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They say mathematics is a glorious garden. | know | would
certainly lose my way in it without your guidance. Thank you
for walking us through the most beautiful entrance pathway.

From a student's letter to the author
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PROLOGUE

Here is a recipe for clotted cream.

Ingredients
Cream
Method

1 Pour the cream into a rice cooker.

2 Leave it on ‘warm’ with the lid slightly open, for about 8 hours.
3 Cool it in the fridge for about 8 hours.
4

Scoop the top part off: that's the clotted cream.

What on earth does this have to do with maths?

Maths myths

Maths is all about numbers.

You might think that rice cookers are for cooking rice. This is
true, but this same piece of equipment can be used for other
things as well: making clotted cream, cooking vegetables,



steaming a chicken. Likewise, maths is about numbers, but it's
about many other things as well.

Maths is all about getting the right answer.

Cooking is about ways of putting ingredients together to make
delicious food. Sometimes it's more about the method than the
ingredients, just as in the recipe for clotted cream, which only
has one ingredient — the entire recipe is just a method. Maths
is about ways of putting ideas together, to make exciting new
ideas. And sometimes it's more about the method than the
‘ingredients’.

Maths is all either right or wrong.

Cooking can go wrong — your custard can curdle, your soufflé
can collapse, your chicken can be undercooked and give
everyone food poisoning. But even if it doesn’t poison you,
some food tastes better than other food. And sometimes when
cooking goes ‘wrong’ you have actually accidentally invented a
delicious new recipe. Fallen chocolate soufflé is deliciously
dark and squidgy. If you forget to melt the chocolate for your
cookies, you get chocolate chip cookies. Maths is like this too.
At school if you write 10 + 4 = 2 you will be told that is wrong,
but actually that's correct in some circumstances, such as
telling the time — four hours later than 10 o'clock is indeed 2
o’clock. The world of maths is more weird and wonderful than
some people want to tell you...

You're a mathematician? You must be really clever.

Much as | like the idea that | am very clever, this popular myth
shows that people think maths is hard. The little-understood
truth is that the aim of maths is to make things easier. Herein
lies the problem — if you need to make things easier it gives
the impression that they were hard in the first place. Maths is
hard, but it makes hard things easier. In fact, since maths is a
hard thing, maths also makes maths easier.

Many people are either afraid of maths, or baffled by it, or



both. Or they were completely turned off it by their lessons at
school. | understand this — | was completely turned off sport by
my lessons at school, and have never really recovered. | was
so bad at sport at school, my teachers were incredulous that
anybody so bad at sport could exist. And yet I'm quite fit now,
and have even run the New York Marathon. At least | now
appreciate physical exercise, but | still have a horror of any
kind of team sport.

How can you do research in maths? You can'’t just discover
a new number.

This book is my answer to that question. It's hard to answer it
quickly at a cocktail party, without sounding trite, or taking up
too much of someone’s time, or shocking the gathered
company. Yes, one way to shock people at a polite party is to
talk about maths.

It's true, you can’t just discover a new number. So what
can we discover that's new in maths? In order to explain what
this ‘new maths’ could possibly be about, | need to clear up
some misunderstandings about what maths is in the first
place. Indeed, not only is maths not just about numbers, but
the branch of maths I’'m going to describe is actually not about
numbers at all. It's called category theory and it can be
thought of as the ‘mathematics of mathematics’. It's about
relationships, contexts, processes, principles, structures,
cakes, custard.

Yes, even custard. Because mathematics is about drawing
analogies, and I'm going to be drawing analogies with all sorts
of things to explain how maths works. Including custard, cake,
pie, pastry, doughnuts, bagels, mayonnaise, yoghurt, lasagne,
sushi.

Whatever you think maths is ... let go of it now.
This is going to be different.



part one

MATHEMATICS



1 WHAT IS MATHS?

Gluten-free chocolate brownies

Ingredients

115 g butter

125 g dark chocolate
150 g caster sugar
80 g potato flour

2 medium eggs

Method

Melt the butter and chocolate, stir together and allow to cool a little.
Whisk the eggs and the sugar together until fluffy.

