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WHEN AM I GOING
TO USE THIS?

ight now, in a classroom somewhere in the world, a student is

mouthing off to her math teacher. The teacher has just asked

her to spend a substantial portion of her weekend computing a
list of thirty definite integrals.

There are other things the student would rather do. There is, in fact,
hardly anything she would not rather do. She knows this quite clearly, be-
cause she spent a substantial portion of the previous weekend computing
a different—Dbut not very ditferent—Iist of thirty definite integrals. She
doesn’t see the point, and she tells her teacher so. And at some point in
this conversation, the student is going to ask the question the teacher
fears most:

“When am I going to use this?”

Now the math teacher is probably going to say something like:

“I know this seems dull to you, but remember, you don’t know what
career vou'll choose—you may not see the relevance now, but you might
go into a field where it’ll be really important that you know how to com-
pute definite integrals quickly and correctly by hand.”

This answer is seldom satistying to the student. That’s because it’s
a lie. And the teacher and the student both know it’s a lie. The number
of adults who will ever make use of the integral of (1 — 3x + 4x%)7 dx, or
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the formula for the cosine of 30, or synthetic division of polynomials, can
be counted on a few thousand hands.

The lie is not very satistying to the teacher, either. | should know: in
my many years as a math professor I've asked many hundreds of college
students to compute lists of definite integrals.

Fortunately, there’s a better answer. It goes something like this:

“Mathematics is not just a sequence of computations to be carried
out by rote until your patience or stamina runs out—although it might
seem that way from what you've been taught in courses called mathe-
matics. Those integrals are to mathematics as weight training and calis-
thenics are to soccer. If you want to play soccer—I mean, really play, at a
competitive level—you've got to do a lot of boring, repetitive, apparently
pointless drills. Do professional players ever use those drills? Well, you
won't see anybody on the field curling a weight or zigzagging between
traffic cones. But you do see players using the strength, speed, insight,
and flexibility they built up by doing those drills, week after tedious
week. Learning those drills is part of learning soccer.

“If you want to play soccer for a living, or even make the varsity
team, you're going to be spending lots of boring weekends on the practice
field. There’s no other way. But now here’s the good news. If the drills
are too much for you to take, you can still play for fun, with friends. You
can enjoy the thrill of making a slick pass between defenders or scoring
from distance just as much as a pro athlete does. You'll be healthier and
happier than you would be if you sat home watching the protfessionals
on T'V.

“Mathematics is pretty much the same. You may not be aiming for a
mathematically oriented career. That’s fine—most people aren’t. But you
can still do math. You probably already are doing math, even if you don’t
call it that. Math is woven into the way we reason. And math makes you
better at things. Knowing mathematics is like wearing a pair of X-ray
specs that reveal hidden structures underneath the messy and chaotic
surface of the world. Math is a science of not being wrong about things,
its techniques and habits hammered out by centuries of hard work and
argument. With the tools of mathematics in hand, you can understand
the world in a deeper, sounder, and more meaningful way. All you need is

Copyrighted materia



WHEN AM | GOING TO USE THIS? 3

a coach, or even just a book, to teach you the rules and some basic tac-
tics. I will be your coach. I will show yvou how.”

For reasons of time, this is seldom what I actually say in the class-
room. But in a book, there’s room to stretch out a little more. | hope to
back up the grand claims [ just made by showing you that the problems
we think about every day—problems of politics, of medicine, of com-
merce, of theology—are shot through with mathematics. Understanding
this gives you access to insights accessible by no other means.

Even if I did give my student the full inspirational speech, she
might—if she is really sharp—remain unconvinced.

“That sounds good, Professor,” she’ll say. “But it’s pretty abstract.
You say that with mathematics at your disposal you can get things right
you'd otherwise get wrong. But what kinds of things? Give me an actual
example.”

And at that point | would tell her the story of Abraham Wald and the
missing bullet holes.

ABRAHAM WALD AND THE MISSING BULLET HOLES

This story, like many World War 1 stories, starts with the Nazis hound-
ing a Jew out of Europe and ends with the Nazis regretting it. Abraham
Wald was born in 1902 in what was then the city of Klausenburg in what
was then the Austro-Hungarian Empire. By the time Wald was a teen-
ager, one world war was in the books and his hometown had become
Cluj, Romania. He was the grandson of a rabbi and the son of a kosher
baker, but the younger Wald was a mathematician almost from the start.
His talent for the subject was quickly recognized, and he was admitted
to study mathematics at the University of Vienna, where he was drawn
to subjects abstract and recondite even by the standards of pure mathe-
matics: set theory and metric spaces.

But when Wald’s studies were completed, it was the mid-1930s, Aus-
tria was deep in economic distress, and there was no possibility that a
tforeigner could be hired as a professor in Vienna. Wald was rescued by
a job offer from Oskar Morgenstern. Morgenstern would later immigrate
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to the United States and help invent game theory, but in 1933 he was the
director of the Austrian Institute for Economic Research, and he hired
Wald at a small salary to do mathematical odd jobs. That turned out to
be a good move for Wald: his experience in economics got him a fel-
lowship offer at the Cowles Commission, an economic institute then
located in Colorado Springs. Despite the ever-worsening political situa-
tion, Wald was reluctant to take a step that would lead him away from
pure mathematics for good. But then the Nazis conquered Austria, mak-
ing Wald’s decision substantially easier. After just a few months in Colo-
rado, he was offered a professorship of statistics at Columbia; he packed
up once again and moved to New York.

And that was where he fought the war.

The Statistical Research Group (SRG), where Wald spent much of
World War II, was a classitied program that yoked the assembled might
of American statisticians to the war effort—something like the Manhat-
tan Project, except the weapons being developed were equations, not
explosives. And the SRG was actually in Manhattan, at 401 West 118th
Street in Morningside Heights, just a block away from Columbia Univer-
sity. The building now houses Columbia faculty apartments and some
doctor’s offices, but in 1943 it was the buzzing, sparking nerve center of
wartime math. At the Applied Mathematics Group-Columbia, dozens
of young women bent over Marchant desktop calculators were calculat-
ing formulas for the optimal curve a fighter should trace out through the
air in order to keep an enemy plane in its gunsights. In another apart-
ment, a team of researchers from Princeton was developing protocols for
strategic bombing. And Columbia’s wing of the atom bomb project was
right next door.

But the SRG was the most high-powered, and ultimately the most
influential, of any of these groups. The atmosphere combined the in-
tellectual openness and intensity of an academic department with the
shared sense of purpose that comes only with high stakes. “When we
made recommendations,” W. Allen Wallis, the director, wrote, “frequently
things happened. Fighter planes entered combat with their machine guns
loaded according to Jack Wolfowitz’s" recommendations about mixing

* Paul’s dad.
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types of ammunition, and maybe the pilots came back or maybe they
didn’t. Navy planes launched rockets whose propellants had been ac-
cepted by Abe Girshick’s sampling-inspection plans, and maybe the rock-
ets exploded and destroyed our own planes and pilots or maybe they
destroyed the target.”

The mathematical talent at hand was equal to the gravity of the task.
In Wallis's words, the SRG was “the most extraordinary group of statisti-
cians ever organized, taking into account both number and quality.” Fred-
erick Mosteller, who would later found Harvard’s statistics department,
was there. So was Leonard Jimmie Savage, the pioneer of decision theory
and great advocate of the field that came to be called Bayesian statistics.’
Norbert Wiener, the MIT mathematician and the creator of cybernetics,
dropped by from time to time. This was a group where Milton Fried-
man, the future Nobelist in economics, was often the fourth-smartest
person in the room.

The smartest person in the room was usually Abraham Wald. Wald
had been Allen Wallis’s teacher at Columbia, and functioned as a kind of
mathematical eminence to the group. Still an “enemy alien,” he was not
technically allowed to see the classified reports he was producing; the
joke around SRG was that the secretaries were required to pull each
sheet of notepaper out of his hands as soon as he was finished writing on
it. Wald was, in some ways, an unlikely participant. His inclination, as it
always had been, was toward abstraction, and away from direct applica-
tions. But his motivation to use his talents against the Axis was obvious.
And when you needed to turn a vague idea into solid mathematics, Wald
was the person you wanted at your side.

So here’s the question. You don’t want your planes to get shot down by
enemy fighters, so you armor them. But armor makes the plane heavier,
and heavier planes are less maneuverable and use more fuel. Armoring
the planes too much is a problem; armoring the planes too little is a
problem. Somewhere in between there’s an optimum. The reason you

* Savage was almost totally blind, able to see only out of one corner of one eye, and at one point
spent six months living only on pemmican in order to prove a point about Arctic exploration. Just
thought that was worth mentioning.

Copyrighted materia



6 HOW NOT TO BE WRONG

have a team of mathematicians socked away in an apartment in New
York City is to tigure out where that optimum is.

