracted to a unique stable equilib-
rium, single-dimensional models can also have a more complex behavior, called
metastable dynamics. For example, if f(X) is a cubic polynomial, so that the
model is

X=a(X-b)(c-X)X (2.5)

(a, b, and c are positive constants), then there are three equilibria: two stable
ones (a low and a high equilibrium), and one unstable in the middle. If X is
initially below the unstable equilibrium, the trajectory will be attracted to the
low equilibrium. Alternatively, if X starts above the unstable point, the trajectory
is attracted to the high equilibrium. One social science application of such an
equation is in modeling “tipping” behaviors (see Chapter 6).

One very important fact that we need to know for later is that first-order dif-
ferential models are incapable of oscillatory dynamics. They cannot even exhibit
a single (rise-and-fall) oscillation. Fast negative feedbacks, operating without an
appreciable lag, cannot cause a dynamical system to oscillate. They can only
cause it to return asymptotically to an equilibrium, if a stable equilibrium exists
(if it does not, then the system will run away to o). In order for oscillations
to arise, a negative feedback must operate with a delay. We model such slow
feedbacks either explicitly, by adding other structural variables to the differential
equation model, or implicitly by using discrete-time (difference) models.

2.1.3 Boom/Bust Dynamics and Sustained Oscillations

In order to model rise/fall dynamics of X with differential equations, we need
to identify another structural variable, call it Y, which is affected by X and, in
turn, itself affects X. Thus, X is affected by a negative feedback loop that is
mediated by Y. Consider the following simple biological model of a population
of consumers living on a nonrenewable resource:

X =caXY —-dX
Y =—aXyY (2.6)

where X is the number of consumers at time ¢ and Y is the current amount of
resources. Looking first at the Y equation, we see the term —aXY representing
the rate of consumption (the minus sign indicates that consumption reduces the
amount of resources present). Consumption is assumed to be proportional to the
product of X and Y, for the following reasons. First, more consumers deplete
resources faster. Second, when resources are plentiful, each individual consumer
depletes resources faster than when resources are scarce. Turning to the X equa-
tion, I assumed that consumers increase in proportion to the amount of resource
consumed, with ¢ being the constant of proportionality (this is the term caX¥Y).



GEQPOLITICS 13

Additionally, consumers die off at a rate proportional to X (the proportionality
constant d is known as the relative or per capita death rate).

The dynamics of this model are illustrated in Figure 2.1e. Assuming plentiful
initial resources, consumers will first increase because their “birth rate” (caXY)
will exceed the “death rate” (dX). Meanwhile, resources are depleted, and at
an increasingly faster rate, because consumers are becoming more and more nu-
merous. Eventually, resources fall beyond the point where consumer birth rate
exceeds death rate, and the consumers start declining. Since consumers are still
depleting resources, even during the decline phase, there is no end to the collapse:
X will keep decreasing to 0. The boom is inevitably followed by the bust.

It is very easy to modify Model (2.6) to cause it to go through repeated
boom/bust cycles. For example, we can add the assumption that the resource
is renewable, and grows exponentially in the absence of consumers. Adding the
exponential growth term bY to the second equation, we have

X =caXY—-dX
Y =—aXY +bY (2.7)

This is the famous Lotka-Volterra model of predator-prey cycles (a typical trajec-
tory of X is shown in Figure 2.1f).

Second- and higher-order differential models (models with two or more
structural variables) are capable of very diverse kinds of dynamic behaviors.
They can have a stable equilibrium, approached either monotonically (as in
one-dimensional models) or in an oscillatory fashion. They can exhibit stable
cycles, characterized by a certain period and amplitude. Models with three or
more structural variables can oscillate chaotically (predicting irregular-looking
dynamics) or quasiperiodically (two or more cycle periods superimposed on
each other). There are many kinds of fascinating mathematical phenomena,
but we do not need to be concerned with them in the investigation of social
dynamics, at least not for a long time yet. The important general class of
dynamics for our purposes is second-order oscillations. Whether they are limit
cycles, quasiperiodicity, or chaos is not critical at the current state of the art.
The important feature, which distinguishes them from first-order dynamics, is
sustained periods of increase followed by sustained periods of decline.