Beat the chocolate into the egg mixture slowly.

Fold in the potato flour.
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Bake in very small individual cases at 180°C for about 10 minutes,
or until they’re as cooked as you want them.

Maths, like recipes, has both ingredients and method. And
just as a recipe would be a bit useless if it omitted the
method, we can’t understand what maths is unless we talk
about the way it is done, not just the things it studies.
Incidentally the method in the above recipe is quite important —
these don’t cook very well in a large tray. In maths the method



is perhaps even more important than the ingredients. Maths
probably isn’t whatever you studied at school in lessons called
‘maths’. Yet somehow | always knew that maths was more
than what we did at school. So what is maths?

Recipe books

What if we organised recipes by equipment?

Cooking often proceeds a bit like this: you decide what you
want to cook, you buy the ingredients, and then you cook it.
Sometimes it might work the other way round: you go
wandering around the shops, or maybe a market. You see
what ingredients look good, and you feel inspired by them to
conjure up your meal. Perhaps there’s some particularly fresh
fish, or a type of mushroom you’ve never seen before, and you
go home and look up what to do with it afterwards.

Occasionally something completely different happens: you
buy a new piece of equipment, and suddenly you want to try
making all sorts of different things with that equipment.
Perhaps you bought a blender, and suddenly you make soup,
smoothies, ice cream. You try making mashed potatoes in it,
and it goes horribly wrong (it looks like glue). Maybe you
bought a slow cooker. Or a steamer. Or a rice cooker.
Perhaps you learn a new technique, like separating eggs or
clarifying butter, and suddenly you want to make as many
things as possible involving your new technique.

So we might approach cooking in two ways, and one
seems much more practical than the other. Most recipe books
are divided up according to parts of the meal rather than by
techniques. There’s a chapter on starters, a chapter on soup,
a chapter on fish, a chapter on meat, a chapter on dessert,
and so on. There might be a whole chapter on an ingredient,
say a chapter on chocolate recipes or vegetable recipes.
Sometimes there are whole chapters on particular meals, say
a chapter on Christmas lunch. But it would be quite odd to
have a chapter on ‘recipes that use a rubber spatula’ or
‘recipes that use a balloon whisk’. Having said that, kitchen



gadgets often come with handy books of recipes you can
make with your new equipment. A blender will come with
blender recipes; likewise a slow cooker or an ice cream
maker.

Something similar is true of subjects of research. Usually
when you say what a subject is, you describe it according to
the thing that you're studying. Maybe you study birds, or
plants, or food, or cooking, or how to cut hair, or what
happened in the past, or how society works. Once you've
decided what you’re going to study, you learn the techniques
for studying it, or you invent new techniques for studying it,
just like learning how to whisk egg whites or clarify butter.

In maths, however, the things we study are also
determined by the techniques we use. This is similar to buying
a blender and then going round seeing what you can make
with it. This is more or less backwards from other subjects.
Usually the techniques we use are determined by the things
we’re studying; usually we decide what we want for dinner,
and then get out the equipment for making it. But when we're
really excited about our new blender, we go round trying to
make all our dinners in it for a while. (At least, I've seen people
do this.)

It's a bit of a chicken-and-egg question, but | am going to
argue that maths is defined by the techniques it uses to study
things, and that the things it studies are determined by those
techniques.

Cubism

When the style affects the choice of content

Characterising maths by the techniques it uses is similar to
defining styles of art, like cubism or pointillism or
impressionism, where the genre is defined by the techniques
rather than the subject matter. Or ballet and opera, where the
art form is defined by the methods, and the subject matter is
duly restricted. Ballet is very powerful at expressing emotion,
but not so good at expressing dialogue, or making demands



for political change. Cubism is not that effective for depicting
insects. Symphonies are good at expressing tragedy and joy,
but not very good at saying ‘Please pass the salt.’

