INEUL
QW-N

wovive =7

Xr\f

—— e

NpLvE =5 = | ',(_)

\1\




HOW TO DESIGN PROGRAMS

AN INTRODUCTION TO PROGRAMMING AND COMPUTING

SECOND EDITION

Matthias Felleisen
Robert Bruce Findler
Matthew Flatt

Shriram Krishnamurthi

The MIT Press
Cambridge, Massachusetts
London, England



©2018 Massachusetts Institute of Technology
[llustrations ©2000 Torrey Butzer

This work is licensed to the public under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 license (international):
http://creativecommons.org/licenses/by-nc-nd/4.0/

All rights reserved except as licensed pursuant to the Creative Commons
license identified above. Any reproduction or other use not licensed as
above, by any electronic or mechanical means (including but not limited to
photocopying, public distribution, online display, and digital information
storage and retrieval) requires permission in writing from the publisher.

This book was set in Scribble and LaTeX by the authors.
Library of Congress Cataloging-in-Publication Data

Names: Felleisen, Matthias.

Title: How to design programs : an introduction to programming and
computing / Matthias Felleisen, Robert Bruce Findler, Matthew Flatt,
and Shriram Krishnamurthi.

Description: Second edition. | Cambridge, MA : The MIT Press, [2017] |
Revised edition of: How to design programs / Matthias Felleisen ... [et
al.]. 2001. | Includes bibliographical references and index.

Identifiers: LCCN 2017018384 | ISBN 9780262534802 (pbk. : alk. paper)
Subjects: LCSH: Computer programming. | Electronic data processing.
Classification: LCC QA76.6 .H697 2017 | DDC 005.1/2-dc23

LC record available at https:/ /lcen.loc.gov /2017018384

10987654521



Contents

Preface xiii
Systematic Program Design . . . . ... .. ... .......... Xiv
DrRacket and the Teaching Languages . . . . .. ... ....... xvi
Skills that Transfer. . . . ... ..................... xviii
This Bookand ItsParts . . . . ... .................. Xix
The Differences . . . .. ... ... ... ... ... ....... Xxiii

Prologue: How to Program 3
Arithmetic and Arithmetic . . . . ... ... ... ... ....... 7
Inputsand Output . . .. ...... ... ... ... .. 12
Many Ways to Compute . . . ... ... .. ... .......... 18
One Program, Many Definitions . . . . ... ... .......... 22
One More Definition . . ... ..................... 26
You Are a ProgrammerNow . . . . . ................. 28
Notl . .. 30

I Fixed-Size Data 33

1 Arithmetic 33
1.1 The Arithmeticof Numbers . . . ... ... .......... 35
1.2 The Arithmeticof Strings. . . . ... .............. 37
1.3 MixingIltUp . ... ... ... . o 39
1.4 The ArithmeticofImages . .. ................. 40
1.5 The Arithmetic of Booleans . . ... .............. 44
1.6 Mixing It Up with Booleans . . . ... ... .......... 45
1.7 Predicates: Know ThyData . .................. 47

2 Functions and Programs 49
21 Functions. ... ... .. ... .. ... ... 50
22 Computing . . . .. ... 54
23 Composing Functions . . . .. ... ... ........... 58
24 GlobalConstants . . . .. ... ................. 62

25 Programs . . . ... ... ... e 64



vi

How to Design Programs

3.1 Designing Functions . ... ... .........
3.2 Finger Exercises: Functions . .. .. .. ... ..
3.3 Domain Knowledge . . . . ... ... ... ....
3.4 From Functions to Programs . . . . ... ... ..
35 OnTesting . .....................
3.6 Designing World Programs . . . .. .......
3.7 VirtualPetWorlds . . . ... ............

Intervals, Enumerations, and Itemizations

4.1 Programming with Conditionals . . .. ... ..
42 Computing Conditionally . . .. ... ......
4.3 Enumerations . ...................
44 Intervals ... ... ... ... ... ... ...
4.5 Itemizations . . ... ................
4.6 Designing with Itemizations . . . . ... ... ..
4.7 FiniteStateWorlds . . . . .. .. ... ... ...

Adding Structure

5.1 From Positions to posn Structures . . . ... ..
5.2 Computing withposns . . ... ... ......
5.3 Programming withposn. .. ... ... .....
54 Defining Structure Types . . . . . ... ... ...
55 Computing with Structures . . . . ... ... ..
5.6 Programming with Structures . . . . .. ... ..
57 TheUniverseof Data . . . .. ... ... ... ..
5.8 Designing with Structures . . . . . ... ... ..
59 Structureinthe World . . ... .. ... ... ..
510 A Graphical Editor . . ... ... ... ......
511 More VirtualPets . . .. ... ... ... .....

Itemizations and Structures

6.1 Designing with Itemizations, Again . . ... ..
6.2 MixingUpWorlds . ................
63 InputErrors . ....................
6.4 CheckingtheWorld . . .. ... ..........
6.5 Equality Predicates . . ... ............

Summary

Contents



Contents

Intermezzo 1: Beginning Student Language

I1

8

10

11

12

Arbitrarily Large Data

Lists

81 CreatingLists . . ... ... .. .................
82 Whatls ' (),Whatlscons . ..................
83 Programmingwith Lists . . . ... ... ............
84 ComputingwithLists . . ... .................

Designing with Self-Referential Data Definitions

9.1 Finger Exercises: Lists . . . . ... ... ............
92 Non-empty Lists . . ... ... ... .. ..........
9.3 Natural Numbers . . . . .. ... ... ... . ... ...
94 RussianDolls . . ... .. oo
95 ListsandWorld . .. ... ... ... ... . ... L.
96 ANoteonListsandSets . . ... ................

More on Lists

10.1 Functions that Produce Lists . . . . . . ... .. ... .....
10.2 StructuresinlLists . . . . .. .. .. .. ... . ...
103 ListsinLists, Files . . . . . . . . . . . .. .. . ... ......
10.4 A Graphical Editor, Revisited . . . .. ... ... ... .. ..

Design by Composition

11.1 The 1ist Function . . . ... .. ... ... ... ......
11.2 Composing Functions . . . . .. ... ... ... ... ...
11.3 Auxiliary Functions that Recur . . . . . ... ... ... ...
11.4 Auxiliary Functions that Generalize . ... ..........

Projects: Lists

12.1 Real-World Data: Dictionaries . . . . .. ... ... ......
12.2 Real-World Data: iTunes . . . . ... .. ... .........
12.3 Word Games, Composition lllustrated . . . . ... ... ...
12.4 Word Games, the Heart of the Problem . . . . . . .. ... ..
125 FeedingWorms . . . .. ... ... .. ... ..........
12.6 Simple Tetris . . . . . ... ... ... ...
12.7 FullSpaceWar . . . . ... ... ... . ... L L.
12.8 Finite State Machines . . . . .. ... ... ... ........

vii

202

231

231
232
237
239
244

246
254
257
263
268
272
278

282
283
286
291
301

314
314
317
318
326



viii Contents

13 Summary 367
Intermezzo 2: Quote, Unquote 369
III Abstraction 381
14 Similarities Everywhere 382
14.1 Similarities in Functions . . . .. ... ... .. ... ..... 382
14.2 Different Similarities . . . . ... ... ... .. ... ..... 384
14.3 Similarities in Data Definitions . . . .. ... ... ...... 388
14.4 Functions AreValues . . . . ... .... ... ... ...... 392
14.5 Computing with Functions . . ... ... ... ... ..... 393
15 Designing Abstractions 397
15.1 Abstractions from Examples . . . . ... ............ 397
15.2 Similarities in Signatures . . . . .. ... ... ... ...... 404
15.3 Single Pointof Control . . . . ... ... ............ 409
15.4 Abstractions from Templates . . . ... ... ... ...... 410
16 Using Abstractions 411
16.1 Existing Abstractions . . . .. ... ... ... ... ...... 413
16.2 Local Definitions . . . .. ... ... ... ... ... ..... 416
16.3 Local Definitions Add Expressive Power . . . . . . ... ... 421
16.4 Computing with local . ... ... ... ........... 423
16.5 Using Abstractions, by Example . . .. ... . ... ... .. 428
16.6 Designing with Abstractions . . . . . .. ... ... ...... 433
16.7 Finger Exercises: Abstraction . . .. ... ... ........ 436
16.8 Projects: Abstraction . . ... ... ... ... ... ...... 437
17 Nameless Functions 439
17.1 Functions from lambda . .. .. ... ... .......... 440
17.2 Computing with lambda . ... ... ... ... ....... 443
17.3 Abstracting with lambda . ... ... ... .......... 445
17.4 Specifying with lambda . . ... ... ... ... ....... 449
17.5 Representing with lambda . ... ............... 457

18 Summary 462



Contents

Intermezzo 3: Scope and Abstraction

IV Intertwined Data

19 The Poetry of S-expressions
191 Trees . . . . . . . . e
19.2 Forests . . . . .. . . ... .
193 S-expressions . . .. ... ... ...
19.4 Designing with Intertwined Data . . . . ... ... ... ...
195 Project: BSTs . . . .. .. ... ... . ... . ... ... ...
19.6 Simplifying Functions . . . .. ... ... ...........

20 Iterative Refinement
201 DataAnalysis . .. ... .................. ...
20.2 Refining Data Definitions . . ... ... ... ... ......
20.3 Refining Functions . . ... ... ... .. ... ........

21 Refining Interpreters
21.1 Interpreting Expressions . . . .. . ... ... ... ......
21.2 Interpreting Variables . . . . . ... ... ... ... .. ... ..
21.3 Interpreting Functions . . ... ... .. ............
21.4 Interpreting Everything . ... .................

22 Project: The Commerce of XML
221 XML as S-expressions . . . . . . ..o v it
22.2 Rendering XML Enumerations . . ... ............
22.3 Domain-Specific Languages . . . ... ... ... .......
224 Reading XML . . ... ..... ... .............

23 Simultaneous Processing
23.1 Processing Two Lists Simultaneously: Case1 . . . ... ...
23.2 Processing Two Lists Simultaneously: Case2 . . . ... . ..
23.3 Processing Two Lists Simultaneously: Case3 . . .. ... ..
234 Function Simplification . . . . .. .. .. ... ... ... ...
23.5 Designing Functions that Consume Two Complex Inputs . .
23.6 Finger Exercises: TwoInputs . . . ... .... .. ... ...
23.7 Project: Database . . ... ... ... ... ... ... .. ..

24 Summary

464

487

487
488
497
499
506
508
512

514
516
517
520

522
523
526
529
532

533
534
541
547
552

557
558
559
562
566
568
570
574

588



X Contents

Intermezzo 4: The Nature of Numbers 589
V Generative Recursion 603
25 Non-standard Recursion 604
25.1 Recursion without Structure . . . . . . . . .. . . .. ... .. 604
25.2 Recursion that Ignores Structure . . . . .. .. ... ... .. 608
26 Designing Algorithms 614
26.1 Adapting the DesignRecipe . . . . ... .. .......... 615
26.2 Termination . . . . . . . . . . @ @ i e e e 617
26.3 Structural versus Generative Recursion . . . . ... ... .. 621
264 Making Choices . . . .. . ... ... ... ... .. .. ... 622
27 Variations on the Theme 627
27.1 Fractals,aFirstTaste . . . . ... .. .. ... ... ...... 628
27.2 BinarySearch . .. ... ... .. ... ... ... ... 632
273 AGlimpseatParsing . . . . ... ... ............. 638
28 Mathematical Examples 643
28.1 Newton’'sMethod . . . .. .. .. .. .. .. . ... ...... 643
28.2 Numeric Integration . . . ... ... .. ... ... ....... 647
28.3 Project: Gaussian Elimination . . . . .. ... ... ...... 655
29 Algorithms that Backtrack 661
29.1 TraversingGraphs . . .. .. ... .. ... .......... 661
29.2 Project: Backtracking . . . ... ... ... ... L 671
30 Summary 679
Intermezzo 5: The Cost of Computation 680
VI Accumulators 695
31 The Loss of Knowledge 696
31.1 A Problem with Structural Processing . . . ... ....... 696

31.2 A Problem with Generative Recursion . . . .. ... ... .. 701



Contents

32 Designing Accumulator-Style Functions

32.1 Recognizing the Need for an Accumulator . . ... ... ..
32.2 Adding Accumulators . . ... ... oL
32.3 Transforming Functions into Accumulator Style . . ... ..
324 A Graphical Editor, withMouse . . . . . . ... ... ... ..

33 More Uses of Accumulation

33.1 Accumulatorsand Trees . . . . . .. . .. .. ... ... ...
33.2 Data Representations with Accumulators . . ... ... ...
33.3 AccumulatorsasResults . . . . . ... .. .. ... ......

34 Summary

Epilogue: Moving On

Computing . . ... ... ... .. ... .
Program Design . . . . .. ... ... ... ... L o L.
Onward, Developers and Computer Scientists . . . ... ... ..
Onward, Accountants, Journalists, Surgeons, and Everyone Else .

Index

xi

705
706
708
711
725

727
727
734
740

747

751
751
752
753
754

757



Copyrighted material



PREFACE

Many professions require some form of programming. Accountants pro-
gram spreadsheets; musicians program synthesizers; authors program word
processors; and web designers program style sheets. When we wrote these
words for the first edition of the book (1995-2000), readers may have con-
sidered them futuristic; by now, programming has become a required skill
and numerous outlets—books, on-line courses, K-12 curricula—cater to
this need, always with the goal of enhancing people’s job prospects.

The typical course on programming teaches a “tinker until it works” ap-
proach. When it works, students exclaim “It works!” and move on. Sadly,
this phrase is also the shortest lie in computing, and it has cost many people
many hours of their lives. In contrast, this book focuses on habits of good
programming, addressing both professional and vocational programmers.

By “good programming,” we mean an approach to the creation of soft-
ware that relies on systematic thought, planning, and understanding from
the very beginning, at every stage, and for every step. To emphasize the
point, we speak of systematic program design and systematically designed
programs. Critically, the latter articulates the rationale of the desired func-
tionality. Good programming also satisfies an aesthetic sense of accom-
plishment; the elegance of a good program is comparable to time-tested
poems or the black-and-white photographs of a bygone era. In short, pro-
gramming differs from good programming like crayon sketches in a diner
from oil paintings in a museum.

No, this book won’t turn anyone into a master painter. But, we would
not have spent fifteen years writing this edition if we didn’t believe that

everyone can design programs
and

everyone can experience the satisfaction that comes with creative design.



We drew inspiration
from Michael
Jackson’s method for
creating COBOL
programs plus
conversations with
Daniel Friedman on
recursion, Robert
Harper on type theory,
and Daniel Jackson on
software design.

Instructors Have
students copy figure 1
on one side of an index
card. When students
are stuck, ask them to
produce their card and
point them to the step
where they are stuck.

