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First.

You have to understand
the problem.

Second.

Find the connection between
the data and the unknown.
You may be obliged

to consider auxiliary problems
if an immediate connection
cannot be found.

You should obtain eventually
a plan of the solution.

HOW TO SOLVE IT

UNDERSTANDING THE PROBLEM

What is the unknown? What are the data? What is the condition?

Is it possible to satisfy the condition? Is the condition sufficient to
determine the unknown? Or is it insufficient? Or redundant? Or
contradictory?

Draw a figure. Introduce suitable notation.
Separate the various parts of the condition. Can you write them down?

DEVISING A PLAN

Have you seen it before? Or have you seen the same problem in a
slightly different form?

Do you know a related problem? Do you know a theorem that could
be useful?

Look at the unknown! And try to think of a familiar problem having
the same or a similar unknown.

Here is a problem related to yours and solved before. Could you use it?
Could you use its result? Could you use its method? Should you intro-
duce some auxiliary element in order to make its use possible?

Could you restate the problem? Could you restate it still differently?
Go back to definitions.
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Foreword
by John H. Conway

How to Solve It is a wonderful book! This I realized when
I first read right through it as a student many years ago, but
it has taken me a long time to appreciate just how wonder-
ful it is. Why is that? One part of the answer is that the book
is unique. In all my years as a student and teacher, I have
never seen another that lives up to George Polya’s title by
teaching you how to go about solving problems. A. H.
Schoenfeld correctly described its importance in his 1987
article “Polya, Problem Solving, and Education” in Mathematics
Magazine. “For mathematics education and the world of
problem solving it marked a line of demarcation between
two eras, problem solving before and after Polya.”

It is one of the most successful mathematics books ever
written, having sold over a million copies and been translated
into seventeen languages since it first appeared in 1945.
Polya later wrote two more books about the art of doing
mathematics, Mathematics and Plausible Reasoning (1954) and
Mathematical Discovery (two volumes, 1962 and 1965).

The book’s title makes it seem that it is directed only
toward students, but in fact it is addressed just as much to
their teachers. Indeed, as Polya remarks in his introduction,
the first part of the book takes the teacher’s viewpoint more
often than the student’s.

Everybody gains that way. The student who reads the book
on his own will find that overhearing Polya’s comments to his
non-existent teacher can bring that desirable person into
being, as an imaginary but very helpful figure leaning over
one’s shoulder. This is what happened to me, and naturally I
made heavy use of the remarks I'd found most important
when I myself started teaching a few years later.

XIX
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But it was some time before I read the book again, and
when I did, I suddenly realized that it was even more valuable
than I'd thought! Many of Polya’s remarks that hadn’t
helped me as a student now made me a better teacher of
those whose problems had differed from mine. Polya had
met many more students than I had, and had obviously
thought very hard about how to best help all of them learn
mathematics. Perhaps his most important point is that learn-
ing must be active. As he said in a lecture on teaching,
“Mathematics, you see, is not a spectator sport. To under-
stand mathematics means to be able to do mathematics. And
what does it mean [to be] doing mathematics? In the first
place, it means to be able to solve mathematical problems.”

It is often said that to teach any subject well, one has to
understand it “at least as well as one’s students do.” It is a
paradoxical truth that to teach mathematics well, one must
also know how to misunderstand it at least to the extent
one’s students do! If a teacher’s statement can be parsed in
two or more ways, it goes without saying that some students
will understand it one way and others another, with results
that can vary from the hilarious to the tragic. J. E. Little-
wood gives two amusing examples of assumptions that can
easily be made unconsciously and misleadingly. First, he
remarks that the description of the coordinate axes (“Ox
and Oyas in 2 dimensions, Oz vertical”) in Lamb’s book Me-
chanics is incorrect for him, since he always worked in an
armchair with his feet up! Then, after asking how his reader
would present the picture of a closed curve lying all on one
side of its tangent, he states that there are four main schools
(to left or right of vertical tangent, or above or below hori-
zontal one) and that by lecturing without a figure, presum-
ing that the curve was to the right of its vertical tangent, he
had unwittingly made nonsense for the other three schools.