One further important result from nonlinear dynamic theory is that there is
a close relationship between the time scales at which negative feedback loops
operate (how fast they are) and the time scale of the dynamics (for example,
the average period of oscillations). In differential equation models such as (2.7),
the speed with which negative feedback acts is explicitly related to parameter
values of the model, typically those whose units are [time] or [time]~'. In the
Lotka-Volterra model, there are two parameters whose units are [time]~!: d and
b. The parameter d measures how fast the numbers of consumers would (expo-
nentially) decline in the absence of resource; b, analogously, measures how fast
resources would (exponentially) increase in the absence of consumers. These two
parameters determine the periodicity with which the consumer-resource system
oscillates. In fact, the period is inversely related to the geometric mean of b and
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d (for the mathematically inquisitive: the period of oscillations near the neutrally
stable equilibrium is 27 /+/bd). Thus, the faster consumer and resource popula-
tions change in time, the shorter is the oscillation period. In models more complex
than the Lotka-Volterra model the formula for the period is more complicated,
but the qualitative insight carries over: faster feedbacks cause faster oscillations
(and if feedbacks are too fast, then we cannot even obtain oscillations, because
dynamics tend to be stabilized by very fast feedback mechanisms).

2.1.4 Implications for Historical Dynamics

Our discussion of dynamics, so far, has focused exclusively on endogenous fac-
tors—variables that participate in dynamic feedbacks. In a purely endogenous
system any fluctuations are solely a result of the interaction of endogenous vari-
ables; such systems are “closed” with respect to influences from outside. His-
torical social systems, by contrast, should always be affected by outside forces:
climate fluctuations causing crop failure, sudden appearance of new epidemics,
hostile invasions, spread of new religions, and so on. Factors that influence a
dynamical system, but are not themselves influenced by its variables, are called
exogenous. The distinction between endogenous and exogenous factors is not
sharp, and usually depends on the questions we choose. For example, if we are
focused on the internal dynamics of a single polity, then we will model invasion
by other polities as an exogenous factor. But if we decide to expand the model
to cover the dynamics of the whole system of interacting states, or the world-
system (Wallerstein 1974; Chase-Dunn and Hall 1997), then invasion occurrence
is endogenized.

The open property of historical social systems presents no problem to the
dynamical systems approach. The most natural way to model such influences is
to add an exogenous structural variable to the system of equations. For example,
if we already have endogenous variables X and Y, and add an exogenous variable
Z, then the equations look something like

X=f(X,Y,2)
Y=g(X,Y,Z)
Z=h()

where f, g, and h, are some functions. That is, the rate of change of X and ¥
depends on all three variables in the system, while the rate of change of Z is
given by some time-dependent function. There are two general ways to model Z:
(1) as a stochastic variable or (2) as a deterministic trend. Which approach we
choose depends on the nature of the exogenous variable, and the questions we
wish to ask.

In Sections 2.1.1-2.1.3 I identified three fundamental types of dynamics char-
acterizing purely endogenous systems. The simplest type encompasses systems
that are not affected by negative feedbacks. I will call such dynamics zero order.
Next, there are systems that are affected only by feedbacks acting very rapidly,
which I will call first-order dynamics. Finally, there are systems that incorporate
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multiple endogenous variables, leading to negative feedback loops acting with a
time delay. These are second-order systems.

Allowing exogenous variables leads to a natural generalization of this order
typology as follows. Zero-order systems are characterized by this general model:

X =f(Z(r)) (2.8)

In effect, X itself is the exogenous variable. Examples of such systems are vari-
ous kinds of random walks (biased or otherwise), stochastic exponential increase
or decline models, and so on. Such systems typically do not have an equilibrium
density around which they fluctuate (unless we construct the function f in a very
special way, to force such an “equilibrium” exogenously). Zero-order systems are
not terribly interesting from the dynamical point of view, because any systematic
dynamical patterns found in them are entirely due to the action of exogenous
variables. The power of the dynamical systems approach would be largely mis-
spent in applying it to such systems. However, zero-order dynamics provide a
natural null model, against which other more complex alternatives can be tested.
First-order systems are governed by models of the form

X=f(X,Z(t) (2.9)

where Z is an exogenous variable and does not depend on X. If Z is a stochastic
variable, and f includes a negative feedback, then the dynamics are characterized
by a stochastic equilibrium. X fluctuates in the vicinity of the stable equilibrium,
and if X becomes too high or too low, endogenous dynamics push it back to the
equilibrial level of fluctuations (in other words, the dynamic process is charac-
terized by a return tendency). No cycles or any other kinds of complex dynamic
behaviors occur in first-order systems, unless they are exogenously imposed (for
example, Z oscillates periodically).
Second-order systems are governed by models like

