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Introduction

It was a typical cold, snowy New England winter day on December
17,2004, when I started a WordPress “web log” on the topic of
simplicity. There was a whimsical motivation to turning my
research at MIT in that direction—namely, how the letters MIT
occurred in perfect sequence in the words SIMPLICITY and
COMPLEXITY. But there was a less Dr. Seussian motivation at play
as well, which I wrote about in my first blog entry:

I have always been interested in how the computer (which
is an object of great complexity) and design (which is
traditionally about simplicity) tend to mix poorly together
like the proverbial “oil and water.”?

Subsequently, that blog turned into a book titled The Laws of
Simplicity, which was rapidly translated into fourteen languages.
Why was it unusually impactful? I think because it arrived at a
time when computing technology was just starting to impact
everyday lives back in the pre-iPhone era. That book’s
overwhelming momentum and the concurrent rise of Apple’s
successful fusing of design and technology oddly drove me to head
in the opposite direction of computing’s inherent complexities and
instead toward designing for simplicity.

I wanted to somehow get closer to the essence of design and
move away from computers the way I had done once prior in my
early career—back in the nineties, when I was a practicing graphic
designer in Japan with a mismatched MIT pedigree. I'd somehow
managed to escape the “T” (Technology) of MIT as an engineering
student, and then made a U-turn into the thick of it as an MIT
Media Lab professor leading the intersection of design and
advanced computing technologies. Perhaps it was dealing with the
weight of earning tenure that made me feel stuck somewhere in
the future of design. I wanted to reconnect with the classics. [
think it was a mix of not knowing what to do with the MBA I'd



earned as a part-time hobby and an overwhelming mood in 2008 of
Barack Obama’s “Yes, we can,” combined with my desire to
rekindle the past, that resulted in my becoming the sixteenth
president of the esteemed “temple” of the art and design world:
Rhode Island School of Design, or RISD.

A series of later milestones, which built upon the work I had
long led at the MIT Media Lab, gave me a reputation as a fierce
defender of design. These included, for instance, appearing before
Congress to encourage putting an “A,” for Art, in STEM education,
turning it into STEAM, and later launching the “Design in Tech
Reports” while working in Silicon Valley at venture capital firm
Kleiner Perkins. So in 2019, when a popular business magazine
announced in a headline that I'd said, “In reality, design is not that
important,” it did not come as a surprise to me that I would be
dragged through the internet mud by all lovers of design.

There were many short- and long-form responses to the
interview that cast my responses as every shade of clueless and
ignorant. I knew that the controversy had hit a peak when my idol,
Hartmut Esslinger, the design force behind Apple’s original design
language, started coming after me on social media.? If I had
earned some sort of “badge” in the design world, the internet was
now ruling that it was my public duty to turn that badge in, and
for a period of time I would be unwelcome at any Temple of Design
out there. How did 1 feel? Terrible.

My words had been taken out of context from a twenty-minute
phone interview—and, frankly, when the article came out,
immediately admired the editorial team’s choice of headline as
brilliant clickbait. Apparently, my interview was the highest-
performing article on their website for quite some time, as
evidenced by the myriad spears and cleavers that were
continuously being lobbed in my direction. What stung the most
was knowing that few people had really read the entire interview,
so the headline was all that stuck in anyone’s mind. To them, I had
completely demeaned the work designers do every day. So I
needed to be punished.

Here’s the reality: I honestly don’t believe that design is the
most important matter today. Instead, I believe we should focus
first on understanding computation. Because when we combine
design with computation, a kind of magic results; when we
combine business with computation, great financial opportunities
can emerge. What is computation? That’s the question I would get



asked anytime I stepped off the MIT campus when I was in my
twenties and thirties, and then whenever I left any technology
company I worked with in my forties and fifties.

Computation is an invisible, alien universe that is infinitely large
and infinitesimally detailed. It’s a kind of raw material that doesn’t
obey the laws of physics, and it’s what powers the internet at a
level that far transcends the power of electricity. It’s a ubiquitous
medium that experienced software developers and the tech
industry control to a degree that threatens the sovereignty of
existing nation-states. Computation is not something you can fully
grasp after training in a “learn to code” boot camp, where the
mechanics of programming can be easily learned. It’s more like a
foreign country with its own culture, its own set of problems, and
its own language—but where knowing the language is not enough,
let alone if you have only a minimal understanding of it.

