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TURNING ON THE LIGHT

The point of view taken in what follows is that the experience
Wiles describes is the essence of mathematics. It is of the utmost
importance for mathematics, for science, and beyond that for
our understanding of human beings, to develop a way of talking
about mathematics that contains the entire mathematical experi-
ence, not just some formalized version of the results of that expe-
rience. It is not possible to do justice to mathematics, or to ex-
plain its importance in human culture, by separating the content
of mathematical theory from the process through which that the-
ory is developed and understood.

D1rrerReENT WAys oF UsING THE MIND

Mathematics has something to teach us, all of us, whether or not
we like mathematics or use it very much. This lesson has to do
with thinking, the way we use our minds to draw conclusions
about the world around us. When most people think about
mathematics they think about the logic of mathematics. They
think that mathematics is characterized by a certain mode of
using the mind, a mode I shall henceforth refer to as “algorith-
mic.” By this I mean a step-by-step, rule-based procedure for
going from old truths to new ones through a process of logical
reasoning. But is this really the only way that we think in mathe-
matics? Is this the way that new mathematical truths are brought
into being? Most people are not aware that there are, in fact,
other ways of using the mind that are at play in mathematics.
After all, where do the new ideas come from? Do they come
from logic or from algorithmic processes? In mathematical re-
search, logic is used in a most complex way, as a constraint on
what is possible, as a goad to creativity, or as a kind of verifica-
tion device, a way of checking whether some conjecture is valid.
Nevertheless, the creativity of mathematics—the turning on of
the light switch—cannot be reduced to its logical structure.
Where does mathematical creativity come from? This book will
point toward a certain kind of situation that produces creative
insights. This situation, which I call “ambiguity,” also provides
a mechanism for acts of creativity. The “ambiguous” could be
contrasted to the “deductive,” yet the two are not mutually ex-
clusive. Strictly speaking, the “logical” should be contrasted to
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INTRODUCTION

the “intuitive.” The ambiguous situation may contain elements
of the logical and the intuitive, but it is not restricted to such
elements. An ambiguous situation may even involve the contra-
dictory, but it would be wrong to say that the ambiguous is nec-
essarily illogical.

Of course, it is not my intention to produce some sort of recipe
for creativity. On the contrary, my argument is precisely that
such a recipe cannot exist. This book directs our attention to-
ward the problematic and the ambiguous because these situa-
tions so often form the contexts that produce creative insights.

Normally, the development of mathematics is reconstructed as
a rational flow from assumptions to conclusions. In this recon-
struction, the problematic is avoided, deleted, or at best mini-
mized. What is radical about the approach in this book is the
assertion that creativity and understanding arise out of the prob-
lematic, out of situations I am calling “ambiguous.” Logic abhors
the ambiguous, the paradoxical, and especially the contradictory,
but the creative mathematician welcomes such problematic situa-
tions because they raise the question, “What is going on here?”
Thus the problematic signals a situation that is worth investigat-
ing. The problematic is a potential source of new mathematics.
How a person responds to the problematic tells you a great deal
about them. Does the problematic pose a challenge or is it a
threat to be avoided? It is the answer to this question, not raw
intelligence, that determines who will become the successful re-
searcher or, for that matter, the successful student.

THE IMPORTANCE OF TALKING ABOUT MATHEMATICS

In preparing to write this introduction, I went back to reread
the introductory remarks in that wonderful and influential
book, The Mathematical Experience. I was struck by the following
paragraph:

I started to talk to other mathematicians about proof,
knowledge, and reality in mathematics and I found that my
situation of confused uncertainty was typical. But I also
found a remarkable thirst for conversation and discussion
about our private experiences and inner beliefs.
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TURNING ON THE LIGHT

I've had the same experience. People want to talk about math-
ematics but they don’t. They don’t know how. Perhaps they
don’t have the language, perhaps there are other reasons. Many
mathematicians usually don’t talk about mathematics because
talking is not their thing—their thing is the “doing” of mathe-
matics. Educators talk about teaching mathematics but rarely
about mathematics itself. Some educators, like scientists, engi-
neers, and many other professionals who use mathematics,
don’t talk about mathematics because they feel that they don’t
possess the expertise that would be required to speak intelli-
gently about mathematics. Thus, there is very little discussion
about mathematics going on. Yet, as I shall argue below, there is
a great need to think about the nature of mathematics.

What is the audience for a book that unifies the content with
the “doing” of mathematics? Is it restricted to a few interested
mathematicians and philosophers of science? This book is writ-
ten in the conviction that what is going on in mathematics is
important to a much larger group of people, in fact to everyone
who is touched one way or another by the “mathematization”
of modern culture. Mathematics is one of the primary ways in
which modern technologically based culture understands itself
and the world around it. One need only point to the digital revo-
lution and the advent of the computer. Not only are these new
technologies reshaping the world, but they are also reshaping
the way in which we understand the world. And all these new
technologies stand on a mathematical foundation.

Of course the “mathematization” of culture has been going on
for thousands of years, at least from the times of the ancient
Greeks. Mathematization involves more than just the practical
uses of arithmetic, geometry, statistics, and so on. It involves
what can only be called a culture, a way of looking at the world.
Mathematics has had a major influence on what is meant by
“truth,” for example, or on the question, “What is thought?”
Mathematics provides a good part of the cultural context for
the worlds of science and technology. Much of that context
lies not only in the explicit mathematics that is used, but also in
the assumptions and worldview that mathematics brings along
with it.

The importance of finding a way of talking about mathematics
that is not obscured by the technical difficulty of the subject is
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INTRODUCTION

perhaps best explained by an analogy with a similar discussion
for physics and biology. Why should nonphysicists know some-
thing about quantum mechanics? The obvious reason is that this
theory stands behind so much modern technology. However,
there is another reason: quantum mechanics contains an implicit
view of reality that is so strange, so at variance with the classical
notions that have molded our intuition, that it forces us to reex-
amine our preconceptions. It forces us to look at the world with
new eyes, so to speak, and that is always important. As we shall
see, the way in which quantum mechanics makes us look at the
world—a phenomenon called “complementarity”—has a great
deal in common with the view of mathematics that is being pro-
posed in these pages.

Similarly, it behooves the educated person to attempt to un-
derstand a little of modern genetics not only because it provides
the basis for the biotechnology that is transforming the world,
but also because it is based on a certain way of looking at human
nature. This could be summarized by the phrase, “You are your
DNA” or, more explicitly, “DNA is nothing less than a blue-
print—or, more accurately, an algorithm or instruction manual—
for building a living, breathing, thinking human being.”* Molec-
ular biology carries with it huge implications for our under-
standing of human nature. To what extent are human beings
biological machines that carry their own genetic blueprints?
It is vital that thoughtful people, scientists and nonscientists
alike, find a way to address the metascientific questions that
are implicit in these new scientific and technological ad-
vances. Otherwise society risks being carried mindlessly along
on the accelerating tide of technological innovations. The ques-
tion about whether a human being is mechanically determined
by their blueprint of DNA has much in common with the
question raised by our approach to mathematics, namely, “Is
mathematical thought algorithmic?” or “Can a computer do
mathematics?”

The same argument that can be made for the necessity to
closely examine the assumptions of physics and molecular biol-
ogy can be made for mathematics. Mathematics has given us the
notion of “proof” and “algorithm.” These abstract ideas have, in
our age, been given a concrete technological embodiment in the
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TURNING ON THE LIGHT

form of the computer and the wave of information technology
that is inundating our society today. These technological devices
are having a significant impact on society at all levels. As in the
case of quantum mechanics or molecular biology, it is not just
the direct impact of information technology that is at issue, but
also the impact of this technological revolution on our concep-
tion of human nature. How are we to think about consciousness,
about creativity, about thought? Are we all biological computers
with the brain as hardware and the “mind” defined to be soft-
ware? Reflecting on the nature of mathematics will have a great
deal to contribute to this crucial discussion.

The three areas of modern science that have been referred to
above all raise questions that are interrelated. These questions
involve, in one way or another, the intellectual models—meta-
phors if you will—that are implicit in the culture of modern sci-
ence. These metaphors are at work today molding human be-
ings’ conceptions of certain fundamental human attributes. It is
important to bring to conscious awareness the metascientific as-
sumptions that are built into these models, so that people can
make a reasonable assessment of these assumptions. Is a ma-
chine, even a sophisticated machine like a computer, a reason-
able model for thinking about human beings? Most intelligent
people hesitate even to consider these questions because they
feel that the barrier of scientific expertise is too high. Thus, the
argument is left to the “experts,” but the fact is that the “experts”
do not often stop to consider such questions for two reasons:
first, they are too busy keeping up with the accelerating rate of
scientific development in their field to consider “philosophical”
questions; second, they are “insiders” to their fields and so have
little inclination to look at their fields from the outside. In order
to have a reasonable discussion about the worldview implicit in
certain scientific disciplines, it would therefore be necessary to
carry a dual perspective; to be inside and outside simultane-
ously. In the case of mathematics, this would involve assuming
a perspective that arises from mathematical practice—from the
actual “doing” of mathematics—as well as looking at mathemat-
ics as a whole as opposed to discussing some specific mathemat-
ical theory.



