Val Tannen Limsoon Wong
Leonid Libkin Wenfei Fan
ang-Chiew Tan Michae

Fourman (Eds.)

Festschrift

LNCS 8000

Essays Dedicated to Peter Buneman

@ Springer

Val Tannen Limsoon Wong
Leonid Libkin Wenfei Fan
Wang-Chiew Tan Michael Fourman (Eds.)

In Search of Elegance
in the Theory and Practice
of Computation

Essays Dedicated to Peter Buneman

@ Springer

Volume Editors

Val Tannen

University of Pennsylvania, Department of Computer and Information Science
3330 Walnut Street, Philadelphia, PA 19104, USA

E-mail: val @cis.upenn.edu

Limsoon Wong

National University of Singapore, School of Computing
13 Computing Drive, Singapore 117417, Singapore
E-mail: wongls@comp.nus.edu.sg

Leonid Libkin

Wenfei Fan

Michael Fourman

The University of Edinburgh, School of Informatics

10 Crichton Street, Edinburgh EH8 9AB, UK

E-mail: {libkin; wenfei@inf.ed.ac.uk }, michael.fourman @ed.ac.uk

Wang-Chiew Tan

University of California, Department of Computer Science
1156 High Street, Santa Cruz, CA 95064, USA

E-mail: wctan@cs.ucsc.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-41659-0 e-ISBN 978-3-642-41660-6
DOI 10.1007/978-3-642-41660-6

Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: : 2013951160

CR Subject Classification (1998): H.2, D.3, H.3, E3, F4.3

LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Table of Contents

Models for Data-Centric Workflows...........
Serge Abiteboul and Victor Vianu

Relational Databases and Bell’s Theorem
Samson Abramsky

High-Level Rules for Integration and Analysis of Data: New
Challenges
Bogdan Alexe, Douglas Burdick, Mauricio A. Herndndez,
Georgia Koutrika, Rajasekar Krishnamurthy, Lucian Popa,
lToana R. Stanoi, and Ryan Wisnesky

A New Framework for Designing Schema Mappings
Bogdan Alexe and Wang-Chiew Tan

User Trust and Judgments in a Curated Database with Explicit
Provenance. e

David W, Archer, Lois M.L. Delcambre, and David Maier

An Abstract, Reusable, and Extensible Programming Language Design
Architecture. o
Hassan Ait-Kaci

A Discussion on Pricing Relational Data
Magdalena Balazinska, Bill Howe, Paraschos Koutris,
Dan Suciu, and Prasang Upadhyaya

Tractable Reasoning in Description Logics with Functionality
Constraints
Andrea Cali, Georg Gottlob, and Andreas Pieris

Toward a Theory of Self-explaining Computation
James Cheney, Umut A. Acar, and Roly Perera

To Show or Not to Show in Workflow Provenance
Susan B. Davidson, Sanjeev Khanna, and Tova Milo

Provenance-Directed Chase&Backchase o,
Alin Deutsch and Richard Hull

Data Quality Problems beyond Consistency and Deduplication
Wenfer Fan, Floris Geerts, Shuat Ma, Nan Tang, and Wenyuan Yu

13

36

56

89

112

167

174

193

217

227

237

X Table of Contents

Hitting Buneman Circles
Michael Paul Fourman

Looking at the Waorld Thru Colored Glasses
Floris Geerts, Anastasios Kementsietsidis, and Heiko Miiller

Static Analysis and Query Answering for Incomplete Data Trees
with Constraintst e e
Amélie Gheerbrant, Leonid Libkin, and Juan Reutter

Using SQL for Efficient Generation and Querying of Provenance
Information
Boris Glavic, Renée J. Miller, and Gustavo Alonso

Bounds and Algorithms for Joins via Fractional Edge Covers
Martin Grohe

Incremental Data Fusion Based on Provenance Information............
Carmem Satie Hara, Cristina Dutra de Aguiar Ciferri, and
Ricardo Rodrigues Ciferri

Provenance for Linked Data
Grigoris Karvounarakis, Irini Fundulaki, and Vassilis Christophides

First-Order Provenance Gamesot
Sven Koéhler, Bertram Luddscher, and Daniel Zinn

Querying an Integrated Complex-Object Dataflow Database
Natalia Kwasnikowska and Jan Van den Bussche

Types, Functional Programming and Atomic Transactions in Hardware
BT 1=
Rishiyur S. Nikhil

Record Polymorphism: Its Development and Applications
Atsushi Ohori

A Calculus of Chemical Systems ...
Gordon D. Plotkin

Schemaless Semistructured Data Revisited—Reinventing Peter
Buneman’s Deterministic Semistructured Data Model—
Keishi Tajima

Provenance Propagation in Complex Queries
Val Tannen

Well-Defined NRC Queries Can Be Typed (Extended Abstract)
Jan Van den Bussche and Stign Vansummeren

Table of Contents XI

Nine Years with Peter Buneman 507
Stratis D. Viglas

Modal Logic for Preference Based on Reasons 516
Daniel Osherson and Scott Weinstein

The Dichotomous Intensional Expressive Power of the Nested Relational
Calculus with Powerset i 542
Limsoon Wong

Provenance in a Modifiable Data Set 557
Jing Zhang and H.V. Jagadish

Author Index e 569

Models for Data-Centric Workflows*

Serge Abiteboul® and Victor Vianu?

! INRIA Saclay
2 UC San Diego and INRIA Saclay

Abstract. We present two models for data-centric workflows: the first based on
business artifacts and the second on Active XML. We then compare the two
models and argue that Active XML is strictly more expressive, based on a natu-
ral semantics and choice of observables. Finally, we mention several verification
results for the two models.