Xiv Preface

Indeed, we go even further and argue that

program design—~but not programming—deserves the same role
in a liberal-arts education as mathematics and language skills.

A student of design who never touches a program again will still pick up
universally useful problem-solving skills, experience a deeply creative ac-
tivity, and learn to appreciate a new form of aesthetic. The rest of this pref-
ace explains in detail what we mean with “systematic design,” who benefits
in what manner, and how we go about teaching it all.

Systematic Program Design

A program interacts with people, dubbed users, and other programs, in
which case we speak of server and client components. Hence any reasonably
complete program consists of many building blocks: some deal with input,
some create output, while some bridge the gap between those two. We
choose to use functions as fundamental building blocks because everyone
encounters functions in pre-algebra and because the simplest programs are
just such functions. The key is to discover which functions are needed, how
to connect them, and how to build them from basic ingredients.

In this context, “systematic program design” refers to a mix of two con-
cepts: design recipes and iterative refinement. The design recipes are a
creation of the authors, and here they enable the use of the latter.

Design Recipes apply to both complete programs and individual func-
tions. This book deals with just two recipes for complete programs: one
for programs with a graphical user interface (GUI) and one for batch pro-
grams. In contrast, design recipes for functions come in a wide variety of
flavors: for atomic forms of data such as numbers; for enumerations of dif-
ferent kinds of data; for data that compounds other data in a fixed manner;
for finite but arbitrarily large data; and so on.

The tunction-level design recipes share a common design process. Fig-
ure 1 displays its six essential steps. The title of each step specifies the ex-
pected outcome(s); the “commands” suggest the key activities. Examples
play a central role at almost every stage. For the chosen data representation
in step 1, writing down examples proves how real-world information is en-
coded as data and how data is interpreted as information. Step 3 says that
a problem-solver must work through concrete scenarios to gain an under-
standing of what the desired function is expected to compute for specific
examples. This understanding is exploited in step 5, when it is time to de-
fine the function. Finally, step 6 demands that examples are turned into



Systematic Program Design XV

1. From Problem Analysis to Data Definitions

Identify the information that must be represented and how it is represented in the chosen pro-
gramming language. Formulate data definitions and illustrate them with examples.

2. Signature, Purpose Statement, Header

State what kind of data the desired function consumes and produces. Formulate a concise an-
swer to the question what the function computes. Define a stub that lives up to the signature.

3. Functional Examples
Work through examples that illustrate the function’s purpose.
4. Function Template
Translate the data definitions into an outline of the function.
5. Function Definition
Fill in the gaps in the function template. Exploit the purpose statement and the examples.
6. Testing

Articulate the examples as tests and ensure that the function passes all. Doing so discovers
mistakes. Tests also supplement examples in that they help others read and understand the
definition when the need arises—and it will arise for any serious program.

Figure 1: The basic steps of a function design recipe

automated test code, which ensures that the function works properly for
some cases. Running the function on real-world data may reveal other dis-
crepancies between expectations and results.

Each step of the design process comes with pointed questions. For cer-
tain steps—say, the creation of the functional examples or the template—
the questions may appeal to the data definition. The answers almost auto-
matically create an intermediate product. This scaffolding pays off when it
comes time to take the one creative step in the process: the completion of
the function definition. And even then, help is available in almost all cases.

The novelty of this approach is the creation of intermediate products for
beginner-level programs. When a novice is stuck, an expert or an instructor
can inspect the existing intermediate products. The inspection is likely to
use the generic questions from the design process and thus drive the novice
to correct himself or herself. And this self-empowering process is the key
difference between programming and program design.

Iterative Refinement addresses the issue that problems are complex
and multifaceted. Getting everything right at once is nearly impossible.

Instructors The most
important questions
are those for steps 4
and 5. Ask students to
write down these
questions in their own
words on the back of
their index card.



Instructors For
courses not aimed at
beginners, it may be

possible to use an
off-the-shelf language
with the design
recipes.

xvi Preface

Instead, computer scientists borrow iterative refinement from the physi-
cal sciences to tackle this design problem. In essence, iterative refinement
recommends stripping away all inessential details at first and finding a so-
lution for the remaining core problem. A refinement step adds in one of
these omitted details and re-solves the expanded problem, using the exist-
ing solution as much as possible. A repetition, also called an iteration, of
these refinement steps eventually leads to a complete solution.

In this sense, a programmer is a miniscientist. Scientists create approx-
imate models for some idealized version of the world to make predictions
about it. As long as the model’s predictions come true, everything is fine;
when the predicted events differ from the actual ones, scientists revise their
models to reduce the discrepancy. In a similar vein, when programmers are
given a task, they create a first design, turn it into code, evaluate it with ac-
tual users, and iteratively refine the design until the program’s behavior
closely matches the desired product.

This book introduces iterative refinement in two different ways. Since
designing via refinement becomes useful even when the design of pro-
grams becomes complex, the book introduces the technique explicitly in the
fourth part, once the problems acquire a certain degree of difficulty. Fur-
thermore, we use iterative refinement to state increasingly complex vari-
ants of the same problem over the course of the first three parts of the book.
That is, we pick a core problem, deal with it in one chapter, and then pose a
similar problem in a subsequent chapter—with details matching the newly
introduced concepts.

DrRacket and the Teaching Languages

Learning to design programs calls for repeated hands-on practice. Just as
nobody becomes a piano player without playing the piano, nobody be-
comes a program designer without creating actual programs and getting
them to work properly. Hence, our book comes with a modicum of soft-
ware support: a language in which to write down programs and a program
development environment with which programs are edited like word docu-
ments and with which readers can run programs.

Many people we encounter tell us they wish they knew how to code and
then ask which programming language they should learn. Given the press that
some programming languages get, this question is not surprising. But it is
also wholly inappropriate. Learning to program in a currently fashionable
programming language often sets up students for eventual failure. Fashion
in this world is extremely short lived. A typical “quick programming in



DrRacket and the Teaching Languages xvii

X” book or course fails to teach principles that transfer to the next fashion
language. Worse, the language itself often distracts from the acquisition
of transferable skills, at the level of both expressing solutions and dealing
with programming mistakes.

In contrast, learning to design programs is primarily about the study of
principles and the acquisition of transferable skills. The ideal programming
language must support these two goals, but no off-the-shelf industrial lan-
guage does so. The crucial problem is that beginners make mistakes before
they know much of the language, yet programming languages always di-
agnose these errors as if the programmer already knew the whole language.
As a result, diagnosis reports often stump beginners.

Our solution is to start with our own tailor-made teaching language,
dubbed “Beginning Student Language” or BSL. The language is essentially
the “foreign” language that students acquire in pre-algebra courses. It in-
cludes notation for function definitions, function applications, and condi-
tional expressions. Also, expressions can be nested. This language is thus
so small that an error diagnosis in terms of the whole language is still ac-
cessible to readers with nothing but pre-algebra under their belt.

A student who has mastered the structural design principles can then
move on to “Intermediate Student Language” and other advanced dialects,
collectively dubbed = SL. The book uses these dialects to teach design prin-
ciples of abstraction and general recursion. We firmly believe that using
such a series of teaching languages provides readers with a superior prepa-
ration for creating programs for the wide spectrum of professional pro-
gramming languages (JavaScript, Python, Ruby, Java, and others).

Note The teaching languages are implemented in Racket, a program-
ming language we built for building programming languages. Racket has
escaped from the lab into the real world, and it is a programming vehicle
of choice in a variety of settings, from gaming to the control of telescope
arrays. Although the teaching languages borrow elements from the Racket
language, this book does not teach Racket. Then again, a student who has
completed this book can easily move on to Racket. End

When it comes to programming environments, we face an equally bad
choice as the one for languages. A programming environment for profes-
sionals is analogous to the cockpit of a jumbo jet. It has numerous controls
and displays, overwhelming anyone who first launches such a software ap-
plication. Novice programmers need the equivalent of a two-seat, single-
engine propeller aircraft with which they can practice basic skills. We have
therefore created DrRacket, a programming environment for novices.

DrRacket supports highly playful, feedback-oriented learning with just

Instructors You may
wish to explain that
BSL is pre-algebra
with additional forms
of data and a host of
pre-defined functions
on those.



xviii Preface

two simple interactive panes: a definitions area, which contains function
definitions, and an interactions area, which allows a programmer to ask
for the evaluation of expressions that may refer to the definitions. In this
context, it is as easy to explore “what if” scenarios as in a spreadsheet ap-
plication. Experimentation can start on first contact, using conventional
calculator-style examples and quickly proceeding to calculations with im-
ages, words, and other forms of data.

An interactive program development environment such as DrRacket
simplifies the learning process in two ways. First, it enables novice pro-
grammers to manipulate data directly. Because no facilities for reading in-
put information from files or devices are needed, novices don’t need to
spend valuable time on figuring out how these work. Second, the arrange-
ment strictly separates data and data manipulation from input and output
of information from the “real world.” Nowadays this separation is consid-
ered so fundamental to the systematic design of software that it has its own
name: model-view-controller architecture. By working in DrRacket, new pro-
grammers are exposed to this fundamental software engineering idea in a
natural way from the get-go.

Skills that Transfer

The skills acquired from learning to design programs systematically trans-
fer in two directions. Naturally, they apply to programming in general as
well as to programming spreadsheets, synthesizers, style sheets, and even
word processors. Our observations suggest that the design process from
figure 1 carries over to almost any programming language, and it works
for 10-line programs as well as for 10,000-line programs. It takes some re-
flection to adopt the design process across the spectrum of languages and
scale of programming problems; but once the process becomes second na-
ture, its use pays off in many ways.

Learning to design programs also means acquiring two kinds of uni-
versally useful skills. Program design certainly teaches the same analytical
skills as mathematics, especially (pre)algebra and geometry. But, unlike
mathematics, working with programs is an active approach to learning.
Creating software provides immediate feedback and thus leads to explo-
ration, experimentation, and self-evaluation. The results tend to be inter-
active products, an approach that vastly increases the sense of accomplish-
ment when compared to drill exercises in textbooks.

In addition to enhancing a student’s mathematical skills, program de-
sign teaches analytical reading and writing skills. Even the smallest design



This Book and Its Parts Xix

tasks are formulated as word problems. Without solid reading and compre-
hension skills, it is impossible to design programs that solve a reasonably
complex problem. Conversely, program design methods force a creator to
articulate his or her thoughts in proper and precise language. Indeed, if stu-
dents truly absorb the design recipe, they enhance their articulation skills
more than anything else.

To illustrate this point, take a second look at the process description in
figure 1. It says that a designer must

1. analyze a problem statement, typically stated as a word problem;
2. extract and express its essence, abstractly;

3. illustrate the essence with examples;

4. make outlines and plans based on this analysis;

5. evaluate results with respect to expected outcomes; and

6. revise the product in light of failed checks and tests.

Each step requires analysis, precision, description, focus, and attention
to details. Any experienced entrepreneur, engineer, journalist, lawyer, sci-
entist, or any other professional can explain how many of these skills are
necessary for his or her daily work. Practicing program design—on paper
and in DrRacket—is a joyful way to acquire these skills.

Similarly, refining designs is not restricted to computer science and pro-
gram creation. Architects, composers, writers, and other professionals do
it, too. They start with ideas in their head and somehow articulate their
essence. They refine these ideas on paper until their product reflects their
mental image as much as possible. As they bring their ideas to paper, they
employ skills analogous to fully absorbed design recipes: drawing, writ-
ing, or piano playing to express certain style elements of a building, de-
scribe a person’s character, or formulate portions of a melody. What makes
them productive with an iterative development process is that they have
absorbed their basic design recipes and learned how to choose which one
to use for the current situation.

This Book and Its Parts

The purpose of this book is to introduce readers without prior experience
to the systematic design of programs. In tandem, it presents a symbolic view



XX Preface

of computation, a method that explains how the application of a program
to data works. Roughly speaking, this method generalizes what students
learn in elementary school arithmetic and middle school algebra. But have
no fear. DrRacket comes with a mechanism—the algebraic stepper—that
can illustrate these step-by-step calculations.

The book consists of six parts separated by five intermezzos and is
bookended by a Prologue and an Epilogue. While the major parts focus on
program design, the intermezzos introduce supplementary concepts con-
cerning programming mechanics and computing.

The Prologue is a quick introduction to plain programming. It explains
how to write a simple animation in =SL. Once finished, any beginner is
bound to feel simultaneously empowered and overwhelmed. The final
note therefore explains why plain programming is wrong and how a sys-
tematic, gradual approach to program design eliminates the sense of dread
that every beginning programmer usually experiences. Now the stage is
set for the core of the book:

e Part I explains the most fundamental concepts of systematic design
using simple examples. The central idea is that designers typically
have a rough idea of what data the program is supposed to consume
and produce. A systematic approach to design must therefore extract
as many hints as possible from the description of the data that flows
into and out of a program. To keep things simple, this part starts with
atomic data—numbers, images, and so on—and then gradually intro-
duces new ways of describing data: intervals, enumerations, itemiza-
tions, structures, and combinations of these.

¢ Intermezzo 1 describes the teaching language in complete detail: its
vocabulary, its grammar, and its meaning. Computer scientists refer
to these as syntax and semantics. Program designers use this model
of computation to predict what their creations compute when run or
to analyze error diagnostics.

¢ Part Il extends part I with the means to describe the most interesting
and useful forms of data: arbitrarily large compound data. While
a programmer may nest the kinds of data from part I to represent
information, the nesting is always of a fixed depth and breadth. This
part shows how a subtle generalization gets us from there to data of
arbitrary size. The focus then switches to the systematic design of
programs that process this kind of data.



This Book and Its Parts xxi

* Intermezzo 2 introduces a concise and powerful notation for writing
down large pieces of data: quotation and anti-quotation.

 Part III acknowledges that many of the functions from part II look
alike. No programming language should force programmers to cre-
ate pieces of code that are so similar to each other. Conversely, every
good programming language comes with ways to eliminate such sim-
ilarities. Computer scientists call both the step of eliminating similar-
ities and its result abstraction, and they know that abstractions greatly
increase a programmer’s productivity. Hence, this part introduces
design recipes for creating and using abstractions.

* Intermezzo 3 plays two roles. On the one hand, it injects the concept
of lexical scope, the idea that a programming language ties every oc-
currence of a name to a definition that a programmer can find with an
inspection of the code. On the other hand, it explains a library with
additional mechanisms for abstraction, including so-called for loops.

* Part IV generalizes part I and explicitly introduces the idea of itera-
tive refinement into the catalog of design concepts.