INTRODUCTION

of, a creative light that I maintain often emerges out of ambigu-
ity, on the other (this is itself an ambiguity!). My job is to demon-
strate how mathematics transcends these two opposing views:
to develop a picture of mathematics that includes the logical and
the ambiguous, that situates itself equally in the development of
vast deductive systems of the most intricate order and in the
birth of the extraordinary leaps of creativity that have changed
the world and our understanding of the world.

This is a book about mathematics, yet it is not your average
mathematics book. Even though the book contains a great deal
of mathematics, it does not systematically develop any particu-
lar mathematical subject. The subject is mathematics as a
whole—its methodology and conclusions, but also its culture.
The book puts forward a new vision of what mathematics is all
about. It concerns itself not only with the culture of mathematics
in its own right, but also with the place of mathematics in the
larger scientific and general culture.

The perspective that is being developed here depends on
finding the right way to think about mathematical rigor, that is,
logical, deductive thought. Why is this way of thinking so attrac-
tive? In our response to reason, we are the true descendents of
the Greek mathematicians and philosophers. For us, as for them,
rational thought stands in contrast to a world that is all too often
beset with chaos, confusion, and superstition. The “dream of
reason” is the dream of order and predictability and, therefore,
of the power to control the natural world. The means through
which we attempt to implement that dream are mathematics,
science, and technology. The desired end is the emergence of
clarity and reason as organizational principles of the entire cos-
mos, a cosmos that of course includes the human mind. People
who subscribe to this view of the world might think that it is the
role of mathematics to eliminate ambiguity, contradiction, and
paradox as impediments to the success of rationality. Such a
view might well equate mathematics with its formal, deductive
structure. This viewpoint is incomplete and simplistic. When ap-
plied to the world in general, it is mistaken and even dangerous.
It is dangerous because it ignores one of the most basic aspects
of human nature—in mathematics or elsewhere—our aesthetic
dimension, our originality and ability to innovate. In this regard
let us take note of what the famous musician, Leonard Bernstein,
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TURNING ON THE LIGHT

had to say: “ambiguity . .. is one of art’s most potent aesthetic
functions. The more ambiguous, the more expressive.”” His
words apply not only to music and art, but surprisingly also to
science and mathematics. In mathematics, we could amend his
remarks by saying, “the more ambiguous, the more potentially
original and creative.”

If one wishes to understand mathematics and plumb its
depths, one must reevaluate one’s position toward the ambigu-
ous (as I shall define it in Chapter 1) and even the paradoxical.
Understanding ambiguity and its role in mathematics will hint
at a new kind of organizational principle for mathematics and
science, a principle that includes classical logic but goes beyond
it. This new principle will be generative—it will allow for the dy-
namic development of mathematics. As opposed to the static na-
ture of logic with its absolute dichotomies, a generative principle
will allow for the existence of mathematical creativity, be it in
research or in individual acts of understanding. Thus “ambigu-
ity” will force a reevaluation of the essence of mathematics.

Why is it important to reconsider mathematics? The reasons
vary from those that are internal to the discipline itself to those
that are external and affect the applications of mathematics to
other fields. The internal reasons include developing a descrip-
tion of mathematics, a philosophy of mathematics if you will,
that is consistent with mathematical practice and is not merely
a set of a priori beliefs. Mathematics is a human activity; this is
a triumph, not a constraint. As such, it is potentially accessible
to just about everyone. Just as most people have the capacity to
enjoy music, everyone has some capacity for mathematics ap-
preciation. Yet most people are fearful and intimidated by math-
ematics. Why is that? Is it the mathematics itself that is so fright-
ening? Or is it rather the way in which mathematics is viewed
that is the problem?

Beyond the valid “internal” reasons to reconsider the nature
of mathematics, even more compelling are the external rea-
sons—the impact that mathematics has, one way or another, on
just about every aspect of the modern world. Since mathematics
is such a central discipline for our entire culture, reevaluating
what mathematics is all about will have many implications for
science and beyond, for example, for our conception of the na-
ture of the human mind itself. Mathematics provided humanity
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INTRODUCTION

with the ideal of reason and, therefore, a certain model of what
thinking is or should be, even what a human being should be.
Thus, we shall see that a close investigation of the history and
practice of mathematics can tell us a great deal about issues that
arise in philosophy, in education, in cognitive science, and in the
sciences in general. Though I shall endeavor to remain within
the boundaries of mathematics, the larger implications of what
is being said will not be ignored.

Mathematics is one of the most profound creations of the
human mind. For thousands of years, the content of mathemati-
cal theories seemed to tell us something profound about the na-
ture of the natural world—something that could not be ex-
pressed in any way other than the mathematical. How many of
the greatest minds in history, from Pythagoras to Galileo to
Gauss to Einstein, have held that “God is a mathematician.” This
attitude reveals a reverence for mathematics that is occasioned
by the sense that nature has a secret code that reveals her hidden
order. The immediate evidence from the natural world may
seem to be chaotic and without any inner regularity, but mathe-
matics reveals that under the surface the world of nature has
an unexpected simplicity—an extraordinary beauty and order.
There is a mystery here that many of the great scientists have
appreciated. How does mathematics, a product of the human
intellect, manage to correspond so precisely to the intricacies of
the natural world? What accounts for the “extraordinary effec-
tiveness of mathematics”?

Beyond the content of mathematics, there is the fact of mathe-
matics. What is mathematics? More than anything else, mathe-
matics is a way of approaching the world that is absolutely
unique. It cannot be reduced to some other subject that is more
elementary in the way that it is claimed that chemistry can be
reduced to physics. Mathematics is irreducible. Other subjects
may use mathematics, may even be expressed in a totally mathe-
matical form, but mathematics has no other subject that stands
in relation to it in the way that it stands in relation to other sub-
jects. Mathematics is a way of knowing—a unique way of know-
ing. When I wrote these words I intended to say “a unique
human way of knowing.” However, it now appears that human
beings share a certain propensity for number with various ani-
mals.® One could make an argument that a tendency to see the
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TURNING ON THE LIGHT

world in a mathematical way is built into our developmental
structure, hard-wired into our brains, perhaps implicit in ele-
ments of the DNA structure of our genes. Thus mathematics is
one of the most basic elements of the natural world.

From its roots in our biology, human beings have developed
mathematics as a vast cultural project that spans the ages and
all civilizations. The nature of mathematics gives us a great deal
of information, both direct and indirect, on what it means to be
human. Considering mathematics in this way means looking not
merely at the content of individual mathematical theories, but at
mathematics as a whole. What does the nature of mathematics,
viewed globally, tell us about human beings, the way they think,
and the nature of the cultures they create? Of course, the latter,
global point of view can only be seen clearly by virtue of the
former. You can only speak about mathematics with reference to
actual mathematical topics. Thus, this book contains a fair
amount of actual mathematical content, some very elementary
and some less so. The reader who finds some topic obscure is
advised to skip it and continue reading. Every effort has been
made to make this account self-contained, yet this is not a math-
ematics textbook—there is no systematic development of any
large area of mathematics. The mathematics that is discussed is
there for two reasons: first, because it is intrinsically interesting,
and second, because it contributes to the discussion of the nature
of mathematics in general. Thus, a subject may be introduced in
one chapter and returned to in subsequent chapters.

It is not always appreciated that the story of mathematics is
also a story about what it means to be human—the story of be-
ings blessed (some might say cursed) with self-consciousness
and, therefore, with the need to understand the natural world
and themselves. Many people feel that such a human perspec-
tive on mathematics would demean it in some way, diminish its
claim to be revealing absolute, objective truth. To anticipate the
discussion in Chapter 8, I shall claim that mathematical truth
exists, but is not to be found in the content of any particular the-
orem or set of theorems. The intuition that mathematics accesses
the truth is correct, but not in the manner that it is usually under-
stood. The truth is to be found more in the fact than in the con-
tent of mathematics. Thus it is consistent, in my view, to talk
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INTRODUCTION

simultaneously about the truth of mathematics and about its
contingency.

The truth of mathematics is to be found in its human dimen-
sion, not by avoiding this dimension. This human story involves
people who find a way to transcend their limitations, about peo-
ple who dare to do what appears to be impossible and is impos-
sible by any reasonable standard. The impossible is rendered
possible through acts of genius—this is the very definition of an
act of genius, and mathematics boasts genius in abundance. In
the aftermath of these acts of genius, what was once considered
impossible is now so simple and obvious that we teach it to chil-
dren in school. In this manner, and in many others, mathematics
is a window on the human condition. As such, it is not reserved
for the initiated, but is accessible to all those who have a fascina-
tion with exploring the common human potential.