I know of no better remedy for such presumptions than
Polya’s counsel: before trying to solve a problem, the stu-



Foreword xx1

dent should demonstrate his or her understanding of its
statement, preferably to a real teacher, but in lieu of that, to
an imagined one. Experienced mathematicians know that
often the hardest part of researching a problem is under-
standing precisely what that problem says. They often fol-
low Polya’s wise advice: “If you can’t solve a problem, then
there is an easier problem you can’t solve: find it.”

Readers who learn from this book will also want to learn
about its author’s life.’

George Polya was born Gyorgy Polya (he dropped the
accents sometime later) on December 13, 1887, in Buda-
pest, Hungary, to Jakab Pélya and his wife, the former Anna
Deutsch. He was baptized into the Roman Catholic faith, to
which Jakab, Anna, and their three previous children, Jeng,
Ilona, and Fléra, had converted from Judaism in the previ-
ous year. Their fifth child, Laszl6, was born four years later.

Jakab had changed his surname from Pollak to the more
Hungarian-sounding Polya five years before Gyorgy was
born, believing that this might help him obtain a university
post, which he eventually did, but only shortly before his
untimely death in 1897.

At the Daniel Berzsenyi Gymnasium, Gyorgy studied
Greek, Latin, and German, in addition to Hungarian. It is
surprising to learn that there he was seemingly uninterested
in mathematics, his work in geometry deemed merely “sat-
isfactory” compared with his “outstanding” performance in
literature, geography, and other subjects. His favorite sub-
ject, outside of literature, was biology.

He enrolled at the University of Budapest in 19o5, ini-
tially studying law, which he soon dropped because he
found it too boring. He then obtained the certification
needed to teach Latin and Hungarian at a gymnasium, a

IThe following biographical information is taken from that given by
J. J. O’Connor and E. F. Robertson in the MacTutor History of
Mathematics Archive (www-gap.dcs.st-and.ac.uk/~history/).
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certification that he never used but of which he remained
proud. Eventually his professor, Bernat Alexander, advised
him that to help his studies in philosophy, he should take
some mathematics and physics courses. This was how he
came to mathematics. Later, he joked that he “wasn’t good
enough for physics, and was too good for philosophy—
mathematics is in between.”

In Budapest he was taught physics by E6tvos and mathe-
matics by Fejér and was awarded a doctorate after spending
the academic year 1g10—11 in Vienna, where he took some
courses by Wirtinger and Mertens. He spent much of the
next two years in Gottingen, where he met many more
mathematicians—Klein, Caratheodory, Hilbert, Runge,
Landau, Weyl, Hecke, Courant, and Toeplitz—and in 1914
visited Paris, where he became acquainted with Picard and
Hadamard and learned that Hurwitz had arranged an
appointment for him in Zirich. He accepted this position,
writing later: “I went to Zirich in order to be near Hurwitz,
and we were in close touch for about six years, from my
arrival in Zirich in 1914 to his passing [in 1919]. I was very
much impressed by him and edited his works.”

Of course, the First World War took place during this
period. It initially had little effect on Polya, who had been
declared unfit for service in the Hungarian army as the
result of a soccer wound. But later when the army, more
desperately needing recruits, demanded that he return to
fight for his country, his strong pacifist views led him to
refuse. As a consequence, he was unable to visit Hungary
for many years, and in fact did not do so until 1967, fifty-
four years after he left.

In the meantime, he had taken Swiss citizenship and
married a Swiss girl, Stella Vera Weber, in 1918. Between
1918 and 1919, he published papers on a wide range of
mathematical subjects, such as series, number theory, com-
binatorics, voting systems, astronomy, and probability. He
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was made an extraordinary professor at the Ziirich ETH in
1920, and a few years later he and Gabor Szegé published
their book Aufgaben und Lehrsatze aus der Analysis (“Problems
and Theorems in Analysis”), described by G. L. Alexander-
son and L. H. Lange in their obituary of Polya as “a math-
ematical masterpiece that assured their reputations.”