X=f(X,Y,Z(1)
Y=g(X,Y,Z(1))

where Z is again an exogenous variable. More than two endogenous variables
can be involved. Second-order systems are capable of all kinds of complex dy-
namics: stable equilibria, limit cycles, quasiperiodicity, chaos, multiple coexisting
attractors, etc. Adding stochasticity expands the spectrum of possible behaviors
even further. However, for the purposes of this book, I will call all such behaviors
second-order oscillations. Perhaps the time will come when we have methods and
data good enough for distinguishing between limit cycles and chaos in historical
systems, but this time is not here yet. The fundamental importance of distinguish-
ing between the three kinds of dynamics is that in zero-order systems all dynamics
are driven exogenously, while in the first- and second-order ones some proportion
of the variance in fluctuations is explained by the action of endogenous variables.
Furthermore, different social mechanisms can often be classified as either fast or
slow feedbacks, leading, correspondingly, to either first- or second-order dynam-
ics. Detecting and characterizing such oscillation-inducing feedbacks is a major
goal of the proposed research program in historical dynamics.
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2.2 THE COLLINS THEORY OF GEOPOLITICS

One of the most powerful formulations of the geopolitical theory is found in the
work of Randall Collins (1978, 1986, 1995); see Rozov (1997). Because Collins
states his geopolitical principles clearly and succinctly, this verbal theory can
be relatively easily translated into mathematical models. Furthermore, Collins
and co-workers have also advanced formal geopolitical models, formulated as
computer simulations (Hanneman et al. 1995). My plan in this section is to review
the postulates advanced by Collins, and translate them into simple differential
models. I will also do the same for the simulation model of Hanneman et al.
(1995), thus bringing these developments to a common denominator. Another
interesting model that is relevant to the issues at hand is the spatial simulation by
Artzrouni and Komlos (1996).

2.2.1 Modeling Size and Distance Effects

As is natural, Collins’ thinking has evolved over the last two decades, so the ma-
terial below is based on his 1995 article, specifically on his Figure 1 there, which
I redraw here as Figure 2.2. The main variable of interest is the state’s territory
size, or area. Temporal change in this variable occurs as a result of war success.
The positive arrow from “war success” to “territory size” indicates that when
the state is successful in war, it gains territory, while war failure implies territory
loss. Territory size also positively affects “geopolitical resources” (more taxes and

Marchland
position
P

Logistical
loads ]
L +

Geopolitical
resources

= I\
War

< success
w

Figure 2.2 Feedback structure of the Collins geopolitical model. (After Collins 1995:
Figure 1)
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recruits for the army), which in turn positively affects war success. Increased ter-
ritory size also means increased “logistical loads.” The further that military power
is projected from the home base, the higher the costs (Collins 1995:1558). Addi-
tionally, more state resources are tied up in policing the populace and extracting
the resources. This connection between the state’s size and logistical loads is of-
ten referred to as the “imperial overstretch” principle (Kennedy 1987). Increased
logistic loads, in turn, have a negative effect on war success. Finally, “marchland
position” favors war success, because states with enemies on fewer fronts expand
at the expense of states surrounded by enemies (Collins 1995:1555). However,
state expansion reduces the marchland advantage, as the state expands away from
its initially more protected position.

We now translate this theory into formal models, starting with the loop in-
volving geopolitical resources, and then adding the effect of logistical loads.
Marchland position requires a spatially explicit approach and will be tackled in
the next section. In developing the following models, I will make two general
assumptions. First, and most importantly, I will assume that various feedbacks
act rapidly with respect to territorial dynamics. Thus, I can use ordinary differen-
tial equations as the mathematical framework. Second, to make the model more
concrete I will assume simple functional forms, usually linear ones. The effect of
these assumptions on the results will be discussed below.