In maths the technique we use is logic. We only want to
use sheer logical reasoning. Not experiments, not physical
evidence, not blind faith or hope or democracy or violence.
Just logic. So what are the things we study? We study
anything that obeys the rules of logic.

Mathematics is the study of anything that obeys the
rules of logic, using the rules of logic.

| will admit immediately that this is a somewhat simplistic
definition. But | hope that after reading some more you'll see
why this is accurate as far as it goes, not as circular as it
sounds at first, and just the sort of thing a category theorist
would say.

The prime minister

Characterising something by what it does

Imagine if someone asked you ‘Who's the prime minister?’
and you answered ‘He’s the head of the government.” This
would be correct but annoying, and not really answering the
right question: you’ve characterised the prime minister without
telling us who it is. Likewise, my ‘definition’ of mathematics
has characterised maths rather than telling you what it is. This
is a little unhelpful, or at least incomplete — but it's just the
start.

Instead of describing what maths is like, can we say what
maths is? What does maths actually study? It definitely studies
numbers, but also other things like shapes, graphs and
patterns, and then things that you can’t see — logical ideas.
And more than that: things we don’t even know about yet. One
of the reasons maths keeps growing is that once you have a
technique, you can always find more things to study with it,
and then you can find more techniques to use to study those



things, and then you can find more things to study with the
new techniques, and so on, a bit like chickens laying eggs that
hatch chickens that lay eggs that hatch chickens...

Mountains

Conquering one enables you to see the higher ones

Do you know that feeling of climbing to the top of a hill, only to
find that you can now see all the higher hills beyond it? Maths
is like that too. The more it progresses, the more things it
comes up with to study. There are, broadly, two ways this can
happen.

First there's the process of ‘abstraction’. We work out how
to think logically about something that logic otherwise couldn’t
handle. For example, you previously only made rice in your
rice cooker, and then you work out that you can use it to make
cake, it's just a bit different from cake made the normal way in
an oven. We take something that wasn’t really maths before,
and look at it differently to turn it into maths. This is the reason
that x's and y’s start appearing — we start by thinking about
numbers, but then realise that the things we do with numbers
can be done with other things as well. This will be the subject
of the next chapter.

Secondly there’s the process of ‘generalisation’. we work
out how to build more complicated things out of the things
we've already understood. This is like making a cake in your
blender, and making the icing in your blender, and then piling
it all up." In maths this is how we get things like polynomials
and matrices, complicated shapes, four-dimensional space,
and so on, out of simpler things like numbers, triangles and
our everyday world. We'll look into this in Chapter 5.

These two processes, abstraction and generalisation, will
be the subject of the next few chapters, but first | want to draw
your attention to something weird and wonderful about how
maths does these two things.



Birds

They are not the same as the study of birds

Imagine for a second that you study birds. You study their
behaviour, what they eat, how they mate, how they look after
their young, how they digest food, and so on. However, you
will never be able to build a new bird out of simpler birds — that
just isn’t how birds are made. So you can’t do generalisation,
at least not in the way that maths does it.

Another thing you can’t do is take something that isn’'t a
bird, and miraculously turn it into a bird. That also isn’t how
birds are made. So you can’t do abstraction either. Sometimes
we realise we've made a mistake of classification — for
example the brontosaurus ‘became’ a form of apatosaurus.
However, we didn’t turn the brontosaurus into an apatosaurus
— we merely realised it had been one all along. We're not
magicians, so we can’'t change something into something it
isn’t. But in maths we can, because maths studies ideas of
things, rather than real things, so all we have to do to change
the thing we're studying is to change the idea in our head.
Often, this means changing the way we think about
something, changing our point of view or changing how we
express it.