That book appeared in 1925, after Polya had obtained a
Rockefeller Fellowship to work in England, where he col-
laborated with Hardy and Littlewood on what later became
their book Inequalities (Cambridge University Press, 1936).
He used a second Rockefeller Fellowship to visit Princeton
University in 1933, and while in the United States was invited
by H. F. Blichfeldt to visit Stanford University, which he
greatly enjoyed, and which ultimately became his home.
Polya held a professorship at Stanford from 1943 until his re-
tirement in 1959, and it was there, in 1978, that he taught
his last course, in combinatorics; he died on September 7,
1985, at the age of ninety-seven.

Some readers will want to know about Polya’s many con-
tributions to mathematics. Most of them relate to analysis
and are too technical to be understood by non-experts, but
a few are worth mentioning.

In probability theory, Polya is responsible for the now-
standard term “Central Limit Theorem” and for proving
that the Fourier transform of a probability measure is a
characteristic function and that a random walk on the inte-
ger lattice closes with probability 1 if and only if the dimen-
sion is at most 2.

In geometry, Polya independently re-enumerated the
seventeen plane crystallographic groups (their first enumer-
ation, by E. S. Fedorov, having been forgotten) and together
with P. Niggli devised a notation for them.

In combinatorics, Polya’s Enumeration Theorem is now
a standard way of counting configurations according to
their symmetry. It has been described by R. C. Read as “a
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It contains sixty-seven articles arranged alphabetically.
For example, the meaning of the term HEURISTIC (set
in small capitals) is explained in an article with this title
on page 112. When the title of such an article is referred
to within the text it will be set in small capitals. Certain
paragraphs of a few articles are more technical; they are
enclosed in square brackets. Some articles are fairly
closely connected with the first part to which they add
further illustrations and more specific comments. Other
articles go somewhat beyond the aim of the first part of
which they explain the background. There is a key-
article on MODERN HEURISTIC. It explains the connection
of the main articles and the plan underlying the Diction-
ary; it contains also directions how to find information
about particular items of the list. It must be emphasized
that there is a common plan and a certain unity, because
the articles of.the Dictionary show the greatest outward
variety. There are a few longer articles devoted to the
systematic though condensed discussion of some general
theme; others contain more specific comments, still others
cross-references, or historical data, or quotations, or
aphorisms, or even jokes.

The Dictionary should not be read too quickly; its text
is often condensed, and now and then somewhat subtle.
The reader may refer to the Dictionary for information
about particular points. If these points come from his
experience with his own problems or his own students,
the reading has a much better chance to be profitable.

The title of the fourth part is “Problems, Hints, Solu-
tions.” It proposes a few problems to the more ambitious
reader. Each problem is followed (in proper distance) by
a “hint” that may reveal a way to the result which is
explained in the “solution.”

We have mentioned repeatedly the “student” and the
“teacher” and we shall refer to them again and again. It
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may be good to observe that the “student” may be a high
school student, or a college student, or anyone else who
is studying mathematics. Also the “teacher” may be a
high school teacher, or a college instructor, or anyone
interested in the technique of teaching mathematics. The
author looks at the situation sometimes from the point
of view of the student and sometimes from that of the
teacher (the latter case is preponderant in the first part).
Yet most of the time (especially in the third part) the
point of view is that of a person who is neither teacher
nor student but anxious to solve the problem before him.
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5. Teacher and Student. Imitation and Practice 3

not to “problems to prove.” If we have a problem of the
latter kind we must use different questions; see PROBLEMS
TO FIND, PROBLEMS TO PROVE.