We do not have to look very far to see the importance of math-
ematics in practically every aspect of contemporary life. To
begin with, mathematics is the language of much of science. This
statement has a double meaning. The normal meaning is that
the natural world contains patterns or regularities that we call
scientific laws and mathematics is a convenient language in
which to express these laws. This would give mathematics a de-
scriptive and predictive role. And yet, to many, there seems to
be something deeper going on with respect to what has been
called “the unreasonable effectiveness of mathematics in the nat-
ural sciences.”” Certain of the basic constructs of science cannot,
in principle, be separated from their mathematical formulation.
An electron is its mathematical description via the Schrédinger
equation. In this sense, we cannot see any deeper than the math-
ematics. This latter view is close to the one that holds that there
exists a mathematical, Platonic substratum to the real world. We
cannot get closer to reality than mathematics because the mathe-
matical level is the deepest level of the real. It is this deeper level
that has been alluded to by the brilliant thinkers that were men-
tioned above. This deeper level was also what I meant by calling
mathematics irreducible.

Our contemporary civilization has been built upon a mathe-
matical foundation. Computers, the Internet, CDs, and DVDs
are all aspects of a digital revolution that is reshaping the world.
All these technologies involve representing the things we see
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TURNING ON THE LIGHT

arise out of situations of ambiguity. Of course the creative pro-
cess is intimately tied to the birth and the processing of mathe-
matical ideas. Thus thinking about ideas as the fundamental
building blocks of mathematics (as opposed to the logical struc-
ture, for example) pushes us toward a reevaluation of just what
mathematics is all about. This section demonstrates that even
something as problematic as a paradox can be the source of a
productive idea. Furthermore, I go on to claim that some of the
most profound ideas in mathematics arise out of situations that
are characterized not by logical harmony but by a form of ex-
treme conflict. I call the ideas that emerge out of these extreme
situations “great ideas,” and a good deal of the book involves a
discussion of such seminal ideas.

The third section, “The Light and the Eye of the Beholder,”
considers the implications of the point of view that has been
built up in the first two sections. One chapter is devoted to a
discussion of the nature of mathematical truth. Is mathematics
absolutely true in some objective sense? For that matter, what
do we mean by “objectivity” in mathematics? Thinkers of every
age have attested to the mystery that lies at the heart of the rela-
tionship between mathematics and truth. My “ambiguous” ap-
proach leads me to look at this mystery from a perspective that
is a little unusual. Finally, I spend a concluding chapter dis-
cussing the fascinating and essential question of whether the
computer is a reasonable model for the kind of mathematical
activity that I have discussed in the book. Is mathematical
thought algorithmic in nature? Is the mind of the mathematician
a kind of software that is implemented on the hardware that we
call the brain? Or is mathematical activity built on a fundamen-
tal and irreducible human creativity—a creativity that comes
from a deep need that we human beings have to understand—
to create meaning out of our lives and our environment? This
drive for meaning is inevitably accompanied by conflict and
struggle, the very ingredients that we shall find in situations of
ambiguity.
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SECTION 1
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WHAT IS THINKING? If we imagine thinking to be an ordered,
linear, and logical progression, then the rigorous thinking that
one finds in a mathematical proof or a computer program is the
highest form of thinking. Is this the only way to think? More to
the point, is this the way mathematicians think? In this section
I investigate situations that seem to be at the opposite extreme
from logical thought—I look for ambiguities in mathematics.
Strangely enough, I find ambiguity everywhere, and not only
ambiguity but also its close cousins contradiction and paradox.
How strange it is that mathematics, the subject that appears to
be the very paradigm of reason, and for this reason the model
that other disciplines attempt to emulate, contains as an irreduc-
ible factor, the very things that reason ostensibly exists to elimi-
nate from human discourse!

Ambiguity is not only present in mathematics, it is essential.
Ambiguity, which implies the existence of multiple, conflicting
frames of reference, is the environment that gives rise to new
mathematical ideas. The creativity of mathematics does not
come out of algorithmic thought; algorithms are born out of acts
of creativity, and at the heart of a creative insight there is often a
conflict—something problematic that doesn’t follow from one’s
previous understanding. Now one might think that mathemat-
ics is characterized by the clarity and precision of its ideas and,
therefore, that there is only one correct way to understand a
given mathematical situation or concept. On the contrary, I
maintain that what characterizes important ideas is precisely
that they can be understood in multiple ways; this is the way to
measure the richness of the idea.

Ambiguity is the central theme of this book. From beginning
to end it is the single thread that unites the disparate subjects
that are discussed. We each probably feel that we understand
and are familiar with ambiguity. However, in our exploration
of ambiguity in mathematics we may find that there is more to
ambiguity than meets the eye. Ambiguity is very rich, and so
each new aspect of ambiguity we encounter will teach us some-
thing not only about mathematics but also about the nature of
ambiguity itself—at least about the way in which ambiguity is
being used in this book. Since the whole book is, in a sense, a
development of the meaning of “ambiguity in mathematics,” I
ask the reader not to prematurely close accounts with ambiguity.
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CHAPTER 1

and I never have been. I'm interested in understanding, which is
quite a different thing.”* Now, understanding is a difficult thing
to talk about. For one thing, it contains a subjective element,
whereas drawing logical inferences appears to be an objective
task that even sophisticated machines might be capable of mak-
ing. Nevertheless, if one wants to come close to plumbing the
depths of mathematical practice, it will be necessary to begin by
seeing beyond the formalist approach of equating mathematics
with the trinity of definition-theorem-proof.

Logic is indispensable to mathematics. For one thing, logic
stabilizes the world of mathematical results so that it presents
itself to our minds in the conventional manner—as a body of
permanent and absolute truths. However, logic is not the es-
sence of mathematics nor can mathematics be reduced to logic.
Mathematics transcends logic. Mathematics is one of the most
profound areas of human creativity. Yet the statement that math-
ematics goes beyond logic needs to be supported. To do this, a
number of characteristics of mathematics will be introduced that
are clearly not derived from logic. These include a certain form
of mathematical ambiguity as well as the related notions of con-
tradiction and paradox.

“Ambiguity” is a central notion, so I shall spend a fair amount
of time in explaining what I mean by ambiguity in mathematics.
By ranging over a whole host of examples from mathematics
and a few from other fields, I hope to show that ambiguity, as I
use the term, is a phenomenon which is central to mathematical
theory and practice. Ambiguity will give us a way to approach
such questions as “What is the relationship between logic and
mathematics?” “What is the nature of creativity in mathemat-
ics?” “What is meant by understanding in mathematics and
what is its relationship to creativity?” Even the old chestnuts, “Is
mathematics invented or discovered?” or “What accounts for
the "unreasonable effectiveness” of mathematics in the physical
sciences?” Ambiguity will transform the mathematical land-
scape from the static to one that is dynamic and characterized
by the play of ideas.

What I am attempting to develop is nothing less than a para-
digm shift in our understanding of the nature of the mathemati-
cal enterprise. Once we begin to look at matters in this new “am-
biguous” manner, many things suddenly appear in a new light.
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AMBIGUITY IN MATHEMATICS

These certainly include mathematical practice and the teaching
and learning of mathematics. But this manner of looking at
things has implications for how we view the scientific enterprise
as a whole. These implications extend to the most fundamental
of questions, such as “What is (mathematical) truth?” and “What
is knowledge?”

With these heady reflections in the back of our minds, I
now proceed to take up the basic notion of the meaning of ambi-
guity (for this book) and proceed to demonstrate its role in
mathematics.

WuAT Do I MEAN BY AMBIGUITY?

In this book, ambiguity is a key idea whose implications will
take some time and effort to flesh out. For me the most elemen-
tary mathematical object, like the equation “1 + 1 = 2,” for exam-
ple, is ambiguous. What do I mean by this? I certainly do not
mean that the statement “1 + 1 = 2” is unclear or incorrect. Peo-
ple often take ambiguity to be synonymous with vagueness or
with incomprehensibility. Though this is a possible meaning, it
is not the sense in which I shall use the term. What I am trying to
accomplish by using the word ambiguous is to point to a certain
metaphoric quality that is inherent in even quite simple mathe-
matical situations. When we encounter “1 + 1 = 2,” our first reac-
tion is that the statement is clear and precise. We feel that we
understand it completely and that there is nothing further to be
said. But is that really true? The numbers “one” and “two” are
in fact extremely deep and important ideas, as will be discussed
in Chapter 5. They are basic to science and religion, to percep-
tion and cognition. “One” represents unity; “two” represents
duality. What could be more fundamental? The equation also
contains an equal sign. Again, in Chapter 5, I discuss various
ways in which “equality” can be understood in mathematics.
Equality is another very basic idea whose meaning only grows
the more you think about it. Then we have the equation itself,
which states that the fundamental concepts of unity and duality
have a relationship with one another that we represent by
“equality”—that there is unity in duality and duality in unity.
This deeper structure that is implicit in the equation is typical
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CHAPTER 1

of a situation of ambiguity. Thus even the most elementary
mathematical expressions have a profundity that may not be ap-
parent on the surface level. This profundity is directly related to
what I am calling ambiguity.