* Intermezzo 4 explains and illustrates why decimal numbers work in
such strange ways in all programming languages. Every budding
programmer ought to know these basic facts.

e Part V adds a new design principle. While structural design and
abstraction suffice for most problems that programmers encounter,
they occasionally lead to insufficiently “performant” programs. That
is, structurally designed programs might need too much time or en-
ergy to compute the desired answers. Computer scientists therefore
replace structurally designed programs with programs that benefit
from ad hoc insights into the problem domain. This part of the book
shows how to design a large class of just such programs.

¢ Intermezzo 5 uses examples from part V to illustrate how computer
scientists think about performance.

¢ Part VI adds one final trick to the toolbox of designers: accumulators.
Roughly speaking, an accumulator adds “memory” to a function. The
addition of memory greatly improves the performance of structurally
designed functions from the first four parts of the book. For the ad
hoc programs from part V, accumulators can make the difference be-
tween finding an answer and never finding one.



xxii Preface

The Epilogue is both an assessment and a look ahead to what's next.

Figure 2: The dependencies among parts and intermezzos

Independent readers ought to work through the entire book, from the
first page to the last. We say “work” because we really mean that a reader
ought to solve all exercises or at least know how to solve them.

Similarly, instructors ought to cover as many elements as possible, start-
ing from the Prologue all the way through the Epilogue. Our teaching ex-
perience suggests that this is doable. Typically, we organize our courses so
that our readers create a sizable and entertaining program over the course
of the semester. We understand, however, that some circumstances call for
significant cuts and that some instructors’ tastes call for slightly different
ways to use the book.

Figure 2 is a navigation chart for those who wish to pick and choose



The Differences xxiii

from the elements of the book. The figure is a dependency graph. A solid
arrow from one element to another suggests a mandatory ordering; for ex-
ample, Part II requires an understanding of Part I. In contrast, a dotted
arrow is mostly a suggestion; for example, understanding the Prologue is
unnecessary to get through the rest of the book.

Based on this chart, here are three feasible paths through the book:

* A high school instructor may want to cover (as much as possible of)
parts [ and I, including a small project such as a game.

* A college instructor in a quarter system may wish to focus on part I,
part II, part III, and part V, plus the intermezzos on «SL and scope.

* A college instructor in a semester system may prefer to discuss per-
formance trade-offs in designs as early as possible. In this case, it is
best to cover part I and part I and then the accumulator material from
part VI that does not depend on part V. At that point, it is possible to
discuss intermezzo 5 and to study the rest of the book from this angle.

Iteration of Sample Topics The book revisits certain exercise and sam-
ple topics time and again. For example, virtual pets are found all over partI
and even show up in part II. Similarly, both part I and part II cover alterna-
tive approaches to implementing an interactive text editor. Graphs appear
in part V and immediately again in part VI. The purpose of these iterations
is to motivate iterative refinement and to introduce it through the back-
door. We urge instructors to assign these themed sequences of exercises or
to create their own such sequences.

The Differences

This second edition of How to Design Programs differs from the first one in
several major aspects:

1. It explicitly acknowledges the difference between designing a whole
program and the functions that make up a program. Specifically, this
edition focuses on two kinds of programs: event-driven (mostly GUI,
but also networking) programs and batch programs.

2. The design of a program proceeds in a top-down planning phase fol-
lowed by a bottom-up construction phase. We explicitly show how
the interface to libraries dictates the shape of certain program ele-
ments. In particular, the very first phase of a program design yields



We thank Kathi Fisler
for calling our
attention to this point.

XXiv

Preface

a wish list of functions. While the concept of a wish list exists in the
first edition, this second edition treats it as an explicit design element.

Fulfilling an entry from the wish list relies on the function design
recipe, which is the subject of the six major parts.

A key element of structural design is the definition of functions that
compose others. This design-by-composition is especially useful for
the world of batch programs. Like generative recursion, it requires
a eureka!, specifically a recognition that the creation of intermediate
data by one function and processing this intermediate result by a sec-
ond function simplifies the overall design. This approach also needs
a wish list, but formulating these wishes calls for an insightful devel-
opment of an intermediate data definition. This edition of the book
weaves in a number of explicit exercises on design by composition.

While testing has always been a part of our design philosophy, the
teaching languages and DrRacket started supporting it properly only
in 2002, just after we had released the first edition. This new edition
heavily relies on this testing support.

This edition of the book drops the design of imperative programs.
The old chapters remain available on-line. An adaptation of this ma-
terial will appear in the second volume of this series, How fo Design
Components.

The book’s examples and exercises employ new teachpacks. The pre-
ferred style is to link in these libraries via require, but it is still pos-
sible to add teachpacks via a menu in DrRacket.

Finally, this second edition differs from the first in a few aspects of
terminology and notation:

Second Edition First Edition
signature contract
itemization union

' () empty
#true true
#false false

The last three differences greatly improve quotation for lists.



The Differences XXV

Acknowledgments from the First Edition

Four people deserve special thanks: Robert “Corky” Cartwright, who co-
developed a predecessor of Rice University’s introductory course with the
first author; Daniel P. Friedman, for asking the first author to rewrite The
Little LISPer (also MIT Press) in 1984, because it started this project; John
Clements, who designed, implemented, and maintains DrRacket’s stepper;
and Paul Steckler, who faithfully supported the team with contributions to
our suite of programming tools.

The development of the book benefited from many other friends and
colleagues who used it in courses and /or gave detailed comments on early
drafts. We are grateful to them for their help and patience: Ian Barland,
John Clements, Bruce Duba, Mike Ernst, Kathi Fisler, Daniel P. Friedman,
John Greiner, Géraldine Morin, John Stone, and Valdemar Tamez.

A dozen generations of Comp 210 students at Rice used early drafts
of the text and contributed improvements in various ways. In addition,
numerous attendees of our TeachScheme! workshops used early drafts
in their classrooms. Many sent in comments and suggestions. As repre-
sentative of these we mention the following active contributors: Ms. Bar-
bara Adler, Dr. Stephen Bloch, Ms. Karen Buras, Mr. Jack Clay, Dr. Richard
Clemens, Mr. Kyle Gillette, Mr. Marvin Hernandez, Mr. Michael Hunt,
Ms. Karen North, Mr. Jamie Raymond, and Mr. Robert Reid. Christopher
Felleisen patiently worked through the first few parts of the book with
his father and provided direct insight into the views of a young student.
Hrvoje Blazevic (sailing, at the time, as Master of the LPG/C Harriette), Joe
Zachary (University of Utah), and Daniel P. Friedman (Indiana University)
discovered numerous typos in the first printing, which we have now fixed.
Thank you to everyone.

Finally, Matthias expresses his gratitude to Helga for her many years
of patience and for creating a home for an absent-minded husband and
father. Robby is grateful to Hsing-Huei Huang for her support and encour-
agement; without her, he would not have gotten anything done. Matthew
thanks Wen Yuan for her constant support and enduring music. Shriram is
indebted to Kathi Fisler for support, patience and puns, and for her partic-
ipation in this project.

Acknowledgments

As in 2001, we are grateful to John Clements for designing, validating, im-
plementing, and maintaining DrRacket’s algebraic stepper. He has done so
for nearly 20 years now, and the stepper has become an indispensable tool
of explanation and instruction.



XXVi Preface

Over the past few years, several colleagues have commented on the
various drafts and suggested improvements. We gratefully acknowledge
the thoughtful conversations and exchanges with these individuals:

Kathi Fisler (WPI and Brown University), Gregor Kiczales (Uni-
versity of British Columbia), Prabhakar Ragde (University of
Waterloo), and Norman Ramsey (Tufts University).

Thousands of teachers and instructors attended our various workshops
over the years, and many provided valuable feedback. But Dan Ander-
son, Stephen Bloch, Jack Clay, Nadeem Abdul Hamid, and Viera Proulx
stand out, and we wish to call out their role in the crafting of this edition.

Guillaume Marceau, working with Kathi Fisler and Shriram, spent many
months studying and improving the error messages in DrRacket. We are
grateful for his amazing work.

Celeste Hollenbeck is the most amazing reader ever. She never tired
of pushing back until she understood the prose. She never stopped until
a section supported its thesis, its organization matched, and its sentences
connected. Thank you very much for your incredible efforts.

We also thank the following: Saad Bashir, Steven Belknap, Stephen
Bloch, Joseph Bogart Tomas Cabrera, Estevo Castro, Stephen Chang, Jack
Clay, Richard Cleis, John Clements, Mark Engelberg, Christopher Felleisen,
Sebastian Felleisen, Vladimir Gaji¢, Adrian German, Ryan Golbeck, Jane
Griscti, Alberto E. F. Guerrero, Nadeem Abdul Hamid, Wayne Iba, Jordan
Johnson, Marc Kaufmann, Gregor Kiczales, Eugene Kohlbecker, Jackson
Lawler, Ben Lerner, Elena Machkasova, Jay Martin, Jay McCarthy, Ann E.
Moskol, Paul Ojanen, Klaus Ostermann, Alanna Pasco, S. Pehlivanoglu,
David Porter, Norman Ramsey, IInar Salimzianov, Brian Schack, Tubo Shi,
Stephen Siegel, Kartik Singhal, Marc Smith, Dave Smylie, Vincent St-Amour,
Eric Tanter, Sam Tobin-Hochstadt, Manuel del Valle, David Van Horn, Mitch
Wand, Roelof Wobben, and Andrew Zipperer for comments on drafts of
this second edition.

The HTML layout at htdp . org is the work of Matthew Butterick, who
created these styles for our on-line documentation.

Finally, we are grateful to Ada Brunstein and Marie Lufkin Lee, our edi-
tors at MIT Press, who gave us permission to develop this second edition of
How to Design Programs on the web. We also thank MIT’s Christine Bridget
Savage and John Hoey from Westchester Publishing Services for managing
the final production process. John Donohue, Jennifer Robertson, and Mark
Woodworth did a wonderful job of copy editing the manuscript.



HOW TO DESIGN PROGRAMS

SECOND EDITION



Cogyrignest wispn

Copyrighted material



PROLOGUE: HOW TO PROGRAM

When you were a small child, your parents taught you to count and per-
form simple calculations with your fingers: “1 + 1is 2”; “1 + 2 is 3”; and
so on. Then they would ask “what’s 3 + 2?” and you would count off the
fingers of one hand. They programmed, and you computed. And in some
way, that’s really all there is to programming and computing.

Now it is time to switch roles. Start DrRacket. Doing so brings up
the window of figure 3. Select “Choose language” from the “Language”
menu, which opens a dialog listing “Teaching Languages” for “How to De-
sign Programs.” Choose “Beginning Student” (the Beginning Student Lan-
guage, or BSL) and click OK to set up DrRacket. With this task completed,
you can program, and the DrRacket software becomes the child. Start with
the simplest of all calculations. You type

(+ 1 1)

into the top part of DrRacket, click RUN, and a 2 shows up in the bottom.

That’s how simple programming is. You ask questions as if DrRacket
were a child, and DrRacket computes for you. You can also ask DrRacket
to process several requests at once:

(+ 2 2)
(» 3 3)
(- 4 2)
(/ 6 2)

After you click RUN, you see 4 9 2 3 in the bottom half of DrRacket,
which are the expected results.
Let’s slow down for a moment and introduce some words:

* The top half of DrRacket is called the definitions area. In this area, you
create the programs, which is called editing. As soon as you add a
word or change something in the definitions area, the SAVE button
shows up in the top-left corner. When you click SAVE for the first

Download DrRacket
from its web site.



Prologue

Figure 3: Meet DrRacket

time, DrRacket asks you for the name of a file so that it can store your
program for good. Once your definitions area is associated with a
file, clicking SAVE ensures that the content of the definitions area is
stored safely in the file.

Programs consist of expressions. You have seen expressions in math-
ematics. For now, an expression is either a plain number or some-
thing that starts with a left parenthesis “(” and ends in a matching
right parenthesis “)”—which DrRacket rewards by shading the area
between the pair of parentheses.

When you click RUN, DrRacket evaluates the expressions in the def-
initions area and shows their result in the interactions area. Then, Dr-
Racket, your faithful servant, awaits your commands at the prompt
(>). The appearance of the prompt signals that DrRacket is waiting



How to Program 5

for you to enter additional expressions, which it then evaluates like
those in the definitions area:

> (+ 1 1)
2

Enter an expression at the prompt, hit the “return” or “enter” key on
your keyboard, and watch how DrRacket responds with the result.
You can do so as often as you wish:

> (+ 2 2)
4

> (= 3 3)
9

> (- 4 2)
2

> (/ 6 2)
3

> (sgr 3)
9

> (expt 2 3)
8

> (sin 0)
0

> (cos pi)
#1i-1.0

Take a close look at the last number. Its “#i” prefix is short for “I don’t really
know the precise number so take that for now” or an inexact number. Unlike
your calculator or other programming systems, DrRacket is honest. When
it doesn’t know the exact number, it warns you with this special prefix.
Later, we will show you really strange facts about “computer numbers,”
and you will then truly appreciate that DrRacket issues such warnings.

By now you might be wondering whether DrRacket can add more than
two numbers at once, and yes, it can! As a matter of fact, it can do it in two
different ways:

(+ 2 (+ 3 4))

>
9
> (+ 2 3 4)
9



This book does not
teach you Racket, even
if the editor is called
DrRacket. See the
Preface, especially the
section on DrRacket
and the Teaching
Languages for details
on the choice to
develop our own
language.

6 Prologue

The first one is nested arithmetic, as you know it from school. The second
one is BSL arithmetic; and the latter is natural, because in this notation you
always use parentheses to group operations and numbers together.

In BSL, every time you want to use a “calculator operation,” you write
down an opening parenthesis, the operation you wish to perform, say +,
the numbers on which the operation should work (separated by spaces or
even line breaks), and, finally, a closing parenthesis. The items following
the operation are called the operands. Nested arithmetic means that you can
use an expression for an operand, which is why

> (+ 2
9

(+ 3 4))

is a fine program. You can do this as often as you wish:

> (+ 2 (+ (x 3 3) 4))

15

> (+ 2 (+ (x» 3 (/ 12 4)) 4))

15

> (+ (» 5 5) (+ (» 3 (/ 12 4)) 4))
38

There are no limits to nesting, except for your patience.

Naturally, when DrRacket calculates for you, it uses the rules that you
know and love from math. Like you, it can determine the result of an
addition only when all the operands are plain numbers. If an operand
is a parenthesized operator expression—something that starts with a “(”
and an operation—it determines the result of that nested expression first.
Unlike you, it never needs to ponder which expression to calculate first—
because this first rule is the only rule there is.