The military came to the SRG with some data they thought might be
useful. When American planes came back from engagements over Eu-
rope, they were covered in bullet holes. But the damage wasn’t uniformly
distributed across the aircraft. There were more bullet holes in the fuse-
lage, not so many in the engines.

Section of plane Bullet holes per square foot
Engine 1.11

Fuselage 1.73

Fuel system 1.55

Rest of the plane 1.8

The oftficers saw an opportunity for etficiency; you can get the same
protection with less armor if you concentrate the armor on the places
with the greatest need, where the planes are getting hit the most. But ex-
actly how much more armor belonged on those parts of the plane? That
was the answer they came to Wald for. It wasn’t the answer they got.

The armor, said Wald, doesn’t go where the bullet holes are. It goes
where the bullet holes aren’t: on the engines.

Wald’s insight was simply to ask: where are the missing holes? The
ones that would have been all over the engine casing, if the damage had
been spread equally all over the plane? Wald was pretty sure he knew.
The missing bullet holes were on the missing planes. The reason planes
were coming back with fewer hits to the engine is that planes that got hit
in the engine weren't coming back. Whereas the large number of planes
returning to base with a thoroughly Swiss-cheesed fuselage is pretty
strong evidence that hits to the fuselage can (and therefore should) be
tolerated. If you go to the recovery room at the hospital, you'll see a lot
more people with bullet holes in their legs than people with bullet holes
in their chests. But that’s not because people don’t get shot in the chest;
it's because the people who get shot in the chest don’t recover.

Here’s an old mathematician’s trick that makes the picture perfectly

Copyrighted materia



WHEN AM | GOING TO USE THIS? I

clear: set some variables to zero. In this case, the variable to tweak is the
probability that a plane that takes a hit to the engine manages to stay in
the air. Setting that probability to zero means a single shot to the engine
is guaranteed to bring the plane down. What would the data look like
then? You'd have planes coming back with bullet holes all over the wings,
the fuselage, the nose—but none at all on the engine. The military ana-
lyst has two options for explaining this: either the German bullets just
happen to hit every part of the plane but one, or the engine is a point of
total vulnerability. Both stories explain the data, but the latter makes a
lot more sense. The armor goes where the bullet holes aren’t.

Wald’s recommendations were quickly put into effect, and were still
being used by the navy and the air force through the wars in Korea and
Vietnam. | can’t tell you exactly how many American planes they saved,
though the data-slinging descendants of the SRG inside today’s military
no doubt have a pretty good idea. One thing the American defense es-
tablishment has traditionally understood very well is that countries don’t
win wars just by being braver than the other side, or freer, or slightly
preferred by God. The winners are usually the guys who get 5% fewer of
their planes shot down, or use 5% less fuel, or get 5% more nutrition into
their infantry at 95% of the cost. That’s not the stuff war movies are
made of, but it’s the stuff wars are made of. And there’s math every step
of the way.

Why did Wald see what the officers, who had vastly more knowledge and
understanding of aerial combat, couldn’t? It comes back to his math-
trained habits of thought. A mathematician is always asking, “What as-
sumptions are you making? And are they justified?” This can be annoying.
But it can also be very productive. In this case, the officers were making
an assumption unwittingly: that the planes that came back were a ran-
dom sample of all the planes. If that were true, you could draw conclu-
sions about the distribution of bullet holes on all the planes by examining
the distribution of bullet holes on only the surviving planes. Once you
recognize that you've been making that hypothesis, it takes only a mo-
ment to realize it’'s dead wrong; there’s no reason at all to expect the
planes to have an equal likelihood of survival no matter where they get
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hit. In a piece of mathematical lingo we’ll come back to in chapter 15,
the rate of survival and the location of the bullet holes are correlated.

Wald'’s other advantage was his tendency toward abstraction. Wolfo-
witz, who had studied under Wald at Columbia, wrote that the problems
he tavored were “all of the most abstract sort,” and that he was “always
ready to talk about mathematics, but uninterested in popularization and
special applications.”

Wald’s personality made it hard for him to focus his attention on ap-
plied problems, it’s true. The details of planes and guns were, to his eye,
so much upholstery—he peered right through to the mathematical struts
and nails holding the story together. Sometimes that approach can lead
you to ignore features of the problem that really matter. But it also lets
you see the common skeleton shared by problems that look very differ-
ent on the surface. Thus you have meaningful experience even in areas
where you appear to have none.

To a mathematician, the structure underlying the bullet hole prob-
lem is a phenomenon called survivorship bias. It arises again and again, in
all kinds of contexts. And once you're familiar with it, as Wald was,
you're primed to notice it wherever it’s hiding.

Like mutual funds. Judging the performance of funds is an area
where you don’t want to be wrong, even by a little bit. A shift of 1% in
annual growth might be the difference between a valuable financial asset
and a dog. The funds in Morningstar’s Large Blend category, whose mu-
tual funds invest in big companies that roughly represent the S&P 500,
look like the former kind. The funds in this class grew an average of
178.4% between 1995 and 2004: a healthy 10.8% per year.” Sounds like
you'd do well, if you had cash on hand, to invest in those funds, no?

Well, no. A 2006 study by Savant Capital shone a somewhat colder
light on those numbers. Think again about how Morningstar generates
its number. It’s 2004, you take all the funds classified as Large Blend,
and you see how much they grew over the last ten years.

But something’s missing: the funds that aren’t there. Mutual funds
don’t live forever. Some flourish, some die. The ones that die are, by and
large, the ones that don’t make money. So judging a decade’s worth of

* To be fair, the S&P 500 index itself did even better, gaining 212.5% over the same period.
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mutual funds by the ones that still exist at the end of the ten years is
like judging our pilots’ evasive maneuvers by counting the bullet holes in
the planes that come back. What would it mean if we never found more
than one bullet hole per plane? Not that our pilots are brilliant at dodg-
ing enemy fire, but that the planes that got hit twice went down in
flames.

The Savant study found that if you included the performance of the
dead funds together with the surviving ones, the rate of return dropped
down to 134.5%, a much more ordinary 8.9% per year. More recent
research backed that up: a comprehensive 2011 study in the Review of
Finance covering nearly 5,000 funds found that the excess return rate of
the 2,641 survivors is about 20% higher than the same figure recom-
puted to include the funds that didn’t make it. The size of the survivor-

ship etfect might have surprised investors, but it probably wouldn’t have
surprised Abraham Wald.

MATHEMATICS IS THE EXTENSION OF
COMMON SENSE BY OTHER MEANS

At this point my teenage interlocutor is going to stop me and ask, quite
reasonably: Where’s the math? Wald was a mathematician, that’s true,
and it can’t be denied that his solution to the problem of the bullet holes
was ingenious, but what’s mathematical about it? There was no trig iden-
tity to be seen, no integral or inequality or formula.

First of all: Wald did use formulas. I told the story without them,
because this is just the introduction. When you write a book explain-
ing human reproduction to preteens, the introduction stops short of the
really hydraulic stuff about how babies get inside Mommy’s tummy. In-
stead, you start with something more like “Everything in nature changes;
trees lose their leaves in winter only to bloom again in spring; the humble
caterpillar enters its chrysalis and emerges as a magnificent butterfly.
You are part of nature too, and . . .”

That'’s the part of the book we’re in now.

But we'’re all adults here. Turning off the soft focus for a second,
here’s what a sample page of Wald’s actual report looks like:
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lower bound to the Qi could be obtained., The assumption here is
that the decrease from q; to 9541 lies between definite limits.

Therefore, both an upper and lower bound for the Qi can be
obtained,

We assume that

Mg £ 954 £ B

where ll < 12 < 1 and such that the expression

n a .
Z —v—J_-i— {1l - a {A]
=1 iii%-—l °

is satisfied.

The exact solution 1s tedious but close approximations to the
upper and lower bounds to the Qi for i < n can be obtained by

the following procedure. The set of hypothetical data used is

a, = . 780 a3 = ,010
al = ,070 a4 = 005
az = .Ofﬂ as = ,005
ll = ,80 12 = ,90

Condition A is satisfied, since by substitution

07 4 204 .013 s =005 2005 _ oo

.8 (.8) .8)%  (.8°

which is less than

]l = a, = 22

THE LOWER LIMIT OF Qi

The first step is to solve equation 66. This involves the
solution of the following four equations for positive roots 9,

gll’ gz! 93‘

[ hope that wasn’t too shocking.

Still, the real idea behind Wald’s insight doesn’t require any of the
formalism above. We've already explained it, using no mathematical no-
tation of any kind. So my student’s question stands. What makes that
math? Isn’t it just common sense?

Yes. Mathematics is common sense. On some basic level, this is clear.