In the first model, there are three variables: territory size, or area A, geopoliti-
cal resources R, and war success W. I will assume that the rate of change of A
is linearly related to war success: A= ¢, W, where ¢, is a proportionality con-
stant, translating war victory into square kilometers of territory gained. Resources
should be roughly proportional to the area (in the simplest case, if population den-
sity is approximately constant, increased area implies greater population base to
pay taxes and provide recruits). Thus, R = ¢, A. Finally, the relationship between
resources and war success is a bit more complex. Resources translate into state
power, but in order to gain victory, state power has to be greater than the power
of the adversary. Assuming that the state we study (the focal state) exists in a
homogeneous environment, characterized by a constant military power of rivals,
we have W = ¢;R — ¢,. The constant c; translates resources into power, while c,
is the power of the adversary who must be defeated. The greater is the power
of the focal state, in relation to the adversary power, the more successful it is
in war, and, in consequence, the faster it increases its territory. Putting together
these assumptions, and after some algebraic manipulations, we have the following
model:

A=cA-a (2.10)

where 1 defined ¢ = ¢,c,¢; and a = ¢ c,, to gid rid of unneeded parameter com-
binations.

The dynamics of this linear model are very simple, and depend on the initial
territory of the state (see Figure 2.3a). If the initial A is below the threshold
Ay = a/c, then the rate of change is negative, and A decreases to 0. However, if
A starts above the threshold, then it grows exponentially (that is, at an accelerating
rate) to infinity. In other words, we are dealing here with a zero-order type of
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Territory

Rate of territory change

Figure 2.3 Relationship between the rate of territorial change, A, and territory, A, in the
two simple geopolitical models. (a) Model of territory size effects. (b) Model of territory
size and distance.

dynamics. This is not at all surprising, because all arrows in the loop we modeled
so far have pluses associated with them. In other words, we have just modeled a
positive feedback loop, and obtained an entirely predictable result.

The loop involving logistic loads, on the other hand, involves one minus, and
therefore it is a negative feedback loop. To model the effect of logistic load, let
us follow Collins and assume that imperial overextension results from difficulties
associated with projecting imperial power over distance. In other words, if state
power at the center is Py, then at distance r it is PyL(r), where L(r) is the logistic
distance multiplier, ranging from 1 at r =0 to 0 at r = co. Boulding (1962:245-
247) presents the argument that logistic distance multipliers should decline with
increasing r as a negative exponential function: L(r) = exp[—r/cs], with c5 gov-
erning how rapidly power declines with distance. Since the relationship between
area and radius is A ~ r?, the logistic distance multiplier is L(r) = cxp[—\/z /c;)-
Substituting this relationship in the model, we have

A=cAexp[-VA/h)—a (2.11)

where parameter combinations were again replaced with single parameters. Fig-
ure 2.3b shows that state power, as measured by its ability to expand, is negative
at low A (just as in the pure size model), and initially increases with A. How-
ever, eventually the effect of increased logistic load begins to be felt. At A = 4h?
state power is maximized, and for A > 4A? it begins to decline. There are two
equilibrial points, A, and A,. A,, similarly to A, in the size-only model, is un-
stable: if the initial condition is below A, then the state is eaten by its neigh-
bors. A, is a stable equilibrium: below it, the state’s ability to expand is positive

and A increases; above it, the state expansion rate is negative and A declines
(Figure 2.3b).
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of unit squares, with linear dimensions of about 40 km. At time = 0 (which
was assumed to correspond to 500 c.E.), the simulated space was filled with
equal-sized states, each occupying 5 x 5 squares, and thus with a starting area of
roughly 40,000 km? (see Figure 2.4).

The two variables that affect the power of states in the Artzrouni and Komlos
simulation are the area A (measured as the number of unit squares that make
up a country) and the perimeter C (the number of squares that have a foreign
neighbor). The power is increased by greater A, but decreased by greater C,
because longer boundaries require more resources to defend. Note that this is a
different conceptualization of logistic loads from the one used in the previous
section. The marchland effect was modeled by treating state boundaries along the
sea and mountains differently from those where no natural borders are present.
Artzrouni and Komlos assumed that a sea boundary is easier to defend. Therefore,
in calculating the boundary length, each unit along the sea counted only as a
fraction f of a unit along the land border. In addition, two European mountain
chains, the Pyrenees and the Alps, were assumed to present impregnable natural
barriers, so that unit squares abutting these areas were not counted as part of C.
However, the Pyrenees and the Alps did not completely cut off their respective
peninsulas from the continent (see Figure 2.4).