The price for DrRacket’s convenience is that parentheses have meaning.
You must enter all these parentheses, and you may not enter too many. For
example, while extra parentheses are acceptable to your math teacher, this
is not the case for BSL. The expression (+ (1) (2)) contains way too
many parentheses, and DrRacket lets you know in no uncertain terms:

> (+ (1) (2))

function call:expected a function after the open parenthesis,

found a number

Once you get used to BSL programming, though, you will see that it
isn’t a price at all. First, you get to use operations on several operands at
once, if it is natural to do so:



Arithmetic and Arithmetic 7

> (+1 2345678 90)
45

> (1234567289 0)
0

If you don’t know what an operation does for several operands, enter an
example into the interactions area and hit “return”; DrRacket lets you know
whether and how it works. Or use HelpDesk to read the documentation.
Second, when you read programs that others write, you will never have
to wonder which expressions are evaluated first. The parentheses and the
nesting will immediately tell you.

In this context, to program is to write down comprehensible arithmetic
expressions, and to compute is to determine their value. With DrRacket, it
is easy to explore this kind of programming and computing.

Arithmetic and Arithmetic

If programming were just about numbers and arithmetic, it would be as
boring as mathematics. Fortunately, there is much more to programming
than numbers: text, truths, images, and a great deal more.

The first thing you need to know is that in BSL, text is any sequence of
keyboard characters enclosed in double quotes ("). We call it a string. Thus,
"hello world" is a perfectly fine string; and when DrRacket evaluates
this string, it just echoes it back in the interactions area, like a number:

> "hello world"
"hello world"

Indeed, many people’s first program is one that displays exactly this string.

Otherwise, you need to know that in addition to an arithmetic of num-
bers, DrRacket also knows about an arithmetic of strings. So here are two
interactions that illustrate this form of arithmetic:

> (string-append "hello" "world")
"helloworld"
> (string-append "hello " "world")

"hello world"

Just like +, string-append is an operation; it makes a string by adding
the second to the end of the first. As the first interaction shows, it does
this literally, without adding anything between the two strings: no blank

As you may have
noticed, the names of
operations in the
on-line text are linked
to the documentation
in HelpDesk.

Just kidding:
mathematics is a
fascinating subject,
but you won't need
much of it for now.



Use F1 or the
drop-down menu on
the right to open
HelpDesk. Look at the
manuals for BSL and
its section on
pre-defined operations,
especially those for
strings.

8 Prologue

space, no comma, nothing. Thus, if you want to see the phrase "hello
world", you really need to add a space to one of these words somewhere;
that’s what the second interaction shows. Of course, the most natural way
to create this phrase from the two words is to enter

(string-append "hello" " " "world")

because st ring-append, like +, can handle as many operands as desired.

You can do more with strings than append them. You can extract pieces
from a string, reverse them, render all letters uppercase (or lowercase), strip
blank spaces from the left and right, and so on. And best of all, you don’t
have to memorize any of that. If you need to know what you can do with
strings, look up the term in HelpDesk.

If you looked up the primitive operations of BSL, you saw that primi-
tive (sometimes called pre-defined or built-in) operations can consume strings
and produce numbers:

> (+ (string-length "hello world") 20)
31

> (number->string 42)

"42“

There is also an operation that converts strings into numbers:

> (string->number "42")
42

If you expected “forty-two” or something clever along those lines, sorry,
that’s really not what you want from a string calculator.

The last expression raises a question, though. What if someone uses
string->number with a string that is not a number wrapped within string
quotes? In that case, the operation produces a different kind of result:

> (string->number "hello world")
#false

This is neither a number nor a string; it is a Boolean. Unlike numbers and
strings, Boolean values come in only two varieties: #true and #false.
The first is truth, the second falsehood. Even so, DrRacket has several op-
erations for combining Boolean values:



Arithmetic and Arithmetic 9

> (and #true #true)

#true

> (and #true #false)
#false

> (or #true #false)

#true

> (or #false #false)
#false

> (not #false)

#true

and you get the results that the name of the operation suggests. (Don't
know what and, or, and not compute? Easy: (and x y) is true if x and
v are true; (or x y) is true if either x or y or both are true; and (not x)
results in #t rue precisely when x is #false.)

It is also useful to “convert” two numbers into a Boolean:

> (> 10 9)
#true

> (< -1 0)
#ftrue

> (= 42 9)
#false

Stop! Try the following three expressions: (>= 10 10), (<= -1 0),and
(string=? "design" "tinker"). This last one is different again; but
don’t worry, you can do it.

With all these new kinds of data—yes, numbers, strings, and Boolean
values are data—and operations floating around, it is easy to forget some
basics, like nested arithmetic:

(and (or (= (string-length "hello world")
(string->number "11"))
(string=? "hello world" "good morning"))
(>= (+ (string-length "hello world") 60) 80))

What is the result of this expression? How did you figure it out? All by
yourself? Or did you just type it into DrRacket’s interactions area and hit
the “return” key? If you did the latter, do you think you would know how
to do this on your own? After all, if you can’t predict what DrRacket does
for small expressions, you may not want to trust it when you submit larger
tasks than that for evaluation.



To insert images such
as this rocket into
DrRacket, use the

Tnsert menu. Or,
copy and paste the
image from your
browser into
DrRacket.

Add (require
2htdp/image) fo
the definitions area,
or select Add
Teachpack from the
Language menu and
choose image from
the Preinstalled
HtDP/Ze
Teachpack menu.

10 Prologue

Before we show you how to do some “real” programming, let’s discuss
one more kind of data to spice things up: images. When you insert an
image into the interactions area and hit “return” like this

¥

DrRacket replies with the image. In contrast to many other programming
languages, BSL understands images, and it supports an arithmetic of im-
ages just as it supports an arithmetic of numbers or strings. In short, your
programs can calculate with images, and you can do so in the interactions
area. Furthermore, BSL programmers—like the programmers for other
programming languages—create libraries that others may find helpful. Us-
ing such libraries is just like expanding your vocabularies with new words
or your programming vocabulary with new primitives. We dub such li-
braries teachpacks because they are helpful with teaching.

One important library—the 2htdp/image library—supports operations for
computing the width and height of an image:

‘%) (image-height @})

Once you have added the library to your program, clicking RUN gives you
1176 because that’s the area of a 28 by 42 image.

You don’t have to use Google to find images and insert them in your
DrRacket programs with the “Insert” menu. You can also instruct DrRacket
to create simple images from scratch:

(* (image-width

> (circle 10 "solid" "red")

> (rectangle 30 20 "outline" "blue")

When the result of an expression is an image, DrRacket draws it into the
interactions area. But otherwise, a BSL program deals with images as data
that is just like numbers. In particular, BSL has operations for combining
images in the same way that it has operations for adding numbers or ap-
pending strings:

"solid" "red")

> (overlay (circle 5



Arithmetic and Arithmetic 11

(rectangle 20 20 "solid" "blue"))
i

Overlaying these images in the opposite order produces a solid blue square:

> (overlay (rectangle 20 20 "solid" "blue")
(circle 5 "solid" "red"))

Stop and reflect on this last result for a moment.

As you can see, overlay is more like st ring-append than +, but it
does “add” images just like st ring-append “adds” strings and + adds
numbers. Here is another illustration of the idea:

> (image-width (square 10 "solid" "red"))
10
> (image-width
(overlay (rectangle 20 20 "solid" "blue")
(circle 5 "solid" "red")))
20

These interactions with DrRacket don’t draw anything at all; they really
just measure their width.

Two more operations matter: empty-scene and place-image. The
first creates a scene, a special kind of rectangle. The second places an image
into such a scene:

(place-image (circle 5 "solid" "green")

50 80
(empty—-scene 100 100))

and you get this:

As you can see from this image, the origin (or (0,0)) is in the upper-left
corner. Unlike in mathematics, the y-coordinate is measured downward,

Not quite. The image
comes without a grid.
We superimpose the
grid on the empty
scene so that you can
see where exactly the
green dot is placed.



12 Prologue

not upward. Otherwise, the image shows what you should have expected:

a solid green disk at the coordinates (50,80) in a 100 by 100 empty rectangle.
Let’s summarize again. To program is to write down an arithmetic ex-

pression, but you’re no longer restricted to boring numbers. In BSL, arith-

metic is the arithmetic of numbers, strings, Booleans, and even images. To

compute, though, still means to determine the value of an expression—

except that this value can be a string, a number, a Boolean, or an image.
And now you're ready to write programs that make rockets fly.

Inputs and Output

The programs you have written so far are pretty boring. You write down
an expression or several expressions; you click RUN; you see some results.
If you click RUN again, you see the exact same results. As a matter of fact,
you can click RUN as often as you want, and the same results show up.
In short, your programs really are like calculations on a pocket calculator,
except that DrRacket calculates with all kinds of data, not just numbers.

That’s good news and bad news. It is good because programming and
computing ought to be a natural generalization of using a calculator. It
is bad because the purpose of programming is to deal with lots of data
and to get lots of different results, with more or less the same calculations.
(It should also compute these results quickly, at least faster than we can.)
That is, you need to learn more still before you know how to program.
No need to worry though: with all your knowledge about arithmetic of
numbers, strings, Boolean values, and images, you're almost ready to write
a program that creates movies, not just some silly program for displaying
“hello world” somewhere. And that’s what we’re going to do next.

Just in case you didn’t know, a movie is a sequence of images that are
rapidly displayed in order. If your algebra teachers had known about the
“arithmetic of images” that you saw in the preceding section, you could
have produced movies in algebra instead of boring number sequences.
Well, here is one more such table:

X = 1 2 3 - 5 6 7 8 9 10

y= 1 4 9 16 25 36 49 64 81 2

Your teachers would now ask you to fill in the blank, that is, replace the “?”
mark with a number.

It turns out that making a movie is no more complicated than complet-
ing a table of numbers like that. Indeed, it is all about such tables:



Inputs and Output 13

To be concrete, your teacher should ask you here to draw the fourth image,
the fifth, and the 1273rd one because a movie is just a lot of images, some 20
or 30 of them per second. So you need some 1200 to 1800 of them to make
one minute’s worth of it.

You may also recall that your teacher not only asked for the fourth or
fifth number in some sequence but also for an expression that determines
any element of the sequence from a given x. In the numeric example, the
teacher wants to see something like this:

y=x-r

If you plug in 1, 2, 3, and so on for x, you get 1, 4, 9, and so on for y—just
as the table says. For the sequence of images, you could say something like

y = the image that contains a dot x? pixels below the top.

The key is that these one-liners are not just expressions but functions.

At first glance, functions are like expressions, always with a y on the
left, followed by an = sign, and an expression. They aren’t expressions,
however. And the notation you often see in school for functions is utterly
misleading. In DrRacket, you therefore write functions a bit differently:

(define (y x) (* x x))

The define says “consider y a function,” which, like an expression, com-
putes a value. A function’s value, though, depends on the value of some-
thing called the input, which we express with (y x). Since we don’t know
what this input is, we use a name to represent the input. Following the
mathematical tradition, we use x here to stand in for the unknown input;
but pretty soon, we will use all kinds of names.

This second part means you must supply one number—for x—to deter-
mine a specific value for y. When you do, DrRacket plugs the value for x
into the expression associated with the function. Here the expression is (*
x x). Once x is replaced with a value, say 1, DrRacket can compute the
result of the expressions, which is also called the output of the function.



Mathematics also calls
y(1) a function
application, but your
teachers forgot to tell
you.

14 Prologue

Click RUN and watch nothing happen. Nothing shows up in the inter-
actions area. Nothing seems to change anywhere else in DrRacket. It is as
if you hadn’t accomplished anything. But you did. You actually defined
a function and informed DrRacket about its existence. As a matter of fact,
the latter is now ready for you to use the function. Enter

(v 1)

at the prompt in the interactions area and watch a 1 appear in response.
The (y 1) is called a function application in DrRacket. Try

(v 2)

and see a 4 pop out. Of course, you can also enter all these expressions in
the definitions area and click RUN:

(define (y x) (* x X))

(v 1)
(v 2)
(v 3)
(v 4)
(v 5)

In response, DrRacket displays: 1 4 9 16 25, which are the numbers
from the table. Now determine the missing entry.

What all this means for you is that functions provide a rather economic
way of computing lots of interesting values with a single expression. In-
deed, programs are functions; and once you understand functions well,
you know almost everything there is to know about programming. Given
their importance, let’s recap what we know about functions so far:

e First,
(define (FunctionName InputName) BodyExpression)

is a function definition. You recognize it as such because it starts with
the “define” keyword. It essentially consists of three pieces: two
names and an expression. The first name is the name of the func-
tion; you need it to apply the function as often as you wish. The
second name—called a parameter—represents the input of the func-
tion, which is unknown until you apply the function. The expression,
dubbed body, computes the output of the function for a specific input.



Inputs and Output 15

¢ Second,
(FunctionName ArgumentExpression)

is a function application. The first part tells DrRacket which function
you wish to use. The second part is the input to which you want
to apply the function. If you were reading a Windows or a Mac man-
ual, it might tell you that this expression “launches” the “application”
called Funct ionName and that it is going to process ArgumentEx—
pression as the input. Like all expressions, the latter is possibly a
plain piece of data or a deeply nested expression.

Functions can input more than numbers, and they can output all kinds
of data, too. Our next task is to create a function that simulates the second
table—the one with images of a colored dot—just like the first function
simulated the numeric table. Since the creation of images from expres-
sions isn’t something you know from high school, let’s start simply. Do
you remember empt y-scene? We quickly mentioned it at the end of the
previous section. When you type it into the interactions area, like that:

= 100 60)

DrRacket produces an empty rectangle, also called a scene. You can add
images to a scene with place-image:

A
Q 50 23 (empty-scene 100 60))

Think of the rocket as an object that is like the dot in the above table from
your mathematics class. The difference is that a rocket is interesting.

Next, you should make the rocket descend, just like the dot in the above
table. From the preceding section, you know how to achieve this effect by
increasing the y-coordinate that is supplied to place-image:



16 Prologue

A

@ 50 20 (empty-scene 100 60))

é 50 30 (empty-scene 100 60))

A
@ 50 40 (empty-scene 100 60))

All that’s needed now is to produce lots of these scenes easily and to display
all of them in rapid order.

(define (picture-of-rocket height)

(place—-image @ 50 height (empty-scene 100 60)))

Figure 4: Landing a rocket (version 1)

In BSL, you can use
all kinds of characters The first goal can be achieved with a function, of course; see figure 4.
in names, including

wrand «~  Yes, this is a function definition. Instead of y, it uses the name picture-
of-rocket, a name that immediately tells you what the function outputs:
a scene with a rocket. Instead of x, the function definition uses height
for the name of its parameter, a name that suggests that it is a number and
that it tells the function where to place the rocket. The body expression
of the function is exactly like the series of expressions with which we just
experimented, except that it uses height in place of a number. And we
can easily create all of those images with this one function:

(picture-of-rocket 0)



Inputs and Output 17

(picture-of-rocket 10)
(picture-of-rocket 20)
(picture-of-rocket 30)

Try this out in the definitions area or the interactions area; both create the
expected scenes.