1 Introduction

Workflows and database systems are two essential software components that often have
difficulties interoperating. Data-centric workflow systems alleviate this problem by
providing an integrated approach to data management and workflows. They allow the
management of data evolution by tasks with complex sequencing constraints, as encoun-
tered for instance in scientific workflow systems, information manufacturing systems,
e-government, e-business or healthcare global systems.

Data-centric workflows have evolved from process-centric formalisms, which tra-
ditionally focus on control flow while under-specifying the underlying data and its
manipulations by the process tasks, often abstracting them away completely. In con-
trast, data-aware formalisms treat data as first-class citizens. A notable exponent of
this class is the business artifact model pioneered in [17], deployed by IBM in com-
mercial products and consulting services, and further studied in a line of follow-up
works [4[6[9]1015/15/13[14]. Business artifacts (or simply “artifacts™) model key busi-
ness-relevant entities that evolve in response to events in their life-cycle. See fora
brief survey on the topic.

Another effort at modeling data-centric workflows relies on Active XML (AXML).
An AXML document consists of an XML document with embedded function calls,
modeling tasks in the workflow. Each call generates a data-carrying task which in turn
can spawn additional sub-tasks. The functions are specified using queries based on tree
patterns [3]1]. See for a discussion on how Active XML can serve as a workflow
model.

Business artifacts and AXML provide two different paradigms for specifying data-
centric workflows. A natural question concerns their relative expressive power. We
describe a semantics introduced in for comparing the expressiveness of workflow
systems relative to a set of observables, and argue that Active XML is strictly more
expressive than the variant of business artifacts presented here.

* This work has been partially funded by the European Research Council under the Euro-
pean Community’s Seventh Framework Programme (FP7/2007-2013) / ERC grant Webdam,
agreement 226513. http: / /webdam. inria. fr/

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 1]12]2013.
(© Springer-Verlag Berlin Heidelberg 2013

2 S. Abiteboul and V. Vianu

Several recent works have considered the problem of verifying business artifacts
and Active XML systems [3]]. The verification problem consists of statically check-
ing whether all runs satisfy desirable properties expressed in an extension of linear-time
temporal logic (LTL). The presence of data results in a challenging infinite-state verifi-
cation problem, due to the infinite data domain. Rather than relying on general-purpose
software verification tools suffering from well-known limitations, the above works ad-
dress this problem by identifying relevant classes of business artifacts and Active XML
systems for which fully automatic verification is possible. We briefly summarize these
results.

2 The Business Artifact Model

We describe a minimalistic variant of the business artifact model, adequate for con-
veying the flavor of the approach. The presentation is informal, relying mainly on a
running example (the formal development is provided in [8[7]). The example models
an e-commerce business process in which the customer chooses a product and a ship-
ment method and applies various kinds of coupons to the order. After the order is filled,
the system awaits for the customer to submit a payment. If the payment matches the
amount owed, the system proceeds to shipping the product.

In the minimalistic model, an artifact is simply an evolving record of values. The
values are referred to by variables (sometimes called attributes). In general, an artifact
system consists of several artifacts, evolving under the action of services, specified by
pre- and post-conditions. For simplicity, we use a single artifact with the following
variables

status, prod_id, ship_type, coupon, amount_owed,
amount_paid, amount_refunded.

The status variable tracks the status of the order and can take values such as
“edit_product”, “received_payment”, “shipping”, “canceling”, etc. Thus, status can
be viewed as recording the current stage of the order processing. In conjunction with
pre-and-post conditions of services, this allows simulating a classical form of sequenc-
ing based on finte-state automata. However, unlike classical process-centric approaches,
the sequencing can also depend on properties of the data.

The artifact system is equipped with a database including the following tables, where
underlined attributes denote keys. Recall that a key is an attribute that uniquely identi-
fies each tuple in a relation.

PRODUCTS(id, price,availability, weight),
COUPONS(code, type, value,min _value, free_shiptype),
SHIPPING(type, cost, max_weight),

OFFERS(prod_id, discounted_price, active).

The database also satisfies the following foreign keys:

COUPONS|free_shiptype| C SHIPPING[type] and
OFFERS|prod_id] C PRODUCTS|id].

Models for Data-Centric Workflows 3

The starting configuration of every artifact system is constrained by an initialization
condition, which here states that status initialized to “edit_prod”, and all other vari-
ables to “undefined”. By convention, we model undefined variables using the reserved
constant A.

The Services. Recall that artifacts evolve under the action of services. Each service is
specified by a pre-condition 7 and a postcondition 1, both existential first-order (FQO)
sentences. The pre-condition refers to the current values of the artifact variables and
the database. The post-condition 1 refers simultaneously to the current and next artifact
values, as well as the database. In addition, both 7 and ¢ may use arithmetic constraints
on the variables, limited to linear inequalities over the rationals.

The following services model two of the business process tasks of the example. We
use primed artifact variables 2’ to refer to the next value of variable .

choose_product. The customer chooses a product.

7 : status = “edit_prod”
1 : Ip, a, w(PRODUCTS(prod_id', p, a,w) A a > 0)
Astatus’ = “edit_shiptype”

choose_shiptype. The customer chooses a shipping option.

7 : status = “edit_ship”

Y :3e, I, p, a, w(SHIPPING(ship_type', ¢, [)A
PRODUCTS(prod_id, p, a, w) Al > w)A
status’ = “edit_coupon” N prod_id’ = prod_id

Notice that the pre-conditions of the services check the value of the status variable.
For instance, according to choose_product, the customer can only input her product
choice while the order is in “edit_prod” status.