There’s been a conscious push in all countries to promote a
greater understanding of how computers and the internet work.
However, by the time a technology-centered educational program
is launched, it is already outdated. That’s because the pace of
progress in computing hasn’t moved at the speed of humans—it’s
been moving at the exponential speed of the internet’s evolution.
Back in 1999, when a BBC interviewer made a dismissive comment
about the internet, the late musician David Bowie presciently
offered an alternate interpretation: “It’s an alien life form ... and
it’s just landed here.” Since the landing of this alien life form, the
world has not been the same—and design as it has conventionally
been defined by the Temple of Design no longer feels to me like the
foundational language of the products and services worlds.
Instead, it’s ruled by new laws that are governed by the rising
Temple of Tech in a way that intrinsically excludes folks who are
less technically literate.

A new form of design has emerged: computational design. This
kind of design has less to do with the paper, cotton, ink, or steel
that we use in everything we physically craft in the real world, and
instead has more to do with the bytes, pixels, voice, and Al that we
use in everything we virtually craft in the digital world powered by
new computing technologies. It’s the text bubble that pops up on
your screen with a message from your loved one, or the perfect
photo you shot in the cold rain with your hands trembling and yet
which came out perfectly, or the friendly “Here you go, John” that
you hear when you ask your smart stereo to play your favorite



Bowie tunes. These new kinds of interactions with our increasingly
intelligent devices and surroundings require a fundamental
understanding of how computing works to maximize what we can
make.

So I came to wonder if I could find a way for more nontechie
people to start building a basic understanding of computation. And
then, with that basic conceptual grounding, to show how
computation is transforming the design of products and services.
For much of the twentieth century, computation by itself was
useful only to the military to calculate missile trajectories. But in
the twenty-first century, it is design that has made computation
relevant to business and, more so, to our everyday lives. Design
matters a lot when it is leveraged with a deep understanding of
computation and the unique set of possibilities it brings. But
achieving an intuitive understanding of an invisible alien universe
doesn’t come so easily.

This book is the result of a six-year journey I have traveled away
from “pure” design and into the heart of what is impacting design
the most: computation. I will take you on a tour through the minds
and cultures of computing machines from how they once existed
in a simpler form to how they’ve evolved into the much more
complex forms we know today. Keep in mind that this book is not
designed to turn you into a computer science genius—I've vastly
simplified, and in some cases oversimplified, technical concepts in
a way that will surely raise some experts’ eyebrows and might
cause them to cringe. But I hope that, armed with even my rough
approximations, you will learn how computation has expanded
both in technical capability and in sociocultural impact—
something you may regard simultaneously as hugely impressive
and terribly frightening.

Computation brings its share of problems, but most of them
have to do with us—how we use it—rather than by the underlying
technology itself. We've entered an era in which the computing
machines we use today are powered not just by electricity and
mathematics, but by our every action and with insights gained in
real time as we use them. In the future we’ll have only ourselves to
blame for how computation evolves, but we're more likely to
succumb to a victim mentality if we remain ignorant as to what is
really going on. So it will become only natural to want to pin the
blame on a handful of tech company leaders, if not all of them—a
fairly likely scenario, since fear of the invisible or unknown is far



more powerful than any fear that has physical form, like a pack of
wild wolves or a threatening tornado. The intangible, invisible
alien force that is the internet represents the perfect object of fear
that already lives in your neighborhood and teaches your children
while secretly seeking to do you all harm, which explains why the
eeriness of tech is so widely portrayed in TV and movies today.’

I have always believed that being curious is better than being
afraid—for when we are curious we get inventive, whereas when
we are afraid we get destructive. Something about my experience
between the Temple of Design and the Temple of Tech has kept me
curious all these years. When I think more deeply about it, it’s the
many career failures I've fortunately experienced in between my
few successes that drive me to still remain a little hungry and
foolish. But to be honest, I'm just like anyone else—tired, a little
lazy, and all too eager to wait for a hero to rise who will protect me
and fight for all of us. There’s a common lack of understanding of
what computation fundamentally can and cannot do. Rather than
give away your power of understanding to someone else, I invite
you to be curious about the computational universe.

Perhaps I wrote this book for you. Perhaps you are the hero the
world has been waiting for. Perhaps you are one of the many who
will find a way to wield the power of computation with
inventiveness and wonder. Those kinds of heroes are now
desperately needed in order to advance computation beyond what
it is today in its superpowerful, albeit running with the conflicted
conscience of a teenager, form. Being new to the computational
universe, you just might discover something that we first-
generation techies have not yet been able to imagine. When you
find it and make it into a success, it will set an example for the rest
of us. I wish that heroic moment upon you someday, but first let
me start you on the path to speaking the language of the machine.



the F1 race continued with no need for the cars to make a pit stop,
we’d think to ourselves, Magic!