The second goal requires knowledge about one additional primitive op-
eration from the 2htdp/universe library: animate. So, click RUN and enter the
following expression:

> (animate picture-of-rocket)

Stop and note that the argument expression is a function. Don’t worry for
now about using functions as arguments; it works well with animate, but
don’t try to define functions like animate at home just yet.

As soon as you hit the “return” key, DrRacket evaluates the expres-
sion; but it does not display a result, not even a prompt. It opens another
window—a canvas—and starts a clock that ticks 28 times per second. Every
time the clock ticks, DrRacket applies picture-of-rocket to the num-
ber of ticks passed since this function call. The results of these function
calls are displayed in the canvas, and it produces the effect of an animated
movie. The simulation runs until you close the window. At that point,
animate returns the number of ticks that have passed.

The question is where the images on the window come from. The short
explanation is that animate runs its operand on the numbers 0, 1, 2, and
so on, and displays the resulting images. The long explanation is this:

* animate starts a clock and counts the number of ticks;
* the clock ticks 28 times per second;

* every time the clock ticks, animate applies the function picture-
of-rocket to the current clock tick; and

* the scene that this application creates is displayed on the canvas.

This means that the rocket first appears at height 0, then 1, then 2, and so
on, which explains why the rocket descends from the top of the canvas to
the bottom. That is, our three-line program creates some 100 pictures in
about 3.5 seconds, and displaying these pictures rapidly creates the effect
of a rocket descending to the ground.

So here is what you learned in this section. Functions are useful because
they can process lots of data in a short time. You can launch a function by

Don't forget to add the
2htdpfuniverse Iibmry to
your definitions area.

Exercise 298 explains
how to design
animate.



Open a new tab in
DrRacket and start
with a clean slate.

18 Prologue

hand on a few select inputs to ensure that it produces the proper outputs.
This is called testing a function. Or, DrRacket can launch a function on
lots of inputs with the help of some libraries; when you do that, you are
running the function. Naturally, DrRacket can launch functions when you
press a key on your keyboard or when you manipulate the mouse of your
computer. To find out how, keep reading. Whatever triggers a function
application isn’t important, but do keep in mind that (simple) programs
are functions.

Many Ways to Compute

When you evaluate (animate picture-of-rocket), the rocket even-
tually disappears into the ground. That’s plain silly. Rockets in old science
fiction movies don’t sink into the ground; they gracefully land on their bot-
toms, and the movie should end right there.

This idea suggests that computations should proceed differently, de-
pending on the situation. In our example, the picture-of-rocket pro-
gram should work “as is” while the rocket is in flight. When the rocket’s
bottom touches the bottom of the canvas, however, it should stop the rocket
from descending any farther.

In a sense, the idea shouldn’t be new to you. Even your mathematics
teachers define functions that distinguish various situations:

+1lifx >0
sign(z) = Oifx =0
—lifz <0

This sign function distinguishes three kinds of inputs: those numbers that
are larger than 0, those equal to 0, and those smaller than 0. Depending on
the input, the result of the function is +1, 0, or -1.

You can define this function in DrRacket without much ado using a
conditional expression:

(define (sign x)

(cond
[(> x 0) 1]
[(= x 0) 0]
[(< x 0) =-11))

After you click RUN, you can interact with sign like any other function:



Many Ways to Compute 19

> (sign 10)

1

> (sign -5)
-1

> (sign 0)
0

In general, a conditional expression has the shape

(cond
[ConditionExpressionl ResultExpressionl]
[ConditionExpression?2 ResultExpressionZ]

[ConditionExpressionN ResultExpressionN])

That is, a conditional expression consists of as many conditional lines as
needed. Each line contains two expressions: the left one is often called con-
dition, and the right one is called result; occasionally we also use question
and answer. To evaluate a cond expression, DrRacket evaluates the first
condition expression, ConditionExpressionl. If this yields #t rue, Dr-
Racket replaces the cond expression with ResultExpressionl, evalu-
ates it, and uses the value as the result of the entire cond expression. If the
evaluation of ConditionExpressionl yields #false, DrRacket drops
the first line and starts over. In case all condition expressions evaluate to
#false, DrRacket signals an error.

With this knowledge, you can now change the course of the simulation.
The goal is to not let the rocket descend below the ground level of a 100-by-
60 scene. Since the picture-of-rocket function consumes the height
where it should place the rocket in the scene, a simple test comparing the
given height to the maximum height appears to suffice.

See figure 5 for the revised function definition. The definition uses the
name picture-of-rocket.v2 to distinguish the two versions. Using
distinct names also allows us to use both functions in the interactions area
and to compare the results. Here is how the original version works:

-rocket 5555)

And here is the second one:

This is a good time to
explore what the
STEP button does.
Add (sign -5) to
the definitions area
and click STEP for the
above sign program.
When the new
window contes up,
click the right and left
arrows there.



20 Prologue

(define (picture-of-rocket.v2 height)
(cond
[ (<= height 60)

(place—-image 50 height
(empty—-scene 100 60))]
[ (> height 60)

(place—-image 50 60
(empty-scene 100 60))1]1))

Figure 5: Landing a rocket (version 2)

-rocket.v2 5555)

No matter what number you giveto picture-of-rocket .v2,ifitis over
60, you get the same scene. In particular, when you run

> (animate picture-of-rocket.v2)

the rocket descends and sinks halfway into the ground before it stops.

Stop! What do you think we want to see?

Landing the rocket this far down is ugly. Then again, you know how to
fix this aspect of the program. As you have seen, BSL knows an arithmetic
of images. When place-image adds an image to a scene, it uses its center
point as if it were the whole image, even though the image has a real height
and a real width. As you may recall, you can measure the height of an
image with the operation image-height. This function comes in handy
here because you really want to fly the rocket only until its bottom touches
the ground.

Putting one and one together you can now figure out that

(- 60 (/ (image-height @) 2))



Many Ways to Compute 21

is the point at which you want the rocket to stop its descent. You could
figure this out by playing with the program directly, or you can experiment
in the interactions area with your image arithmetic.

Here is a first attempt:

(place-image é 50 (- 60 (image-height é))
(empty-scene 100 60))

Now replace the third argument in the above application with

(- 60 (/ (image-height @) 2))

Stop! Conduct the experiments. Which result do you like better?

(define (picture-of-rocket.v3 height)
(cond

[ (<= height (- 60 (/ (image-height @) 2)))

(place-image é 50 height
(empty—-scene 100 60))]

[ (> height (- 60 (/ (image-height @) 2)))

(place-image 50 (- 60 (/ (image-height @) 2))
(empty-scene 100 60))]))

Figure 6: Landing a rocket (version 3)

When you think and experiment along these lines, you eventually get to
the program in figure 6. Given some number, which represents the height
of the rocket, it first tests whether the rocket’s bottom is above the ground.
If it is, it places the rocket into the scene as before. If it isn't, it places the
rocket’s image so that its bottom touches the ground.



22 Prologue

One Program, Many Definitions

Now suppose your friends watch the animation but don’t like the size of
your canvas. They might request a version that uses 200-by-400 scenes.
This simple request forces you to replace 100 with 400 in five places in
the program and 60 with 200 in two other places—not to speak of the
occurrences of 50, which really means “middle of the canvas.”

Stop! Before you read on, try to do just that so that you get an idea
of how difficult it is to execute this request for a five-line program. As
you read on, keep in mind that programs in the world consist of 50,000 or
500,000 or even 5,000,000 or more lines of program code.

In the ideal program, a small request, such as changing the sizes of the
canvas, should require an equally small change. The tool to achieve this
simplicity with BSL is define. In addition to defining functions, you can
also introduce constant definitions, which assign some name to a constant.
The general shape of a constant definition is straightforward:

(define Name Expression)
Thus, for example, if you write down
(define HEIGHT 60)

in your program, you are saying that HEIGHT always represents the num-
ber 60. The meaning of such a definition is what you expect. Whenever
DrRacket encounters HEIGHT during its calculations, it uses 60 instead.
Now take a look at the code in figure 7, which implements this simple
change and also names the image of the rocket. Copy the program into
DrRacket; and after clicking RUN, evaluate the following interaction:

> (animate picture-of-rocket.v4)

Confirm that the program still functions as before.

The program in figure 7 consists of four definitions: one function defi-
nition and three constant definitions. The numbers 100 and 60 occur only
twice—once as the value of WIDTH and once as the value of HEIGHT. You
may also have noticed that it uses h instead of height for the function pa-
rameter of picture-of-rocket.v4. Strictly speaking, this change isn’t
necessary because DrRacket doesn’t confuse height with HEIGHT, but we
did it to avoid confusing you.

When DrRacket evaluates (animate picture-of-rocket.v4), it
replaces HEIGHT with 60, WIDTH with 100, and ROCKET with the image ev-
ery time it encounters these names. To experience the joys of real program-
mers, change the 60 next to HEIGHT into a 400 and click RUN. You see a



One Program, Many Definitions 25

; constants

(define WIDTH 100)

(define HEIGHT 60)

(define MTSCN (empty-scene WIDTH HEIGHT))

(define ROCKET @)

(define ROCKET-CENTER-TO-TOP
(- HEIGHT (/ (image-height ROCKET) 2)))

; functions
(define (picture-of-rocket.v5 h)
(cond

[ (<= h ROCKET-CENTER-TO-TOP)
(place—image ROCKET 50 h MTSCN) ]
[ (> h ROCKET-CENTER-TO-TOP)
(place-image ROCKET 50 ROCKET-CENTER-TO-TOP MTSCN) 1))

Figure 8: Landing a rocket (version 5)

¢ How would you change the program so that the background is al-
ways blue?

* How would you change the program so that the rocket lands on a flat
rock bed that is 10 pixels higher than the bottom of the scene? Don’t
forget to change the scenery, too.

Better than pondering is doing. It’s the only way to learn. So don’t let us
stop you. Just do it.

Magic Numbers Take another look at picture-of-rocket.v5. Be-
cause we eliminated all repeated expressions, all but one number disap-
peared from this function definition. In the world of programming, these
numbers are called magic numbers, and nobody likes them. Before you
know it, you forget what role the number plays and what changes are le-
gitimate. It is best to name such numbers in a definition.

Here we actually know that 50 is our choice for an x-coordinate for the
rocket. Even though 50 doesn’t look like much of an expression, it really
is a repeated expression, too. Thus, we have two reasons to eliminate 50
from the function definition, and we leave it to you to do so.



Danger ahead! This
section introduces one
piece of knowledge
from physics. If
physics scares you,
skip it on a first
reading; programming
doesn’t require physics
knowledge.

26 Prologue

One More Definition

Recall that animate actually applies its functions to the number of clock
ticks that have passed since it was first called. That is, the argument to
picture-of-rocket isn’t a height but a time. Our previous definitions
of picture-of-rocket use the wrong name for the argument of the
function; instead of h—short for height—it ought to use t for time:

(define (picture-of-rocket t)
(cond
[ (<= t ROCKET-CENTER-TO-TOP)
(place—-image ROCKET 50 t MTSCN) ]
[ (> £t ROCKET-CENTER-TO-TOP)
(place-image ROCKET
50 ROCKET-CENTER-TO-TOP
MTSCN) 1))

And this small change to the definition immediately clarifies that this pro-
gram uses time as if it were a distance. What a bad idea.

Even if you have never taken a physics course, you know that a time is
not a distance. So somehow our program worked by accident. Don’t worry,
though; it is all easy to fix. All you need to know is a bit of rocket science,
which people like us call physics.

Physics?!? Well, perhaps you have already forgotten what you learned
in that course. Or perhaps you have never taken a course on physics be-
cause you are way too young or gentle. No worries. This happens to the
best programmers all the time because they need to help people with prob-
lems in music, economics, photography, nursing, and all kinds of other
disciplines. Obviously, not even programmers know everything. So they
look up what they need to know. Or they talk to the right kind of people.
And if you talk to a physicist, you will find out that the distance traveled is
proportional to the time:

d=uv-1

That is, if the velocity of an object is v, then the object travels d miles (or
meters or pixels or whatever) in t seconds.
Of course, a teacher ought to show you a proper function definition:

d(t) =v-t
because this tells everyone immediately that the computation of d depends

on t and that v is a constant. A programmer goes even further and uses
meaningful names for these one-letter abbreviations:



One More Definition 27

(define V 3)

(define (distance t)
(» V. t))

This program fragment consists of two definitions: a function distance
that computes the distance traveled by an object traveling at a constant
velocity, and a constant V that describes the velocity.

You might wonder why V is 3 here. There is no special reason. We
consider 3 pixels per clock tick a good velocity. You may not. Play with
this number and see what happens with the animation.

; properties of the "world" and the descending rocket
(define WIDTH 100)

(define HEIGHT 60)

(define V 3)

(define X 50)

; graphical constants
(define MTSCN (empty-scene WIDTH HEIGHT))

(define ROCKET )
(define ROCKET-CENTER-TO-TOP
(- HEIGHT (/ (image-height ROCKET) 2)))

; functions
(define (picture-of-rocket.ve t)
(cond
[ (<= (distance t) ROCKET-CENTER-TO-TOP)
(place—-image ROCKET X (distance t) MTSCN) ]
[ (> (distance t) ROCKET-CENTER-TO-TOP)
(place—-image ROCKET X ROCKET-CENTER-TO-TOP MTSCN) ]))

(define (distance t)
(» V t))

Figure 9: Landing a rocket (version 6)

Now we can fix picture-of-rocket again. Instead of comparing t
with a height, the function can use (distance t) to calculate how far



28 Prologue

down the rocket is. The final program is displayed in figure 9. It consists of
two function definitions: picture-of-rocket.v6 and distance. The
remaining constant definitions make the function definitions readable and
modifiable. As always, you can run this program with animate:

> (animate picture-of-rocket.v6)

In comparison to the previous versions of picture-of-rocket, this
one shows that a program may consist of several function definitions that
refer to each other. Then again, even the first version used + and /—it’s
just that you think of those as built into BSL.

As you become a true-blue programmer, you will find out that pro-
grams consist of many function definitions and many constant definitions.
You will also see that functions refer to each other all the time. What you
really need to practice is to organize them so that you can read them easily,
even months after completion. After all, an older version of you—or some-
one else—will want to make changes to these programs; and if you cannot
understand the program’s organization, you will have a difficult time with
even the smallest task. Otherwise, you mostly know what there is to know.

You Are a Programmer Now

The claim that you are a programmer may have come as a surprise to you
at the end of the preceding section, but it is true. You know all the mechan-
ics that there are to know about BSL. You know that programming uses
the arithmetic of numbers, strings, images, and whatever other data your
chosen programming languages support. You know that programs consist
of function and constant definitions. You know, because we have told you,
that in the end, it’s all about organizing these definitions properly. Last but
not least, you know that DrRacket and the teachpacks support lots of other
functions and that DrRacket’s HelpDesk explains what these functions do.