Also notice that the post-conditions constrain the next values of the artifact variables
(denoted by a prime). For instance, according to choose_product, once a product has
been picked, the next value of the status variable is “edit_shiptype”, which will at a sub-
sequent step enable the choose_shiptype service (by satisfying its pre-condition). The
interplay of pre- and post-conditions achieves a sequential filling of the order, starting
from the choice of product and ending with the claim of a coupon. A post-condition
may refer to both the current and next values of the artifact variables. For instance, con-
sider the service choose_shiptype. The fact that only the shipment type is picked while
the product remains unchanged, is modeled by preserving the product id: the next and
current values of the corresponding artifact variable are set equal.

Pre- and post-conditions may query the database. For instance, consider the function
choose_product. The post-condition ensures that the productid chosen by the customer
is that of an available product (by checking that it appears in a PRODUCTS tuple, whose
availability attribute is positive).

Semantics. The semantics of an artifact system consists of its runs. Given a database
D, arun is an infinite sequence {p; } > of artifact records such that p, and D satisfy

4 S. Abiteboul and V. Vianu

the initial condition of the system, and for each i > 0 there is a service .S of the system
such that p; and D satisfy the pre-condition of S and p;, p;+1 and D satisfy its post-
condition. For uniformity, blocking prefixes of runs are extended to infinite runs by
repeating forever their last record.

We note that the full business artifact model is still in flux. In its current state (e.g., see
[12]), the model allows artifact attributes containing collections, rather than just atomic
atoms. It also provides richer forms of control, achieved by a hierarchy of services.

3 Active XML Workflows

We next describe the specification of workflows in Active XML. We use a model called
Guard Active XML (GAXML for short) [3[7].

GAXML documents are abstractions of XML with embedded service calls. A
GAXML document is a forest of unordered, unranked trees, whose internal nodes are
labeled with tags from a finite alphabet and whose leaves are labeled with tags, data val-
ues, or function symbols. More precisely, a function symbol ! f indicates a node where
function f can be called, and a function symbol 7 f indicates that a call to f has been
made but the answer has not yet been returned. For example, a GAXML document is
shown in Figure[T]

Main
Catalog 'Mailorder MailOrder
| ™~ T NT—
Product Product Product Order-ld Cname Pname !Bill !Deliver !Reject
Pname Price Pname Price Pname Price 1234567 Serge Nikon

Canon 120 Nikon 199 Seny 175

Fig. 1. A GAXML document

The GAXML document may be subject to constraints specified by a DTD, as well
as Boolean combinations of tree patterns. For example, the negation of the pattern in
Figure[3](a) says that an Order ID uniquely determines the product and customer names.
In patterns, double edges denote descendant and single edges the child relation.

A GAXML document evolves as a result of making function calls and receiving their
results. A call can be made at any point, as long as a specified pre-condition, called a
call guard, is satisfied. The argument of the call is specified by a query on the document,
producing a forest. Both the call guard and input query may refer to the node at which
the call is made (denoted self), so the location of the call in the document is important.
The result of a function call consists of another GAXML document, so a forest, whose
trees are added as siblings of the node & where the call was made. After the answer of
a call at node x is returned, the call may be kept or the node = may be deleted. This is
specified by the schema, for each function. If calls to ! f are kept, f is called continuous,
otherwise it is non-continuous.

Models for Data-Centric Workflows 5

For example, consider the MailOrder function in Figure[l] Intuitively, its role is to
fetch new mail orders from customers. For instance, one result of a call to the function
IMailOrder may consist of the subtree with root MailOrder in Figure[I] Since
new orders should be fetched indefinitely, the call ! MailOrder is maintained after
each result is returned, so MailOrder is specified to be continuous. On the other
hand, consider the function !Bi1l1 occurring in a MailOrder. This is meant to be
called only once, in order to carry out the billing task. Once the task is finished, the call
can be removed. Therefore, Bi11 is specified as a non-continuous function.

Consider again the function MailOrder, whose role is to fetch new orders from
external users or services. Since the function is processed externally, the semantics of
its evaluation is not known. We call such a function external. Its specification consists
only of its call guard and input query, and its answer is only constrained by signature in-
formation provided by the schema. In addition to external functions, there are functions
processed internally by the GAXML system. These are called infernal. For example,
Bil1l is such a function. When a call to Bi11 is made at a node x labeled 'Bi11,
the label of x turns to ?Bil1 (to indicate that a call has been made whose answer
is still pending) and the call is processed internally. Specifically, the call generates a
new GAXML document (a running call) that evolves until it satisfies a condition called
refurn guard. Intuitively, the return guard indicates that the task corresponding to the
call has been completed and the result can be returned. The contents of the result is
specified by a return query. For example, the answer to a call to Bi11 can be returned
once payment has been received. The answer, specified by the return query, provides
the product paid for and amount of payment (see Example[T).

Once the result of a call has been returned, the GAXML document of the completed
running call is removed. In order for the result to be returned at the correct location (next
to node x), a mapping called eval is maintained between nodes where calls have been
made and GAXML document corresponding to the running call (e.g., see Figure[2). The
system evolves by repeated function calls and answer returns, occurring one at a time
non-deterministically. This may reach a blocking instance in which no function can be
called and no result can be returned, or may continue forever, leading to an infinite run.
For example, runs of the Mail Order system are always infinite since new mail orders
can always be fetched. For uniformity, we make all runs infinite by repeating blocking
instances forever.

Mgin ') ,aﬂlm
Catalog 'Mailorder MailOrder Process-bill
| // / \\ P BN
Order-Id Cname Pname ?Bill !Deliver !Reject Pname Amount !Invoice
I I I I I
1234567 Serge Nikon Nikon 199

Fig. 2. An instance with an eval link

6 S. Abiteboul and V. Vianu

Note that call guards provide a very useful form of control. In particular, they are
instrumental in enforcing desired ordering among tasks. For instance, in the Mail Order
example, to enforce that delivery of a product can only occur after billing has been
completed, it is sufficient for the call guard of ! Deliver to check that neither ! Bill
nor ?Bi11 occur in the subtree corresponding to the order.