But a computer running a program, if left powered up, can sit in
a loop and run forever, never losing energy or enthusiasm. It’s a
metamechanical machine that never experiences surface friction
and is never subject to the forces of gravity like a real mechanical
machine—so it runs in complete perfection. This property is the
first thing that sets computational machines apart from the living,
tiring, creaky, squeaky world.

I first came in touch with the power of computational loops in
1979, when I was in seventh grade. I had just encountered my first
computer. That in itself was unusual for someone with my
background growing up on the poor side of town; thanks to
desegregation efforts motivated by the civil rights movement, I
was bused to a school an hour away from my home that was much
better than the run-down schools in my neighborhood.

Commodore was a big name in computing at the time. When I
say big, of course I mean big for maybe a few thousand people in
the United States and Europe. Personal computers weren’t really
personal back then, because the average family could not afford
one. The Commodore PET (Personal Electronic Transactor) was
manufactured in the United States with a small screen displaying
text in only fluorescent green, a tiny tactile keyboard, and a tape
cassette drive for storage. It had 8 kilobytes of total memory, and
its processing speed was 1 megahertz. In comparison, the average
mobile phone has 8 gigabytes and runs at 2 gigahertz, which is a
millionfold increase in memory and a thousandfold increase in
speed.

There was no internet yet, so you couldn’t search for anything.
There was no Microsoft, so you couldn’t do your schoolwork on a
word processor or spreadsheet. There was no touch screen or
mouse, so you couldn’t directly interact with what was on the
monitor. There were no color or grayscale pixels to display images
with, so you couldn’t visually express information. There was only
one font, and text was only uppercase. You would “navigate” the
computer screen by pressing the cursor keys: up, down, left, right.
And any functionality that you wanted it to have, you would need
to type in a program to create it yourself or type it in line by line
from a book or magazine.

As you can imagine, the computer sat in the classroom generally
unused—it was not only useless, it was soulless as an experience.



No expressive or informative images. No stereo sound or the latest
tunes. No utility or empowerment with an amazing set of apps. It
just blinked at you, constantly, with its cursor rectangle—awaiting
you to type in instructions for it to follow. And when you did raise
the courage to type something into it, you would likely be
rewarded with, in all caps, synTax ERROR—which essentially
translated to YOU'RE WRONG. I DON'T UNDERSTAND.

It’s no surprise that the computer attracted only a few kinds of
students—perhaps those who grew up a bit lower on the empathy
scale (like me), or those who could tolerate the crushing blow of
being told they were wrong with each keystroke. My friend Colin,
whose parents worked with computers at Boeing, showed me my
first program. He rapidly typed the following program into the
PET, free from any syntax errors:

10 PRINT "COLIN"
20 GOTO 10

Then he told me to go ahead and type run ... What happened
next astounded me. The computer began printing “COLIN”
continuously. I asked when it was going to stop. Colin said,
“Never.” This worried me. He then proceeded to break the
program with conTroL-C. And then the blinking text prompt came
back.

Colin then retyped the first line of code, but this time with one
space and a semicolon.

10 PRINT "COLIN ";
And he typed run to display the following:

COLIN COLIN COLIN COLIN COLIN COLIN COLIN
COLIN COLIN COLIN COLIN COLIN COLIN COLIN
COLIN COLIN COLIN COLIN COLIN COLIN COLIN
COLIN COLIN COLIN COLIN COLIN COLIN COLIN
COLIN COLIN COLIN COLIN ..

And again, it kept printing and scrolling by. I tried it myself, and
typed:

10 PRINT "MAEDA "..



to experience the incredibly affirming display of my name being
said forever and ever:

MAEDA MAEDA MAEDA MAEDA MAEDA MAEDA MAEDA
MAEDA MAEDA MAEDA MAEDA MAEDA MAEDA MAEDA
MAEDA MAEDA ..

Thereafter, I would perform this magic “say my name” trick for
anyone who was curious about the computer. I did it for my
classmate Jessica, who I kind of had a thing for. The limits of my
computer expertise became evident when she asked, “What else
can you do?” Uh-oh.