4. Common sense. The questions and suggestions of
our list are general, but, except for their generality, they
are natural, simple, obvious, and proceed from plain
common sense. Take the suggestion: Look at the un-
known! And try to think of a familiar problem having
the same or a similar unknown. This suggestion advises
you to do what you would do anyhow, without any
advice, if you were seriously concerned with your prob-
lem. Are you hungry? You wish to obtain food and you
think of familiar ways of obtaining food. Have you a
problem of geometric construction? You wish to con-
struct a triangle and you think of familiar ways of con-
structing a triangle. Have you a problem of any kind?
You wish to find a certain unknown, and you think of
familiar ways of finding such an unknown, or some simi-
lar unknown. If you do so you follow exactly the sug-
gestion we quoted from our list. And you are on the right
track, too; the suggestion is a good one, it suggests to you
a procedure which is very frequently successful.

All the questions and suggestions of our list are natural,
simple, obvious, just plain common sense; but they state
plain common sense in general terms. They suggest a
certain conduct which comes naturally to any person who
is seriously concerned with his problem and has some
common sense. But the person who behaves the right way
usually does not care to express his behavior in clear
words and, possibly, he cannot express it so; our list tries
to express it so.

5. Teacher and student. Imitation and practice. There
are two aims which the teacher may have in view when
addressing to his students a question or a suggestion of
the list: First, to help the student to solve the problem
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at hand. Second, to develop the student’s ability so that
he may solve future problems by himself.

Experience shows that the questions and suggestions of
our list, appropriately used, very frequently help the
student. They have two common characteristics, common
sense and generality. As they proceed from plain common
sense they very often come naturally; they could have
occurred to the student himself. As they are general, they
help unobtrusively; they just indicate a general direction
and leave plenty for the student to do.

But the two aims we mentioned before are closely con-
nected; if the student succeeds in solving the problem at
hand, he adds a little to his ability to solve problems.
Then, we should not forget that our questions are gen-
eral, applicable in many cases. If the same question is
repeatedly helpful, the student will scarcely fail to notice
it and he will be induced to ask the question by himself
in a similar situation. Asking the question repeatedly, he
may succeed once in eliciting the right idea. By such a
success, he discovers the right way of using the question,
and then he has really assimilated it.

The student may absorb a few questions of our list so
well that he is finally able to put to himself the right
question in the right moment and to perform the corre-
sponding mental operation naturally and vigorously.
Such a student has certainly derived the greatest possible
profit from our list. What can the teacher do in order to
obtain this best possible result?

Solving problems is a practical skill like, let us say,
swimming. We acquire any practical skill by imitation
and practice. Trying to swim, you imitate what other
people do with their hands and feet to keep their heads
above water, and, finally, you learn to swim by prac-
ticing swimming. Trying to solve problems, you have to
observe and to imitate what other people do when solv-
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ing problems and, finally, you learn to do problems by
doing them.

The teacher who wishes to develop his students” ability
to do problems must instill some interest for problems
into their minds and give them plenty of opportunity for
imitation and practice. If the teacher wishes to develop
in his students the mental operations which correspond
to the questions and suggestions of our list, he puts these
questions and suggestions to the students as often as he
can do so naturally. Moreover, when the teacher solves
a problem before the class, he should dramatize his ideas
a little and he should put to himself the same questions
which he uses when helping the students. Thanks to such
guidance, the student will eventually discover the right
use of these questions and suggestions, and doing so he
will acquire something that is more important than the
knowledge of any particular mathematical fact.

MAIN DIVISIONS, MAIN QUESTIONS

6. Four phases. Trying to find the solution, we may re-
peatedly change our point of view, our way of looking
at the problem. We have to shift our position again and
again. Our conception of the problem is likely to be
rather incomplete when we start the work; our out-
look is different when we have made some progress; it
is again different when we have almost obtained the
solution.