Example 1. The function Bi11 used in Figure[T]is specified as follows. It is internal
and non-continuous. Its call guard is the pattern in Figure[3](b), checking that the or-
dered product is available. The input query is the query in Figure [4] Assuming that
Invoice is an external function eventually returning Payment (with product and
amount paid), the return guard and return query of Bil1l are shown in Figure[5]

Main Main
Z
MailOrder MailOrder Product MailOrder
P N P N I VRN
Order-ld Cname Pname Order-ld Cname Pname Pname Pname self: |Bill
I I | | I |
X Y z X Y’ z X X
YEY oo Z#£Z
(a) (b)

Fig. 3. Two patterns

/Muin\

R

Catalog MailOrder (Process-bill}
| / N\ P N

Product Pname self: |Bill Pname Amount !Invoice

Pname Price X X Y

[

X Y

Fig. 4. Argument query for !|Bill

agii ap;i - {Paid}
Payment Payment Pnané Amount
PI’IT'I{ A[unt I(I
X Y
Return guard Return query

Fig. 5. Return guard and query for !Bill

Models for Data-Centric Workflows 7

In GAXML, workflow control is provided by the guards associated with functions.
There are many other possible ways to control sequencing of tasks. In [7], the following
alternative workflow control mechanisms are also discussed:

Automata. The automata are non-deterministic finite-state transition systems, in which
states have associated tree pattern formulas with free variables acting as parameters.
A transition into a state can only occur if its associated formula is true. In addition,
the automaton may constrain the values of the parameters in consecutive states.

Temporal Properties. These are expressed in a temporal logic with tree patterns and
Past LTL operators. A temporal formula constrains the next instance based on the
history of the run.

Subject to some minor technical assumptions, it is shown in that the power
of guards, automata, and temporal logic as workflow specification mechanisms is the
same. More surprisingly, static constraints alone can largely simulate all three control
mechanisms.

4 Comparing Business Artifacts and Active XML Workflows

We have discussed two models of data-centric workflows: business artifacts and Ac-
tive XML. A natural question is whether their expressiveness can be measured and
compared. The models are quite different in their representation of data and events, so
a direct comparison is meaningless. In [1]], a framework is developed for comparing
workflow specification languages, by mapping different models to a common abstrac-
tion using the notion of workflow view. Depending on the specific needs, a workflow
view might retain information about some abstract state of the system and its evolution,
about some particular events and their sequencing, about the entire history of the system
so far, or a combination of these and other aspects. Even if not made explicit, a view is
often the starting point in the design of workflow specifications. This further motivates
using views to bridge the gap between different specification languages.

To see how this might be done, consider a workflow W specified by tasks and
pre/post conditions and another workflow W' specified as a state-transition system,
both pertaining to the same application. One way to render the two workflows compa-
rable is to define a view of W as a state-transition system compatible with W'. This
can be done by defining states using queries on the current instance and state transitions
induced by the tasks. To make the comparison meaningful, the view of W should re-
tain in states the information relevant to the semantics of the application, restructured
to make it compatible with the representation used in W’. More generally, views may
be used to map given workflows models to an entirely different model appropriate for
the comparison. In [1], the general notion of workflow view is defined and a form of
bisimulation over views is introduced to capture the fact that one workflow simulates
another. The bisimulation applies to the tree of runs of the systems to be compared.

Using the framework based on views, it is shown in [1]] that Active XML is strictly
more expressive than business artifacts (without arithmetic and data depedencies).
Specifically, Active XML can simulate business artifacts, but the converse is false.

8 S. Abiteboul and V. Vianu

The first result uses views mapping XML to relations and functions to services, so that
artifacts become views of Active XML systems. For the negative result we use views
retaining just the trace of function and service calls from the Active XML and the ar-
tifact system. This is a powerful result, since it extends to any views exposing more
information than the function/service traces.

5 Verification

The verification problem for business artifacts as well as Active XML workflows has
been considered in several recent works [3[8]7]. The problem consists of checking, for
a given workflow specification and temporal property, whether all runs of the workflow
system satisfy the property. For instance, one may want to verify whether some static
property (e.g., all ordered products are available) and some dynamic property (e.g. an
order is never delivered before payment is received) always hold. The temporal proper-
ties are specified in extensions of LTL, linear-time temporal logic. The presence of an
unbounded data domain yields a challenging infinite-state verification problem.

In order to specify temporal properties we use an extension of LTL. Recall that LTL
is propositional logic augmented with temporal operators such as G (always), F (even-
tually), X (next) and U (until) (e.g., see [18]). For example, Gp says that p holds at all
times in the run, Fp says that p will eventually hold, and G(p — F¢) says that when-
ever p holds, ¢ must hold sometime in the future. In order to take into account data, we
consider extensions of LTL in which propositions are interpreted by statements on cur-
rent snapshots of the system. The language used to express the statements is dependent
on the particular data model. For business artifacts, the language is FO, yielding the
extension LTL(FO). For Active XML, the language consists of tree patterns, yielding
LTL(Tree). We consider each model in turn.

Verification for Business Artifacts. For business artifacts, propositions are interpreted
as quantifier-free FO formulas using current and next artifact values, constants, and
the database. For example, suppose we wish to specify the property that if a correct
payment is submitted then at some time in the future either the product is shipped or
the customer is refunded the correct amount. The property is of the form G(p — Fg),
where p says that a correct payment is submitted and ¢ states that either the product
is shipped or the customer is refunded the correct amount. Moreover, if the customer
is refunded, the amount of the correct payment (given in p) should be the same as the
amount of the refund (given in ¢). This requires using a global variable = in both p and
q. More precisely, p is interpreted as the formula amount_paid = xAamount_paid =
amount_owed and ¢ as status = “shipped” V amount_refunded = z. This yields
the LTL(FO) property

VoG ((amount_paid = x A amount_paid = amount_owed)
— F(status = "shipped” VV amount_refunded = x))

Note that, as one would expect, the global variable x is universally quantified at the
end.