But my curiosity was piqued. I started to read Byte magazine
(one of maybe two computing magazines available). Since there
was close to no software available, it was really important to learn
to write programs, Byte regularly included entire computer
programs printed out across many pages and ready to be manually
typed in to a computer yourself—the only problem was that I
didn’t have a computer to regularly use.

Luckily, my mother, Elinor, was always forward-looking and
hopeful that her children could do bigger and better things in life.
She set aside enough money from our small, family-operated tofu
shop in Seattle to buy me an Apple I computer and an Epson line
printer. To express my gratitude to her, I wanted my first
computer program to help her in some way at the tofu shop. Thus I
set out to write a monthly billing program that I hoped could save
her some time. It would manually take in our regular customers’
orders each week and print out an invoice at the end of the month.

I was a fast typist by the tenth grade, and so with zeal I wrote
this program that I felt could help my mother. It took me maybe
three months of programming every day after school. My
conundrum was figuring out how to deal with leap years—I figured
that if I made an input routine for 365 days in a year, I would run
into a problem every four years. In the end I saw that as a bridge to
cross when I came to it, so instead I just kept typing and typing
until I had completed all 365 input routines (there were no text
editors with copy and paste functions). It was a manual, laborious
project. I recall the deep satisfaction I felt when my mother first
used it to print invoices for the month.

Shortly after this moment of success, my tenth-grade math
teacher, Mr. Moyer, encouraged me to come to his after-school



computer club. I had gained a reputation for being skilled at
computer programming—perhaps what I should really say is that I
was a computer nerd. Having successfully written my first
thousand-line computer program, I thought it would be beneath
me to go to Mr. Moyer’s club meeting as I would surely be too
much of an expert compared with the others attending. But on the
day I showed up, 1 vividly remember Mr. Moyer talking about
LOOPS using a command called ror ... Next. Upon learning about it, I
broke into a sweat—the kind of sweat you feel when you’ve done
something terribly stupid.

When I got home that evening, I looked at my long computer
program, which was 365 distinct input statements of the form:

10 DIM T(365), A(365) : HOME

100 REM GET THE NUMBER OF TOFU AND SUSHI
AGE FOR EACH DAY OF THE YEAR

110 REM COMMENTS LIKE THIS ARE HOW
PROGRAMMERS TALK TO THEMSELVES

120 PRINT "IT'S DAY 1"

130 PRINT "HOW MANY TOFU"

140 INPUT T (1)

150 PRINT "TOFU ORDER IS", T (1)

160 PRINT "HOW MANY DOZEN SUSHI AGE"
170 INPUT A(1)

180 PRINT "SUSHI AGE ORDER IS", A(1)

290 PRINT "CONTINUE? HIT 0 TO EXIT OR 1 TO
CONTINUE"

200 INPUT ANSWER
210 IF (ANSWER = 0) GOTO 9999

220 PRINT "IT'S DAY 2"

230 PRINT "HOW MANY TOFU"

240 INPUT T(2)

250 PRINT "TOFU ORDER IS", T(2)

260 PRINT "HOW MANY DOZEN SUSHI AGE"
270 INPUT A(2)

280 PRINT "SUSHI AGE ORDER IS", A(2)



290 PRINT "CONTINUE? HIT 0 TO EXIT OR 1 TO
CONTINUE"

300 INPUT ANSWER

310 IF (ANSWER = 0) GOTO 9999

320 PRINT "IT'S DAY 3"

330 PRINT "HOW MANY TOFU"

340 INPUT T(3)

350 PRINT "TOFU ORDER IS", T(3)

360 PRINT "HOW MANY DOZEN SUSHI AGE"

370 INPUT A(3)

380 PRINT "SUSHI AGE ORDER IS", A(3)

390 PRINT "CONTINUE? HIT 0 TO EXIT OR 1 TO
CONTINUE"

400 INPUT ANSWER

410 IF (ANSWER = 0) GOTO 9999

420 PRINT "IT'S DAY 4"

430 PRINT "HOW MANY TOFU"

440 INPUT T(4)

450 PRINT "TOFU ORDER IS", T(4)

460 PRINT "HOW MANY DOZEN SUSHI AGE"

470 INPUT A(4)

480 PRINT "SUSHI AGE ORDER IS", A(4)

490 PRINT "CONTINUE? HIT 0 TO EXIT OR 1 TO
CONTINUE"

500 INPUT ANSWER

510 IF (ANSWER = 0) GOTO 9999

520 PRINT "IT'S DAY 5"

530 PRINT "HOW MANY TOFU"

540 INPUT T (5)

550 PRINT "TOFU ORDER IS", T(5)

560 PRINT "HOW MANY DOZEN SUSHI AGE"

570 INPUT A(5)

580 PRINT "SUSHI AGE ORDER IS", A(5)

590 PRINT "CONTINUE? HIT 0 TO EXIT OR 1 TO

CONTINUE"