In order to group conveniently the questions and sug-
gestions of our list, we shall distinguish four phases of
the work. First, we have to understand the problem; we
have to see clearly what is required. Second, we have to
see how the various items are connected, how the un-
known is linked to the data, in order to obtain the idea
of the solution, to make a plan. Third, we carry out our
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plan. Fourth, we look back at the completed solution,
we review and discuss it.

Each of these phases has its importance. It may hap-
pen that a student hits upon an exceptionally bright
idea and jumping all preparations blurts out with the
solution. Such lucky ideas, of course, are most desirable,
but something very undesirable and unfortunate may
result if the student leaves out any of the four phases
without having a good idea. The worst may happen if
the student embarks upon computations or construc-
tions without having wunderstood the problem. It is
generally useless to carry out details without having seen
the main connection, or having made a sort of plan.
Many mistakes can be avoided if, carrying out his plan,
the student checks each step. Some of the best effects may
be lost if the student fails to reexamine and to reconsider
the completed solution.

7. Understanding the problem. It is foolish to answer
a question that you do not understand. It is sad to work
for an end that you do not desire. Such foolish and sad
things often happen, in and out of school, but the teacher
should try to prevent them from happening in his class.
The student should understand the problem. But he
should not only understand it, he should also desire its
solution. If the student is lacking in understanding or in
interest, it is not always his fault; the problem should be
well chosen, not too difficult and not too easy, natural
and interesting, and some time should be allowed for
natural and interesting presentation.

First of all, the verbal statement of the problem must
be understood. The teacher can check this, up to a cer-
tain extent; he asks the student to repeat the statement,
and the student should be able to state the problem
fluently., The student should also be able to point out
the principal parts of the problem, the unknown, the
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data, the condition. Hence, the teacher can seldom afford
to miss the questions: What is the unknown? Whui are
the data? What is the condition?

The student should consider the principal parts of the
problem attentively, repeatedly, and from various sides.
If there is a figure connected with the problem he should
draw a figure and point out on it the unknown and the
data. If it is necessary to give names to these objects he
should introduce suitable notation; devoting some atten-
tion to the appropriate choice of signs, he is obliged to
consider the objects for which the signs have to be chosen.
There is another question which may be useful in this
preparatory stage provided that we do not expect a
definitive answer but just a provisional answer, a guess:
Is it possible to satisfy the condition?

(In the exposition of Part II [p. g3] “Understanding
the problem” is subdivided into two stages: “‘Getting ac-
quainted” and “Working for better understanding.”)

8. Example. Let us illustrate some of the points ex-
plained in the foregoing section. We take the following
simple problem: Find the diagonal of a rectangular paral-
lelepiped of which the length, the width, and the height
are known.

In order to discuss this problem profitably, the students
must be familiar with the theorem of Pythagoras, and
with some of its applications in plane geometry, but they
may have very little systematic knowledge in solid geom-
etry. The teacher may rely here upon the student’s un-
sophisticated familiarity with spatial relations.

The teacher can make the problem interesting by
making it concrete. The classroom is a rectangular paral-
lelepiped whose dimensions could be measured, and can
be estimated; the students have to find, to “measure
indirectly,” the diagonal of the classroom. The teacher
points out the length, the width, and the height of the
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magic. If they do not work, we must look around for some
other appropriate point of contact, and explore the vari-
ous aspects of our problem; we have to vary, to transform,
to modify the problem. Could you restate the problem?
Some of the questions of our list hint specific means to
vary the problem, as generalization, specialization, use of
analogy, dropping a part of the condition, and so on; the
details are important but we cannot go into them now.
Variation of the problem may lead to some appropriate
auxiliary problem: If you cannot solve the proposed
problem try to solve first some related problem.

Trying to apply various known problems or theorems,
considering various modifications, experimenting with
various auxiliary problems, we may stray so far from our
original problem that we are in danger of losing it alto-
gether. Yet there is a good question that may bring us
back to it: Did you use all the data? Did you use the
whole condition?