Models for Data-Centric Workflows 9

For artifact systems and properties without arithmetic constraints or data dependen-
cies it was shown that verification is decidable [8]. The complexity is PSPACE-complete
for a fixed number of attributes, and EXPSPACE otherwise. This is the best one can ex-
pect, given that even very simple static analysis problems for finite-state systems are
already PSPACE-complete.

It turns out that the verification algorithm can be extended to specifications and prop-
erties that use a fotal order on the data domain, which is useful in many cases. This
however complicates the algorithm considerably, since the order imposes global con-
straints on runs. The verification algorithm was first extended in for the case of a
dense countable order with no end-points (such as the rationals). This was later general-
ized to an arbitrary total order by Segoufin and Torunczyk using automata-theoretic
techniques. In both cases, the worst-case complexity remains PSPACE.

Unfortunately, the above decidability result fails even in the presence of simple data
dependencies or arithmetic. As shown in [8I7], verification becomes undecidable as
soon as the database has at least one key dependency, or if the specification of the
artifact system uses simple arithmetic constraints allowing to increment and decrement
by one the value of some atributes. Therefore, a restriction is imposed in [7] to achieve
decidability.

The restriction is designed to limit the data flow between occurrences of the same
artifact attribute throughout runs of the system that satisfy the desired property. As
a first cut, a possible restriction would prevent any data flow path between unequal
occurrences of the same artifact attribute. Let us call this restriction acyclicity. While
acyclicity would achieve the goal of rendering verification decidable, it is too strong
for many practical situations. In the example of Section [2| a customer can choose a
shipping type and coupon and repeatedly change her mind and start over. Such repeated
performance of a task is useful in many scenarios, but would be prohibited by acyclicity
of the data flow.

To this end, we define in [7] a more permissive restriction called feedback freedom.
Intuitively, paths among different occurrences of the same attribute are permitted, but
only as long as each value of the attribute is independent on its previous values. This
is ensured by a syntactic condition that takes into account both the artifact system and
the property to be verified. We omit here the rather technical details. It is shown in
that feedback freedom of an artifact system together with an LTL(FQO) property can be
checked in PSPACE by reduction to a test of emptiness of a two-way alternating finite-
state automaton. Feedback freedom turns out to ensure decidability of verification in
the presence of linear constraints, and also under a large class of data dependencies
including keys and foreign keys.

Verification of Active XML Workflows. Properties of Active XML workflows are ex-
pressed in LTL(7ree), an extension of LTL in which propositions are interpreted by tree
patterns. For example, suppose that we wish to verify the following property:

Every product for which a correct amount has been paid is eventually delivered.

To formulate the property, we use tree patterns with variables binding to data values
(without going into details, let us denote such a language of tree patterns by Tree).

10 S. Abiteboul and V. Vianu

The above property can be expressed in the language LTL(7ree) as follows. We start out
with the LTL formula G(p — Fgq). The proposition p is replaced by the tree pattern

Main
Catalog MailOrder
| e
Product /[’aj d\ Order-Id
Pname Price Pname Amount Y
Z X

checking that the payment received for product X of order Y is in the right amount Z.
The proposition ¢ is replaced by the tree pattern

Main
MailOrder
Pname Order-Id Delivered
X Y
checking that product X of the same order Y is eventually delivered. Note that we wish

X and Y to be the same in the tree patterns for p and g, so these are globally quantified;
in contrast, Z is locally quantified. The resulting LTL(Tree) formula is shown in Figure

[6]

VXVY[G(Main - F(Main))}
~ |
Catalog MailOrder MailOrder
I 7/ N\ N
Product Paid Order-Id Pname Order-Id Delivered
/\ 7/ \ I |
Pname Price Pname Amount Y X Y
| |
X z X Z

Fig. 6. An LTL(Tree) formula

It is shown in [3] that verification of LTL(Tree) properties of Active XML workflows
is decidable in 2-EXPTIME, under a syntactic restriction ensuring that the workflow has
only runs of bounded length.

6 Conclusion

Data-centric workflows are increasingly prevalent and there is a need for high-level
models and languages for specifying and reasoning about them. In this note, we pre-
sented two such models: business artifacts (initiated at IBM Research), and Active XML
(developed at INRIA). In both models, data is a first-class citizen, and it evolves as a
result of events in its life cycle. However, there are significant differences in the two
approaches. The data in business artifacts is relational, while in Active XML it is an
extension of XML. Events in the life-cycle are modeled in business artifacts by services
specified by pre-and-post conditions, while Active XML models events by function

Models for Data-Centric Workflows 11

calls embedded in the data. To compare such distinct models, we proposed an approach
based on workflow views that map different models to a common abstraction, and a
notion of bisimulation on the trees of runs of the abstracted systems. Using this frame-
work, we showed that Active XML is strictly more expressive than business artifacts
(for the variants presented here). This is not suprising given that Active XML is a much
richer model. A more detailed discussion of the ability of Active XML to capture the
facets of an artifact model, as informally described in [17], is presented in [2], where
it is argued that Active XML can in fact capture all aspects of the artifact approach.
Moreover, the notions of subtask and of collection of artifacts are naturally built into
the model, whereas the business artifact model as in has to be extended in order to
model them. Such extensions are indeed discussed in [12].

We finally reviewed some recent results on the automatic verification of workflows
in both languages. These suggest that automatic verification may be feasible for a prac-
tically significant class of workflows and properties.