Copyrighted materia



WHEN AM | GOING TO USE THIS? 11

How can you explain to someone why adding seven things to five things
yields the same result as adding five things to seven? You can’t: that fact
is baked into our way of thinking about combining things together.
Mathematicians like to give names to the phenomena our common sense
describes: instead of saying, “This thing added to that thing is the same
thing as that thing added to this thing,” we say, “Addition is commuta-
tive.” Or, because we like our symbols, we write:

For any choice of aand b,a+ b =b + a.

Despite the official-looking formula, we are talking about a fact in-
stinctively understood by every child.
Multiplication is a slightly different story. The formula looks pretty

similar:

For any choice of aand b,axb =b x a,

The mind, presented with this statement, does not say “no duh”
quite as instantly as it does for addition. Is it “common sense” that two
sets of six things amount to the same as six sets of two?

Maybe not; but it can become common sense. Here’s my earliest math-
ematical memory. I'm lying on the floor in my parents’ house, my cheek
pressed against the shag rug, looking at the stereo. Very probably | am
listening to side two of the Beatles’ Blue Album. Maybe I'm six. This
is the seventies, and therefore the stereo is encased in a pressed wood
panel, which has a rectangular array of airholes punched into the side.
Eight holes across, six holes up and down. So I'm lying there, looking at
the airholes. The six rows of holes. The eight columns of holes. By focus-
ing my gaze in and out I could make my mind tlip back and forth be-
tween seeing the rows and seeing the columns. Six rows with eight holes
each. Eight columns with six holes each.

And then I had it—eight groups of six were the same as six groups of
eight. Not because it was a rule I'd been told, but because it could not be
any other way. The number of holes in the panel was the number of holes
in the panel, no matter which way you counted them.
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Oo0ooobooo

MY PARENTS’ STEREOD,
1977

We tend to teach mathematics as a long list of rules. You learn them
in order and you have to obey them, because if you don’t obey them you
get a C-. This is not mathematics. Mathematics is the study of things that
come out a certain way because there is no other way they could possi-
bly be.

Now let’s be fair: not everything in mathematics can be made as
perfectly transparent to our intuition as addition and multiplication.
You can't do calculus by common sense. But calculus is still derived from
our common sense—Newton took our physical intuition about objects
moving in straight lines, formalized it, and then built on top of that for-
mal structure a universal mathematical description of motion. Once you
have Newton’s theory in hand, you can apply it to problems that would
make your head spin if you had no equations to help you. In the same
way, we have built-in mental systems for assessing the likelihood of an
uncertain outcome. But those systems are pretty weak and unreliable,
especially when it comes to events of extreme rarity. That's when we
shore up our intuition with a few sturdy, well-placed theorems and tech-
niques, and make out of it a mathematical theory of probability.

The specialized language in which mathematicians converse with
one another is a magnificent tool for conveying complex ideas precisely
and swiftly. But its foreignness can create among outsiders the impres-
sion of a sphere of thought totally alien to ordinary thinking. That’s ex-
actly wrong.

Math is like an atomic-powered prosthesis that you attach to your
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common sense, vastly multiplying its reach and strength. Despite the
power of mathematics, and despite its sometimes forbidding notation
and abstraction, the actual mental work involved is little different from
the way we think about more down-to-earth problems. I find it help-
ful to keep in mind an image of Iron Man punching a hole through a
brick wall. On the one hand, the actual wall-breaking force is being sup-
plied, not by Tony Stark’s muscles, but by a series of exquisitely synchro-
nized servomechanisms powered by a compact beta particle generator.
On the other hand, from Tony Stark’s point of view, what he is doing is
punching a wall, exactly as he would without the armor. Only much,
much harder.

To paraphrase Clausewitz: Mathematics is the extension of common
sense by other means.

Without the rigorous structure that math provides, common sense
can lead you astray. That’s what happened to the officers who wanted
to armor the parts of the planes that were already strong enough. But
formal mathematics without common sense—without the constant in-
terplay between abstract reasoning and our intuitions about quantity,
time, space, motion, behavior, and uncertainty—would just be a sterile
exercise in rule-following and bookkeeping. In other words, math would
actually be what the peevish calculus student believes it to be.

That’s a real danger. John von Neumann, in his 1947 essay “The

Mathematician,” warned:

As a mathematical discipline travels far from its empirical source, or
still more, if it is a second and third generation only indirectly in-
spired by ideas coming from “reality” it is beset with very grave dan-
gers. It becomes more and more purely aestheticizing, more and
more purely l'art pour lart. This need not be bad, if the field is sur-
rounded by correlated subjects, which still have closer empirical
connections, or if the discipline is under the influence of men with
an exceptionally well-developed taste. But there is a grave danger
that the subject will develop along the line of least resistance, that
the stream, so far from its source, will separate into a multitude of

insignificant branches, and that the discipline will become a disorga-

Copyrighted materia



14 HOW NOT TO BE WRONG

nized mass of details and complexities. In other words, at a great
distance from its empirical source, or after much “abstract” inbreed-

ing, a mathematical subject is in danger of degeneration.’

WHAT KINDS OF MATHEMATICS WILL
APPEAR IN THIS BOOK?

[f your acquaintance with mathematics comes entirely from school, you
have been told a story that is very limited, and in some important ways
false. School mathematics is largely made up of a sequence of facts and
rules, facts which are certain, rules which come from a higher authority
and cannot be questioned. It treats mathematical matters as completely
settled.

Mathematics is not settled. Even concerning the basic objects of
study, like numbers and geometric figures, our ignorance is much greater
than our knowledge. And the things we do know were arrived at only
after massive effort, contention, and confusion. All this sweat and tu-
mult is carefully screened off in your textbook.

There are facts and there are facts, of course. There has never
been much controversy about whether 1 + 2 = 3. The question of how
and whether we can truly prove that 1 + 2 = 3, which wobbles uneasily be-
tween mathematics and philosophy, is another story—we return to
that at the end of the book. But that the computation is correct is a plain
truth. The tumult lies elsewhere. We’'ll come within sight of it several
times.

Mathematical facts can be simple or complicated, and they can be
shallow or profound. This divides the mathematical universe into four
quadrants:

* Von Neumann's view of the nature of math is solid, but it’s fair to feel a bit queasy about his
characterization of mathematics carried out for purely aesthetic ends as “degenerate.” Von Neu-
mann is writing this just ten vears after the entartete Kunst (*degenerate art™) exhibition in Hit-
ler’s Berlin, whose point was that “l'art pour lart” was the sort of thing that Jews and Communists
liked, and was designed to undercut the healthy “realist” art required by a vigorous Teutonic state.
Under the circumstances, one feels a little defensive toward mathematics that serves no apparent
purpose. A writer with different political commitments than my own would, at this point, bring
up von Neumann's energetic work on the development and delivery of nuclear weapons.

Copvrighted material
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Basic arithmetic facts, like 1 + 2 = 3, are simple and shallow. So are
basic identities like sin(2x) = 2 sin x cos x or the quadratic formula: they
might be slightly harder to convince yourself of than 1 + 2 =3, but in the
end they don’t have much conceptual heft.

Moving over to complicated/shallow, you have the problem of multi-
plying two ten-digit numbers, or the computation of an intricate defi-
nite integral, or, given a couple of years of graduate school, the trace of
Frobenius on a modular form of conductor 2377. It’s conceivable you
might, for some reason, need to know the answer to such a problem, and
it’s undeniable that it would be somewhere between annoying and im-
possible to work it out by hand; or, as in the case of the modular form, it
might take some serious schooling even to understand what’s being asked
for. But knowing those answers doesn’t really enrich your knowledge
about the world.

The complicated/profound quadrant is where professional mathema-
ticians like me try to spend most of our time. That’s where the celebrity
theorems and conjectures live: the Riemann Hypothesis, Fermat’s Last
Theorem,” the Poincaré Conjecture, P vs. NP, Gédel’s Theorem . . . Each

* Which, among pros, is now called Wiles's Theorem, since Andrew Wiles proved it (with a criti-
cal assist from Richard Taylor) and Fermat did not. But the traditional name will probably never

be dislodged.
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one of these theorems involves ideas of deep meaning, fundamental im-
portance, mind-blowing beauty, and brutal technicality, and each of
them is the protagonist of books of its own.

But not this book. This book is going to hang out in the upper left
quadrant: simple and profound. The mathematical ideas we want to ad-
dress are ones that can be engaged with directly and profitably, whether
your mathematical training stops at pre-algebra or extends much further.
And they are not “mere facts,” like a simple statement of arithmetic—
they are principles, whose application extends far beyond the things
you're used to thinking of as mathematical. They are the go-to tools on
the utility belt, and used properly they will help you not be wrong.

Pure mathematics can be a kind of convent, a quiet place safely cut
off from the pernicious influences of the world’s messiness and inconsis-
tency. | grew up inside those walls. Other math kids [ knew were tempted
by applications to physics, or genomics, or the black art of hedge fund
management, but I wanted no such rumspringa.” As a graduate student, |
dedicated myself to number theory, what Gauss called “the queen of
mathematics,” the purest of the pure subjects, the sealed garden at the
center of the convent, where we contemplated the same questions about
numbers and equations that troubled the Greeks and have gotten hardly
less vexing in the twenty-five hundred years since.