you see on-screen with an app is closer to the fast-food drive-thru
sign that you drive up to and speak into—which has nothing inside
it except a tethered connection to a bustling food factory just a few
car lengths away. Just as you can learn nothing about how the
actual restaurant works by taking apart the drive-thru’s
microphone box, the pixels on a computer screen don'’t tell us
anything about the computational machine that it is connected to.
Contrast that with cracking open the hardware you’re running
that app on—although its internals would be a bit confusing, you
would still find the screen, the battery or power supply, and a few
other recognizable parts. That’s because when it comes to
something that exists in the physical world, you can touch and
understand it, to a degree, when you crack it open. Machines in
the real world are made up of wires, gears, and hoses that kind of
make sense, whereas machines in the digital world are made up of
“bits” or “zeroes and ones,” which are completely invisible.

But what about the program codes from the previous section,
where I produced an invoice for my parents’ tofu shop? The
software, written in BASIC, is something you can read with your
eyes or ears. Is software visible? Yes and no. On the one hand,
program code is what lies at the heart of software and you can
read it, but that’s like confusing the recipe for cake with the cake
itself. The software is what comes alive inside the machine due to
the program codes—it’s the cake, not the recipe. This can be a
difficult conceptual leap.

Understanding the distinction between software running on a
computer within its “mind” versus the actual program code being
fed into the computer is useful because it lets you conceptualize
what is really happening with computation. It can free you from
believing that computer code is just, well, computer code—which
on the surface is all you can generally see. But what computer code
can represent is where the true potential lies. We could say the
same for the words you are reading on this page in the sense that
they spark intangible ideas in your mind, so it’s not the actual
words you are experiencing but the invisible ideas that underlie
them instead. And in the same way that you know how powerful
your imagination can become when fed with the right literary fuel
(hopefully that includes this book), then your mind is empowered
to do things you previously thought were impossible. That’s what
happens when a well-crafted computer program is brought to life
with a finger tap or a double click—an alternate, invisible



consciousness instantly manifests, just like the magical moment
when hydrating a completely desiccated sponge.

Computing machines can freely imagine within “cyberspace,” a
term coined by William Gibson in the novel Neuromancer in 1984,
the same year I started at MIT:

Cyberspace, a consensual hallucination, experienced daily
by billions of legitimate operators, in every nation, by
children being taught mathematical concepts ...
Unthinkable complexity. Lines of light ranged in the
nonspace of the mind, clusters and constellations of data.
Like city lights receding ...

Trippy. But accurate, or at least close to what I've viscerally
experienced within the invisible world “inside” the machine when
writing code—note that the quotes around the word “inside” are
important because there’s nothing that lies within the visible shell
of an app. There’s a nether universe that computational machines
can easily tap into that precedes the internet, and now because of
the internet and the ubiquity of network-enabled devices, that
universe has expanded wildly beyond what any of the lucky nerds
like me who were there at the beginning could ever have expected.
Gibson’s “consensual hallucination, experienced daily by billions,”
can on the one hand allude to Facebook or any social media
network today, or a shared multiplayer video game in a lush three-
dimensional virtual world—or else in the less concrete direction of
the “unthinkable complexity” that Gibson refers to, which is a
better characterization of what I conjure within the poetry of his
description of “lines of light ranged in the nonspace of the mind,
clusters and constellations of data.”

As you can tell, I'm unusually passionate about this subject, and
quite eager for you to understand it with me. Whether by creating
an art installation in Kyoto in 1993 to try to visualize the inner
workings of a computer as a literal discotheque of people posing as
computer parts, or by projecting on nine large screens in a dark
gallery billions of chaotic particles buzzing about like bees for my
2005 exhibition at the Cartier Foundation in Paris, I've wanted
more people to experience what digital consciousness can feel like.
Why? Because I believe to speak machine, you need to “live” the
world of the machine too. And, unfortunately, it is by nature
invisible.



One way to understand it is by becoming a master computer
programmer, but that’s not the desired path for everyone. So as we
move forward through the chapters of the book, try to keep
Gibson’s image of cyberspace as an apt representation of how
native machine speakers collectively “see” the invisible.