The word “ambiguity” is actually being used for two main
reasons. The first is that the ambiguous is commonly looked at
as something to be contrasted with the logical. The second
comes from one of the Oxford English Dictionary definitions of
“ambiguity”—"admitting more than one interpretation or ex-
planation: having a double meaning or reference.” This notion
of “double meaning” comes from the prefix “ambi,” as can be
seen in such words as “ambidextrous” or “ambivalent.” How-
ever, the definition that I now put forward comes from a defini-
tion of creativity that was proposed by the writer Arthur Koest-
ler.* He said that creativity arises in a situation where “a single
situation or idea is perceived in two self-consistent but mutually
incompatible frames of reference.” I shall take the above to be
the definition of ambiguity. To repeat:

Ambiguity involves a single situation or idea that is perceived in
two self-consistent but mutually incompatible frames of reference.

I hasten to add that putting such a precise definition at the
beginning of Chapter 1 involves the risk that the reader will as-
sume that ambiguity is now pinned down once and for all. On
the contrary, ambiguity is one of those concepts, like “one,”
“two,” and “equality,” of which there is always more to say and
learn. I am even tempted to say that “ambiguity” is not really a
concept at all; it is more like a condition or context that produces
concepts. If it is not a normal concept, how then do I go about
describing it? My strategy is to start with the description above
and give it substance by presenting a series of examples each of
which will explore some dimension of ambiguity.

This book is an exploration of ambiguity in mathematics. Un-
fortunately mathematics is usually presented in a linear manner
with the simple preceding the complex and assumptions before
conclusions. I prefer to think both of mathematics and of this
book as explorations. What is the nature of an exploration in
mathematics? In the introduction to his textbook, Transform Lin-
ear Algebra, Frank Uhlig states:
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Linear Algebra is a circular subject. Studying Linear Alge-
bra feels like exploring a city or a country for the first time.
An overwhelming number of concepts, all intertwined and
connected, are present in any first encounter with linear al-
gebra. As with a new city, one has to start discovering
slowly and deliberately. Of great help is that linear algebra
is akin to geometry, and like geometry, many of its insights
have been permanently there within us. We must only ex-
plore, look around, and awake our intuition with the reality
of this mathematical place.’

What a poetic evocation of the spirit of learning and doing math-
ematics! I'm inviting the reader to enter into an exploration of
mathematics in just this spirit. I shall look at mathematics
through the lens of ambiguity. In so doing we shall be simultane-
ously investigating the nature of ambiguity itself. As Uhlig says,
many of the basic insights are already there within us, but to
discern them we shall have to put aside our habitual point of
view and be open to considering a new viewpoint.

SELF-CONSISTENCY, INCOMPATIBILITY, AND CREATIVITY

The definition of ambiguity that I gave above involves a dual-
ity—there must be two frames of reference. Now, duality is a
familiar idea in mathematics. For example, in projective geome-
try it is possible to interchange “points” and “lines” so that
every statement about lines and points has a dual statement
about points and lines. The statement, “Two lines define (meet
at) a point” would have the dual statement, “Two points define
(determine) a line.” This kind of structural duality carries some,
but not all of the meaning that I attribute to ambiguity.
Ambiguity, as the term is being used here, is not mere duality.
The two frames of reference must be mutually incompatible, even
though they are individually self-consistent. Yet, in spite of this
incompatibility, there exists an over-riding unitary situation or
idea. On the one hand, there is the harmony of consistency—
things are in peaceful equilibrium. On the other, there is the dis-
order of incompatibility. Incompatibility is unacceptable in
mathematics! It must be resolved! It is this need to resolve in-

29



CHAPTER 1

compatibility that makes the situation of ambiguity so dynamic,
so potentially creative. There are two perfectly harmonious ways
of looking at the situation, yet they are in opposition to one an-
other. So there is a need to resolve this unacceptable situation in
order to restore equilibrium. The restoration of equilibrium can
only come at a level that is, in a manner of speaking, higher than
either of the original frames of reference. The equilibrium condi-
tion may not yet exist. It may only come into existence as a result
of the need to reconcile the incompatibility of the original situa-
tion. Thus, a situation of ambiguity is a situation with creative
possibilities.

Ambiguity may seem to be complicated, but its essence can
be conveyed very simply. Here is an example of ambiguity. It's
a joke—not very funny but with a mathematical connection—
and it makes the point about the nature of ambiguity.

A mathematician is flying non-stop from Edmonton to
Frankfurt with Air Transat. The scheduled flying time is
nine hours. Some time after taking off, the pilot announces
that one engine had to be turned off due to mechanical fail-
ure: “Don’t worry—we're safe. The only noticeable effect
this will have for us is that our total flying time will be ten
hours instead of nine.” A few hours into the flight, the pilot
informs the passengers that another engine had to be
turned off due to mechanical failure: “But don’t worry—
we're still safe. Only our flying time will go up to twelve
hours.” Some time later, a third engine fails and has to be
turned off. But the pilot reassures the passengers: “Don’t
worry—even with one engine, we're still perfectly safe. It
just means that it will take sixteen hours total for this plane
to arrive in Frankfurt.” The mathematician remarks to his
fellow passengers: “If the last engine breaks down, too, then
we’ll be in the air for twenty-four hours altogether!”

Here you have it—two conflicting frames of reference (one of
them implicit) resulting in tension, and then a creative release,
laughter. Of course in mathematics the release comes with the
birth of a new idea or a new way of looking at the situation but
the dynamics of a humorous situation is very similar. A joke is
an example of ambiguity and creativity—you have to get a joke.
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language uses verbs. Thus the dichotomy between matter and
energy is built into language itself.*

How is the gap between these two to be bridged? The first
and most obvious way would be to regard matter and energy
as complementary. Thus one could regard matter and energy as
indispensable aspects of the natural world and maintain that a
complete description of nature would involve describing both
domains and the laws that govern them. We would go on to de-
scribe the relationship between matter and energy. Thus a mov-
ing body possesses kinetic energy that is proportional to its mass
and the square of its velocity. To look at things in this way would
be to miss the radical insight behind Einstein’s equation. E = mc¢’
says that matter is energy. It says that these two mutually exclu-
sive ways of describing reality are in fact one—that there is one
reality that can be seen as energy when we look at it in one con-
text and as matter when we look at it in another.

Thus, the equation is something that could be called a scien-
tific metaphor. A literary metaphor like Shakespeare’s “all the
world’s a stage, and all the men and women merely players” is
a comparison between two different domains—it is really a kind
of mapping from one of these domains, here ordinary life, to the
other, here the stage. However, a metaphor requires more than
a mere correspondence between different domains. “Getting” a
metaphor requires an insight: it requires looking at the world in
a new way. The power of this particular insight is extraordinary.
Its consequence, the atomic bomb, is itself a metaphor for the
power of the idea. This equation brings out the full implication
of “ambiguity” as the term is being used here. There exist two
frames of reference whose incompatibility generates enormous
power. This power is then harnessed by the single idea that is
represented by the equation E = mc”.

AMBIGUOUS SITUATIONS IN MATHEMATICS

Now let us move on to a more systematic exploration of ambigu-
ity in mathematics. There will be a place for some fairly sophisti-
cated mathematics, but I will begin with a number of elementary
examples, very elementary indeed. The reason for including
these examples is that they are accessible to everyone. Also,
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they are here to make the point that no mathematics is com-
pletely “trivial.” Even elementary arithmetic, algebra, and ge-
ometry, when looked at from a fresh perspective, can manage to
surprise you.

THE EQUATIONS OF ARITHMETIC

Let’s return to the most basic of equations from arithmetic,
something like “2 + 3 = 5.” Where is the ambiguity here? I re-
member the way equations were explained in grade school
through the metaphor of the balance. If you put a two- and a
three-pound weight on one side of a scale and a five-pound
weight on the other, then the two sides will balance. Equality,
we were told, means balance. Now “balance” is a good way to
think of equality, but is it the only way? From the balance meta-
phor we derive the idea that “2 + 3” and “5” are just two differ-
ent ways to describe the same thing—that “2 + 3” and “5” are
essentially identical and that the equality sign represents this
identity. However “=" does not mean identical, as Bodanis
pointed out in the paragraphs I quoted above. Thinking of equa-
tions as merely linking two otherwise identical quantities would
not explain the power of equations to open up unsuspected rela-
tionships between things that were not necessarily connected
a priori.