You might think that you still don’t know enough to write programs
that react to keystrokes, mouse clicks, and so on. As it turns out, you
do. In addition to the animate function, the 2htdp/universe library provides
other functions that hook up your programs to the keyboard, the mouse,
the clock, and other moving parts in your computer. Indeed, it even sup-
ports writing programs that connect your computer with anybody else’s
computer around the world. So this isn’t really a problem.

In short, you have seen almost all the mechanics of putting together
programs. If you read up on all the functions that are available, you can



You Are a Programmer Now 29

write programs that play interesting computer games, run simulations, or
keep track of business accounts. The question is whether this really means

you are a programmer. Are you?

Stop! Don’t turn the page yet. Think!



eyt © oo frfer

Copyrighted material



I FIXED-SIZE DATA

Every programming language comes with a language of data and a lan-
guage of operations on data. The first language always provides some
forms of atomic data; to represent the variety of information in the real
world as data, a programmer must learn to compose basic data and to de-
scribe such compositions. Similarly, the second language provides some
basic operations on atomic data; it is the programmer’s task to compose
these operations into programs that perform the desired computations. We
use arithmetic for the combination of these two parts of a programming lan-
guage because it generalizes what you know from grade school.

This first part of the book (I) introduces the arithmetic of BSL, the pro-
gramming language used in the Prologue. From arithmetic, it is a short
step to your first simple programs, which you may know as functions from
mathematics. Before you know it, though, the process of writing programs
looks confusing, and you will long for a way to organize your thoughts. We
equate “organizing thoughts” with design, and this first part of the book in-
troduces you to a systematic way of designing programs.

1 Arithmetic

From the Prologue, you know how to write down the kind of expression you
know from first grade in BSL notation:

* write ” (",
¢ write down the name of a primitive operation op,
* write down the arguments, separated by some space, and
e write down ") ”.
Just as a reminder, here is a primitive expression:

(+ 1 2)

Scan this first chapter
quickly, skip ahead to
the second one, and
return here, when you
encounter
“arithmetic” that you
don’t recognize.



We use == to mean “is
equal to according to
the laws of
computation.”

The next volume,
How to Design
Components, will
explain how to design
atomic data.

34 Chapter 1

It uses +, the operation for adding two numbers, followed by two argu-
ments, which are plain numbers. But here is another example:

(+1 (+1 (+ 1 1) 2) 3 45)

This second example exploits two points in the above description that are
open to interpretation. First, primitive operations may consume more than
two arguments. Second, the arguments don’t have to be numbers per se;
they can be expressions, too.

Evaluating expressions is also straightforward. First, BSL evaluates all
the arguments of a primitive operation. Second, it “feeds” the resulting
pieces of data to the operation, which produces a result. Thus,

(+ 1 2)

(+ 1 (+1 (+ 1 1) 2) 3 (+ 2 2) 5)
(+1 (+1 2 2) 3 405)

153 405)

-
+

1

co

These calculations should look familiar because they are the same kind of
calculations that you performed in mathematics classes. You may have
written down the steps in a different way; you may have never been taught
how to write down a sequence of calculation steps. Yet, BSL performs cal-
culations just like you do, and this should be a relief. It guarantees that you
understand what it does with primitive operations and primitive data, so
there is some hope that you can predict what your programs will compute.
Generally speaking, it is critical for a programmer to know how the chosen
language calculates because otherwise a program’s computation may harm
the people who use them or on whose behalf the programs calculate.

The rest of this chapter introduces four forms of atomic data of BSL: num-
bers, strings, images, and Boolean values. We use the word “atomic” here
in analogy to physics. You cannot peek inside atomic pieces of data, but
you do have functions that combine several pieces of atomic data into an-
other one, retrieve “properties” of them, also in terms of atomic data, and



Arithmetic 35

so on. The sections of this chapter introduce some of these functions, also
called primitive operations or pre-defined operations. You can find others in the
documentation of BSL that comes with DrRacket.

1.1 The Arithmetic of Numbers

Most people think “numbers” and “operations on numbers” when they
hear “arithmetic.” “Operations on numbers” means adding two numbers
to yield a third, subtracting one number from another, determining the
greatest common divisor of two numbers, and many more such things. If
we don’t take arithmetic too literally, we may even include the sine of an
angle, rounding a real number to the closest integer, and so on.

The BSL language supports Numbers and arithmetic on them. As dis-
cussed in the Prologue, an arithmetic operation such as + is used like this:

(+ 3 4)

that is, in prefix notation form. Here are some of the operations on numbers
that our language provides: +, -, =, /, abs, addl, ceiling, denomina-
tor,exact->inexact, expt, floor, gcd, log, max, numerator, quo—
tient, random, remainder, sqr, and tan. We picked our way through
the alphabet just to show the variety of operations. Explore what they com-
pute, and then find out how many more there are.

If you need an operation on numbers that you know from your math-
ematics courses, chances are that BSL knows about it, too. Guess its name
and experiment in the interactions area. Say you need to compute the sin
of some angle; try

> (sin 0)
0

and use it happily ever after. Or look in the HelpDesk. You will find
there that in addition to operations BSL also recognizes the names of some
widely used numbers, for example, pi and e.

When it comes to numbers, BSL programs may use natural numbers,
integers, rational numbers, real numbers, and complex numbers. We as-
sume that you have heard of all but the last one. The last one may have
been mentioned in your high school class. If not, don’t worry; while com-
plex numbers are useful for all kinds of calculations, a novice doesn’t have
to know about them.

You might know e
from calculus. It's a
real number, close to
2.718, called "Euler's
constant.”



36 Chapter 1

A truly important distinction concerns the precision of numbers. For
now, it is important to understand that BSL distinguishes exact numbers and
inexact numbers. When it calculates with exact numbers, BSL preserves this
precision whenever possible. For example, (/ 4 6) produces the precise
fraction 2 /3, which DrRacket can render as a proper fraction, an improper
fraction, or a mixed decimal. Play with your computer’s mouse to find the
menu that changes the fraction into decimal expansion.

Some of BSL’s numeric operations cannot produce an exact result. For
example, using the sqrt operation on 2 produces an irrational number that
cannot be described with a finite number of digits. Because computers are
of finite size and BSL must somehow fit such numbers into the computer,
it chooses an approximation: 1.4142135623730951. As mentioned in
the Prologue, the #1i prefix warns novice programmers of this lack of pre-
cision. While most programming languages choose to reduce precision in
this manner, few advertise it and even fewer warn programmers.

Note on Numbers The word “Number” refers to a wide variety of num-
bers, including counting numbers, integers, rational numbers, real num-
bers, and even complex numbers. For most uses, you can safely equate
Number with the number line from elementary school, though on occa-
sion this translation is too imprecise. If we wish to be precise, we use ap-
propriate words: Integer, Rational, and so on. We may even refine these
notions using such standard terms as Positivelnteger, NonnegativeNumber,
NegativeNumber, and so on. End

Exercise 1. Add the following definitions for x and y to DrRacket’s
definitions area:

(define x 3)
(define y 4)

Now imagine that x and y are the coordinates of a Cartesian point. Write
down an expression that computes the distance of this point to the origin,
that is, a point with the coordinates (0,0).

The expected result for these values is 5, but your expression should
produce the correct result even after you change these definitions.

Just in case you have not taken geometry courses or in case you forgot
the formula that you encountered there, the point (x,i) has the distance

VRt

from the origin. After all, we are teaching you how to design programs, not
how to be a geometer.



Arithmetic 39

1.3 Mixing It Up

All other operations (in BSL) concerning strings consume or produce data
other than strings. Here are some examples:

* string-length consumes a string and produces a number;

* string-ith consumes a string s together with a number i and ex-
tracts the 1String located at the ith position (counting from 0); and

* number->string consumes a number and produces a string.

Also look up substring and find out what it does.

If the documentation in HelpDesk appears confusing, experiment with
the functions in the interactions area. Give them appropriate arguments,
and find out what they compute. Also use inappropriate arguments for
some operations just to find out how BSL reacts:

> (string-length 42)
string-length:expects a string, given 42

As you can see, BSL reports an error. The first part “string-length” informs
you about the operation that is misapplied; the second half states what is
wrong with the arguments. In this specific example, string-length is
supposed to be applied to a string but is given a number, specifically 42.

Naturally, it is possible to nest operations that consume and produce
different kinds of data as long as you keep track of what is proper and
what is not. Consider this expression from the the Prologue:

(+ (string-length "hello world") 20)

The inner expression applies string-length to "hello world", our
favorite string. The outer expression has + consume the result of the inner
expression and 20.

Let’s determine the result of this expression in a step-by-step fashion:

(+ (string-length "hello world") 20)

+

11 20)

w |l -~
=l

Not surprisingly, computing with such nested expressions that deal with a
mix of data is no different from computing with numeric expressions. Here
is another example:



Remember to require
the 2htdp/image library
in a new tab.

40 Chapter 1

(+ (string-length (number->string 42)) 2)

(+ (string-length "42") 2)
(+ 2 2)
!

Before you go on, construct some nested expressions that mix data in the
wrong way, say,

(+ (string-length 42) 1)

Run them in DrRacket. Study the red error message but also watch what
DrRacket highlights in the definitions area.
Exercise 3. Add the following two lines to the definitions area:

(define str "helloworld")
(define i 5)

Then create an expression using string primitives that adds "_" at position
i. In general this means the resulting string is longer than the original one;
here the expected resultis "hello_world".

Position means i characters from the left of the string, but programmers
start counting at 0. Thus, the 5th letter in this example is "w", because the
Oth letter is "h". Hint When you encounter such “counting problems” you
may wish to add a string of digits below str to help with counting;:

(define str "helloworld")
(define ind "0123456789")
(define 1 5)

See exercise 1 for how to create expressions in DrRacket. 1

Exercise 4. Use the same setup as in exercise 3 to create an expression
that deletes the ith position from str. Clearly this expression creates a
shorter string than the given one. Which values for i are legitimate? 1

1.4 The Arithmetic of Images

An Image is a visual, rectangular piece of data, for example, a photo or a
geometric figure and its frame. You can insert images in DrRacket wher-



Arithmetic 41

ever you can write down an expression because images are values, just like
numbers and strings.

Your programs can also manipulate images with primitive operations.
These primitive operations come in three flavors. The first kind concerns
the creation of basic images:

* circle produces a circle image from a radius, a mode string, and a
color string;

* ellipse produces an ellipse from two radii, a mode string, and a
color string;

* line produces a line from two points and a color string;

* rectangle produces a rectangle from a width, a height, a mode
string, and a color string;

* text produces a text image from a string, a font size, and a color
string; and

* triangle produces an upward-pointing equilateral triangle from a
size, a mode string, and a color string.

The names of these operations mostly explain what kind of image they cre-
ate. All you must know is that mode strings means "solid" or "outline",
and color strings are strings such as "orange™", "black", and so on.

Play with these operations in the interactions window:

> (circle 10 "solid" "green")

> (rectangle 10 20 "solid" "blue")

> (star 12 "solid" "gray")

*

Stop! The above uses a previously unmentioned operation. Look up its
documentation and find out how many more such operations the 2htdp/image
library comes with. Experiment with the operations you find.

The second kind of functions on images concern image properties:

* image-width determines the width of an image in terms of pixels;

* image-height determines the height of an image;



42 Chapter 1

They extract the kind of values from images that you expect:

> (image-width (circle 10 "solid" "red"))

20

> (image-height (rectangle 10 20 "solid" "blue"))
20

Stop! Explain how DrRacket determines the value of this expression:

(+ (image-width (circle 10 "solid" "red"))
(image—height (rectangle 10 20 "solid" "blue")))

A proper understanding of the third kind of image-composing primi-
tives requires the introduction of one new idea: the anchor point. An image
isn’t just a single pixel, it consists of many pixels. Specifically, each image
is like a photograph, that is, a rectangle of pixels. One of these pixels is an
implicit anchor point. When you use an image primitive to compose two
images, the composition happens with respect to the anchor points, unless
you specify some other point explicitly:

¢ overlay places all the images to which it is applied on top of each
other, using the center as anchor point;

* overlay/xy is like overlay but accepts two numbers—x and y—
between two image arguments. It shifts the second image by x pixels
to the right and v pixels down—all with respect to the first image’s
top-left corner; unsurprisingly, a negative x shifts the image to the
left and a negative y up; and

* overlay/align is like overlay but accepts two strings that shift
the anchor point(s) to other parts of the rectangles. There are nine
different positions overall; experiment with all possibilities!

The 2htdp/image library comes with many other primitive functions for com-
bining images. As you get familiar with image processing, you will want
to read up on those. For now, we introduce three more because they are
important for creating animated scenes and images for games:

* empty-scene creates a rectangle of some given width and height;

* place-image places an image into a scene at a specified position. If
the image doesn’t fit into the given scene, it is appropriately cropped;



Arithmetic 43

arithmetic of numbers arithmetic of images
(+ 1 1) == (overlay (square 4 "solid" "orange")
(circle 6 "solid" "yellow"))

(+ 1 2) == (underlay (circle 6 "solid" "yellow")
(square 4 "solid" "orange"))

(+ 2 2) == (place-image (circle & "solid" "yellow")
10 10
(empty-scene 20 20))

[©]

Figure 10: Laws of image creation

® scene+line consumes a scene, four numbers, and a color to draw a
line into the given image. Experiment with it to see how it works.

The laws of arithmetic for images are analogous to those for numbers;
see figure 10 for some examples and a comparison with numeric arithmetic.
Again, no image gets destroyed or changed. Like +, these primitives just
make up new images that combine the given ones in some manner.

Exercise 5. Use the 2htdp/image library to create the image of a simple boat

or tree. Make sure you can easily change the scale of the entire image. 1 Copy and paste the
Exercise 6. Add the following line to the definitions area: image into your
DrRacket.

(define cat

Create an expression that counts the number of pixels in the image. 1



46 Chapter 1

1. The first expression is always evaluated. Its result must be a Boolean.

2. If the result of the first expression is #t rue, then the second expres-
sion is evaluated; otherwise the third one is. Whatever their results

Right-click on the are, they are also the result of the entire i £ expression.

result and choose a
different

. Given the definition of x above, you can experiment with if expres-
representation.

sions in the interactions area:
> (1if (= x 0) 0O (/ 1 x))
0.5

Using the laws of arithmetic, you can figure out the result yourself:

(if (= x 0) 0 (/ 1 x))
== ; because x stands for 2

(if (=2 0) 0 (/ 1 2))

== ; 2 is not equal to 0, (= 2 0) is #false

(if #false 0 (/ 1 x))

(/1 2)

== ; normalize this to its decimal representation

0.5

In other words, DrRacket knows that x stands for 2 and that the latter is
not equal to 0. Hence, (= x 0) produces the result #false, meaning if
picks its third sub-expression to be evaluated.