Artzrouni and Komlos assumed the following specific form for the power func-
tion of state i:

A

F= TG+ Bl @13)
where A; and C; are the area and the perimeter of state i, respectively, and «,
B, and 7y are positive constants. This function, although conceptualized differ-
ently, results in the same general shape of the relationship between the state
size and power as in Model (2.11). As we increase A from 0, P first increases
with A, as a result of the positive feedback associated with increased geopolitical
resources. Eventually, however, the negative feedback associated with increased
logistic loads overpowers the positive one, and for very high A, P declines to 0.

The relative powers of states determine their success in war with neighbors.
Each iteration of the model is made of one bilateral interaction (war). The sim-
ulation model chooses a country at random (call it i) and compares its power to
the powers of all its neighbors. The simulation then determines which neighbor j
differs the most in power from i (the j for which the absolute difference |P, — P;|
is maximized), and the two countries go to war. The more powerful country
wins with probability 1—0.5exp[—K (P,/P; —1)]; otherwise, the weaker country
wins. After the conclusion of war, all boundary squares of the loser contiguous
to the winner are absorbed by the winner. The simulation then performs another
iteration, choosing a country at random, etc. Each iteration corresponds to 1/3
year.

The Artzrouni and Komlos model has five parameters (f, a, B, v, and K). The
investigators used the method of trial and error to find the specific values of these
parameters that would replicate the historically observed dynamic map of Europe
as closely as possible. One particular realization of the simulation is shown in
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Figure 2.4 Territorial dynamics of the European state system as simulated by the model
of Artzrouni and Komlos (1996). Top: initial map at 500 c.E. Bottom: model-predicted
map at 1800 c.e. Thick black lines indicate the location of the Pyrenees and the Alps.
(After Artzrouni and Komlos 1996: Figure 4)
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Figure 2.4: the 234 initial countries at 500 C.E. are reduced to 25 by the end of
the simulation. The outlines of coastal countries (“France,” “Spain,” and “Italy™)
take shape rapidly, while inland countries take longer to solidify. Additionally,
there is much more variability in the final configuration achieved away from the
coasts in different realizations. Thus, the marchland effect has two aspects. First,
countries enjoying it achieve somewhat larger size compared to more centrally
located ones (this can be seen by the large size achieved by “Spain,” “France,”
and “Sweden/Norway” in Figure 2.4). Second, their boundaries reach stability
much faster than the boundaries of inland states.

To summarize, the Artzrouni and Komlos simulation provides a confirmation
of the postulated effect of the marchland advantage. Additionally, the simula-
tion suggests that the boundaries of present states, especially those with long sea
borders (Spain, France, Italy, and Greece), may be determined in a large degree
by geopolitical mechanisms. However, Artzrouni and Komlos are very careful to
stress that simulation parameters must be tuned just right for the simulation to
reach the desired equilibrium. While the circularity involved in parameter cali-
bration weakens the result, we should keep in mind that the simulation is very
parsimonious, having only five free parameters. The sensitivity to one parame-
ter, f, is of particular interest to the question of the marchland effect. If f is
set too low, then the simulations usually yielded just one or two countries with
maritime borders to the west of Europe that swept eastward across the continent.
Their small effective perimeters kept their power high, allowing them eventually
to annex all their neighbors,

Finally, the geopolitical simulation of Artzrouni and Komlos, similarly to an-
alytical models advanced before, generates an essentially first-order behavior.
Large countries conquer smaller and eventually expand until they reach the lim-
its set by imperial overstretch, where their size is stabilized. In other words, the
model does not predict that states reaching too high a size will collapse.

2.2.3 Conflict-legitimacy Dynamics

The geopolitical theory of Collins has three major principles (Collins 1986:168,
1995: Figure 1): (1) territorial resource advantage, (2) marchland advantage, and
(3) overextension as a result of increased logistic loads. Our modeling in previ-
ous sections suggests that these postulates lead to first-order dynamics charac-
terized by initially accelerating territorial growth that eventually reaches a stable
equilibrium. Geopolitical models do not predict the collapse of large powerful
empires (although small states may be destroyed before they manage to grow
above a critical size). Yet, historical empires exhibit a different behavior, be-
cause they always eventually collapse. When a dynamical system exhibits op-
posite trends (growth versus decline) for the same values of variables in the
explanatory set, this means that there is another hidden variable that determines
the direction of change, which we have not yet included in the set. Thus, our
modeling efforts have already paid for themselves: they showed that we need to
look for explanatory mechanisms other than pure geopolitical principles, in order
to understand the rise and collapse of territorial empires. It appears that Collins