10. Example. We return to the example considered in
section 8. As we left it, the students just succeeded in
understanding the problem and showed some mild inter-
est in it. They could now have some ideas of their own,
some initiative. If the teacher, having watched sharply,
cannot detect any sign of such initiative he has to resume
carefully his dialogue with the students. He must be pre-
pared to repeat with some modification the questions
which the students do not answer. He must be prepared
to meet often with the disconcerting silence of the
students (which will be indicated by dots .....).

“Do you know a related problem?”

“Look at the unknown! Do you know a problem hav-
ing the same unknown?”

-----

“Well, what is the unknown?”
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“The diagonal of a parallelepiped.”

“Do you know any problem with the same unknown?”

“No. We have not had any problem yet about the
diagonal of a parallelepiped.”

“Do you know any problem with a similar unknown?”

“You see, the diagonal is a segment, the segment of a
straight line. Did you never solve a problem whose un-
known was the length of a line?”

“Of course, we have solved such problems. For instance,
to find a side of a right triangle.”

“Good! Here is a problem related to yours and solved
before. Could you use it?”

“You were lucky enough to remember a problem which
is related to your present one and which you solved

FIG. 1

before. Would you like to use it? Could you introduce
some auxiliary element in order to make its use possible?”
“Look here, the problem you remembered is about a
triangle. Have you any triangle in your figure?”
Let us hope that the last hint was explicit enough to
provoke the idea of the solution which is to introduce
a right triangle, (emphasized in Fig. 1) of which the
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required diagonal is the hypotenuse. Yet the teacher
should be prepared for the case that even this fairly ex-
plicit hint is insufficient to shake the torpor of the stu-
dents; and so he should be prepared to use a whole
gamut of more and more explicit hints.

“Would you like to have a triangle in the figure?”

“What sort of triangle would you like to have in the
figure?”

“You cannot find yet the diagonal; but you said that
you could find the side of a triangle. Now, what will you
do?”

“Could you find the diagonal, if it were a side of a
triangle?”

When, eventually, with more or less help, the students
succeed in introducing the decisive auxiliary element, the
right triangle emphasized in Fig. 1, the teacher should
convince himself that the students see sufficiently far
ahead before encouraging them to go into actual calcula-
tions.

“I think that it was a good idea to draw that triangle.
You have now a triangle; but have you the unknown?”

“The unknown is the hypotenuse of the triangle; we
can calculate it by the theorem of Pythagoras.”

“You can, if both legs are known; but are they?"

“One leg is given, it is ¢. And the other, I think, is not
difficult to find. Yes, the other leg is the hypotenuse of
another right triangle.”

“Very good! Now I see that you have a plan.”

11. Carrying out the plan. To devise a plan, to con-
ceive the idea of the solution is not easy. It takes so much
to succeed; formerly acquired knowledge, good mental
habits, concentration upon the purpose, and one more
thing: good luck. To carry out the plan is much easier;
what we need is mainly patience.

The plan gives a general outline; we have to convince
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ourselves that the details fit into the outline, and so we
have to examine the details one after the other, patiently,
till everything is perfectly clear, and no obscure corner
remains in which an error could be hidden.

If the student has really conceived a plan, the teacher
has now a relatively peaceful time. The main danger is
that the student forgets his plan. This may easily happen
if the student received his plan from outside, and ac-
cepted it on the authority of the teacher; but if he worked
for it himself, even with some help, and conceived the
final idea with satisfaction, he will not lose this idea
easily. Yet the teacher must insist that the student should
check each step.

We may convince ourselves of the correctness of a step
in our reasoning either “intuitively” or “formally.” We
may concentrate upon the point in question till we see
it so clearly and distinctly that we have no doubt that
the step is correct; or we may derive the point in ques-
tion according to formal rules. (The difference between
“insight” and “formal proof” is clear enough in many
important cases; we may leave further discussion to
philosophers.)