At first I worked on number theory with a classical flavor, proving
facts about sums of fourth powers of whole numbers that | could, if
pressed, explain to my family at Thanksgiving, even if I couldn’t ex-
plain how I proved what I proved. But before long I got enticed into even
more abstract realms, investigating problems where the basic actors—
“residually modular Galois representations,” “cohomology of moduli
schemes,” “dynamical systems on homogeneous spaces,” things like
that—were impossible to talk about outside the archipelago of seminar
halls and faculty lounges that stretches from Oxford to Princeton to
Kyoto to Paris to Madison, Wisconsin, where I'm a professor now. When
[ tell you this stuff is thrilling, and meaningful, and beautiful, and that

* To be honest, | did spend some part of my early twenties thinking | might want to be a Serious
Literary Novelist. | even finished a Serious Literary Novel, called The Grasshopper King, and got
it published. But in the process | discovered that every day | devoted to Serious Literary Novel
writing was a day half spent moping around wishing I were working on math problems.
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I'll never get tired of thinking about it, you may just have to believe me,
because it takes a long education just to get to the point where the ob-
jects of study rear into view.

But something funny happened. The more abstract and distant from
lived experience my research got, the more [ started to notice how much
math was going on in the world outside the walls. Not Galois representa-
tions or cohomology, but ideas that were simpler, older, and just as deep—
the northwest quadrant of the conceptual foursquare. | started writing
articles for magazines and newspapers about the way the world looked
through a mathematical lens, and | found, to my surprise, that even peo-
ple who said they hated math were willing to read them. It was a kind of
math teaching, but very different from what we do in a classroom.

What it has in common with the classroom is that the reader gets
asked to do some work. Back to von Neumann on “The Mathematician™

“It is harder to understand the mechanism of an airplane, and the
theories of the forces which lift and which propel it, than merely to
ride in it, to be elevated and transported by it—or even to steer it. It is
exceptional that one should be able to acquire the understanding of a
process without having previously acquired a deep familiarity with run-
ning it, with using it, before one has assimilated it in an instinctive and
empirical way.”

In other words: it is pretty hard to understand mathematics without
doing some mathematics. There’s no royal road to geometry, as Euclid
told Ptolemy, or maybe, depending on your source, as Menaechmus told
Alexander the Great. (Let’s face it, famous old maxims attributed to
ancient scientists are probably made up, but they’re no less instructive
for that.)

This will not be the kind of book where I make grand, vague gestures
at great monuments of mathematics, and instruct you in the proper man-
ner of admiring them from a great distance. We are here to get our hands
a little dirty. We'll compute some things. There will be a few formulas
and equations, when | need them to make a point. No formal math be-
yond arithmetic will be required, though lots of math way beyond arith-
metic will be explained. I'll draw some crude graphs and charts. We'll
encounter some topics from school math, outside their usual habitat;
we’'ll see how trigonometric functions describe the extent to which two
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variables are related to each other, what calculus has to say about the
relationship between linear and nonlinear phenomena, and how the qua-
dratic formula serves as a cognitive model for scientific inquiry. And
we’'ll also run into some of the mathematics that usually gets put off to
college or beyond, like the crisis in set theory, which appears here as a
kind of metaphor for Supreme Court jurisprudence and baseball umpir-
ing; recent developments in analytic number theory, which demonstrate
the interplay between structure and randomness; and information the-
ory and combinatorial designs, which help explain how a group of MIT
undergrads won millions of dollars by understanding the guts of the
Massachusetts state lottery.

There will be occasional gossip about mathematicians of note, and a
certain amount of philosophical speculation. There will even be a proof
or two. But there will be no homework, and there will be no test.
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LESS LIKE SWEDEN

few years ago, in the heat of the battle over the Affordable Care

Act, Daniel J. Mitchell of the libertarian Cato Institute posted

a blog entry with the provocative title “Why Is Obama Trying
to Make America More Like Sweden when Swedes Are Trying to Be
Less Like Sweden?”

Good question! When you put it that way, it does seem pretty
perverse. Why, Mr. President, are we swimming against the current of
history, while social welfare states around the world—even rich little
Sweden!—are cutting back on expensive benefits and high taxes? “If
Swedes have learned from their mistakes and are now trying to reduce
the size and scope of government,” Mitchell writes, “why are American
politicians determined to repeat those mistakes?”

Answering this question will require an extremely scientific chart.
Here’s what the world looks like to the Cato Institute:
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The x-axis represents Swedishness,” and the y-axis is some measure
of prosperity. Don’t worry about exactly how we're quantifying these
things. The point is just this: according to the chart, the more Swedish
you are, the worse off your country is. The Swedes, no fools, have tigured
this out and are launching their northwestward climb toward free-
market prosperity. But Obama’s sliding in the wrong direction.

At the top of the facing page I've drawn the same picture from the
point of view of people whose economic views are closer to President
Obama’s than to those of the Cato Institute.

This picture gives very different advice about how Swedish we should
be. Where do we find peak prosperity? At a point more Swedish than
America, but less Swedish than Sweden. If this picture is right, it makes
perfect sense for Obama to beef up our welfare state while the Swedes
trim theirs down.

The difference between the two pictures is the difference between
linearity and nonlinearity, one of the central distinctions in mathematics.
The Cato curve is a line;" the non-Cato curve, the one with the hump in

* Here “Swedishness” refers to “quantity of social services and taxation,” not to other features of
Sweden such as “ready availability of herring in dozens of different sauces,” a condition to which
all nations should obviously aspire.

T Or a line segment, if you must. | won’t make a big deal of this distinction.
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the middle, is not. A line is one kind of curve, but not the only kind, and
lines enjoy all kinds of special properties that curves in general may not.
The highest point on a line segment—the maximum prosperity, in this
example—has to be on one end or the other. That’s just how lines are. If
lowering taxes is good for prosperity, then lowering taxes even more is
even better. And if Sweden wants to de-Swede, so should we. Of course,
an anti-Cato think tank might posit that the line slopes in the other di-
rection, going southwest to northeast. And if that’s what the line looks
like, then no amount of social spending is too much. The optimal policy
is Maximum Swede.

Usually, when someone announces they’re a “nonlinear thinker”
they’re about to apologize for losing something you lent them. But non-
linearity is a real thing! And in this context, thinking nonlinearly is cru-
cial, because not all curves are lines. A moment of reflection will tell
you that the real curves of economics look like the second picture, not
the first. They’re nonlinear. Mitchell’s reasoning is an example of false
linearity—he’s assuming, without coming right out and saying so, that the
course of prosperity is described by the line segment in the first picture,
in which case Sweden stripping down its social infrastructure means we
should do the same.

But as long as you believe there’s such a thing as too much welfare
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state and such a thing as too little, you know the linear picture is wrong.
Some principle more complicated than “More government bad, less gov-
ernment good” is in effect. The generals who consulted Abraham Wald
faced the same kind of situation: too little armor meant planes got shot
down, too much meant the planes couldn’t fly. It’s not a question of
whether adding more armor is good or bad; it could be either, depending
on how heavily armored the planes are to start with. If there’s an optimal
answer, it’s somewhere in the middle, and deviating from it in either
direction is bad news.

Nonlinear thinking means which way vou should go depends on where
you already are.

This insight isn’t new. Already in Roman times we find Horace’s
famous remark “Est modus in rebus, sunt certi denique fines, quos ultra
citraque nequit consistere rectum” (“There is a proper measure in things.
There are, finally, certain boundaries short of and beyond which what is
right cannot exist”). And further back still, in the Nicomachean Ethics,
Aristotle observes that eating either too much or too little is troubling to
the constitution. The optimum is somewhere in between, because the
relation between eating and health isn’t linear, but curved, with bad out-
comes on both ends.

SOMETHING-DOO ECONOMICS

The irony is that economic conservatives like the folks at Cato used to
understand this better than anybody. That second picture I drew up
there? The extremely scientific one with the hump in the middle? I am
not the first person to draw it. It’s called the Laffer curve, and it’s played
a central role in Republican economics for almost forty years. By the
middle of the Reagan administration, the curve had become such a com-
monplace of economic discourse that Ben Stein ad-libbed it into his fa-
mous soul-killing lecture in Ferris Bueller’s Day Off:

Anyone know what this is? Class? Anyone? . . . Anyone? Anyone
seen this before? The Laffer curve. Anyone know what this says? It
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says that at this point on the revenue curve, you will get exactly the
same amount of revenue as at this point. This is very controversial.
Does anyone know what Vice President Bush called this in 19807

Anyone? Something-doo economics. “Voodoo” economics.