A mathematical example is knots.
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In the eighteenth and nineteenth centuries, Vandermonde,
Gauss and others worked out how to think of knots



mathematically, so that they could be studied using the rules
of logic. The idea is to imagine sticking together the two ends
of the piece of string so that it has become a closed loop. This
makes the knots impossible to make without glue, but much
easier to reason with mathematically. Each one can be
expressed as a circle that has been mapped to three-
dimensional space. There are many techniques for studying
this kind of thing in the field of topology, which we’ll come back
to later. We can then deduce things not only about real knots
in string, but also about the apparently impossible ones that
arise in nature in molecular structures.

Geometrical shapes are another, much older example of
this process of turning something from the ‘real’ world into
something in the ‘mathematical’ world.

We can think of maths as developing in the following
stages:

It started as the study of numbers.

Techniques were developed to study those numbers.
People started realising that those techniques could be used
to study other things.

People went round looking for other things that could be
studied like this.

Actually there’'s a step 0, before the study of numbers:
someone had to come up with the idea of numbers in the first
place. We think of them as the most basic things you can
study in maths, but there was a time before numbers. Perhaps
the invention of numbers was the first ever process of
abstraction.

The story I'm going to tell is about abstract mathematics.
I'm going to argue that its power and beauty lie not in the
answers it provides or the problems it solves, but in the light
that it sheds. That light enables us to see clearly, and that is
the first step to understanding the world around us.

Footnote



' Mathematical generalisation isn’t the same as the kind where you go round
making sweeping statements about things, but we’ll come to that later.



2 ABSTRACTION

Mayonnaise or hollandaise sauce

Ingredients

2 egg yolks
300 ml olive oil
Seasoning

Method

1 Whisk the egg yolks and seasoning using a hand whisk or
immersion blender.

2 Dirip the olive oil in very slowly, while continuing to whisk. For
hollandaise sauce, use 100 g melted butter instead of the olive oil.

t some level mayonnaise and hollandaise sauce are the

same — they use the same method, but with a different
type of fat incorporated into the egg yolk. In both cases, the
amazing near-magic properties of egg yolks create something
rich and unctuous. It looks so much like magic, | never tire of
watching it happen.

The similarity between mayonnaise and hollandaise sauce
is the sort of thing that mathematics goes round looking for —
situations where things are somehow the same apart from
some small detail. This is a way of saving effort, so that you



can understand how to do both things at once. Books might
tell you that hollandaise sauce needs to be done differently,
but | ignore them to make my life simpler. Maths is also there
to make things simpler, by finding things that look the same if
you ignore some small details.

Pie

Abstractions as blueprints

Cottage pie, shepherd’s pie and fisherman’s pie are all more
or less the same — the only difference is the filling that is sitting
underneath the mashed potato topping. Crumble is also very
similar — you don’t really need a different recipe for different
types of crumble, you just need to know how to make the
crumble part. Then you put the fruit of your choice in a dish,
and put the crumble on top, and bake it.

Another favourite of mine is upside-down cake. You put the
fruit in the bottom of the cake tin, pour the cake mix on top,
and after baking it you turn it out upside down so that the fruit
is on top. For extra effect you can put melted butter and brown
sugar on the bottom of the cake tin first, to caramelise the fruit
a bit. Of course, this works better with some fruit than others:
bananas, apples, pears and plums work well. Grapes less
well. Watermelon would be terrible. The same is true for
crumble. Watermelon crumble? Probably not.

Savoury tarts and quiches also follow a general pattern.
You bake an empy pastry case, put in some filling of your
choice, and then top it up with a mixture of egg and milk or
cream, before baking it again. The filling could be bacon and
cheese, or fish, or vegetables — whatever you feel like.

In all these cases the ‘recipe’ is not a full recipe, but a
blueprint. You can insert your own choice of fruit, or meat, or
fillings to make your own variations, within reason.

This is also how maths works. The idea of maths is to look
for similarities between things so that you only need one
‘recipe’ for many different situations. The key is that when you
ignore some details, the situations become easier to



understand, and you can fill in the variables later. This is the
process of abstraction.

As with the watermelon crumble, once you've made the
abstract ‘recipe’ you will find that you won'’t be able to apply it
to everything. But you are at least in a position to try, and
sometimes surprising things turn out to work in the same
recipe.