Where is the creative element in “2 + 3 = 5”2 Where is the
insight, the possibility for an aha! experience? In order to ap-
preciate what is going on, we may have to listen to intelligent
people who are less sophisticated than we are—children, for ex-
ample. Various researchers in mathematics education (e.g.,
Kieren 1981) have pointed out children’s propensity to under-
stand the equality sign in operational terms; that is, “2 + 3 = 5"
is understood as an action “2 added to 3 makes 5.” The sum
“2 + 3" is a process, a verb. Children learn what addition is about
through the process of counting. Yet the right-hand side is an
object, the number 5. What the equation “2 + 3 = 5” is doing is
identifying a process with an object. This is similar to the moral
of the Thurston story above, where the process of division was
seen as a numerical object. To see that a process can be an object
or, looking at it the other way around, that the object can be
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thought of as a process, entails a discontinuous leap—an act of
understanding that is in essence a creative act. We all made this
creative leap so long ago that we don’t remember having done
so. But it was an essential step in our development. And what
was the essence of this act of understanding? It is that process
and object are one ambiguous idea. Thus the ambiguity here is
seeing that the two contexts of process and object are unified by
this one idea that is captured symbolically by the equation “2 +
3 =5.” All the elements of ambiguity are present here: the two
contexts that are in conflict until the conflict is resolved by an
act of understanding. Subsequent to the act of understanding,
what used to be a conflict becomes a flexible viewpoint where
one is free to freely move between the contexts of number as
object and number as process. [ will return to this same ambigu-
ity in a less elementary situation when I come to discuss infinite
decimals.

THE SQUARE Root or Two

To our contemporary way of understanding things the square
root of 2 is no mystery. It is a perfectly well-defined number. In
what way, then, can 2 be called ambiguous? By our definition,
ambiguity required “a single situation or idea”—precisely the
fact that |2 is well defined. But it also required that |2 can be
perceived in two self-consistent contexts which are somehow in
conflict with one another.

This latter requirement can best be understood historically.
In fact |2 has an interesting history. It appears, in Euclidean ge-
ometry, as a consequence of the Theorem of Pythagoras, as the
length of the hypotenuse of a right-angled triangle with sides of
unit length.

Thus, 2 existed for the Greeks as a concrete geometric object.
On the other hand, they were able to prove that this (geometric
number) was not rational, that is, it could not be expressed as
the ratio of two integers, like 2/3 or 127/369. Such nonfractions
came to be called irrational numbers, and the name “irrational”
indicates the kind of emotional reaction that the demonstration
of the existence of nonrational numbers produced.
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Figure 1.1. |2 as a geometric object

There is no question that the demonstration that 2 was not
rational precipitated a crisis.’ I shall return to this crisis in a later
chapter, but for now let’s just say that a whole way of looking
at the world, the philosophy of the secret Pythagorean society,
was brought into question. Today we would say that |2 is an
irrational number, but “an irrational number is no number at all
.. .itis totally man-made,” as Leopold Kronecker said, “and thus
is of dubious significance philosophically.”"’ So is |2 a number
or not? We can all agree that it is a very different kind of number
from the integers and the fractions, the numbers of arithmetic.

William Dunham makes a comment that is relevant here when
he says that the irrationality of |2 is one instance of “a continu-
ous feature of the history of mathematics . . . the prevailing ten-
sion between the geometric and the arithmetic.”" There are two
primordial sources of mathematics: counting, which leads to
arithmetic and algebra, and measuring, which leads to geome-
try. Two self-consistent contexts, if you will. Initially these two
domains were considered to be identical, but the |2 proof
brought an inherent conflict between them out into the open.
Rational numbers have a consistent meaning in both contexts,
but in |2 we have a mathematical object that has a clear meaning
in a geometric context but is problematic when considered as an
arithmetic object, in this case a rational number. A number is a
number is a number, to paraphrase Gertrude Stein, but is a geo-
metric number really a number? At the very least there is a ten-
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sion, an incompatibility, between the geometric and the arithme-
tic. It is this incompatibility that made 2 ambiguous for the
Pythagoreans. This does not mean that it was viewed as vague
or imprecise. The term ambiguity highlights the problematic as-
pects of |2 for the Greeks.

There are two possible reactions to this sort of ambiguous situ-
ation. One can abandon one of the seemingly inconsistent con-
texts or one can build a new context that is general enough to
reconcile the conflict. Both reactions are interesting and can lead
to new mathematics."? The Greeks chose the former and essen-
tially abandoned algebra for geometry. Even so, the irrationality
of /2 was a great blow to those, like the Pythagoreans, whose
entire worldview was based on the rationality (in the sense of
rational numbers or fractions) of the natural world (see Chapter
7). In fact, large portions of Euclidian geometry (the books on
ratio and proportion) had been developed on the assumption
that any two lengths are commensurable. That means that for
any two line segments there is a (smaller) segment that divides
into both segments evenly. This amounts to saying that the ratio
of the lengths of the two segments is rational. Thus all these
proofs (and also, it has been conjectured, the proof of the Pytha-
gorean Theorem itself) that depended on this assumption had to
be redone in a different way. This task was, in fact, accomplished
successfully. In this activity one can see the need to resolve the
incompatibility raised by the ambiguity and therefore the role of
the ambiguity as a generator of mathematical activity.

It might be interesting to take a moment and discuss the the-
ory of ratio and proportion. A ratio is the quotient of two num-
bers. Let’s call them x and y. Today we would say that the ratio
is the quotient, the number x/y. However the Greeks did not
do this—in fact human beings did not do this for the next two
millennia. The problem is in a way the same problem Thurston
had with 134 /29—is the process of division the same as the num-
ber that results from that process? In the case of commensurable
numbers, x = nz and y = mz for some integers m and n, then x/
y can be identified with n/m, but what does the quotient mean
when x and y are incommensurable, like 1 and |2, for example?
How can you call this kind of ratio a number? This was the
major problem that necessitated a complete reworking of the

37



CHAPTER 1
1=.999....

Now what is the meaning of these equations? What is the pre-
cise meaning of the “=" sign? It surely does not mean that the
number 1 is identical to that which is meant by the notation
.999. ... There is a problem here, and the evidence is that, in my
experience, most undergraduate math majors do not believe this
statement. I remember putting this question, “does 1 = .999. . .2
to the students in a class on real analysis. Something about this
expression made them nervous. They were not prepared to say
that .999. .. is equal to 1, but they all agreed that it was “very
close” to 1. How close? Some even said “infinitely close,” but
they were not absolutely sure what they meant by this. These
students may be quite advanced in certain ways, but this state-
ment is still an obstacle! for them. What is the obstacle? In my
opinion it is the ambiguity contained in equating an infinite dec-
imal to an integer.

The notation .999. . . stands for an infinite sum. Thus

9 9 9

99 .= —+ —+ — + ...
10 100 1000

Now an infinite sum is a little more complicated than a finite
sum, and this complexity is revealed by the fact that the notation
is deliberately ambiguous. Thus this notation stands both for the
process of adding this particular infinite sequence of fractions
and for the object, the number that is the result of that process.
As was the case of the equations of arithmetic, the two contexts
(in the above definition of ambiguity) are again those of process
and object. Now the number 1 is clearly a mathematical object,
a number. Thus the equation 1 = .999. . . is confusing because it
seems to say that a process is equal (identical?) to an object. This
appears to be a category error. How can a process, a verb, be
equal to an object, a noun. Verbs and nouns are “incompatible
contexts” and thus the equation is ambiguous. Similarly, all in-
finite decimals are ambiguous. Students have a problem because
they think of .999. . . only as a process. They imagine themselves
actually adding up the series term by term and they “see” that
this process never ends. So at any finite stage the sum is “very
close” but not equal to 1. They don’t see that this infinite process
can be understood as a single number.
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You can even go through a “proof” with them, something like:

Let x =.999. ...
Then 10x = 9.999. .. (shifting the decimal point).
Thus 9x = 10x — x =9.999...-999...=9.
Sox=1.

The reaction is interesting. For the most part, the students will
now agree that 1 is indeed equal to .999. ... That is, they now
accept it but, in my opinion, something of the old perplexity still
remains. They have not resolved the ambiguity. They still do not
“understand” the representation for infinite decimals. Under-
standing requires more than accepting the validity of a certain
argument. It requires a creative act, which is what I mean when
I refer to the resolution of an ambiguity.

I hasten to add that this ambiguity is a strength, not a weak-
ness, of our way of writing decimals. To understand infinite dec-
imals means to be able to move freely from one of these points
of view to the other. That is, understanding involves the realiza-
tion that there is “one single idea” that can be expressed as 1 or
as .999. . ., that can be understood as the process of summing an
infinite series or an endless process of successive approximation
as well as a concrete object, a number. This kind of creative leap
is required before one can say that one understands a real num-
ber as an infinite decimal.

VARIABLES

One of the most basic aspects of mathematics involves the re-
duction of the infinite to the finite. Mathematics has been called
the science of the infinite, yet mathematicians are human beings
and therefore intrinsically restricted to the finite. Thus one of the
great mysteries of mathematics is the manner in which the pro-
cess of making the infinite finite occurs. This question will be
examined in great detail in the discussion of infinity. For the mo-
ment, consider the notion of “variable.” Most people are intro-
duced to the idea of variable in high school algebra, where they
learn to manipulate expressions such as “3x + 2.” They are told
that the “x” is not a number but can represent any number. In
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fact x is usually restricted to some particular set of numbers: nat-
ural numbers, integers, rational numbers, real or complex num-
bers. It may even be a subset of one of these sets of numbers.
The domain of the variable may not even be specified explicitly
but only inferred by the context. In this sense the notion of a
variable is a little ambiguous.