24 CHAPTER 2

has also reached the same conclusion, judging by his extensive discussion of
mechanisms of state breakdown in the 1995 paper. Specifically, Collins dis-
cusses two theories: (1) the demographic-structural model (Goldstone 1991b),
and (2) ruler legitimacy as affected by geopolitical power-prestige (Hanneman
et al. 1995). Dynamical systems theory suggests that the key property of the pos-
tulated mechanisms of collapse is the time scale on which they act (the concept
of temporal scale is also discussed by Collins; e.g., Collins 1995: Figure 6). Thus,
our task, which will be largely pursued beyond the confines of this chapter, is
to translate various postulated nongeopolitical mechanisms into models, deter-
mine whether these models are in principle capable of generating second-order
dynamics, and, if so, derive testable predictions from them.

Although the conflict-legitimacy model of Hanneman et al. is not based on a
geopolitical mechanism (in the strict sense), I will review it in this chapter, be-
cause this model is already well developed (and can be quickly summarized) and
is closely connected with the models considered earlier. Actually, Hanneman et
al. develop not one model, but a series of models of increasing complexity. This
is a methodologically sound approach; in fact, I am in complete agreement with
the philosophy of modeling as set out by Hanneman et al. To their excellent rec-
ommendations (see also Hanneman 1988), 1 would add only that more attention
should be paid to a parallel development and consideration of analytical models.

The core of the theory advanced by Hanneman et al. focuses on the interaction
between power-prestige, state legitimacy, and international conflict. Hanneman
et al. assume that the motivation of rulers to initiate external conflict is directly
proportional to the difference between their current legitimacy and the goal of
maximum legitimacy. For any given level of conflict initiated, the degree of suc-
cess is determined by the proportional superiority of the power of the focal state,
relative to that of its rivals. Change in the state prestige is proportional to war
success, and legitimacy follows, with delay, from prestige (Hanneman et al. 1995:
17). Hanneman et al. do not explain why legitimacy should follow war success
with a lag time. Yet, in their model they impose a substantial lag: whereas war
occurs at every time step (they use a discrete-time framework), legitimacy follows
with a lag of three time units. This would suggest that (crudely) on average it
takes victory in three successive wars for the legitimacy of the state to increase
substantially. I would argue, by contrast, that legitimacy operates on a much faster
time scale. War victory is immediately followed by a rush of patriotism that floats
up the fortunes of politicians, and, vice versa, war failure is immediately followed
by disillusionment with the powers that be. If legitimacy were a slow variable,
then there would be much less temptation for politicians to use “a small victorious
war” to bolster their shaky legitimacy.

Hanneman et al. develop three models: (1) the core model that focuses on
war legitimacy dynamics, (2) a more complex version that adds the costs and
benefits of empire, and (3) the full model that further adds imperial capitalism and
the military-industrial complex. Of particular interest to us is the second model
because, for certain parameter values, it appears to predict repeated instances of
imperial growth followed by breakdown. However, it appears that occurrence of
these instances of state collapse depends in a critical way on the assumption of a
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lag time with which legitimacy follows war success. To check whether this is true,
I translated the core of the Hanneman model into a differential equation model.
In the Appendix (see Section A.1) I show that the legitimacy-conflict model is
described by a single-dimensional ordinary differential equation. In other words,
we again end up with a first-order model. This model can have multiple equilibria,
and depending on the initial values of territory size and previous record of war
success, the trajectory will be attracted to one or another of the stable ones. But
the model is incapable of exhibiting boom/bust dynamics or sustained oscillations.
The inescapable conclusion, therefore, is that the interaction between legitimacy,
war success, and territorial expansion cannot generate sustained imperial decline.
Thus, the imperial collapses occurring in the Hanneman model appear to be
entirely due to the assumed delay with which legitimacy follows war success.