Think about the symmetry of an equilateral triangle:

\

There’s reflectional symmetry, and rotational symmetry. How can we
describe the different symmetries without cutting out the triangle and
folding it up or waving it around?

One way is that we could label the corners 1, 2 and 3,

2
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and then just talk about how the numbers get swapped around. For
example, if we reflect the triangle in a vertical line, we will swap the
numbers 1 and 3. Whereas if we rotate the triangle 120° clockwise we
will send 1 to where 2 was, 2 to where 3 was, and 3 to where 1 was.

You can try checking that the six symmetries of the triangle
correspond exactly to the six different ways of shuffling the numbers 1,
2 and 3. There are three lines of symmetry, and they correspond to
swapping 1 and 3, or 1 and 2, or 2 and 3. There are three types of
rotational symmetry: 120° clockwise, 240° clockwise, and the ‘trivial’
one where nothing moves.

This shows that the symmetry of an equilateral triangle is abstractly
the same as the permutations of the numbers 1, 2, 3, and the two
situations can be studied at the same time.




Kitchen clutter

Abstraction as tidying away the things you don’t need

Abstraction is like preparing to cook something, and putting
away the equipment and ingredients that you don’t need for
the recipe, so that your kitchen is less cluttered. It is the
process of putting away the ideas you don't need for the
present purposes, so that your brain is less cluttered.

Are you better at this in your kitchen, or in your brain? (|
am definitely better at it in my brain.) Abstraction is the
important first step of doing mathematics. It's also a step that
can make you feel uneasy because you're stepping away from
reality a little bit. | never put my food processor away because
it's such a hassle to move it, and | want to know that | can use
it any minute now without going through the rigmarole of
getting it out of the cupboard. You might feel like that about
abstraction in the brain as well.

Try the following problem:

I buy two stamps for 36p each. How much does it cost?

When children do this sort of thing at primary school it
sometimes get called a ‘word problem’, because it has been
stated in words, and they’re told that the first step in solving
this ‘word problem’ is to turn it into numbers and symbols:

36x2=7

This is a process of abstraction. We have thrown away, or
ignored, the fact that the thing we were buying was stamps,
because it didn’t make any difference to the answer. It could
have been apples, bananas, monkeys, ..., the sum would still
be the same, and so the answer would still be the same: 72p.

What about this one:

My father is three times as old as | am now but in ten
years’ time he will be twice as old as me. How old am 1?



Or this one:

I have a recipe for icing the top and sides of a 6-inch
cake. How much icing do | need for the top and sides
of an 8-inch cake?

For the question about stamps you probably didn’t need to
write down a sum, because the answer was immediately
obvious to you. However, for these last two questions,
perhaps you would need to perform some abstraction to work
out the answer, where you throw away the fact that you're
talking about your father, or a cake and icing, and write down
some sums, with numbers and symbols. We'll see what sums
we get from these word problems a bit later in this chapter.

Sweets

How things that are too real don’t obey mathematics

If you've ever tried teaching arithmetic to small children, you
might have come up with the following problem. You try and
get them to think about a real-life situation such as:

If grandma gives you five sweets and grandpa gives you
five sweets, how many sweets will you have?

And the child answers: ‘None, because I'll eat them all!’

The trouble here is that sweets do not obey the rules of
logic, so using maths to study them doesn’t quite work. Can
we force sweets to obey logic? We could impose an extra rule
on the situation by adding ‘... and you’re not allowed to eat the
sweets’. If you’re not allowed to eat them, what’s the point of
them being sweets? We could treat the sweets as just things
rather than sweets. We lose some resemblance to reality, but
we gain scope and with it efficiency. The point of numbers is
that we can reason about ‘things’ without having to change the
reasoning depending on what ‘thing’ we are thinking about.
Once we know that 2 + 2 = 4 we know that two things and
another two things make four things, whether they are sweets,



monkeys, houses, or anything else. That is the process of
abstraction: going from sweets, monkeys, houses, or
whatever, to numbers.