However there is another and more serious way in which the
idea of a variable is ambiguous. Let us suppose that we are talk-
ing about the positive integers. Then the expression 3x + 2 actu-
ally stands for the whole set of numbers: 3 (1) +2=5,3(2) +2 =
8,3@3)+2=11,14,17,20,....S0 3x + 2 is a short-hand for the
whole set of numbers {5, 8, 11, ...}. However when we work
with the expression 3x + 2 we do not carry around the whole set
of potential values in our head. We think of 3x + 2 as some spe-
cific but unspecified element of that set. So we imagine x to have
been chosen. It is some (one) specific number that can be written
as 3x + 2, but we know nothing about the value of x except that
it is an integer. Thus we simultaneously think of x as general
and specific. It is precisely this general/specific ambiguity that
gives the notion of variable its importance in mathematics. An
infinite set of possible values has been replaced by a finite set of
values (here one value). It is true this one value is unspecified,
but nevertheless something has been gained.

For example, consider the equation

3x+2=8
and its solution
x = 2.

Does the “x” in “3x + 2 = 8” refer to any number or does it refer
to the number 2? The answer is both and neither. At the begin-
ning x could be anything. At the end x can only be 2. Of course
at the beginning x (implicitly) can only be 2. Yet at the end we
are saying that every number x # 2 is not a solution, so the equa-
tion is also about all numbers. Thus at every stage the x stands
for all numbers but also for the specific number 2. We are re-
quired to carry along this ambiguity throughout the entire pro-
cedure of solving the equation. It begins with something that
could be anything and ends with a specific number that could
not be anything else. What an exercise in subtle mental gymnas-
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tics this is! How could this way of thinking be called merely me-
chanical? No wonder children have difficulty with algebra. The
difficulty is the ambiguity. The resolution of the ambiguity, solv-
ing the equation, does not involve eliminating the double con-
text but rather being able to keep the two contexts simultane-
ously in mind and working within that double context, jumping
from one point of view to the other as the situation warrants.

A variable is general and specific at the same time. It is all
values or it is a unspecified “typical” value. In that ambiguity
lies its power. By not resolving the ambiguity until the end of
the piece of mathematics one is able to use that ambiguity con-
structively. Thus when considering the function f (x) = 3x* + 2,
we think of x as a typical real number. But we also think of the
whole function as being identified with its parabolic graph.
Then we can say that its derivative, for example, is the function
6x. Again, we think of this in two ways: first, as a formula that
is valid for all values of “x” (the derivative at x = 2 is 6 times 2
or 12); and second, as a specific (single) point on the graph
where the slope of the tangent line is the specific number 6x.

Without this double or ambiguous point of view, modern
mathematics would never have been invented. Remember that
Greek mathematics was geometric and not algebraic. Algebraic
thought requires the use of the idea of variable. This was not as
explicit in Greek thought as it would later become. Again, we
can only speculate that it was the Greeks’ reverence for clarity
and harmony and their distrust and repugnance for ambiguity
that prevented them from developing their mathematics in
this direction.

The algebraic equation 3x + 2 = 8 is ambiguous in yet another
way. In solving this equation I am really making the following
assertion: “Assuming that there exists a number x such that
3x + 2 =8, it follows that this number must be 2.” Thus in setting
out to solve an equation we have taken for granted that the solu-
tion exists. That is, the solution is both unknown and (implicitly)
known at the same time. This ambiguity between being known
and unknown is similar to the ambiguity of a variable that I
mentioned earlier and is essential to equations.

I said above (with respect to the equation 3x + 2 = 8) that we
start by assuming that the solution exists and only then deter-
mine what it is. What if the solution does not exist? What hap-
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Figure 1.2. Graph of “f (x) = 3x* + 2”

pens to the ambiguity? Consider the equation x + 1 = 0, and as-
sume that there are only the nonnegative integers (0, 1,2, 3, ...)
at our disposal. Then the solution x = —1 is not available, so there
is no solution within the system we are working in. What hap-
pens? Remember that I said that ambiguous situations were dy-
namic; the two incompatible contexts may generate their own
creative resolution. Here the incompatibility resides in the fact
that the equation is a form that implicitly assumes a solution
exists (all the terms in the equation belong to the known system
of nonnegative integers), yet no solutions exist (within the sys-
tem of nonnegative integers). The creative resolution of this di-
lemma generates the required solutions. You could say that the
equation x + 1 = 0 brings the negative numbers into existence!
Thus in order to give meaning to the equation x + 1 = 0 (and
more generally x + n = 0) in a situation where only the non-
negative integers are available, we are forced to invent a new
class of numbers. How exciting! Similarly the equation x* + 1 =
0 produces the complex numbers."

There is power in this ambiguity even if the existence of the
solution is not guaranteed. In fact, in this case we can see the
generative power of ambiguity to creatively produce new ideas.
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< . >
-1

Figure 1.4. “f(x) = 2x + 1” generates a dynamical system

equation or dynamical system. Suppose the “generating func-
tion” is f (x) = 2x + 1. If the process has the Value Xp =1 at time
0, then its value at time 1 would be x; = f(x)) =2 (1) + 1 = 3, its
value at time 2 would be x, = f(x;) = 7, and so on. Thus the
function could be considered as a “law” that governs how the
process it represents evolves over time. The graph of the func-
tion is of little help to us when we think of a function in this
way. What we want to know is, if we start with a certain value
at time zero, what will happen “in the long run.” From this point
of view a completely different geometric picture is required. For
the generating function f(x) = 2x + 1 it would look as shown
in figure 1.4.

The picture contains the following information: the “dot” at
-1 means that if the system starts at value x = -1, then it remains
at this value at all future times; the right arrow means that if the
initial value is greater than —1 then the future values of the pro-
cess increase without bound; the left arrow that they decrease
without bound if the initial value is less than —1.

So we now have a new way of thinking about the concept of
function—a dynamic concept as compared with the versions of
functions that were discussed earlier. We now need to reconcile
these two definitions by integrating them into a new and more
general concept.

At this stage we are thinking about a function as some sort
of rule that applies to a whole set of numbers. However, there
inevitably comes a time when we want to operate not just on
individual numbers but on the rule itself. Thus, if f(x) = x* and

g(x) = 3x + 1, we may wish to add f(x) and g(x) and thereby
create a new function /(x) = f(x) + g(x) = x* + 3x + 1. Or we may
wish to multiply them and create k(x) = x>(3x + 1) = 3x® + x%. Or
again we may wish to consider the result of applying the first
rule followed by the second rule h(x) = g(f(x)) = 3x* + 1. Thls
last operation is called the “composition of functions f and g”
and written h = g o f. It can also be done in the reverse order to
obtain f(g(x)) = (3x + 1)>. When we operate on functions in this
way we are thinking of the function as one whole, unified object.
We have made a function that began as something akin to a pro-
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cess, a process for operating on numbers, into an object that itself
could be operated upon. At one level, one can add or multiply
numbers; now, at a higher level, one can add, multiply, or com-
pose functions. This is the process of abstraction at work. Ab-
straction consists essentially in the creation and utilization of
ambiguity. The initial barrier to understanding, that a function
can be considered simultaneously as process and object—as a
rule that operates on numbers and as an object that is itself oper-
ated on by other processes—turns into the insight. That is, it is
precisely the ambiguous way in which a function is viewed
which is the insight.

At a higher level of abstraction one puts whole families of
functions together to form function spaces, for example, all
continuous functions defined on the interval of numbers be-
tween 0 and 1. Once a function is seen as a point in a larger
space, we can talk about the distance between functions, the con-
vergence of functions, functions of functions, and so on. This
sort of dual representation is present in a great many mathemati-
cal situations.

FuNDAMENTAL THEOREM OF CALCULUS

The Fundamental Theorem of Calculus is one of the great theo-
rems of mathematics. A consideration of this theorem will ex-
tend our discussion of ambiguity from the domain of concepts
like variables and functions to include the domain of actual
mathematical results. How, one might ask, can a mathematical
theorem be ambiguous? The essence of this theorem is ambiguity;
it is asserting that calculus is ambiguous!

Now “differential calculus” and “integral calculus” can be
(and historically were) developed independently of one another.
They appear, at first glance, to have nothing to do with one an-
other. Integration is a generalization of the idea of area. A typical
problem might be to calculate the area between the graph of the
curve y = x* and the x-axis, between 0 and 1 (figure 1.5a). Differ-
ential calculus as developed by Newton and Leibniz was con-
cerned with calculating the slope of tangent lines to curves or
the related problem of instantaneous change in one variable
with respect to another, velocity, for example, as shown in figure
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Figure 1.5a. Area: E xdx=1/3

Figure 1.5b. Slope of tangent: (d/dx)(x*) |,.1 =2
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Figure 1.6. Fundamental theorem of calculus

1.5b. The Fundamental Theorem says that these processes are
inverses of one another (when the functions involved are “rea-
sonable” as in figure 1.6).