The main point is that the student should be honestly
convinced of the correctness of each step. In certain cases,
the teacher may emphasize the difference between “see-
ing” and “proving”: Can you see clearly that the step is
correct? But can you also prove that the step is correct?

12. Example. Let us resume our work at the point
where we left it at the end of section 10. The student, at
last, has got the idea of the solution. He sees the right
triangle of which the unknown x is the hypotenuse and
the given height ¢ is one of the legs; the other leg is the
diagonal of a face. The student must, possibly, be urged
to introduce suitable notation. He should choose y to de-
note that other leg, the diagonal of the face whose sides
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are ¢ and b. Thus, he may see more clearly the idea of the
solution which is to introduce an auxiliary problem
whose unknown is y. Finally, working at one right tri-
angle after the other, he may obtain (see Fig. 1)

22 =2 4 ¢
y2 = a® + 02
and hence, eliminating the auxiliary unknown y,
X2 = g% + b2 + 2
s=VEFETA.

The teacher has no reason to interrupt the student if
he carries out these details correctly except, possibly, to
warn him that he should check each step. Thus, the
teacher may ask:

“Can you see clearly that the triangle with sides x, y, ¢
is a right triangle?”

To this question the student may answer honestly
“Yes"” but he could be much embarrassed if the teacher,
not satisfied with the intuitive conviction of the student,
should go on asking:

“But can you prove that this triangle is a right tri-
angle?”

Thus, the teacher should rather suppress this question
unless the class has had a good initiation in solid geome-
try. Even in the latter case, there is some danger that the
answer to an incidental question may become the main
difficulty for the majority of the students.

13. Looking back. Even fairly good students, when
they have obtained the solution of the problem and writ-
ten down neatly the argument, shut their books and look
for something else. Doing so, they miss an important and
instructive phase of the work. By looking back at the
completed solution, by reconsidering and reexamining
the result and the path that led to it, they could consoli-
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parallelepiped becomes a parallelogram. If you put ¢ = o
in your formula, do you obtain the correct formula for
the diagonal of the rectangular parallelogram?”

“If the height ¢ increases, the diagonal increases. Does
your formula show this?”

“If all three measures a, b, ¢ of the parallelepiped in-
crease in the same proportion, the diagonal also increases
in the same proportion. If, in your formula, you substi-
tute 124, 12b, 12¢ for a, b, ¢ respectively, the expression of
the diagonal, owing to this substitution, should also be
multiplied by 12. Is that so?”

“If a, b, ¢ are measured in feet, your formula gives the
diagonal measured in feet too; but if you change all meas-
ures into inches, the formula should remain correct. Is
that so?”

(The two last questions are essentially equivalent; see
TEST BY DIMENSION.)

These questions have several good effects. First, an in-
telligent student cannot help being impressed by the fact
that the formula passes so many tests. He was convinced
before that the formula is correct because he derived it
carefully. But now he is more convinced, and his gain in
confidence comes from a different source; it is due to a
sort of “experimental evidence.” Then, thanks to the
foregoing questions, the details of the formula acquire
new significance, and are linked up with various facts.
The formula has therefore a better chance of being re-
membered, the knowledge of the student is consolidated.
Finally, these questions can be easily transferred to simi-
lar problems. After some experience with similar prob-
lems, an intelligent student may perceive the underlying
general ideas: use of all relevant data, variation of the
data, symmetry, analogy. If he gets into the habit of
directing his attention to such points, his ability to solve
problems may definitely profit.
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Can you check the argument? To recheck the argument
step by step may be necessary in difficult and important
cases. Usually, it is enough to pick out “touchy” points
for rechecking. In our case, it may be advisable to discuss
retrospectively the question which was less advisable to
discuss as the solution was not yet attained: Can you
prove that the triangle with sides x, y, ¢ is a right tri-
angle? (See the end of section 12.)