References

1. Abiteboul, S., Bourhis, P., Vianu, V.: Comparing workflow specification languages: A matter
of views. In: ICDT (2011)

2. Abiteboul, S., Bourhis, P., Galland, A., Marinoiu, B.: The axml artifact model. In: TIME,
Symposium on Temporal Representation and Reasoning, pp. 11-17 (2009)

3. Abiteboul, S., Segoufin, L., Vianu, V.: Static analysis of active XML systems. ACM Trans.
Database Syst. 34(4) (2009)

4. Bhattacharya, K., Caswell, N.S., Kumaran, S., Nigam, A., Wu, F.Y.: Artifact-centered opera-
tional modeling: Lessons from customer engagements. IBM Systems Journal 46(4), 703721
(2007)

5. Bhattacharya, K., Gerede, C.E., Hull, R., Liu, R., Su, J.: Towards formal analysis of artifact-
centric business process models. In: Proc. Int. Conf. on Business Process Management
(BPM), pp. 288-304 (2007)

6. Bhattacharya, K., et al.: A model-driven approach to industrializing discovery processes in
pharmaceutical research. IBM Systems Journal 44(1), 145-162 (2005)

7. Damaggio, E., Deutsch, A., Vianu, V.: Artifact systems with data dependencies and arith-
metic. In: ICDT (2011)

8. Deutsch, A., Hull, R., Patrizi, F., Vianu, V.. Automatic verification of data-centric business
processes. In: ICDT, pp. 252-267 (2009)

9. Gerede, C.E., Bhattacharya, K., Su, J.: Static analysis of business artifact-centric operational
models. In: IEEE International Conference on Service-Oriented Computing and Applications
(2007)

10. Gerede, C.E., Su, J.: Specification and verification of artifact behaviors in business process
models. In: Krimer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749,
pp. 181-192. Springer, Heidelberg (2007), http://www.springerlink.com/
content/c371144007878627

11. Hull, R.: Artifact-centric business process models: Brief survey of research results and chal-
lenges. In: OTM Conferences (2), pp. 1152-1163 (2008)

12. Hull, R., Damaggio, E., Fournier, F., Gupta, M., Heath, F.T., Hobson, S., Linehan, M.H.,
Maradugu, S., Nigam, A., Sukaviriya, P., Vaculin, R.: Introducing the guard-stage-milestone
approach for specifying business entity lifecycles. In: Proc. of 7th Intl. Workshop on Web
Services and Formal Methods, WS-FM (2010)

14.

S. Abiteboul and V. Vianu

. Kumaran, S., Liu, R., Wu, EY.: On the duality of information-centric and activity-centric

models of business processes. In: Bellahsene, Z., Léonard, M. (eds.) CAiSE 2008. LNCS,
vol. 5074, pp. 32—47. Springer, Heidelberg (2008)

Kiister, J.M., Ryndina, K., Gall, H.C.: Generation of business process models for object
life cycle compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS,
vol. 4714, pp. 165-181. Springer, Heidelberg (2007)

. Liu, R., Bhattacharya, K., Wu, F.Y.: Modeling business contexture and behavior using busi-

ness artifacts. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007 and WES 2007.
LNCS, vol. 4495, pp. 324-339. Springer, Heidelberg (2007)

. Segoufin, L., Torunczyk, S.: Automata based verification over linearly ordered data domains.

In: Int’l. Symp. on Theoretical Aspects of Computer Science, STACS (2011)

. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification. IBM

Systems Journal 42(3), 428—445 (2003)

. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46-57 (1977)

Relational Databases and Bell’s Theorem

Samson Abramsky

University of Oxford
samson.abramsky@cs.ox.ac.uk

Abstract. Our aim in this paper is to point out a surprising formal
connection, between two topics which seem on face value to have noth-
ing to do with each other: relational database theory, and the study of
non-locality and contextuality in the foundations of quantum mechanics.
‘We shall show that there is a remarkably direct correspondence between
central results such as Bell’s theorem in the foundations of quantum me-
chanics, and questions which arise naturally and have been well-studied
in relational database theory.

1 Introduction

Our aim in this paper is to point out a surprising formal connection, between
two topics which seem on face value to have nothing to do with each other:

— Relational database theory.
— The study of non-locality and contextuality in the foundations of quantum
mechanics.

We shall show, using the unified treatment of the latter developed in [3],
that there is a remarkably direct correspondence between central results such as
Bell’s theorem in the foundations of quantum mechanics, and questions which
arise naturally and have been well-studied in relational database theory.

In particular, we shall see that the question of whether an “empirical model”,
of the kind which can be obtained by making observations of measurements per-
formed on a physical system, admits a classical physical explanation in terms of
a local hidden variable model, is mathematically equivalent to the question of
whether a database instance admits a universal relation. The content of Bell’s
theorem and related results is that there are empirical models, predicted by
quantum mechanics and confirmed by experiment, which do not admit such
a universal relation. Moreover, while the original formulation of Bell’s theorem
involved probabilities, there are “probability-free” versions, notably Hardy’s con-
struction, which correspond directly to relational databases.

In fact, we shall show more broadly that there is a common mathematical
language which can be used to described the key notions of both database theory,
in the standard relational case and in a more general “algebraic” form covering
e.g. a notion of probabilistic databases, and also of the theory of non-locality and
contextuality, two of the key quantum phenomena. These features are central to

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 13-B5] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

14 S. Abramsky

current discussions of quantum foundations, and provide non-classical resources
for quantum information processing.

The present paper is meant to be an introduction to these two topics, em-
phasizing their common content, presented in a manner which hopefully will be
accessible to readers without prior knowledge of either.