2.3 CONCLUSION: GEOPOLITICS AS A FIRST-ORDER PROCESS

I started this chapter by reviewing some elementary facts from nonlinear dynam-
ics for the following reasons. Most social scientists are not closely familiar with
dynamical systems theory, and I wanted to present a nontechnical summary of its
insights most relevant to the issues dealt with in this book. One such particular
insight is that there is a close relationship between the time scales at which neg-
ative feedbacks operate and the nature of the dynamics. If feedback mechanisms
operate much faster than the dynamics of the focal variable, then the system
cannot oscillate or even exhibit a single boom/bust behavior. If we do have an
oscillatory system, then, more quantitatively, the speed with which a feedback
acts determines the temporal pattern of the dynamics (for example, the average
length of an oscillation, or a boom/bust cycle). This means that if a feedback loop
operates on the scale of years, or even worse, weeks, then it is highly unlikely
that it could cause oscillations, whose average period is measured in centuries.
Centuries-long cycles are typically caused by feedbacks operating on the scale of
human generations (decades or longer).

This insight is very relevant to the issue of what mechanisms underlie impe-
rial boom/bust cycles. Empires grow and decline on the time scale of centuries
(Taagepera 1978a, 1978b, 1997; see also Figure 4.4 in Chapter 4). Let us make
a simple analysis of the imperial growth/decline data tabulated in the Appendix
of Taagepera (1997). Taagepera defined the rise phase as the time it takes for a
polity to expand from 20% to 80% of its maximum area (1997: 480). We can
define the decline phase analogously, as the time needed to decline from 80% to
20% of the maximum, and the peak phase as the time from the end of the rise to
the beginning of the decline. Table 2.1 gives the phase durations for the 31 poli-
ties from Taagepera (1997), that had four or more consecutive area observations
(we need these data points to unambiguously define the phases). There is a large
amount of variation in the durations of decline phases for these polities. In about
half of the cases (14) the decline phase was on the order of one human genera-
tion (less than 0.3 centuries). The rest of empires exhibited longer decline phases,
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act on a fast scale. First-order dynamics are equilibrial; examples include
asymptotic and logistic growth processes. First-order dynamics may also be
metastable (more than one stable equilibrium is present). Finally, second-
order dynamics arise in systems in which dynamical feedbacks act with a
lag. Examples of second-order behaviors include a single boom/bust dynamic
and sustained periodic or chaotic oscillations.

The geopolitical theory of Randall Collins postulates three main mechanisms
explaining territorial dynamics of states: geopolitical resources, logistical
loads, and the marchland position.

The mathematical model incorporating only the positive feedback between
territory and geopolitical resources exhibits zero-order dynamics. If the initial
state territory is above a certain threshold, then it grows in an accelerating
fashion. However, if the initial territory is below the threshold, then the state
shrinks and eventually disappears.

Adding to the model the negative feedback of the logistical loads leads to
first-order dynamical behavior, metastability. Again, if the initial territory is
below the threshold, the state loses ground and disappears. However, starting
above the threshold, the territory does not increase without bound, as in the
simpler model, but approaches an upper equilibrium. This equilibrium is
stable with respect to small perturbations.

In order to examine the positional effects I turn to a spatial simulation model
developed by Artzrouni and Komlos. This model suggests that states initially
enjoying marchland advantage (a higher proportion of boundary along a
coastline) grow to larger sizes than inland states. However, the model does
not exhibit any second-order oscillations: the loser states disappear, while
the winners grow to the limits set by logistical factors, where their size is
stabilized.

Finally, I review the simulation model of conflict legitimacy dynamics de-
veloped by Hanneman and co-workers. I show that if we translate this model
into differential equations, then we again obtain a first-order system that is
incapable of second-order oscillations.

An analysis of growth/decline data tabulated by Rein Taagepera suggests
that long periods of imperial decline (more than a century) are frequently
found in the historical record (12 cases out of 31). This finding strongly sug-
gests that at least in some historical cases imperial dynamics were governed
by second-order mechanisms. However, models based on purely geopolitical
mechanisms do not predict such prolonged declines. Thus, we must investi-
gate other mechanisms of imperial collapse.