The legend of the Laffer curve goes like this: Arthur Laffer, then an
economics professor at the University of Chicago, had dinner one night in
1974 with Dick Cheney, Donald Rumsfeld, and Wall Street Journal editor
Jude Wanniski at an upscale hotel restaurant in Washington, DC. They
were tussling over President Ford’s tax plan, and eventually, as intellectu-
als do when the tussling gets heavy, Laffer commandeered a napkin” and
drew a picture. The picture looked like this:

fevVenue

Oz tzx ante 7%

The horizontal axis here is level of taxation, and the vertical axis
represents the amount of revenue the government takes in from taxpay-
ers. On the left edge of the graph, the tax rate is 0%; in that case, by def-
inition, the government gets no tax revenue. On the right, the tax rate is
100%; whatever income you have, whether from a business you run or a

salary you're paid, goes straight into Uncle Sam’s bag.

* Laffer disputes the napkin portion of the story, recalling that the restaurant had classy cloth
napkins that he would never have vandalized with an economic doodle.
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Which is empty. Because if the government vacuums up every cent
of the wage you're paid to show up and teach school, or sell hardware, or
middle-manage, why bother doing it? Over on the right edge of the
graph, people don’t work at all. Or, if they work, they do so in informal
economic niches where the tax collector’s hand can’t reach. The govern-
ment’s revenue is zero once again.

In the intermediate range in the middle of the curve, where the gov-
ernment charges us somewhere between none of our income and all of
it—in other words, in the real world—the government does take in some
amount of revenue.

That means the curve recording the relationship between tax rate
and government revenue cannot be a straight line. If it were, revenue
would be maximized at either the left or right edge of the graph; but it’s
zero in both places. If the current income tax is really close to zero, so
that you're on the left-hand side of the graph, then raising taxes increases
the amount of money the government has available to fund services and
programs, just as you might intuitively expect. But if the rate is close
to 100%, raising taxes actually decreases government revenue. If you're to
the right of the Laffer peak, and you want to decrease the deficit without
cutting spending, there’s a simple and politically peachy solution: lower
the tax rate, and thereby increase the amount of taxes you take in. Which
way you should go depends on where you are.

So where are we? That’s where things get sticky. In 1974, the top in-
come tax rate was 70%, and the idea that America was on the right-hand
downslope of the Laffer curve held a certain appeal—especially for the
few people lucky enough to pay tax at that rate, which only applied to
income beyond the first $200,000." And the Laffer curve had a potent
advocate in Wanniski, who brought his theory into the public conscious-
ness in a 1978 book rather self-assuredly titled The Way the World Works."
Wanniski was a true believer, with the right mix of zeal and political
canniness to get people to listen to an idea considered fringy even by tax-
cut advocates. He was untroubled by being called a nut. “Now, what does
‘nut’ mean?” he asked an interviewer. “Thomas Edison was a nut, Leibniz

* Somewhere between a half million and a million dollars a year in today's income.
t Like I'm one to talk.
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was a nut, Galileo was a nut, so forth and so on. Everybody who comes
with a new idea to the conventional wisdom, comes with an idea that’s so
far outside the mainstream, that’s considered nutty.”

(Aside: it’s important to point out here that people with out-of-the-
mainstream ideas who compare themselves to Edison and Galileo are
never actually right. 1 get letters with this kind of language at least once a
month, usually from people who have “proofs” of mathematical state-
ments that have been known for hundreds of years to be false. I can
guarantee you Einstein did not go around telling people, “Look, | know
this theory of general relativity sounds wacky, but that’s what they said
about Galileo!”)

The Laffer curve, with its compact visual representation and its
agreeably counterintuitive sting, turned out to be an easy sell for politi-
cians with a preexisting hunger for tax cuts. As economist Hal Varian
put it, “You can explain it to a Congressman in six minutes and he can
talk about it for six months.” Wanniski became an adviser first to Jack
Kemp, then to Ronald Reagan, whose experiences as a wealthy movie
star in the 1940s formed the template for his view of the economy four
decades later. His budget director, David Stockman, recalls:

“l came into the Big Money making pictures during World War I1,”
|Reagan] would always say. At that time the wartime income surtax
hit 90 percent. “You could only make four pictures and then you
were in the top bracket,” he would continue. “So we all quit work-
ing after about four pictures and went off to the country.” High tax
rates caused less work. Low tax rates caused more. His experience

proved it.

These days it’s hard to find a reputable economist who thinks we're
on the downslope of the Latfer curve. Maybe that’s not surprising, con-
sidering top incomes are currently taxed at just 35%, a rate that would
have seemed absurdly low for most of the twentieth century. But even in
Reagan’s day, we were probably on the left-hand side of the curve. Greg
Mankiw, an economist at Harvard and a Republican who chaired the
Council of Economic Advisors under the second President Bush, writes
in his microeconomics textbook:
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Subsequent history failed to confirm Latfer’s conjecture that lower
tax rates would raise tax revenue. When Reagan cut taxes after he
was elected, the result was less tax revenue, not more. Revenue from
personal income taxes (per person, adjusted for intlation) fell by 9
percent from 1980 to 1984, even though average income (per per-
son, adjusted for inflation) grew by 4 percent over this period. Yet

once the policy was in place, it was hard to reverse.

Some sympathy for the supply-siders is now in order. First of all,
maximizing government revenue needn’t be the goal of tax policy. Mil-
ton Friedman, whom we last met during World War Il doing classitied
military work for the Statistical Research Group, went on to become a
Nobel-winning economist and adviser to presidents, and a powerful ad-
vocate for low taxes and libertarian philosophy. Friedman’s famous slo-
gan on taxation is “I am in favor of cutting taxes under any circumstances
and for any excuse, for any reason, whenever it’s possible.” He didn’t
think we should be aiming for the top of the Laffer curve, where govern-
ment tax revenue is as high as it can be. For Friedman, money obtained
by the government would eventually be money spent by the government,
and that money, he felt, was more often spent badly than well.

More moderate supply-side thinkers, like Mankiw, argue that lower
taxes can increase the motivation to work hard and launch businesses,
leading eventually to a bigger, stronger economy, even if the immediate
effect of the tax cut is decreased government revenue and bigger deficits.
An economist with more redistributionist sympathies would observe
that this cuts both ways; maybe the government’s diminished ability to
spend means it constructs less infrastructure, regulates fraud less strin-
gently, and generally does less of the work that enables free enterprise to
thrive.,

Mankiw also points out that the very richest people—the ones who'd
been paying 70% on the top tranche of their income—did contribute
more tax revenue after Reagan’s tax cuts.” That leads to the somewhat
vexing possibility that the way to maximize government revenue is to

* Whether the increased tax receipts are because the rich started working harder once less en-
cumbered by income tax, as supply-side theory predicts, is more difficult to say for certain.
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jack up taxes on the middle class, who have no choice but to keep on
working, while slashing rates on the rich; those guys have enough stock-
piled wealth to make credible threats to withhold or offshore their eco-
nomic activity, should their government charge them a rate they deem
too high. If that story’s right, a lot of liberals will uncomfortably climb in
the boat with Milton Friedman: maybe maximizing tax revenue isn’t so
great after all.

Mankiw’s final assessment is a rather polite “Latfer’s argument is not
completely without merit.” I would give Laffer more credit than that!
His drawing made the fundamental and incontrovertible mathematical
point that the relationship between taxation and revenue is necessarily
nonlinear. It doesn’t, of course, have to be a single smooth hill like the
one Laffer sketched; it could look like a trapezoid

or a dromedary’s back

or a wildly oscillating free-for-all’

* Or, more likely still, it might not be a single curve at all, as Martin Gardner illustrated by means
of the snarly “Neo-Laffer curve” in his acid assessment of supply-side theory, “The Laffer Curve.”
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the area is . But two thousand years ago this was a vexing open ques-
tion, important enough to draw the attention of Archimedes.

Why was it so hard? For one thing, the Greeks didn’t really think of
m as a number, as we do. The numbers they understood were whole
numbers, numbers that counted things: 1, 2, 3, 4 . . . But the first great
success of Greek geometry—the Pythagorean Theorem'—turned out to
be the ruin of their number system.