How should this unexpected connection be interpreted? One idea is that the
notion of contextuality is rather fundamental, and we can see some outlines
of a common ‘logic of contextuality’ arising from this appearance of common
structure in very different settings.

Ideally, some deeper connections can also be found, leading to interesting
transfers of results and methods. A first step in this direction has already been
taken, in joint work with Georg Gottlob and Phokion Kolaitis [4], in the closely
related field of constraint satisfaction. An algorithmic question which arises nat-
urally from the quantum side (see [2]) leads to a refined version of the constraint
satisfaction paradigm, robust constraint satisfaction, and to interesting new com-
plexity results.

2 Relational Databases

2.1 Review of Basic Notions

We shall begin by reviewing some basic notions of relational database theory.
We start with an example to show the concrete scenario which is to be for-
malized.

Example. Consider the following data table:

|branch-nameIaccount-nolcustomer-namelbalance |

Cambridge 10991-06284|Newton £2.567.53
Hanover 10992-35671 |Leibniz €11,245.75

Let us anatomize this table. There are a set of attributes,
{branch-name, account-no, customer-name, balance}

which name the columns of the table. The entries in the table are ‘tuples’ which
specify a value for each of the attributes. The table is a set of such tuples.
A database will in general have a set of such tables, each with a given set of
attributes. The schema of the database — a static, syntactic specification of the
kind of information which can reside in the database — is given by specifying
the set of attributes for each of the tables. The state of the database at a given
time will be given by a set of tuples of the appropriate type for each of the tables
in the schema.

We now proceed to formalize these notions.

We fix some set A which will serve as a universe of attributes. A database
schema X over A is a finite family X' = {A;,..., Ay} of finite subsets of A.

Relational Databases and Bell’s Theorem 15

At this — surprisingly early! — point, we come to an interesting juncture.
There are two standard approaches to formalising the notion of relation which
can be found in the relational database literature. One — the ‘unnamed per-
spective’ — is to formalize the notion of tuple as an ordered n-tuple in D"
for some set D of data values; a relation is then a subset of D™. This is moti-
vated by the desire to make the connection to the standard notion of relational
structure in first-order logic as direct as possible. This choice creates a certain
distance between the formal notion of relation, and the informal notion of table;
in practice this is not a problem.

For our purposes, however, we wish to make a different choice — the ‘named
perspective’ [1]: we shall formalize the notion of tuple, and hence of relation, in a
fashion which directly reflects the informal notion. As we shall see, this will have
both mathematical and conceptual advantages for our purposes. At the same
time, there is no real problem in relating this formalism to the alternative one
found in the literature. Note that the style of formalization we shall use is also
commonly found in the older literature on relational databases, see e.g. [26].

We shall assume that for each a € A there is a set D, of possible data values for
that attribute. Thus for example the possible values for customer-name should
be character strings, perhaps with some lexical constraints; while for balance the
values should be pairs (currency, amount), where currency comes from some
fixed list (£, €, ...), and amount is a number. These correspond to domain
integrity constraints in the usual database terminology.

Given A € X, we define the set of A-tuples to be [],. 4 Da. Thus an A-tuple
is a function which assigns a data value in D, to each a € A.

In our example above, the first tuple in the table corresponds to the function

{branch-name + Cambridge, account-no — 10991-06284,

customer-name — Newton, balance — £2,567.53}

A relation of type A is a finite set of A-tuples. Given a schema X', an instance
of the schema, representing a possible state of the database, is given by specifying
a relation of type A for each A € X.

Operations on Relations. We consider some of the fundamental operations
on relations, which play a central role in relational databases. Firstly, relations of
type A live in the powerset P(HaeA D), which is a boolean algebra; so boolean
operations such as union, intersection, and set difference can be applied to them.

Note that the set of data values may in general be infinite, whereas the rela-
tions considered in database theory are finite. Thus one must use set difference
rather than an ‘absolute’ notion of set complement.

Next, we consider the operation of projection. In the language of A-tuples,
projection is function restriction. That is, given an A-relation R, and a subset
B C A, we define:

RlB = {tIB 1 te R}

16 S. Abramsky

Here, since t € [],. 4 Da. t|p just means restriction of the function ¢ to B, which
is a subset of its domain. This operation is then lifted pointwise to relations.

Now we consider the independent combination of relations, which is cartesian
product in the standard formalism. The representation of tuples as functions
leads to a ‘logarithmic shift’ in the representatio, whereby this operation is
represented by disjoint union of attribute sets.

Given an A-relation R and a B-relation S, we form the disjoint union AU B,
and the A Ll B-relation

R®S = {te [Da:taeR A tlpe S}
ac AUB

Of course, as concrete sets A and B may overlap. We can force them to be
disjoint by ‘tagging’ them appropriately, e.g.

AUB = {0} x A U {1} x B.

The minor housekeeping details of such tagging can safely be ignored We shall
henceforth do so without further comment.

This is only a subset of the operations available in standard relational algebra
[26]. A more complete discussion could be given in the present setting, but this
will suffice for our purposes.

2.2 The Functorial View

We shall now show how the relational database formalism, in the style we have
developed it, has a direct expression in functorial terms. This immediately brings
a great deal of mathematical structure into play, and will allow us to relate some
important database notions to concepts of much more general standing.

We shall assume the rudiments of the language of categories, functors and
natural transformations. All the background we shall need is covered in the
charming (and succinct) text [25].

We shall consider the partial order Att of finite subsets of A, ordered by
inclusion, as a category.

We shall define a functor T : Att®® —— Set where T (A) is the set of
A-tuples. Formally, we define

T(4) ==][] Da.

acA
and if A C B, we define the restriction map p% : T(B) — T(A) by

Pt 4.