Before we make the jump fully back into cyberspace, let’s briefly
dip into the topic of the final chapter of this book—Machines
Automate Imbalance—to examine another invisible aspect of the
history of computation that will be of great benefit to know. Just
like any efficient computational machine, any given history of
human beings will be repeated over and over until it becomes
perceived as fact. So before you get too excited about machines,
let’s embrace more of the invisible by looking back at when human
beings were the fully visible machinery of computation. And in the
process you will have the opportunity to rewrite computing’s
history by properly including the many professional women who
were unfairly made invisible.

3. Human computers are the original computing
machines.

The first computers were not machines, but humans who worked
with numbers—a definition that goes back to 1613, when English
author Richard Braithwaite described “the best arithmetician that
ever breathed” as “the truest computer of times.”* A few
centuries later, the 1895 Century Dictionary defined “computer” as
follows:*

One who computes; a reckoner; a calculator; specifically,
one whose occupation is to make arithmetical calculations
for mathematicians, astronomers, geodesists, etc. Also
spelled computor.

At the beginning and well into the middle of the twentieth
century, the word “computer” referred to a person who worked
with pencil and paper. There might not have been many such
human computers if the Great Depression hadn't hit the United
States. As a means to create work and stimulate the economy, the
Works Progress Administration started the Mathematical Tables
Project, led by mathematician Dr. Gertrude Blanch, whose



objective was to employ hundreds of unskilled Americans to hand-
tabulate a variety of mathematical functions over a ten-year
period. These calculations were for the kinds of numbers you’d
easily access today on a scientific calculator, like the natural
constant ex or the trigonometric sine value for an angle, but they
were instead arranged in twenty-eight massive books used to look
up the calculations as expressed in precomputed, tabular form. I
excitedly purchased one of these rare volumes at an auction
recently, only to find that Dr. Blanch was not listed as one of the
coauthors—so if conventional computation has the problem of
being invisible, I realized that human computation had its share of
invisibility problems too.

Try to imagine many rooms filled with hundreds of people with
a penchant for doing math, all performing calculations with pencil
and paper. You can imagine how bored these people must have
been from time to time, and also how they would have needed
breaks to eat or use the bathroom or just go home for the evening.
Remember, too, that humans make mistakes sometimes—so
someone who showed up to work late after partying too much the
night prior might have made a miscalculation or two that day. Put
most bluntly, in comparison with the computers we use today, the
human computers were comparatively slow, at times inconsistent,
and would make occasional mistakes that the digital computer of
today would never make. But until computing machines came
along to replace the human computers, the world needed to make
do. That’s where Dr. Alan Turing and the Turing machine came in.

The idea for the Turing machine arose from Dr. Turing’s seminal
1936 paper “On Computable Numbers, with an Application to the
Entscheidungsproblem,” which describes a way to use the basic
two acts of writing and reading numbers on a long tape of paper,
along with the ability to write or read from anywhere along that
tape of paper, as a means to describe a working “computing
machine.” The machine would be fed a state of conditions that
would determine where the numbers on the tape would be written
or rewritten based on what it could read—and in doing so,
calculations could be performed. Although an actual computing
machine could not be built with technology available back then,
Turing had invented the ideas that underlie all modern computers.
He claimed that such a machine could universally enable any
calculation to be performed by storing the programming codes
onto the processing tape itself. This is exactly how all computers



work today: the memory that a computer uses to make
calculations happen is also used to store the computer codes.

Instead of many human computers working with numbers on
paper, Alan Turing envisioned a machine that could tirelessly
calculate with numbers on an infinitely long strip of paper,
bringing the exact same enthusiasm to doing a calculation once, or
365 times, or even a billion times—without any hesitation, rest, or
complaint. How could a human computer compete with such a
machine? Ten years later, the ENIAC (Electronic Numerical
Integrator and Computer), built for the US Army, would be one of
the first working computing machines to implement Turing’s
ideas.” The prevailing wisdom of the day was that the important
work of the ENIAC was the creation of the hardware—that credit
being owned by ENIAC inventors John Mauchly and John Presper
Eckert. The perceived “lesser” act of programming the computer—
performed by a primary team of human computers comprising
Frances Elizabeth Snyder Holberton, Frances Bilas Spence, Ruth
Lichterman Teitelbaum, Jean Jennings Bartik, Kathleen McNulty
Mauchly Antonelli, and Marlyn Wescoff Meltzer—turned out to be
essential and vital to the project, and yet the women computers of
ENIAC were long uncredited.*