Here’s a picture:

The Pythagorean Theorem tells you that the square of the hypotenuse—
the side drawn diagonally here, the one that doesn’t touch the right
angle—is the sum of the squares of the other two sides, or legs. In this
picture, that says the square of the hypotenuse is 1+ 1°=1+ 1 =2. In
particular, the hypotenuse is longer than 1 and shorter than 2 (as you can
check with your eyeballs, no theorem required). That the length is not a

* By the way, we don't know who first proved the Pythagorean Theorem, but scholars are almost
certain it was not Pythagoras himself. In fact, beyond the bare fact, attested by contemporaries,
that a learned man by that name lived and gained fame in the sixth century BCE, we know almost
nothing about Pythagoras. The main accounts ot his life and work date from almost eight hundred
years after his death. By that time, Pythagoras the real person had been completely replaced by
Pythagoras the myth, a kind of summing up in an individual of the philosophy of the scholars who
called themselves Pythagoreans.
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whole number was not, in itself, a problem for the Greeks. Maybe we just
measured everything in the wrong units. If we choose our unit of length
to make the legs 5 units long, you can check with a ruler that the hypot-
enuse is just about 7 units long. Just about—but a bit too long. For the
square of the hypotenuse is

5°+5=25+25=50

and if the hypotenuse were 7, its square would be 7 x 7 = 49,

Or if you make the legs 12 units long, the hypotenuse is almost ex-
actly 17 units, but is tantalizingly too short, because 12 + 12%is 288, a
smidgen less than 172, which is 289.
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And at some point around the fifth century BCE, a member of the
Pythagorean school made a shocking discovery: there was no way to mea-
sure the isosceles right triangle so that the length of each side was a whole
number. Modern people would say “the square root of 2 is irrational”—
that is, it is not the ratio of any two whole numbers. But the Pythagoreans
would not have said that. How could they? Their notion of quantity was
built on the idea of proportions between whole numbers. To them, the
length of that hypotenuse had been revealed to be not a number at all.

This caused a fuss. The Pythagoreans, you have to remember, were
extremely weird. Their philosophy was a chunky stew of things we’d now
call mathematics, things we’d now call religion, and things we’d now call
mental illness. They believed that odd numbers were good and even
numbers evil; that a planet identical to our own, the Antichthon, lay on
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the other side of the sun; and that it was wrong to eat beans, by some
accounts because they were the repository of dead people’s souls. Py-
thagoras himself was said to have had the ability to talk to cattle (he told
them not to eat beans) and to have been one of the very few ancient
Greeks to wear pants.

The mathematics of the Pythagoreans was inseparably bound up
with their ideology. The story (probably not really true, but it gives the
right impression of the Pythagorean style) is that the Pythagorean who
discovered the irrationality of the square root of 2 was a man named
Hippasus, whose reward for proving such a nauseating theorem was to
be tossed into the sea by his colleagues, to his death.

But you can’t drown a theorem. The Pythagoreans’ successors, like
Euclid and Archimedes, understood that you had to roll up your sleeves
and measure things, even if this brought you outside the pleasant walled
garden of the whole numbers. No one knew whether the area of a circle
could be expressed using whole numbers alone.” But wheels must be
built and silos filled:’ so the measurement must be done.

The original idea comes from Eudoxus of Cnidus; Euclid included it
as book 12 of the elements. But it was Archimedes who really brought
the project to its full fruition. Today we call his approach the method of
exhaustion. And it starts like this.

* It can't, in fact, but nobody figured out how to prove this until the eighteenth century.

t Actually, silos weren't round until the early twentieth century, when a University of Wisconsin
professor, F.H. King, invented the now-ubiquitous cylindrical design in order to solve the problem
of spoilage in the corners,
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The square in the picture is called the inscribed square; each of its
corners just touches the circle, but it doesn’t extend beyond the circle’s
boundary. Why do this? Because circles are mysterious and intimidating,
and squares are easy. If you have before you a square whose side has
length X, its area is X times X—indeed, that’s why we call the operation
of multiplying a number by itself squaring! A basic rule of mathematical
life: if the universe hands you a hard problem, try to solve an easier one
instead, and hope the simple version is close enough to the original prob-
lem that the universe doesn’t object.

The inscribed square breaks up into four triangles, each of which is
none other than the isosceles triangle we just drew.” So the square’s area
is four times the area of the triangle. That triangle, in turn, is what you
get when you take a 1 x 1 square and cut it diagonally in half like a tuna

fish sandwich.

The area of the tuna fish sandwich is 1 x 1 = 1, so the area of each
triangular half-sandwich is 1/2, and the area of the inscribed square is
4x1/2, or 2.

By the way, suppose you don’t know the Pythagorean Theorem. Guess
what—you do now! Or at least you know what it has to say about this
particular right triangle. Because the right triangle that makes up the
lower half of the tuna fish sandwich is exactly the same as the one that is
the northwest quarter of the inscribed square. And its hypotenuse is the

* Rather, each of the four pieces can be obtained from the original isosceles right triangle by slid-
ing and rotating it around the plane; we take as given that these manipulations don’t change a
figure’s area.
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inscribed square’s side. So when you square the hypotenuse, you get the
area of the inscribed square, which is 2. That is, the hypotenuse is that
number which, when squared, vields 2; or, in the usual more concise
lingo, the square root of 2.

The inscribed square is entirely contained within the circle. If its area
is 2, the area of the circle must be at least 2.

Now we draw another square.

r

This one is called the circumscribed square; it, too, touches the cir-
cle at just four points. But this square contains the circle. Its sides have
length 2, so its area is 4; and so we know the area of the circle is at
most 4.

To have shown that pi is between 2 and 4 is perhaps not so impres-
sive. But Archimedes is just getting started. Take the four corners of
your inscribed square and mark new points on the circle halfway be-
tween each adjacent pair of corners. Now you've got eight equally spaced
points, and when you connect those, you get an inscribed octagon, or, in
technical language, a “stop sign”:

Computing the area of the inscribed octagon is a bit harder, and I'll
spare you the trigonometry. The important thing is that it’s about straight
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Until, zooming in, and zooming in, what you see is pretty much in-
distinguishable from a line. An ant on the circle, aware only of his own
tiny immediate surroundings, would think he was on a straight line, just
as a person on the surface of the earth (unless she is clever enough to
watch objects crest the horizon as they approach from afar) feels like
she’s standing on a plane.

THE PAGE WHERE | TEACH YOU CALCULUS

[ will now teach you calculus. Ready? The idea, for which we have Isaac
Newton to thank, is that there’s nothing special about a perfect circle.
Every smooth curve, when you zoom in enough, looks just like a line.
Doesn’t matter how winding or snarled it is—just that it doesn’t have any
sharp corners.

When you fire a missile, its path looks like this:

J

The missile goes up, then down, in a parabolic arc. Gravity makes all
motion curve toward the earth; that’s among the fundamental facts of
our physical life. But if we zoom in on a very short segment, the curve
starts to look like this:
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And then like this:

Just like the circle, the missile’s path looks to the naked eye like a
straight line, progressing upward at an angle. The deviation from straight-
ness caused by gravity is too small to see—but it’s still there, of course.
Zooming in to an even smaller region of the curve makes the curve even
more like a straight line. Closer and straighter, closer and straighter . . .

Now here’s the conceptual leap. Newton said, look, let’s go all the
way. Reduce your field of view until it’s infinitesimal—so small that it’s
smaller than any size you can name, but not zero. You're studying the
missile’s arc, not over a very short time interval, but at a single moment.
What was almost a line becomes exactly a line. And the slope of this line
is what Newton called the fluxion, and what we’d now call the derivative.

That’s a kind of jump Archimedes wasn’t willing to make. He under-
stood that polygons with shorter sides got closer and closer to the circle—
but he would never have said that the circle actually was a polygon with
infinitely many infinitely short sides.

Some of Newton’s contemporaries, too, were reluctant to go along
for the ride. The most famous objector was George Berkeley, who de-
nounced Newton’s infinitesimals in a tone of high mockery sadly absent
from current mathematical literature: “And what are these fluxions?
The velocities of evanescent increments. And what are these same eva-
nescent increments? They are neither finite quantities, nor quantities
infinitely small, nor yet nothing. May we not call them the ghosts of
departed quantities?”

And yet calculus works. If you swing a rock in a loop around your head
and suddenly release it, it'll shoot off along a linear trajectory at constant

Copyrighted materia
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speed, exactly in the direction that calculus says the rock is moving at the
precise moment you let go. That’s yet another Newtonian insight; objects
in motion tend to proceed in a straight-line path, unless some other force
intercedes to nudge the object one way or the other. That’s one reason
linear thinking comes so naturally to us: our intuition about time and
motion is formed by the phenomena we observe in the world. Even before
Newton codified his laws, something in us knew that things like to move
in straight lines, unless given a reason to do otherwise.

EVANESCENT INCREMENTS AND
UNNECESSARY PERPLEXITIES

Newton’s critics had a point; his construction of the derivative didn’t
amount to what we’d call rigorous mathematics nowadays. The problem is
the notion of the infinitely small, which was a slightly embarrassing stick-
ing point for mathematicians for thousands of years. The trouble started
with Zeno, a fifth-century-BCE Greek philosopher of the Eleatic school
who specialized in asking innocent-seeming questions about the physi-
cal world that inevitably blossomed into huge philosophical brouhahas.