Now it may be possible to start with integration and then de-
velop differentiation or vice versa, but the theorem says that, for
functions of one variable, neither process is the more fundamen-
tal. Actually, the theorem says that there is in fact one process in
calculus that is integration when it is looked at it in one way and
differentiation when it is looked at in another. Another way of
putting this is that without the Fundamental Theorem there
would be two subjects: differential calculus and integral calcu-
lus. With it there is just the calculus, albeit with a multiple per-
spective. This multiple perspective is essential to an understand-
ing of calculus.

How is this multiple perspective used? Well, since differenti-
ating is easier than integrating, we can integrate by taking the
inverse of the derivative, that is, by calculating the antideriva-
tive. For example, since the derivative of the function f(x) = x*is
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the function g(x) = 2x, it follows that the integral of 2x is x
Whole lists of such antiderivatives may be established and then
used to integrate elementary functions.

FerMAT’s LAsT THEOREM

Perhaps the most famous mathematical problem in the last three
hundred years involves the equation,

xli + y” — ZH

for n = 2. For n = 2 this equation represents the relationship be-
tween the lengths of the sides of a right-angled triangle ac-
cording to the theorem of Pythagoras. Thus there exist many sets
of solutions, including x =3, y=4,z=50rx=5,y=12,z=13.
The mathematician Pierre de Fermat (1601-1665) claimed that
there were no integer solutions to this equation for n > 2 and
moreover that that he had a “marvelous proof of this.” Unfortu-
nately the proof he was thinking of was never found. Building
on the work of many talented mathematicians before him, the
correct argument was finally obtained by Andrew Wiles in
1993.* It was a triumph of human ingenuity and creativity, and
the entire story of the work on this conjecture makes fascinating
reading for anyone who is interested in mathematics.

The proof hinges on the validity of a conjecture called the
Taniyama-Shimura conjecture. This conjecture unifies the seem-
ingly disparate worlds of elliptic curves and modular forms. To
understand the power of ambiguity to revolutionize mathemat-
ics, one has but to read the comments on this conjecture by the
Harvard mathematician Barry Mazur. He compared the conjec-
ture to the Rosetta stone that contained Egyptian demotic, an-
cient Greek, and hieroglyphics. Because demotic and Greek were
already understood, archaeologists could decipher hieroglyph-
ics for the first time.

Mazur said,

It is as if you know one language and this Rosetta stone is
going to give you an intense understanding of the other lan-
guage. But the Taniyama-Shimura conjecture is a Rosetta
stone with a certain magical power. The conjecture has the
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Number theory is an area of mathematics containing many
unsolved problems which can sometimes be stated in language
that is accessible even to nonspecialists. The only technical word
we shall need is the notion of a prime number. Primes are posi-
tive integers greater than one that have no factors other than
themselves and 1. For example the list of primes would begin
with 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, and so on. The Greeks
developed an argument (which is given in Chapter 5) to show
that this list has no largest element, that is, that the number of
primes is infinite. All primes with the exception of 2 are odd
and, of course, the sum of two odd primes is an even number.
But can all even numbers be generated in this way? Goldbach'’s
Conjecture says that they can. It is an unsolved problem in num-
ber theory and one of the oldest unsolved problems in all of
mathematics. No one has yet come up with a proof. In fact, in
the year 2000 the British publisher Tony Faber put up a million-
dollar prize for anyone who could come up with a solution be-
fore the year 2002. The prize was a way to generate publicity
for the novel Uncle Petros and Goldbach’s Conjecture by Apostolos
Doxiadis. The prize was never awarded.

Goldbach’s conjecture can be stated simply:

Every even number greater than two can be written as the
sum of two prime numbers. For example,

4=2+2,6=3+3,8=3+5,10=3+7=5+5,12=5+7,14=
3+11=7+7,....

In his fascinating book on number theory, Daniel Shanks di-
vides unsolved problems into two categories: conjectures and
open questions. A conjecture is a “proposition that has not been
proven, but is favored by some serious evidence.” For an “open
question,” on the other hand, the “evidence is not very convinc-
ing one way or another.”* There is a great deal of evidence in
favor of the validity of Goldbach and most mathematicians be-
lieve it to be true. For small values of n (small for a number theo-
rist), n < 6 x 10", the conjecture has been verified by computer.”
In addition there is a heuristic argument (but not a proof) for
the validity of the conjecture based on the formula for the statis-
tical distribution of primes. Even at the level of rigorous proof
there have been a number of results that go in the direction of
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the main conjecture. For example, in 1939 L. G. Schnirelmann
proved that every number n > 4 can be written as the sum of at
most 300,000 primes. This showed that the conjecture was true
for a large but finite number of primes (instead of two). This
result has been improved over time so that it is now known
that every even number 1 = 4 can be written as the sum of at
most six primes.*® Another result, due to Chen Jingrun (1966),
is that every sufficiently large even number n (n = N, for some
N) can be written as the sum of two numbers, the first of which
is a prime and the second is the product of two primes. There
are many more results that go in the direction of Goldbach'’s
Conjecture.

What is the relevance of unsolved problems to our discussion
of ambiguity in mathematics? A well-formulated but unsolved
problem has an intrinsic ambiguity both in the problem itself
and also in the way one thinks about it or works on it. It may
be true or false. It is even conceivable that it cannot be resolved
one way or another.” While we are working on it we don’t know
the answer, so we must allow both of these possibilities to live
in our minds at the same time. Of course we couldn’t work on
such a problem without having some intuition, based on some
substantial evidence, about the validity of the statement. If, fol-
lowing Shanks, we call it a conjecture, then we are guessing that
it is true. If we call the problem “open,” then we allow for both
possibilities. But whether we call it conjecture or open problem,
there are always two possibilities—true or false. If we guess
false, we must ask ourselves where we might look for a counter-
example. If we guess true, we must ask why is it true, and where
we would we look for a proof. Whatever we guess, there is al-
ways the possibility that we have guessed wrong. If we feel that
the statement of the problem is true, then we are faced with an-
other ambiguity. Is the proof accessible? Many conjectures are
felt to be true, and yet one senses that a proof would require
new ideas, major new developments in the subject that may not
happen for many years. Who would risk wasting their careers
and a good portion of their lives working on a problem that is
not ripe for solution given the current state of development of
the subject? So mathematical research is characterized by an in-
stinct for the right problems: those that are significant yet acces-
sible. These are another pair of conflicting or ambiguous charac-
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teristics. Too accessible implies the problem is most likely
unimportant; too significant and it may be inaccessible.

The ambiguity of an unsolved problem is mitigated somewhat
by the Platonic attitude of the working mathematician. That is,
she feels that it is objectively either true or false and that the job
of the mathematician is “merely” to discover which of these a
priori conditions applies. Psychologically, this Platonic point of
view brings the ambiguity of the situation into enough control
so that researchers have confidence the correct solution exists
independent of their efforts. It moves the problem from the
domain of “ambiguity as vagueness” in which anything could
happen to the sort of incompatibility that has been discussed
in this chapter where there are two conflicting frameworks, true
or false.

While the unsolved problem is unresolved, the ambiguity of
the situation is there for all to see. Let's spend a few words com-
paring this situation to one in which the ambiguity of the mathe-
matical situation is hidden from view. In the classroom, for ex-
ample, the teacher and the student often stand on opposite sides
of the ambiguity. In the teacher’s perception of the situation,
there is no ambiguity—the concept being discussed is clear and
precise. For the student the concept is ambiguous in both senses
of the word: it both is unclear and may contain various “mean-
ings” that actually conflict with one another. However, and this
is what is usually not appreciated, even for the teacher the con-
cept retains its ambiguity. For in addition to its clarity, there is
also (if the teacher actually has a deeper understanding of the
concept) an openness and flexibility that allows the concept to
be applied in a variety of circumstances.

Every situation of ambiguity admits a dual viewpoint that we
could characterize as known versus unknown or as teacher ver-
sus student. In the case of the unsolved problem the “known”
side is missing, so there is no disguising the ambiguity. In the
teaching situation the teacher may well deny that the concept is
ambiguous, but no one can do this for a problem that is unre-
solved. We really don’t know the true state of affairs.

In fact, famous unsolved problems are often of great impor-
tance to the development of mathematics even if they remain
unresolved. This is because the effort that is spent unraveling
them often results in important developments in the subject. The
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main conjectures may remain unsolved, but other significant
questions that arise in the course of the investigations often are
solved. As in the case of the Goldbach Conjecture, different,
weaker aspects of the main conjecture may be proved, and this
leads to increased evidence for or against the main conjecture.
The whole situation requires a state of mind that remains at once
rigorous and flexible. It requires the ability on the part of the
researcher to develop and sustain a state of ambiguity.