Numbers are so fundamental, it's difficult to imagine life
without them, and difficult to imagine the process of inventing
them. We don’t even notice that we’re making a leap of
abstraction when we count things. It's much more noticeable if
you watch small children struggling to do it, because they're
not yet used to making that leap.

Eeny meeny miny moe

Numbers as an abstraction

| remember a wonderfully feisty mother at a primary school |
was helping at. She also helped there, and remarked on how
frustrating it was when other mothers competitively declared
that their child could count up to 20 or 30. ‘My son can count
up to three,” she said defiantly. ‘But he knows what three is.’

And she had a point.

When a child first ‘learns to count to ten’ they aren't really
doing more than learning to recite a little poem, like ‘Incy wincy
spider climbed up the spout...’ It just so happens that the little
‘poem’ goes:

‘One, two, three, four, five, six, ...

Then they learn that this has something to do with pointing
at things, so they start pointing while reciting the ‘poem’, a bit
haphazardly.

Next they learn that they're supposed to point at one thing
per word in the poem, but they have trouble making sure they
have only pointed at each thing once, so they will get rather
variable answers if you ask them ‘How many ducks are in this
picture?’ Or they might latch on to a particular number — say,
six — and somehow manage to count everything as being six,
no matter how many ducks there really are.

Finally they’ll get the idea that they’re supposed to match



get to the heart, you have to strip away clothes and skin and
flesh and bone.

Road signs

Abstraction as the study of ideal versions of things

Road signs are a form of abstraction. They don’t precisely
depict what is going on in the road, but represent some
idealised form of it, where just the essence is captured. Not
every humpbacked bridge looks exactly like this:’

but this captures the essence of humpbacked-bridge-ness.
Similarly, not all children crossing the road look exactly like
this:

Nevertheless the benefits of this system are clear. It's much



quicker to take in a symbol than read some words while you
are driving. Also it's much easier for foreigners to understand.
The disadvantage is that when you first start driving you have
to learn what all these funny symbols mean. Some of them, for
example

are much closer to reality than others, for example

This ‘No Entry’ sign is entirely abstract: it doesn’t look like the
thing it is representing at all. (What does ‘No Entry’ look like?)
But it's also more important — you will probably encounter
more of those in your driving life than the one warning you
there might be deer crossing the road.

One side effect of the abstraction of maths is that a variety
of funny symbols get used as well, for the same sorts of
reasons: once you know what they mean, the symbols are
much quicker to take in, and you can reserve your
mathematical brain power for the more complicated parts of
the maths you’re supposed to be focusing on. It also makes



the maths easier to understand across different languages —
it's surprisingly easy to read a maths book in a language you
don’t know.

The most basic ‘funny symbols’ used in maths are the ones for normal
arithmetic: +, —, x, +, =. Once you're comfortable with these symbols,
it's much quicker and easier to read

2+42=4

than ‘two plus two equals four’. As maths gets more and more
complicated, the symbols get more and more complicated as well, with
things like

I’'m not going to explain what the more complex symbols mean
here — this is just to give an idea of some of the symbols that
get used. As with road signs, it makes maths look a bit
incomprehensible at first, but it makes it easier in the long run.

Google Maps

The difficulty of relating the map to the reality

What is difficult about reading a map? It's not the actual
reading of the map that's hard, but matching that up with
reality in order to put the map to practical use. A map is an
abstraction of reality. It depicts certain aspects of reality that
are supposed to help you find your way around. The difficulty,
in practice, is in translating between the abstraction and the
reality. That is, making the link between the map and the place
you're actually wandering around.

Google Maps gives us a brilliant way of moving from the
abstract to the concrete, via Google Street View and GPS.
Often the hardest part about using a map is working out



where you are in the first place, and
which way you’re facing.

Those are the crucial pivot points between the map and the
reality. GPS has sorted out the business of working out where
you are and Google Street View has sorted out the business
of which way you're facing, by giving us a very realistic
representation of reality in the form of an actual picture of it.