His most famous paradox goes like this. | decide to walk to the ice
cream store. Now certainly I can’t get to the ice cream store until ['ve
gone halfway there. And once I've gone halfway, | can’t get to the store
until I've gone half the distance that remains. Having done so, | still
have to cover half the remaining distance. And so on, and so on. | may
get closer and closer to the ice cream store—but no matter how many
steps of this process I undergo, I never actually reach the ice cream store.
I am always some tiny but nonzero distance away from my two scoops
with jimmies. Thus, Zeno concludes, to walk to the ice cream store is
impossible. The argument works just as well for any destination: it’s
equally impossible to walk across the street, or to take a single step, or to
wave your hand. All motion is ruled out.

* Apart from the effects of gravity, air resistance, etc., etc. But on a short timescale, the linear
approximation is good enough.
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Diogenes the Cynic was said to have refuted Zeno’s argument by
standing up and walking across the room. Which is a pretty good argu-
ment that motion is actually possible; so something must be wrong with
Zeno’s argument. But where’s the mistake?

Break down the trip to the store numerically. First you go halfway.
Then you go half of the remaining distance, which is 1/4 of the total
distance, and you've got 1/4 left to go. So half of what’s left is 1/8, then
1/16, then 1/32. Your progress toward the store looks like this:

1/2+1/4+1/8+1/16+1/32 +. ..

If you add up ten terms of this sequence you get about 0.999. If you
add up twenty terms it’s more like 0.999999. In other words, you are
getting really, really, really close to the store. But no matter how many
terms you add, you never get to 1.

Zeno's paradox is much like another conundrum: is the repeating
decimal 0.99999. .. ... equal to 17

[ have seen people come nearly to blows over this question.” It’s hotly
disputed on websites ranging from World of Warcraft fan pages to Ayn
Rand forums. Our natural feeling about Zeno is “of course you eventu-
ally get your ice cream.” But in this case, intuition points the other way.
Most people, if you press them, say 0.9999 . . . doesn’t equal 1. It doesn’t
look like 1, that’s for sure. It looks smaller. But not much smaller! Like
Zeno'’s hungry ice cream lover, it gets closer and closer to its goal, but
never, it seems, quite makes it there.

And yet, math teachers everywhere, myself included, will tell them,
“No, it's 1.7

How do I convince someone to come over to my side? One good trick
is to argue as follows. Everyone knows that

0.33333..... = 1/3.
Multiply both sides by 3 and you’'ll see

* Admittedly, these particular people were teenagers at a summer math camp.
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0.99999,...=3/3=1.

If that doesn’t sway you, try multiplying 0.99999 . . . by 10, which is
just a matter of moving the decimal point one spot to the right.

10 x (0.99999 .. ) =9.99999 . ..

Now subtract the vexing decimal from both sides:

10 x (0.99999 .. ) -1 x(0.99999 .. )
=9.99999 ... -0.99999 . ..

The left-hand side of the equation is just 9 x (0.99999 . . ), because
10 times something minus that something is 9 times the atforementioned
thing. And over on the right-hand side, we have managed to cancel out
the terrible infinite decimal, and are left with a simple 9. So we end up
with

9x(0.99999...)=09.

If 9 times something is 9, that something just has to be ] —doesn’t it?

These arguments are often enough to win people over. But let’s be
honest: they lack something. They don't really address the anxious un-
certainty induced by the claim 0.99999 . . . = |; instead, they represent
a kind of algebraic intimidation. “You believe that 1/3 is 0.3 repeating—
don’t you? Don't you?”

Or worse: maybe you bought my argument based on multiplication
by 10. But how about this one? What is

l+2+4+8+16+ ...7

Here the “. . .” means “carry on the sum forever, adding twice as
much each time.” Surely such a sum must be infinite! But an argument
much like the apparently correct one concerning 0.9999 . . . seems to
suggest otherwise. Multiply the sum above by 2 and you get
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the classroom definitions, worked out a fair chunk of the theory by him-
self, referring to his infinitesimal quantities as “Brian numbers.”

Brian was not actually the first to get there. There’s a whole field of
mathematics that specializes in contemplating numbers of this kind,
called nonstandard analysis. The theory, developed by Abraham Robin-
son in the mid-twentieth century, finally made sense of the “evanescent
increments” that Berkeley found so ridiculous. The price you have to pay
(or, from another point of view, the reward you get to reap) is a profusion
of novel kinds of numbers; not only infinitely small ones, but infinitely
large ones, a huge spray of them in all shapes and sizes.’

As it happened, Brian was in luck—I had a colleague at Princeton,
Edward Nelson, who was an expert in nonstandard analysis. I set up a
meeting for the two of them so Brian could learn more about it. The
meeting, Ed told me later, didn’t go well. As soon as Ed made it clear that
infinitesimal quantities were not in fact going to be called Brian numbers,
Brian lost all interest.

(Moral lesson: people who go into mathematics for fame and glory
don’t stay in mathematics for long.)

But we're no closer to settling our dispute. What is 0.999 . . . | really?
[s it 1? Or is it some number infinitesimally less than 1, a crazy kind of
number that hadn’t even been discovered a hundred years ago?

The right answer is to unask the question. What is 0.999 . . . | really?
[t appears to refer to a kind of sum:

O+ .09+ .009 + .0009 + . ..

But what does that mean? That pesky ellipsis is the real problem.
There can be no controversy about what it means to add up two, or three,
or a hundred numbers. This is just mathematical notation for a physical
process we understand very well: take a hundred heaps of stuff, mush
them together, see how much you have. But infinitely many? That’s a dif-
ferent story. In the real world, you can never have infinitely many heaps.

* The surreal numbers, developed by John Conway, are especially charming and weird examples,
as their name suggests; they are strange hybrids between numbers and games of strategy and their
depths have not yet been fully explored. The book Winning Ways, by Berlekamp, Conway, and
Guy, is a good place to learn about these exotic numbers, and lots more about the rich mathemat-
ics of game playing besides.

Copvrighted material
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What'’s the numerical value of an infinite sum? It doesn’t have one—until
we give it one. That was the great innovation of Augustin-Louis Cauchy,
who introduced the notion of limit into calculus in the 1820s.

The British number theorist G. H. Hardy, in his 1949 book Divergent
Series, explains it best:

It does not occur to a modern mathematician that a collection of
mathematical symbols should have a “meaning” until one has been
assigned to it by definition. It was not a triviality even to the greatest
mathematicians of the eighteenth century. They had not the habit of
definition: it was not natural to them to say, in so many words, “by
X we mean Y.” . . . It is broadly true to say that mathematicians be-
fore Cauchy asked not, “How shall we define 1 =1 +1—=1+..." but
“Whatis1 =1+ 1—-1+...2" and that this habit of mind led them
into unnecessary perplexities and controversies which were often

really verbal.

This is not just loosey-goosey mathematical relativism. Just because
we can assign whatever meaning we like to a string of mathematical sym-
bols doesn’t mean we should. In math, as in life, there are good choices
and there are bad ones. In the mathematical context, the good choices are
the ones that settle unnecessary perplexities without creating new ones.

The sum .9 + .09 + .009 + . . . gets closer and closer to 1 the more
terms you add. And it never gets any farther away. No matter how tight
a cordon we draw around the number 1, the sum will eventually, after
some finite number of steps, penetrate it, and never leave. Under those
circumstances, Cauchy said, we should simply define the value of the
infinite sum to be 1. And then he worked very hard to prove that com-
mitting oneself to his definition didn’t cause horrible contradictions to
pop up elsewhere. By the time this labor was done, he’d constructed a
framework that made Newton’s calculus completely rigorous. When we
say a curve looks locally like a straight line at a certain angle, we now

* Like all mathematical breakthroughs, Cauchy’s theory of limits had precursors—for instance,
Cauchy's definition was very much in the spirit of d’Alembert’s bounds for the error terms of
binomial series. But there's no question that Cauchy was the turning point; after him, analysis is
modern.

Copvrighted material
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mean more or less this: as you zoom in tighter and tighter, the curve re-
sembles the given line more and more closely. In Cauchy’s formulation,
there’s no need to mention infinitely small numbers, or anything else
that would make a skeptic blanch.

Of course there is a cost. The reason the 0.999 . . . problem is ditti-
cult is that it brings our intuitions into conflict. We would like the sum
of an infinite series to play nicely with arithmetic manipulations like the
ones we carried out on the previous pages, and this seems to demand
that the sum equal 1. On the other hand, we would like each number to
be represented by a unique string of decimal digits, which conflicts with
the claim that the same number can be called either 1 or 0.999 . . ., as
we like. We can’t hold on to both of these desires at once; one must be
discarded. In Cauchy’s approach, which has amply proved its worth in
the two centuries since he invented it, it’s the uniqueness of the decimal
expansion that goes out the window. We're untroubled by the fact that
the English language sometimes uses two different strings of letters (i.e.,
two words) to refer synonymously to the same thing in the world; in the
same way, it’s not so bad that two different strings of digits can refer to
the same number.