I cannot leave the topic of unsolved problems without com-
menting on what it tells us about the nature of mathematical
research and about the art form that is called mathematics. What
kind of person attacks such problems? Working on one of the
great unsolved problems of mathematics is like embarking on a
quest. The anthropologist Joseph Campbell® has written about
the mythological Hero’s Quest. In it the hero braves great perils
in order to make some discovery that he brings back for the ben-
efit of humankind. Working on a great mathematical conjecture
is a kind of hero quest. What motivates people to spend their
lives on such a quest? Why did Wiles spend seven years in his
attic working on Fermat? The true motivation for such activity
goes beyond fame and fortune—it must be found in the nature
of the activity itself. This is another way by which examining
mathematics has something to tell us about the nature of the
human condition. It seems to me that the notion of the spiritual
quest is the closest one will find to such an explanation. A spiri-
tual quest is something that one is driven to do, driven from the
deepest level of one’s being. A spiritual quest has no rational
explanation, or rather, the rational explanation, the adding up
of the pluses and the minuses, always misses the mark. One is
just so taken with the question, with the beauty and the excite-
ment of the activity, that the effort and the sacrifice seem a small
price to pay. A spiritual quest also has something about it that
is self-validating and holds the promise of personal transforma-
tion. Its goals are both external and internal—a voyage of both
discovery and self-discovery.

Any great quest demands courage. It is a voyage into the un-
known with no guaranteed results. What is the nature of this
courage? It is the courage to open oneself up to the ambiguity
of the specific situation. The whole thing may end up as a vast
waste of time; that is, the possibility of failure is inevitably pres-
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ent. To work so hard, in the face of possible failure, is what I
mean by working with ambiguity. If we stop to think about it,
this quality of ambiguity that one finds in the research environ-
ment is no different in kind from the ambiguity that is found in
our personal lives. Our lives also have this quality of a quest,
the attempt to resolve some fundamental but ill-posed question.
In working on a mathematical conjecture, life’s ambiguities so-
lidify into a concrete problem. That is, the situation of doing re-
search is isomorphic to some extent with the situation we face
in our personal lives. This is one reason that working on mathe-
matics is so satisfying. In resolving the mathematical problem
we, for a while at least, resolve that larger, existential problem
that is consciously or unconsciously always with us.

The above discussion should be borne in mind when we think
about the learning of mathematics as students, teachers, or just
people who are interested in mathematics. Learning something
new entails entering into a situation of ambiguity. Situations of
ambiguity are difficult by their very nature. Learners need sup-
port when they are encouraged to enter into new unexplored
ambiguities. A new learning experience requires the learner to
face the unknown, to face failure. Sticking with a true learning
situation requires courage and teachers must respect the courage
that students exhibit in facing these situations. Teachers should
understand and sympathize with students’ reluctance to enter
into these murky waters. After all, the teacher’s role as authority
figure is often pleasing insofar as it enables the teacher to escape
temporarily from their own ambiguities and vulnerability. Thus
the value of learning potentially goes beyond the specific con-
tent or technique but in the largest sense is a lesson in life itself.

AMBIGUITY IN PHYSICS

Since physics is the science that is closest to mathematics, one
might expect to find that the phenomenon of ambiguity is pres-
ent in this domain as well. Physics involves an explicit duality,
namely, the two dimensions of experiment and theory. One of
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not what one usually expects to find in physics. After all, one
might ask, what is it really, a wave or a particle? We feel that it
cannot be both. Yet there is one thing of which we can be sure—
there is one electron. When we look at it in one way (in one
frame of reference) we observe particle-like properties. When we
look in another way we get wave-like properties. The electron
is precisely the singular entity that emerges out of this funda-
mental ambiguity.

If complementarity and ambiguity refer to the same phenome-
non, then why not call ambiguity complementarity? I maintain
that even though these two ideas are referring to a similar phe-
nomenon there are important differences. Complementarity re-
fers to a situation where there is a duality—two contexts the
“sum” of whose complementary aspects “adds up” to the entire
actual situation. Ambiguity also involves dual concepts, but
each context stands on its own, each context describes the entire
situation, so to speak. Thus there would be the “particle” de-
scription of nature in which subatomic particles are classical
objects with definite attributes. On the other hand there would
be the “wave” description in which everything is a cloud of
probabilities—what Werner Heisenberg called “tendencies for
being,” “potentia.”

Moreover, an ambiguous situation not only boasts dual con-
texts but also emphasizes the incompatibility between these con-
texts. It is this “incompatibility” that most sharply differentiates
“ambiguity” from “complementarity.” It is this incompatibility
that is at work when we read the anguished words of physicists
who are trying to make sense of subatomic phenomena. They
seem not to make sense! One senses that there exists an obstacle
that must be overcome if one is to makes sense of this realm of
reality. Using the idea of “ambiguity” brings to the fore the need
for this “epistemological obstacle” to be overcome—the need for
a new vision, the need for a creative leap.

This “incompatibility” gives the entire situation a dynamic as-
pect. It is like a force that pushes the situation toward a creative
reconciliation of the incompatibility. Thus I prefer to think about
the electron as an ambiguous object—not in any vague or mysti-
cal sense—but in the sense that the electron is both a particle
and a wave and yet it cannot be both at the same time. When it
is a particle, it is not a wave, and when it is a wave, it is not a
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particle. In fact the particle/wave ambiguity is so profound that
its implications remain a subject of study and speculation.

Ambiguity may then refer to a phenomenon that is present in
the external world of physical phenomena as well as in the inte-
rior, cognitive world. Which is primary? Does ambiguity (or
complementarity) refer to a property of the natural world, and
so it finds its way into the biology of our brains and from there
into the world of mathematics? Or is ambiguity a feature of our
thinking process, and so the conceptual structures that we create
inevitably carry this feature? This is in itself a version of the
mind/body problem. What is primary, mind or body?

The dominant view in modern cognitive science is that
“mind” is a consequence of “brain.” There have also been think-
ers and traditions that say that “brain” is a consequence of
“mind.” The dominant Western tradition going back to Des-
cartes is that there is a mind/body duality. I suggest that there
is another possibility—an “ambiguous” possibility. I suggest
that the mind/brain and subjective/objective situations are not
merely dualities or complementarities but ambiguities. Calling
them ambiguities makes all the difference because, whereas a
duality may be seen to be a fixed and unchangeable aspect of
reality, an ambiguity always allows for a higher-level unifica-
tion. Thus one could say that there is one unified reality that
looks subjective when we approach it in one way and objective
when we approach it another (see Chapter 8). If reality itself has
this ambiguous nature, then it is not so surprising to see the
same ambiguous characteristics arising in both the “subjective”
domains of mathematical and physical theory as well as in the
“objective” domain of subatomic physics.

It is interesting for our discussion of mathematics that quan-
tum mechanics is a completely mathematical theory. Actually it
has two different mathematical formalisms, one discrete and the
other continuous. That is, the theory of quantum mechanics is
itself ambiguous. Now the two descriptions are mathematically
isomorphic or equivalent. This does not mean, however, that
there is nothing to be gained by having two different ways to
look at the situation. On the contrary, given our previous discus-
sion, one would expect that the subtlety of the phenomenon
that we are trying to comprehend would require an ambiguous
description.

62



AMBIGUITY IN MATHEMATICS

Finally mathematics has something to learn from the world of
quantum mechanics. This involves the normal, “formalist” view
that mathematics starts off with “self-evident” ideas and builds
up to very complex ones, that there is a movement from simplic-
ity to complexity. In the world of quantum mechanics the ele-
mentary objects such as the electron and other subatomic parti-
cles are extremely subtle and complex entities. That is, it is
conceivable that reality is complex all the way down. There may
be a lesson here about mathematical objects. Are they not also
complex all the way down? Is there any mathematical object that
is “trivial” or “obvious” when viewed from every possible math-
ematical point of view? But more of this later on.

STRING THEORY

String theory (and its generalization M-theory) is an exciting,
relatively recent attempt to unify the two most fundamental
physical theories of our time, general relativity and quantum
mechanics. These “two theories underlying the tremendous
progress of physics in the last hundred years ... are mutually
incompatible.”*' Thus the need for string theory arises out of
the kind of ambiguous situation that I have been describing
in this chapter. Both general relativity and quantum me-
chanics have been spectacularly successful in their respective
domains. Their predictions have been experimentally verified to
a very high degree of accuracy. Yet they are incompatible in
situations in which both theories apply, for example, black holes
and the “big bang.” It is this context that created the need for a
new theory that would unify the gravitational force with the
other physical forces. String theory is the prime candidate for
such a unifying theory. It is interesting at this stage of the discus-
sion not only because of the ambiguous context in which it arises
but because the theory itself incorporates ambiguity in a pro-
found manner.

String theorists have a word for what I have been calling am-
biguity—they call it duality. “Physicists use the term duality to
describe theoretical models that appear to be different but never-
theless can be shown to describe exactly the same physics.”
There are “trivial” dualities and “nontrivial” dualities. The for-
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