Maths has to go through these steps as well. First you
have to turn the reality into an abstraction. Then you do your
logical reasoning in the abstract world. Then finally you have
to turn that back into reality again. Different people are good at
different parts of this process. But really the key part is being
able to move back and forth between the abstract and the real.
Still, someone had to draw the map.

For example, suppose you have a recipe for an 8-inch
square cake, but you want to make it round instead. What size
of round cake tin should you use? First you perform an
abstraction to turn this ‘real-life’ question into a piece of maths.
We want to find a circle whose area is the same as the area of
the given square, which is 82 = 64. Now we have to remember
that the area of a circle is 1172, where r is the radius. If we write
d for the diameter of the circle (because cake tins are
measured by their diameter not their radius), this means we

need
G)
| - | = 64.
.2

Now we actually do the logical reasoning, manipulating the
algebra to find out what the diameter d needs to be. This is the
only part that's actually maths.
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Finally we take the context into account and turn this back
into reality. First of all, we don’t want the negative answer
because we're talking about cake tins here, so the answer
needs to be a positive number. Secondly, we don’t need all
those decimal places — cake tins are usually only measured to
the nearest inch. So the answer in reality is that we need a 9-
inch round tin for our cake.

The key in maths, and with maps, is to find the most
appropriate level of abstraction for the given moment. Do you
need little pictures of all the buildings on a street when you’re
looking at a street map? Do you need to know where there is
grass and where there isn’'t? It depends what you're using the
map for, and you’ll need different maps for different situations.
If you're driving, then you’ll want to know which streets are
one-way, but that's not very relevant if you’re on foot. The
same is true of maths. There are different levels of abstraction
available for different situations.

What is the number 1? Here are two different ways of answering that
question, at different levels of abstraction.

First answer: 1 is the basic building block of counting.

Second answer: 1 is the only number with the property that
multiplying by it does nothing.

Each of these answers is useful in different contexts. The first is for
when we are most interested in adding numbers up; in mathematics this
characterises numbers as something called a ‘group’ — a world in which
we can do addition. The second is for when we are also interested in
multiplying; this characterises numbers as something called a ‘ring’ — a



graph. Some of the squares will only be partial squares, so you will only
get a truly accurate answer if you use infinitesimally small squares.
Rigorous calculus makes this argument into something logically
watertight, but baffles people because it doesn’t pin down an answer in
the way that people are expecting. Instead it says something like:
there’s no such thing as graph paper with infinitesimally small squares,
S0 we use progressively smaller and smaller squares and observe that
the answer gets closer and closer to % as the squares get smaller. Then

we prove that no matter how close we wanted it to get to £, there is a
size of square that would get us that close.

A level at which advanced mathematicians sometimes reach
their abstract limit is category theory. They react in much the
same way that teenagers do when they meet x's and y's —
they say they don’'t see the point, and resist any further
abstraction. | am always reminded of Prof. John Baez, who
said the following during an argument about abstraction on the
worldwide ‘Category Theory emailing list’:

If you do not like abstraction, why are you in
mathematics? Perhaps you should be in finance,
where all the numbers have dollar signs in front of
them.

| haven’'t yet met my abstract limit, but | do remember
various key moments in my life where | was pushing a
boundary and felt | had to make a conscious effort to get over
the next bar.

From numbers to pictures

My mother taught me how you can draw a graph of x?, like
this:



| distinctly remember my bafflement at the fact that you could
turn the process of squaring numbers into a picture of a curve.
| sat in our big green armchair at home thinking and thinking
about this until my brain felt like it was popping out of my
head. And in my memory this is the exact same feeling I've
had every time I've thought about a difficult mathematical
concept in my research.

From numbers to letters
| was perfectly comfortable solving equations with x’s, say

2x+3=7,

| knew this would turn into
2x=7—3
=4
4

X ==
2
2.