As computation could be performed on subsequently more
powerful computing machines than the ENIAC and human
computers started to disappear, the actual act of computing gave
way to writing the set of instructions for making calculations onto
perforated paper cards that the machines could easily read. In the
late 1950s, Dr. Grace Hopper invented the first “human readable”
computer language, which made it easier for people to speak
machine. The craft of writing these programmed instructions was
first referred to as “software engineering” by NASA scientist
Margaret Hamilton at MIT in the 1960s. Around this time, Gordon
Moore, a pioneering engineer in the emerging semiconductor
industry, predicted that computing power would double
approximately every year, and the so-called Moore’s law was born.
And a short two decades later I would be the lucky recipient of a
degree at MIT in the field that Hamilton had named, but with
computers having become by then many thousands of times more
powerful—Moore’s exponential prediction turned out to be right.

To remain connected to the humanity that can easily be
rendered invisible when typing away, expressionless, in front of a
metallic box, I try to keep in mind the many people who first



You can imagine that, as a kid believing in magic, I totally
flipped out. It felt like I'd stumbled upon some sort of dark magic. I
wondered if I had unleashed the same eerie power I thought I had
discovered when I could see through my hand. You can take this
one step further by doing as John Barth did with his “Frame-Tale”:
on one side of a thin page, write, “ONCE UPON A TIME,” and on the
other side, “THERE WAS A STORY THAT BEGAN,” and then tape the
ends together with a twist. Start reading the story as you trace the
curve of the Mdbius strip. You find that the story never ends.
That’s the exact feeling that recursion instills in folks who
appreciate it—it’s a simple-looking loop, but with a literal twist.
And with just that twist, it enters a different world.

When it comes to writing recursion into computer programs, it’s
as simple as defining an idea as directly related to the idea itself.
When first learning how to draw a tree, you see that this is
reflected in nature. A tree starts with a vertical line that has a few
lines popping out of its top. To proceed to draw the tree further,
you take each of the lines at the top and repeat the act of adding
more lines to pop out of each top. And so forth. In the end you get
a tree with a lot of subbranches created by simply using the same
method you started with. In other words, a tree branch is
composed of tree branches. The part is defined by the part itself.
You see this played out in the exact opposite direction from the
sky into the ground underneath a tree with its root system—so
nature paints with recursion quietly and obviously.



Another way to consider the magic of recursion is to look at a
proprietary operating system called Unix that renegade
programmers attempted to completely rewrite from scratch in the
1980s. Rather than let Unix be controlled by its owner, AT&T,
MIT’s Richard Stallman wanted such an important software system
to be free of any constraints. He called his endeavor the GNU
Project.” The name GNU epitomizes the idea of recursion, as it
signifies “(G)NU’s (N)ot (U)nix.” Pause for a moment as you read
that sentence. So the “U” makes sense as standing for “(U)nix,”
and the “N” makes sense as standing for “(N)ot.” It’s when you get
to the “G” as standing for “(G)NU” that things get a bit weird. If we
try to expand out the “G” and spell it out successively, you can see
the infinite nature of this expression:

[GINU's Not Unix

[[GINU's Not Unix]NU's Not Unix

[[[GINU's Not Unix]NU's Not Unix]NU's Not
Unix

[[[[G]INU's Not Unix]NU's Not Unix]NU's Not
Unix]NU's Not Unix

[[[[[G]INU's Not Unix]NU's Not Unix]NU's
Not Unix]NU's Not Unix]NU's Not Unix

Relatedly, a physical metaphor that comes close is a Russian
matryoshka doll—a doll that has a smaller but identical version of
itself nested inside it, and on and on. That’s because we can say
that a matryoshka doll is made from another matryoshka doll, and
so on and so forth. But even with the world record matryoshka doll
set, you will run out of dolls by the time you pull out the fifty-first



one; when it comes to computational matryoshka dolls, there are
no specific limits to how deeply they can be nested within each
other unless a “base case” is set by the programmer explicitly.
Imagine opening a doll after smaller doll after smaller doll after
even a doll that is the size of a rice kernel, and you can still
continue to find another doll inside the doll inside the doll.