As for Grandis 1 =1+ 1 =1 +...,itis one of the series outside the
reach of Cauchy’s theory: that is, one of the divergent series that formed
the subject of Hardy’s book. The Norwegian mathematician Niels Hen-
rik Abel, an early fan of Cauchy’s approach, wrote in 1828, “Divergent
series are the invention of the devil, and it is shameful to base on them
any demonstration whatsoever.” Hardy’s view, which is our view today,
is more forgiving; there are some divergent series to which we ought to
assign values and some to which we ought not, and some to which we
ought or ought not depending on the context in which the series arises.
Modern mathematicians would say that if we are to assign the Grandi
series a value, it should be 1/2, because, as it turns out, all interesting
theories of infinite sums either give it the value 1/2 or decline, like Cau-
chy’s theory, to give it any value at all.'

To write Cauchy’s definitions down precisely takes a bit more work.

* Ironic, considering Grandi’s original theological application of his divergent series!
t In the famous words of Lindsay Lohan, “The limit does not exist!”

Copyrighted materia
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This was especially true for Cauchy himself, who had not quite phrased
the ideas in their clean, modern form.” (In mathematics, you very seldom
get the clearest account of an idea from the person who invented it.) Cau-
chy was an unwavering conservative and a royalist, but in his mathemat-
ics he was proudly revolutionary and a scourge to academic authority.
Once he understood how to do things without the dangerous infinitesi-
mals, he unilaterally rewrote his syllabus at the Ecole Polytechnique to
reflect his new ideas. This enraged everyone around him: his mystitied
students, who had signed up for freshman calculus, not a seminar on
cutting-edge pure mathematics; his colleagues, who felt that the engi-
neering students at the Ecole had no need for Cauchy’s level of rigor; and
the administrators, whose commands to stick to the official course out-
line he completely ignored. The Ecole imposed a new curriculum from
above that emphasized the traditional infinitesimal approach to calcu-
lus, and placed note takers in Cauchy’s classroom to make sure he com-
plied. Cauchy did not comply. Cauchy was not interested in the needs of
engineers. Cauchy was interested in the truth.

It’s hard to defend Cauchy’s stance on pedagogical grounds. But I'm
sympathetic with him anyway. One of the great joys of mathematics is
the incontrovertible feeling that you've understood something the right
way, all the way down to the bottom; it’s a feeling I haven’t experienced
in any other sphere of mental life. And when you know how to do some-
thing the right way, it's hard—for some stubborn people, impossible—to
make yourself explain it the wrong way.

* If you've ever taken a math course that uses epsilons and deltas, you've seen the descendants of
Cauchy's formal definitions.

Copyrighted materia
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EVERYONE IS OBESE

he stand-up comic Eugene Mirman tells this joke about statis-
tics. He says he likes to tell people, “I read that 100% of Ameri-
cans were Asian.”

“But Eugene,” his confused companion protests, “you’re not Asian.”

And the punch line, delivered with magnificent self-assurance: “I
read that [ was!”

[ thought of Mirman’s joke when I encountered a paper in the journal
Obesity whose title posed the discomfiting question: “Will all Ameri-
cans become overweight or obese?” As if the rhetorical question weren’t
enough, the article supplies an answer: “Yes—by 2048.”

In 2048 T'll be seventy-seven years old, and I hope not to be over-
weight. But I read | would be!

The Obesity paper got plenty of press, as you might imagine. ABC
News warned of an “obesity apocalypse.” The Long Beach Press-Telegram
went with the simple headline “We're Getting Fatter.” The study’s re-
sults resonated with the latest manifestation of the fevered, ever-shifting
anxiety with which Americans have always contemplated our national
moral status. Before I was born, boys grew long hair and thus we were
bound to get whipped by the Communists. When | was a kid, we played
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extra $28 in tuition. If you can raise the average SAT score of your in-
coming first-years by 50 points on average, you can charge $1,400 more
in tuition. (Or, from the parents’ point of view, your kid improving 100
points is going to cost you an extra $2,800 a year. That test-prep course
was more expensive than you thought!)

Linear regression is a marvelous tool, versatile, scalable, and as easy
to execute as clicking a button on your spreadsheet. You can use it for
data sets involving two variables, like the ones I've drawn here, but it
works just as well for three variables, or a thousand. Whenever you want
to understand which variables drive which other variables, and in which
direction, it’s the first thing you reach for. And it works on any data set
at all.

That’s a weakness as well as a strength. You can do linear regression
without thinking about whether the phenomenon you're modeling is ac-
tually close to linear. But you shouldn’t. | said linear regression was like a
screwdriver, and that’s true; but in another sense, it’s more like a table
saw. If you use it without paying careful attention to what you're doing,
the results can be gruesome.
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Take, for instance, the missile we fired off in the last chapter. Perhaps
you were not the one who fired the missile at all. Perhaps you are, in-
stead, the missile’s intended recipient. As such, you have a keen interest
in analyzing the missile’s path as accurately as possible.

Maybe you have plotted the vertical position of the missile at five
points in time, and it looks like this:

Now you do a quick linear regression, and you get great results. There’s
a line that passes almost exactly through the points you plotted:

(This is where your hand starts to creep, unthinkingly, toward the
table saw’s keening blade.)
Your line gives a very precise model for the missile’s motion: for

every minute that passes, the missile increases its altitude by some fixed
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amount: say, 400 meters. After an hour it’s 24 km above the earth’s sur-
face. When does it come down? It never comes down! An upward slop-
ing line just keeps on sloping upward. That’s what lines do.

(Blood, gristle, screams.)

Not every curve is a line. And the curve of a missile’s flight is most
emphatically not a line; it’s a parabola. Just like Archimedes’s circle, it
looks like a line close up; and that’s why the linear regression will do a
great job telling you where the missile is five seconds after the last time
you tracked it. But an hour later? Forget it. Your model says the missile
is in the lower stratosphere, when, in fact, it is probably approaching
your house.

The most vivid warning I know against thoughtless linear extrapola-
tion was set down not by a statistician but by Mark Twain, in Life on the
Mississippi:

The Mississippi between Cairo and New Orleans was twelve hun-
dred and fifteen miles long one hundred and seventy-six years ago.
It was eleven hundred and eighty after the cut-off of 1722, It was
one thousand and forty after the American Bend cut-oftf. It has lost
sixty-seven miles since. Consequently its length is only nine hun-
dred and seventy-three miles at present. . . . In the space of one
hundred and seventy-six vears the Lower Mississippi has shortened
itself two hundred and forty-two miles. This is an average of a trifle
over one mile and a third per year. Therefore, any calm person, who
is not blind or idiotic, can see that in the Old Oolitic Silurian Pe-
riod, just a million years ago next November, the Lower Mississippi
River was upward of one million three hundred thousand miles
long, and stuck out over the Gulf of Mexico like a fishing-rod. And
by the same token any person can see that seven hundred and forty-
two years from now the Lower Mississippi will be only a mile and

three-quarters long, and Cairo and New Orleans will have joined

their streets together, and be plodding comfortably along under a
single mayor and a mutual board of aldermen. There is something
fascinating about science. One gets such wholesale returns of con-

jecture out of such a trifling investment of fact.
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ASIDE: HOW TO GET PARTIAL CREDIT
ON MY CALCULUS EXAM

The methods of calculus are a lot like linear regression: they'’re purely
mechanical, your calculator can carry them out, and it is very dangerous
to use them inattentively. On a calculus exam you might be asked to
compute the weight of water left in a jug after you punch some kind
of hole and let some kind of flow take place for some amount of time,
blah blah blah. It’s easy to make arithmetic mistakes when doing a prob-
lem like this under time pressure. And sometimes that leads to a stu-
dent arriving at a ridiculous result, like a jug of water whose weight is
—4 grams.

If a student arrives at —4 grams and writes, in a desperate, hurried
hand, “I screwed up somewhere, but | can’t find my mistake,” 1 give
them half credit.

[f they just write “~4g” at the bottom of the page and circle it, they
get zero—even if the entire derivation was correct apart from a single
misplaced digit somewhere halfway down the page.

Working an integral or performing a linear regression is something a
computer can do quite effectively. Understanding whether the result
makes sense—or deciding whether the method is the right one to use in
the first place—requires a guiding human hand. When we teach math-
ematics we are supposed to be explaining how to be that guide. A math
course that fails to do so is essentially training the student to be a very
slow, buggy version of Microsoft Excel.

And let’s be frank: that really is what many of our math courses are
doing. To make a long, contentious story short (but still contentious), the
teaching of mathematics to children has for decades now been the arena
of the so-called math wars. On one side, you have teachers who favor an
emphasis on memorization, fluency, traditional algorithms, and exact
answers; on the other, teachers who think math teaching should be about
learning meaning, developing ways of thinking, guided discovery, and
approximation. Sometimes the first approach is called traditional and
the second reform, although the supposedly nontraditional discovery ap-
proach has been around in some form for decades, and whether “reform”