But then | met one with a's, b's and c¢'s instead of the
numbers, something like

ax+b=c

and | vividly remember feeling completely at a loss as to how
on earth to find out what x was in this case, without knowing a,
b and c. | think | knew that | should start by subtracting b from



both sides, but | had no idea what that would give on the right-
hand side. | do remember that when someone explained to me
that it would be ¢ — b | felt extremely stupid. Why couldn’t |
have worked that out myself? The answer is then

c—b

¥ =
i

Well, as | say to my students — feeling stupid for not having
understood something before just shows that you are now
cleverer than you were then.

From numbers to relationships

This is the last big leap of abstraction | remember having to
make, and it was when | was first learning category theory. For
the sake of completeness and perhaps amusement value, Ill
include here what it was: it was the idea that a one-object
category is exactly a monoid. Laugh as much as you like;
there it is. | sat for days thinking about it and feeling like my
brain was popping out of my head, just like when | was a child
and thinking about a graph for the first time in my life. And the
fact that a one-object category is exactly a monoid is now so
obvious to me that | know | am definitely cleverer now than |
was then. It's a bit early to explain this example now, but Il
come back to it in the second part of the book.

We will see that category theory studies relationships between objects.
A category is a mathematical context for studying these relationships.
A monoid is a mathematical context for studying something much more
concrete: multiplication of things like numbers. The fact that a ‘one-
object category is a monoid’ corresponds to viewing numbers as
relationships between the world and itself. This sounds quite strange,
but is remarkably powerful.

The goose that laid the golden eggs

Making machines for solving problems



It would be lovely to find a way of making golden eggs. But it
would be even better to find a way of making a goose that lays
golden eggs: a goose-that-lays-golden-eggs machine. But
wouldn’t it be even better to make a machine that makes these
machines? A ‘goose-that-lays-golden-eggs machine’ machine.
This is a form of abstraction. It’s the idea of building a machine
to do something, rather than directly doing the thing yourself.
So really it's just a form of conservation of energy, or of
reserving human brain power for the things machines can't do.

In order to build a machine to do something rather than
doing it yourself, you have to understand that thing at a
different level. It's like giving someone directions. When you
walk somewhere you know well, you don’t really think about
exactly what streets you’re walking on, or which way you're
turning and when. You probably go somewhat instinctively.
But when you're telling someone else how to get there you
have to analyse how you do it more carefully, in order to
explain it. You might have noticed that if you ask a local
person where a certain street is, they will often not be very
sure, as you don't really think about street names when you're
wandering around your own town.

Something similar happens when learning a language.
When you learn it yourself as your mother tongue, you don't
really think about how it works — you pick it up from the adults
around you instinctively. Then when you're an adult and a
foreigner asks you to explain some aspect of the language
that is confusing them, you have to go back and analyse how
you speak in a completely different way.

If you're building a machine to make a cake, you'll have to
analyse each step rather carefully in order to work out how to
get a machine to do it. Even cracking an egg would require
careful thought — how do we know how hard to tap the egg
against the bow!?

The previous example of solving equations is an example of this type of
machine. We start by understanding how to solve equations such as

2x+3=7.



Then we make a ‘machine’ for solving all such equations, that is, we
solve the equation

ax+b=c
because then a, b and ¢ can be any numbers at all.
We can then try it for quadratic equations
ax’+bx+c=0

and we learn that the ‘machine’ for solving these gives the famous
solution

bt vb? —dac
= R :

As a further level of building a machine that makes these machines,
there is the fundamental theorem of algebra which tells us that every
polynomial equation has at least one solution, as long as we allow
complex numbers, which we’ll come to later.

Cake cutting

An example of abstraction

| remember the first GCSE maths investigation | had to do at
school. It was about cutting a cake into as many pieces as
possible while making a fixed number of cuts. Obviously if you
can only make one cut (in a straight line) you'll only get two
pieces of cake, and if you can only make two cuts, you'll get at
most four pieces. But what about three cuts? Four cuts? And
so on?

The best answer for three cuts is: seven pieces of cake,
like this.