Stop! Imagine you edit the definition so that it looks like this:

(define x 0)
What do you think
(if (=x0) 0 (/ 1 x))

evaluates to in this context? Why? Show your calculation.

In addition to =, BSL provides a host of other comparison primitives.
Explain what the following four comparison primitives determine about
numbers: <, <=, >, >=,

Strings aren’t compared with = and its relatives. Instead, you must
use string=? or string<=? or string>=7? if you ever need to compare
strings. While it is obvious that st ring=? checks whether the two given
strings are equal, the other two primitives are open to interpretation. Look



Arithmetic 47

up their documentation. Or, experiment, guess a general law, and then
check in the documentation whether you guessed right.

You may wonder why it is ever necessary to compare strings with each
other. So imagine a program that deals with traffic lights. It may use the
strings "green", "yellow", and "red". This kind of program may con-
tain a fragment such as this:

(define current-color ...)

(define next-color
(if (string=? "green" current-color) "yellow" ...))

It should be easy to imagine that this fragment deals with the computation
that determines which light bulb is to be turned on next and which one
should be turned off.

The next few chapters introduce better expressions than if to express
conditional computations and, most importantly, systematic ways for de-
signing them.

Exercise 8. Add the following line to the definitions area:

(define cat

Create a conditional expression that computes whether the image is tall or
wide. An image should be labeled "tall™" if its height is larger than or
equal to its width; otherwise it is "wide". See exercise 1 for how to create
such expressions in DrRacket; as you experiment, replace the cat with a
rectangle of your choice to ensure that you know the expected answer.

Now try the following modification. Create an expression that com-
putes whether a pictureis "tall", "wide", or "square". 1

1.7 Predicates: Know Thy Data

Remember the expression (string-length 42) and its result. Actually,
the expression doesn’t have a result, it signals an error. DrRacket lets you

The dots in the
definition of
current-color
aren’t a part of the
program, of course,
Replace them with a
string that refers toa
color.



48 Chapter 1

know about errors via red text in the interactions area and highlighting of
the faulty expression (in the definitions area). This way of marking errors
is particularly helpful when you use this expression (or its relatives) deeply
nested within some other expression:

(« (+ (string-length 42) 1) pi)

Experiment with this expression by entering it both into DrRacket’s inter-
actions area and in the definitions area (and then click on RLIN).

Of course, you really don’t want such error-signaling expressions in
your program. And usually, you don’t make such obvious mistakes as us-
ing 42 as a string. It is quite common, however, that programs deal with
variables that may stand for either a number or a string:

(define in ...)
(string—-length in)

A variable such as in can be a placeholder for any value, including a num-
ber, and this value then shows up in the st ring-length expression.

One way to prevent such accidents is to use a predicate, which is a
function that consumes a value and determines whether or not it belongs
to some class of data. For example, the predicate number? determines
whether the given value is a number or not:

> (number? 4)

#true

> (number? pi)

#true

> (number? #true)
#false

> (number? "fortytwo")
#false

As you see, the predicates produce Boolean values. Hence, when predi-
cates are combined with conditional expressions, programs can protect ex-

pressions from misuse:

(define in ...)

(if (string? in) (string-length in) ...)



Functions and Programs 49

Every class of data that we introduced in this chapter comes with a
predicate. Experiment with number?, string?, image?, and boolean?
to ensure that you understand how they work.

In addition to predicates that distinguish different forms of data, pro-
gramming languages also come with predicates that distinguish different
kinds of numbers. In BSL, numbers are classified in two ways: by con-
struction and by their exactness. Construction refers to the familiar sets of
numbers: integer?, rational?, real?, and complex?, but many pro-
gramming languages, including BSL, also choose to use finite approxima-
tions to well-known constants, which leads to somewhat surprising results
with the rational? predicate:

> (rational? pi)
#true

As for exactness, we have mentioned the idea before. For now, experiment
with exact? and inexact? to make sure they perform the checks that
their names suggest. Later we are going to discuss the nature of numbers
in some detail.

Exercise 9. Add the following line to the definitions area of DrRacket:

(define in ...)

Then create an expression that converts the value of in to a positive num-
ber. For a String, it determines how long the String is; for an Image, it uses
the area; for a Number, it decrements the number by 1, unless it is already
0 or negative; for #t rue it uses 10 and for #false 20.

See exercise 1 for how to create expressions in DrRacket. 1

Exercise 10. Now relax, eat, sleep, and then tackle the next chapter. 1

2 Functions and Programs

As far as programming is concerned, “arithmetic” is half the game; the
other half is “algebra.” Of course, “algebra” relates to the school notion
of algebra as little/much as the notion of “arithmetic” from the preceding
chapter relates to arithmetic taught in grade-school arithmetic. Specifically,
the algebra notions needed are variable, function definition, function appli-
cation, and function composition. This chapter reacquaints you with these
notions in a fun and accessible manner.

Put (sgrt -1) at
the prompt in the
interactions area and
hit the “enter” key.
Take a close look at the
result. The result you
see is the first so-called
complex number
anyone encounters.
While your teacher
may have told you that
one doesn’t compute
the square root of
negative numbers, the
truth is that
mathematicians and
sotie programiners
find it acceptable and
useful to do so
anyway. But don’t
worry: understanding
complex numbers is
not essential to being a
program designer.



50 Chapter 2

2.1 Functions

Programs are functions. Like functions, programs consume inputs and pro-
duce outputs. Unlike the functions you may know, programs work with a
variety of data: numbers, strings, images, mixtures of all these, and so on.
Furthermore, programs are triggered by events in the real world, and the
outputs of programs affect the real world. For example, a spreadsheet pro-
gram may react to an accountant’s key presses by filling some cells with
numbers, or the calendar program on a computer may launch a monthly
payroll program on the last day of every month. Lastly, a program may not
consume all of its input data at once, instead it may decide to process data
in an incremental manner.

Definitions While many programming languages obscure the relation-
ship between programs and functions, BSL brings it to the fore. Every BSL
program consists of several definitions, usually followed by an expression
that involves those definitions. There are two kinds of definitions:

e constant definitions, of the shape (define Variable Expression),
which we encountered in the preceding chapter; and

* function definitions, which come in many flavors, one of which we
used in the Prologue.

Like expressions, function definitions in BSL come in a uniform shape:

(define (FunctionName Variable ... Variable)
Expression)

That is, to define a function, we write down
® “(define (7,
® the name of the function,
* followed by several variables, separated by space and ending in “) 7,
¢ and an expression followed by “) ”.

And that is all there is to it. Here are some small examples:
® (define (f x) 1)
® (define (g x y) (+ 1 1))

® (define (h x y z) (+ (x 2 2) 3))



Functions and Programs 53

Functions don’t have to be applied at the prompt in the interactions area.
It is perfectly acceptable to use function applications nested within other
function applications:

> (+ (£f 3) 2)

32

> (» (f£ 4) (+ (££ 3) 2))
1280

> (ff (££f 1))

100

Exercise 11. Define a function that consumes two numbers, x and y, and
that computes the distance of point (x,y) to the origin.

In exercise 1 you developed the right-hand side of this function for con-
crete values of x and y. Now add a header. 1

Exercise 12. Define the function cvolume, which accepts the length of
a side of an equilateral cube and computes its volume. If you have time,
consider defining csurface, too.

Hint An equilateral cube is a three-dimensional container bounded by
six squares. You can determine the surface of a cube if you know that the
square’s area is its length multiplied by itself. Its volume is the length mul-
tiplied with the area of one of its squares. (Why?)1

Exercise 13. Define the function string-first, which extracts the
first 1String from a non-empty string. 1

Exercise 14. Define the function st ring-1ast, which extracts the last
1String from a non-empty string. 1

Exercise 15. Define ==>. The function consumes two Boolean values,
call them sunny and friday. Its answer is #true if sunny is false or
friday is true. Note Logicians call this Boolean operation implication, and
they use the notation sunny == friday for this purpose. 1

Exercise 16. Define the function image-area, which counts the num-
ber of pixels in a given image. See exercise 6 for ideas. 1

Exercise 17. Define the function image-classify, which consumes
an image and conditionally produces "tall" if the image is taller than
wide, "wide™" if it is wider than tall, or "square" if its width and height
are the same. See exercise 8 for ideas. 1

Exercise 18. Define the function st ring-join, which consumes two
strings and appends them with "_" in between. See exercise 2 for ideas. 1

Exercise 19. Define the function st ring-insert, which consumes a
string str plus a number i and inserts "_" at the ith position of str. As-



54 Chapter 2

sume i is a number between 0 and the length of the given string (inclusive).
See exercise 3 for ideas. Ponder how st ring—insert copes with "".1
Exercise 20. Define the function string-delete, which consumes a
string plus a number i and deletes the ith position from st r. Assume i is a
number between 0 (inclusive) and the length of the given string (exclusive).
See exercise 4 for ideas. Can st ring-delete deal with empty strings? 1

2.2 Computing

Function definitions and applications work in tandem. If you want to de-
sign programs, you must understand this collaboration because you need
to imagine how DrRacket runs your programs and because you need to fig-
ure out what goes wrong when things go wrong—and they will go wrong.

While you may have seen this idea in an algebra course, we prefer to ex-
plain it our way. So here we go. Evaluating a function application proceeds
in three steps: DrRacket determines the values of the argument expres-
sions; it checks that the number of arguments and the number of function
parameters are the same; if so, DrRacket computes the value of the body of
the function, with all parameters replaced by the corresponding argument
values. This last value is the value of the function application. This is a
mouthful, so we need examples.

Here is a sample calculation for f:

(£ (+ 1 1))

== ; DrRacket knows that (+ 1 1) == 2

(£ 2)

== ; DrRacket replaced all occurrences of x with 2

That last equation is weird because x does not occur in the body of £. There-
fore, replacing the occurrences of x with 2 in the function body produces
1, which is the function body itself.

For £ £, DrRacket performs a different kind of computation:

(£f (+ 1 1))

== ; DrRacket again knows that (+ 1 1) == 2

£ 2)

; DrRacket replaces a with 2 in ff's body

10 2)

; and from here, DrRacket uses plain arithmetic

Hh

I [ T
* |l

(=2



Functions and Programs 55

The best point is that when you combine these laws of computation
with those of arithmetic, you can pretty much predict the outcome of any
program in BSL:

(+ (£f£ (+ 1 2)) 2)

== ; DrRacket knows that (+ 1 2) == 3

(+ (££ 3) 2)

== ; DrRacket replaces a with 3 in ff's body
(+ (= 10 3) 2)

== ; now DrRacket uses the laws of arithmetic
(+ 30 2)

Naturally, we can reuse the result of this computation in others:

* (ff 4) (+ (£f£ 3) 2))

= ; DrRacket substitutes 4 for a in ff's body
* (= 10 4) (+ (£ff 3) 2))

= ; DrRacket knows that (+ 10 4) == 40

(» 40 (+ (££ 3) 2))

== ; now it uses the result of the above calculation
(» 40 32)
1

280 ; because it is really Jjust math

In sum, DrRacket is an incredibly fast algebra student; it knows all the
laws of arithmetic and it is great at substitution. Even better, DrRacket
cannot only determine the value of an expression; it can also show you
how it does it. That is, it can show you step-by-step how to solve these
algebra problems that ask you to determine the value of an expression.

Take a second look at the buttons that come with DrRacket. One of them
looks like an “advance to next track” button on an audio player. If you
click this button, the stepper window pops up and you can step through
the evaluation of the program in the definitions area.

Enter the definition of ff into the definitions area. Add (ff (+ 1
1)) at the bottom. Now click the STEP. The stepper window will show
up; figure 11 shows what it looks like in version 6.2 of the software. At this
point, you can use the forward and backward arrows to see all the com-
putation steps that DrRacket uses to determine the value of an expression.
Watch how the stepper performs the same calculations as we do.



56 Chapter 2

Stop! Yes, you could have used DrRacket to solve some of your algebra
homework. Experiment with the various options that the stepper offers.

Figure 11: The DrRacket stepper

Exercise 21. Use DrRacket’s stepper to evaluate (ff (ff 1)) step-
by-step. Also try (+ (ff 1) (ff 1)). Does DrRacket’s stepper reuse
the results of computations? 1

At this point, you might think that you are back in an algebra course
with all these computations involving uninteresting functions and num-
bers. Fortunately, this approach generalizes to all programs, including the
interesting ones, in this book.

Let’s start by looking at functions that process strings. Recall some of
the laws of string arithmetic:

(string-append "hello" " " "world") == "hello world"
(string-append "bye" ", " "world") == "bye, world"
Now suppose we define a function that creates the opening of a letter:

(define (opening first-name last-name)
(string-append "Dear " first-name ","))

When you apply this function to two strings, you get a letter opening;:

> (opening "Matthew" "Fisler")
"Dear Matthew,"



Functions and Programs 57

More importantly, though, the laws of computing explain how DrRacket
determines this result and how you can anticipate what DrRacket does:

(opening "Matthew" "Fisler")
== ; DrRacket substitutes "Matthew" for first-name
(string—append "Dear " "Matthew" ", ")

Eventually you will
encounter imperative
operations, which do
not combine or extract

"Dear Matthew,"

Since last-name does not occur in the definition of opening, replacing it

with "Fisler" has no effect. values but modify
The rest of the book introduces more forms of data. To explain opera- them. To calculate
tions on data, we always use laws like those of arithmetic in this book. with such operations,

you will need to add
some laws to those of
arithmetic and
substitution.

Exercise 22. Use DrRacket’s stepper on this program fragment:

(define (distance-to-origin x y)
(sqrt (+ (sgr x) (sqr v))))
(distance-to—-origin 3 4)

Does the explanation match your intuition? 1
Exercise 23. The first 1String in "hello world"is "h". How does the
following function compute this result?

(define (string-first s)
(substring s 0 1))

Use the stepper to confirm your ideas. 1
Exercise 24. Here is the definition of ==>:y

(define (==> x vy)
(or (not x) vy))

Use the stepper to determine the value of (==> #true #false).1
Exercise 25. Take a look at this attempt to solve exercise 17:

(define (image-classify img)
(cond
[ (>= (image-height img) (image-width img)) "tall"]
[ (= (image-height img) (image-width img)) "square"]
[ (<= (image-height img) (image-width img)) "wide"]))

Does stepping through an application suggest a fix? 1



60 Chapter 2

The advantage of following this slogan is that you get reasonably small
functions, each of which is easy to comprehend and whose composition is
easy to understand. Once you learn to design functions, you will recognize
that getting small functions to work correctly is much easier than doing so
with large ones. Better yet, if you ever need to change a part of the program
due to some change to the problem statement, it tends to be much easier to
find the relevant parts when it is organized as a collection of small functions
as opposed to a large, monolithic block.