Can you use the result or the method for some other
problem? With a little encouragement, and after one or
two examples, the students easily find applications which
consist essentially in giving some concrete interpretation
to the abstract mathematical elements of the problem.
The teacher himself used such a concrete interpretation
as he took the room in which the discussion takes place
for the parallelepiped of the problem. A dull student may
propose, as application, to calculate the diagonal of the
cafeteria instead of the diagonal of the classroom. If the
students do not volunteer more imaginative remarks, the
teacher himself may put a slightly different problem, for
instance: “Being given the length, the width, and the
height of a rectangular parallelepiped, find the distance
of the center from one of the corners.”

The students may use the result of the problem they
just solved, observing that the distance required is one
half of the diagonal they just calculated. Or they may use
the method, introducing suitable right triangles (the
latter alternative is less obvious and somewhat more
clumsy in the present case) .

After this application, the teacher may discuss the con-
figuration of the four diagonals of the parallelepiped,
and the six pyramids of which the six faces are the bases,
the center the common vertex, and the semidiagonals the
lateral edges. When the geometric imagination of the
students is sufiiciently enlivened, the teacher should come
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back to his question: Can you use the result, or the
method, for some other problem? Now there is a better
chance that the students may find some more interesting
concrete interpretation, for instance, the following:

“In the center of the flat rectangular top of a building
which is 21 yards long and 16 yards wide, a flagpole is to
be erected, 8 yards high. To support the pole, we need
four equal cables. The cables should start from the same
point, 2 yards under the top of the pole, and end at the
four corners of the top of the building. How long is each
cable?”

The students may use the method of the problem they
solved in detail introducing a right triangle in a vertical
plane, and another one in a horizontal plane. Or they
may use the result, imagining a rectangular parallele-
piped of which the diagonal, x, is one of the four cables
and the edges are

a = 10.5 b=8 c¢=6.

By straightforward application of the formula, x = 14.5.

For more examples, sée CAN YOU USE THE RESULT?

15. Various approaches. Let us still retain, for a while,
the problem we considered in the foregoing sections 8,
10, 12, 14. The main work, the discovery of the plan, was
described in section 10. Let us observe that the teacher
could have proceeded differently. Starting from the same
point as in section 10, he could have followed a somewhat
different line, asking the following questions:

“Do you know any related problem?”

“Do you know an analogous problem?”

“You see, the proposed problem is a problem of solid
geometry. Could you think of a simpler analogous prob-
lem of plane geometry?”

“You see, the proposed problem is about a figure in
space, it is concerned with the diagonal of a rectangular
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parallelepiped. What might be an analogous problem
about a figure in the plane? It should be concerned with
—the diagonal—of—a rectangular—"

“Parallelogram.”

The students, even if they are very slow and indiffer-
ent, and were not able to guess anything before, are
obliged finally to contribute at least a minute part of the
idea. Besides, if the students are so slow, the teacher
should not take up the present problem about the paral-
lelepiped without having discussed before, in order to
prepare the students, the analogous problem about the
parallelogram. Then, he can go on now as follows:

“Here is a problem related to yours and solved before.
Can you use it?”

“Should you introduce some auxiliary element in order
to make its use possible?”

Eventually, the teacher may succeed in suggesting to
the students the desirable idea. It consists in conceiving
the diagonal of the given parallelepiped as the diagonal
of a suitable parallelogram which must be introduced
into the figure (as intersection of the parallelepiped with
a plane passing through two opposite edges) . The idea is
essentially the same as before (section 10) but the ap-
proach is different. In section 10, the contact with the
available knowledge of the students was established
through the unknown; a formerly solved problem was
recollected because its unknown was the same as that of
the proposed problem. In the present section analogy
provides the contact with the idea of the solution.

16. The teacher’s method of questioning shown in the
foregoing sections 8, 10, 12, 14, 15 is essentially this:
Begin with a general question or suggestion of our list,
and, if necessary, come down gradually to more specific
and concrete questions or suggestions till you reach one
which elicits a response in the student’s mind. If you