Chapter Three

Collective Solidarity

3.1 GROUPS IN SOCIOLOGY

3.1.1 Groups as Analytical Units

In the previous chapter I suggested that we cannot understand the territorial dy-
namics of polities without studying their inner workings. This raises an important
question: what are the elementary units in terms of which our theories should be
constructed? The philosophical principle of methodological individualism main-
tains that ultimately sociological theories should be based on the properties of
individuals. I agree with this approach in principle, especially if we stress the key
word ultimately. However, methodological individualism, in my opinion, must be
tempered with two important caveats. First, the idea that individuals are somehow
more “real” than groups does not appear to be tenable. Human individuals cannot
exist apart from a group and remain human (as real-life “Mowglis” attest). Fur-
thermore, human groups are more than simple collections of individuals. Urlike
animal groups, human groups are uniquely able to plan and purposefully carry
out actions (Alexander and Borgia 1978; Melotti 1987).

Second, an attempt to follow the prescription of methodological individualism
in one step does not appear to be a good modeling strategy (Section 1.2.3). Poli-
ties, especially such complex ones as empires, contain multitudes of individuals
differing among themselves in a multitude of ways. Furthermore, an individual
primarily interacts with a small subset of others, rather than directly with ev-
erybody else in the polity. In other words, large human societies consist of a
number of groups, often hierarchically nested within each other. Thus, a much
better modeling strategy would be to break the problem into two (or more) steps.
First, we would like to understand how group dynamics arise from individual
action, and then we can use group properties to model polity dynamics. “There
is a distinctly sociological way of looking at the world. It holds that the key to
understanding social life lies with the analysis of groups, rather than individuals.”
(Hechter 1987:2) An excellent example of such a hierarchical approach that in-
troduces groups as intermediate actors between individuals and social dynamics
is Jack Goldstone’s (1994) analysis of revolutionary action. We also should keep
in mind that eventually it will be necessary to progress to the next level and
consider how polities interact within world-systems.

There are two characteristics that are particularly responsible for making hu-
man groups not just collections of individuals, but agents in their own right: the
tendency to draw social boundaries and the capacity for group-oriented action
even if it is individually costly.
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Humans use many cues to demarcate group membership (Shaw and Wong 1989;
Masters 1998). One of the most important recognition markers is language, espe-
cially dialect, accent, and speech patterns. For example, there is abundant experi-
mental evidence from several societies that people are more disposed to cooperate
with others who have the same dialect as themselves, even when dialectal dif-
ferences are slight (Nettle 1999:57). Phenotypic similarity provides a number of
potential markers: visible resemblance of facial and body form (and even odor);
movement patterns, facial expression, and behavioral stereotypes; clothing and or-
naments; and style and manners (the latter are especially important for signaling
social class). Speech dialect and phenotype provide obvious, instantaneous in-
formation about group membership. Other categories of markers include kinship
(presumed common descent; can be fictitious), religion (shared beliefs, norms,
and rituals), and territory or proximity of residence (Masters 1998:456-457). The
last category can also include shared membership in the same polity (nationalism
or'regnalism”; see Reynolds 1997).

Capacity for Solidaristic Behaviors

A very powerful approach for inferring patterns of collective action from individ-
ual behaviors is the rational choice theory (Coleman 1990). The basic premise
of this theory is that individuals are utility maximizers. The rational choice the-
ory, however, has been unable to solve one very important problem in sociology:
how societies can function without falling apart. An important theory (as formu-
lated, for example, by Thomas Hobbes) maintains that society is based on the
concept of social contract. However, it turns out that if people acted on a purely
rational basis, they would never be able to get together to form society at all
(Collins 1992:9). In fact, this “nonobvious sociological insight” (Collins 1992)
approaches, in my view, the logical status of a theorem. For example, Kraus
(1993) shows how the best developed theories of Hobbesian contractarianism all
founder on the collective action problem, the free-rider predicament (Olson 1965;
for a nontechnical review, see Collins 1992:13-19).

There appears to be only one solution to the puzzle of how societies can hold
together (Collins 1992). Although people pursue their selfish interests most of the
time, they also have feelings of solidarity with at least some other people. Such
precontractual solidarity, in Durkheim’s words, is the basis of societies (Collins
1992). States and armies break apart when people stop thinking of themselves as
members of the group and think only of their own individual self-interest (Collins
1992:23).

Thus, the functioning of society can only be understood as a mixture of self-
centered (rational) and group-centered (“extrarational”) behaviors. In Collins’
(1992:8) view, “the overall structure of society is best understood as a result
of conflicting groups, some of which dominate the others. But conflict and dom-
ination themselves are possible only because groups are integrated at the micro

level.” This statement captures very nicely the essence of the approach that I
develop here.