Here is a small illustration of this point with a sample problem:

Sample Problem The owner of a monopolistic movie theater in
a small town has complete freedom in setting ticket prices. The
more he charges, the fewer people can afford tickets. The less he
charges, the more it costs to run a show because attendance goes
up. In a recent experiment the owner determined a relationship
between the price of a ticket and average attendance.

At a price of $5.00 per ticket, 120 people attend a performance.
For each 10-cent change in the ticket price, the average atten-
dance changes by 15 people. That is, if the owner charges $5.10,
some 105 people attend on the average; if the price goes down
to $4.90, average attendance increases to 135. Let’s translate this
idea into a mathematical formula:

avg. attendance = 120 people — $(chun§g;g price) 15 people

Stop! Explain the minus sign before you proceed.

Unfortunately, the increased attendance also comes at an in-
creased cost. Every performance comes at a fixed cost of $180 to
the owner plus a variable cost of $0.04 per attendee.

The owner would like to know the exact relationship between
profit and ticket price in order to maximize the profit.

While the task is clear, how to go about it is not. All we can say at this point
is that several quantities depend on each other.

When we are confronted with such a situation, it is best to tease out the
various dependencies, one by one:

1. The problem statement specifies how the number of attendees de-
pends on the ticket price. Computing this number is clearly a sepa-
rate task and thus deserves its own function definition:



Functions and Programs 61

(define (attendees ticket-price)
(- 120 (» (- ticket-price 5.0) (/ 15 0.1))))

2. The revenue is exclusively generated by the sale of tickets, meaning it
is exactly the product of ticket price and number of attendees:

(define (revenue ticket-price)
( ticket-price (attendees ticket-price)))

3. The cost consists of two parts: a fixed part ($180) and a variable part
that depends on the number of attendees. Given that the number of
attendees is a function of the ticket price, a function for computing
the cost of a show must also consume the ticket price so that it can
reuse the at tendees function:

(define (cost ticket-price)
(+ 180 (x 0.04 (attendees ticket-price))))

4. Finally, profit is the difference between revenue and costs for some
given ticket price:

(define (profit ticket-price)
(- (revenue ticket-price)
(cost ticket-price)))

The BSL definition of profit directly follows the suggestion of the
informal problem description.

These four functions are all there is to the computation of the profit, and
we can now use the profit function to determine a good ticket price.

Exercise 27. Our solution to the sample problem contains several con-
stants in the middle of functions. As “One Program, Many Definitions”
already points out, it is best to give names to such constants so that future
readers understand where these numbers come from. Collect all definitions
in DrRacket’s definitions area and change them so that all magic numbers
are refactored into constant definitions. 1

Exercise 28. Determine the potential profit for these ticket prices: $1,
$2, $3, $4, and $5. Which price maximizes the profit of the movie theater?
Determine the best ticket price to a dime. 1

Here is an alternative version of the same program, given as a single
function definition:



62 Chapter 2

(define (profit price)
(— (x» (+ 120
(» (/ 15 0.1)
(- 5.0 price)))
price)
(+ 180
(» 0.04
(+ 120
(= (/ 15 0.1)
(= 5.0 price)))))))

Enter this definition into DrRacket and ensure that it produces the same re-
sults as the original version for $1, $2, $3, $4, and $5. A single look should
suffice to show how much more difficult it is to comprehend this one func-
tion compared to the above four.

Exercise 29. After studying the costs of a show, the owner discovered
several ways of lowering the cost. As a result of these improvements, there
is no longer a fixed cost; a variable cost of $1.50 per attendee remains.

Modify both programs to reflect this change. When the programs are
modified, test them again with ticket prices of $3, $4, and $5 and compare
the results. 1

2.4 Global Constants

As the Prologue already says, functions such as profit benefit from the
use of global constants. Every programming language allows program-
mers to define constants. In BSL, such a definition has the following shape:

* write “(define ”,

e write down the name,

* followed by a space and an expression, and
e write down “)”.

The name of a constant is a global variable while the definition is called a
constant definition. We tend to call the expression in a constant definition
the right-hand side of the definition.

Constant definitions introduce names for all forms of data: numbers,
images, strings, and so on. Here are some simple examples:



Functions and Programs 63

; the current price of a movie ticket:
(define CURRENT-PRICE 5)

; useful to compute the area of a disk:
(define ALMOST-PI 3.14)

; a blank line:
(define NL "\n")

; an empty scene:
(define MT (empty-scene 100 100))

The first two are numeric constants, the last two are a string and an image.
By convention, we use uppercase letters for global constants because it en-
sures that no matter how large the program is, the readers of our programs
can easily distinguish such variables from others.

All functions in a program may refer to these global variables. A ref-
erence to a variable is just like using the corresponding constants. The ad-
vantage of using variable names instead of constants is that a single edit
of a constant definition affects all uses. For example, we may wish to add
digits to ALMOST—P1I or enlarge an empty scene:

(define ALMOST-PI 3.14159)

; an empty scene:
(define MT (empty-scene 200 800))

Most of our sample definitions employ liferal constants on the right-
hand side, but the last one uses an expression. And indeed, a programmer
can use arbitrary expressions to compute constants. Suppose a program
needs to deal with an image of some size and its center:

(define WIDTH 100)
(define HEIGHT 200)

(define MID-WIDTH (/ WIDTH 2))
(define MID-HEIGHT (/ HEIGHT 2))

It can use two definitions with literal constants on the right-hand side and
two computed constants, that is, variables whose values are not just literal
constants but the results of computing the value of an expression.



64 Chapter 2

Again, we state an imperative slogan:

For every constant mentioned in a problem statement, introduce one
constant definition.

Exercise 30. Define constants for the price optimization program at the
movie theater so that the price sensitivity of attendance (15 people for every
10 cents) becomes a computed constant. 1

2.5 Programs

You are ready to create simple programs. From a coding perspective, a
program is just a bunch of function and constant definitions. Usually one
function is singled out as the “main” function, and this main function tends
to compose others. From the perspective of launching a program, however,
there are two distinct kinds:

* a batch program consumes all of its inputs at once and computes its
result. Its main function is the composition of auxiliary functions,
which may refer to additional auxiliary functions, and so on. When
we launch a batch program, the operating system calls the main func-
tion on its inputs and waits for the program’s output.

* an interactive program consumes some of its inputs, computes, pro-
duces some output, consumes more input, and so on. When an input
shows up, we speak of an event, and we create interactive programs
as event-driven programs. The main function of such an event-driven
program uses an expression to describe which functions to call for
which kinds of events. These functions are called event handlers.

When we launch an interactive program, the main function informs
the operating system of this description. As soon as input events hap-
pen, the operating system calls the matching event handler. Similarly,
the operating system knows from the description when and how to
present the results of these function calls as output.

This book focuses mostly on programs that interact via graphical user inter-
faces (GUI); there are other kinds of interactive programs, and you will get
to know those as you continue to study computer science.

Batch Programs As mentioned, a batch program consumes all of its in-
puts at once and computes the result from these inputs. Its main function



Functions and Programs 67

We call the main function convert. It consumes two file names: in for the
file where the Fahrenheit temperature is found and out for where we want
the Celsius result. A composition of five functions computes convert’s
result. Let’s step through convert’s body carefully:

1. (read-file in) retrieves the content of the named file as a string;
2. string->number turns this string into a number;

3. C interprets the number as a Fahrenheit temperature and converts it
into a Celsius temperature;

4. number->string consumes this Celsius temperature and turns it
into a string; and

5. (write-file out ...) places this string into the file named out.

This long list of steps might look overwhelming, and it doesn’t even in-
clude the st ring-append part. Stop! Explain

(string—append ... "\n")

In contrast, the average function composition in a pre-algebra course
involves two functions, possibly three. Keep in mind, though, that pro-
grams accomplish a real-world purpose while exercises in algebra merely
illustrate the idea of function composition.

At this point, we can experiment with convert. To start with, we use
write-file tocreate an input file for convert:

> (write—-file "sample.dat" "212")
"sample.dat"

> (convert "sample.dat" 'stdout)
100

'stdout

> (convert "sample.dat" "out.dat")
"out.dat"

> (read-file "out.dat")

"ioo"

For the first interaction, we use 'stdout so that we can view what con-
vert outputs in DrRacket’s interactions area. For the second one, convert
is given the name "out.dat". As expected, the call to convert returns

You can also create
"sample.dat"
with a file editor.



68 Chapter 2

this string; from the description of write-file we also know that it de-
posited a Fahrenheit temperature in the file. Here we read the content of
this file with read-file, but you could also view it with a text editor.

In addition to running the batch program, it is also instructive to step
through the computation. Make sure that the file "sample.dat" exists
and contains just a number, then click the STEP button in DrRacket. Doing
so opens another window in which you can peruse the computational pro-
cess that the call to the main function of a batch program triggers. You will
see that the process follows the above outline.

Exercise 31. Recall the letter program from chapter 2.3. Here is how
to launch the program and have it write its output to the interactions area:

> (write—-file

'stdout

(letter "Matthew" "Fisler" "Felleisen"))
Dear Matthew,

We have discovered that all people with the
last name Fisler have won our lottery. So,
Matthew, hurry and pick up your prize.

Sincerely,

Felleisen
'stdout

Of course, programs are useful because you can launch them for many dif-
ferent inputs. Run letter on three inputs of your choice.

Here is a letter-writing batch program that reads names from three files
and writes a letter to one:

(define (main in-fst in-lst in-signature out)
(write—-file out
(letter (read-file in-fst)
(read-file in-1st)
(read-file in-signature))))

The function consumes four strings: the first three are the names of input
files and the last one serves as an output file. It uses the first three to read
one string each from the three named files, hands these strings to letter,



Functions and Programs 69

and eventually writes the result of this function call into the file named by
out, the fourth argument to main.

Create appropriate files, launch main, and check whether it delivers the
expected letter in a given file. 1

Interactive Programs Batch programs are a staple of business uses of
computers, but the programs people encounter now are interactive. In this
day and age, people mostly interact with desktop applications via a key-
board and a mouse. Furthermore, interactive programs can also react to
computer-generated events, for example, clock ticks or the arrival of a mes-
sage from some other computer.

Exercise 32. Most people no longer use desktop computers just to run
applications but also employ cell phones, tablets, and their cars” informa-
tion control screen. Soon people will use wearable computers in the form of
intelligent glasses, clothes, and sports gear. In the somewhat more distant
future, people may come with built-in bio computers that directly interact
with body functions. Think of ten different forms of events that software
applications on such computers will have to deal with. 1

The purpose of this section is to introduce the mechanics of writing in-
teractive BSL programs. Because many of the project-style examples in this
book are interactive programs, we introduce the ideas slowly and carefully.
You may wish to return to this section when you tackle some of the interac-
tive programming projects; a second or third reading may clarify some of
the advanced aspects of the mechanics.

By itself, a raw computer is a useless piece of physical equipment. It is
called hardware because you can touch it. This equipment becomes useful
once you install software, that is, a suite of programs. Usually the first piece
of software to be installed on a computer is an operating system. It has the
task of managing the computer for you, including connected devices such
as the monitor, the keyboard, the mouse, the speakers, and so on. The way
it works is that when a user presses a key on the keyboard, the operating
system runs a function that processes keystrokes. We say that the keystroke
is a key event, and the function is an event handler. In the same vein, the
operating system runs an event handler for clock ticks, for mouse actions,
and so on. Conversely, after an event handler is done with its work, the
operating system may have to change the image on the screen, ring a bell,
print a document, or perform a similar action. To accomplish these tasks, it
also runs functions that translate the operating system’s data into sounds,
images, actions on the printer, and so on.

Naturally, different programs have different needs. One program may
interpret keystrokes as signals to control a nuclear reactor; another passes



70 Chapter 2

them to a word processor. To make a general-purpose computer work on
these radically different tasks, different programs install different event
handlers. That is, a rocket-launching program uses one kind of function
to deal with clock ticks while an oven’s software uses a different kind.

Designing an interactive program requires a way to designate some
function as the one that takes care of keyboard events, another function
for dealing with clock ticks, a third one for presenting some data as an im-
age, and so forth. It is the task of an interactive program’s main function to
communicate these designations to the operating system, that is, the soft-
ware platform on which the program is launched.

DrRacket is a small operating system, and BSL is one of its program-
ming languages. The latter comes with the 2htdp/universe library, which pro-
vides big-bang, a mechanism for telling the operating system which func-
tion deals with which event. In addition, big-bang keeps track of the
state of the program. To this end, it comes with one required sub-expression,
whose value becomes the initial state of the program. Otherwise big-bang
consists of one required clause and many optional clauses. The required
to-draw clause tells DrRacket how to render the state of the program, in-
cluding the initial one. Each of the other, optional clauses tells the operating
system that a certain function takes care of a certain event. Taking care of
an event in BSL means that the function consumes the state of the program
and a description of the event, and that it produces the next state of the
program. We therefore speak of the current state of the program.

Terminology In a sense, a big-bang expression describes how a pro-
gram connects with a small segment of the world. This world might be a
game that the program’s users play, an animation that the user watches, or
a text editor that the user employs to manipulate some notes. Programming
language researchers therefore often say that big-bang is a description of
a small world: its initial state, how states are transformed, how states are
rendered, and how big-bang may determine other attributes of the cur-
rent state. In this spirit, we also speak of the state of the world and even call
big-bang programs world programs. End

Let’s study this idea step-by-step, starting with this definition:

(define (number->square s)
(square s "solid" "red"))

The function consumes a positive number and produces a solid red square
of that size. After clicking RUN, experiment with the function, like this:



Functions and Programs 71

> (number->square 5)
[ |
> (number->square 10)

> (number->square 20)

It behaves like a batch program, consuming a number and producing an
image, which DrRacket renders for you.
Now try the following big-bang expression in the interactions area:

> (big-bang 100 [to-draw number->square])

A separate window appears, and it displays a 100 x 100 red square. In
addition, the DrRacket interactions area does not display another prompt;
itis as if the program keeps running, and this is indeed the case. To stop the
program, click on DrRacket’s STOP button or the window’s CLOSE button:

> (big-bang 100 [to-draw number->square])
100

When DrRacket stops the evaluation of a big-bang expression, it returns
the current state, which in this case is just the initial state: 100.
Here is a more interesting big-bang expression:

> (big-bang 100
[to—draw number—->square]
[on-tick subl]
[stop-when zero?])

This big-bang expression adds two optional clauses to the previous one:
the on-tick clause tells DrRacket how to deal with clock ticks and the
stop-when clause says when to stop the program. We read it as follows,
starting with 100 as the initial state:

1. every time the clock ticks, subtract 1 from the current state;
2. then check whether zero? is true of the new state and if so, stop; and

3. every time an event handler returns a value, use number->square
to render it as an image.