On a more practical level beyond playing with dolls,
mathematically minded folks can take the idea of recursion and
create elegant expressions of concepts that look nothing like the
messier tofu shop accounting program that I showed you before.
Recursion differs from the brute force expression of a loop which
likens itself to more like a conveyor belt on an assembly line. You
lay out all the tasks, and then you tell each task to perform in
sequence. And then you coto the beginning of the list and do it
over again, like on an assembly line. Recursion is stylistically
different in nature where you define the task to be performed in
terms of itself—like laying out the steps to make a large pot of
curry on an assembly line where one key ingredient is a smaller
pot of curry. You end up with an assembly line that vanishes inside
the process of making the smaller pot of curry, which in turn will
require a smaller pot of curry, and so forth—you simply disappear
inside the thing you're creating. It’s not a concept for the
fainthearted. The central idea is to express the definition of
something with a definition itself, which is a vaguely imaginable
idea that doesn’t have a home in the real world but is completely
native in the realm of cyberspace.

So now you know there are certain forms of elegantly
expressing oneself in the computational world that are akin to the
question-inducing power of art as we know it in our physical
world. Along those lines, computational thinkers have



appreciation for a kind of highly conceptual art that isn’t yet at the
Metropolitan Museum of Fine Art. When programmers say “code is
poetry,” they really mean it. Recursion is an unusually compact
way to express complex ideas that can be infinite in nature and are
deeply paradoxical, like what happens when you try to unpack
“GNU.” In computation, it becomes possible to build an enigma
into actual working machinery, but even before the computer era,
recursion was a captivating philosophical concept. Or, expressed
succinctly by Michael Corballis in his entire book on the topic of
recursion from a humanist’s perspective:°

Recursion (ri-k{ir’-zhan) noun. If you still don’t get it, see
recursion.

5. Loops are indestructible unless a programmer has
made an error.

Think back to how we got started in this chapter with a loop that
let us count to one billion:

top = 1000000000
i=20
while i < top: 1 =1i + 1

I just timed this running on my computer and it completed in
under a minute. Keep in mind that by the time this book is printed
and you have it in your hands, computing machines will have
become even faster. The counter runs unimpeded—much like if
you were behind the wheel of a fast car on a road that extended
forever and hit the gas pedal. But what if there were a big rock a
few miles down the road that—with your stereo blasting and your
adrenaline on fire—you could easily fail to notice while speeding?
That’s right. Blam! Your car will likely wipe out, and hopefully
you'll have your seat belt on.

There’s a difference I'd like you to consider when thinking about
the counting loop above as compared with my car analogy. The car
will start to accelerate and at some point hit top speed. As it
encounters the rock you will violently experience an “ouch”
moment for at least a few seconds. You'll have time to regain your



senses and then step out of the fire and debris, hopefully with only
a few minor flesh wounds.

The computational process, once initiated, will run at top speed
from the very moment it comes alive. And if it were to hit some
kind of error, it would immediately stop. The entire world it lived
within would vanish in that same instant too. In the instant when
the computing machine has been involuntarily stopped, it’s an
absolute catastrophe. Because when computation is doing its
thing, you can’t see it doing its thing. But when it’s not working, it
will either complain to you explicitly or it will simply freeze. I'm
sure you've seen this happen before. Some message is flashed on
your screen or the computer screen simply goes blank. You've
usually had no warning at all before it’s about to happen—and it
usually makes you a bit unhappy, or even angry. Just search for
“computer rage” on the internet and you’ll feel in good company.

Before we go into why computers crash, let’s consider what it
feels like for the computer. The best analogy I can think of involves
the many “epic” domino setup experts you see online who
painstakingly lay out thousands of domino tiles and then turn on
the video camera to watch the dominos fall in perfect sequence
until one tile has been placed incorrectly and ... FAIL. The
embarrassment and shock are real, and there’s only one recourse:
go back and fix everything, right from the very start.

It takes just one misplaced domino to destroy hundreds of items
moving in perfect sequence together—this is what it’s like when
the software application you're running comes to a complete halt.
And it’s with the same straightforward attitude, with all the little
dominos strewn everywhere across the floor, that a programmer
needs to gleefully say: “It needs to be fixed.” Much like the expert
domino placer’s disciplined patience to fix and redo everything, a
programmer must behave in exactly the same manner. If computer
programmers became uncontrollably angry each time a piece of
software crashed, they wouldn’t get any work done. Because
software crashes a lot, you'll tend to find that people who write
software professionally have an unusually high tolerance for
catastrophes while also having little tolerance for minor mistakes
that could easily be avoided.

Imagine a job where every few minutes you're likely to be told,
by a computer, that you did something wrong. The more complex
the program or computing system upon which it is running, the
more things that can go wrong. These fall into three categories:
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