! Think of 2°2° = 2" and hence log(zy) = log(z) + log(y).
? The relevant result is the coherence theorem for monoidal categories [20].

Relational Databases and Bell’s Theorem 17

It is easy to verify functoriality of 7, which means that, whenever A C B C C,
B _ C c
PACPR = PaAs
and also that pﬁ = id4. Thus 7 is a presheaf, and restriction is exactly function
restriction.

We also have the covariant powerset functor 7P : Set — Set. which acts on
functions by direct image: if f: X —— Y, then

Pf:PX — PY S {f(z) : v € S}.
We can compose P with 7 to obtain another presheaf
R:=PoT :Att®® — Set.

This presheaf assigns the set of A-relations to each set of attributes A; while the
restriction map

ph i R(B) —= R(4)

is exactly the operation of relation restriction, equivalent to the standard notion
of projection in relation algebra, which we defined previously:

ph R R|4.

Natural Join. One of the most important operations in relational algebra is
natural join. Given an A-relation R and a B-relation S, we define an (AU B)-
relation R pa S:

RS = {te [[Du:tlacR A tlpe s}

ac AUB

We shall now show how this operation can be characterized in categorical terms.
Note firstly that since the powerset is naturally ordered by set inclusion, we
can consider R as a functor

R : Att°®* —— Pos

where Pos is the category of posets and monotone maps. Pos is order-enriched;
given monotone maps f,g: P — @, we can define the pointwise order:

f<g =VreP f(z) <gx).

Now suppose we are given attribute sets A and B. We consider the following
diagram arising from the universal property of product in Set.

18 S. Abramsky

up

R(A) R(A) x R(B)

aumy
BUB>§

’R(A:U B)

Proposition 1. The natural join <0 R(A) x R(B) — R(AU B) is uniquely

characterized as the left adjoint of (p;ﬁUB,p:éUB}; that is, as the unique map
satisfying
idraun) < o (pa??pp "), (PP p57P) o a < idr(a)xr(B)-

The fact that in general a relation R € R(A U B) satisfies only
R C RLUM}ﬂB,

with strict inclusion possible, corresponds to the fact that natural join is in
general a ‘lossy’ operation. Lossless joins correspond exactly to the case when
equality holds.

2.3 The Sheaf-Theoretic View

We shall now show, building on the presheaf structure described in the previous
sub-section, how a number of important database notions can be interpreted
geometrically, in the language of sheaves and presheaves.

Schemas as Covers and Gluing Conditions. We shall interpret a schema
Y = {Ay,..., Ay} of finite subsets of A as a cover. That is, we think of the
attribute sets A; as ‘open sets’ expressing some local information in the sense
of related clusters of attributes; these sets cover A := Ule A;, the global set
of attributes for the schema. Conversely, we think of the global set A as being
decomposed into the local clusters A;; which is exactly the standard point of
view in databases.

Relational Databases and Bell’s Theorem 19

The basic idea of sheaf theory is to analyze the passage from local to global be-
haviour in mathematical structures. A number of important notions in databases
have exactly this character, and can be described naturally in sheaf-theoretic
terms.

An instance (Ry,..., Ri) of a schema X is given by specifying a relation
R; € R(A;) for each A; € X. In sheaf-theoretic language, this is a family of local
sections, defined over the open sets in the cover. A central issue in geometric
terms is whether we can glue these local sections together into a global section
defined over A := Ule A;.

More precisely, we can ask:

Does there exist a relation R € R(A) such that R|a, = Ri,i=1,..., k.

We say that the gluing condition is satisfied for the instance (Ry, ..., Ry) if such
a relation exists.

This has been studied as an algorithmic question in database theory, where
it is referred to as the join consistency property; it is shown in that it is
NP-complete.

Note that a necessary condition for this to hold is that, for all i, 5 = 1,..., k:

Rilaina, = Rjlaina,. (1)
Indeed, if such an R exists, then

R;

Aina; = (Rla)aina, = Rlana;,

using the functoriality of restriction, and similarly for R;|a,~4 i

We shall say that a database instance (Ry, ..., Rj) for which this condition
holds has consistent projections, and refer to the family of relations in the in-
stance as a compatible family.

These notions can be generalized to apply to any presheaf. If the gluing condi-
tion can always be satisfied, for any cover and any family of compatible elements,
and moreover there is a unique element which satisfies it, then the presheaf is a
sheaf.

It is of course a well-known fact of life in databases, albeit expressed in a
different language, that our relational presheaf R is not a sheaf.

In fact, we have the following:

Proposition 2. An instance (Ry, ..., Ry) satisfies the gluing condition if and
only if there is a uniwersal relation R for the instance.

Here we take a universal relation for the instance by definition to be a relation
defined on the whole set of attributes from which each of the relations in the
instance can be recovered by projection. This notion, and various related ideas,
played an important réle in early developments in relational database theory;
see e.g. [22[12]19]21]26].

Thus the standard notion of universal relation in databases corresponds ex-
actly to the standard notion of solution to the gluing condition in sheaf theory,
for the particular case of the relational presheaf .

20 S. Abramsky

It is also standard that a universal relation need not exist in general, and even
if it exists, it need not be unique. There is a substantial literature devoted to
the issue of finding conditions under which these properties do hold.

There is a simple connection between universal relations and lossless joins.

Proposition 3. Let (Ry,...,Rr) be an instance for the schema X =
{A1,..., Ax}. Define R = l><lf-¢:1 R;. Then a universal relation for the instance
exists if and only if R|la, = Ri, i = 1,...,k, and in this case R is the largest
relation in R(|J; Ai) satisfying the gluing condition.

Proof. We note that, if a relation S satisfies S|4, = Ri, i =1,...,k, then S C
|><|f:1 R; by the adjoint property of the natural join. Moreover, since projection
is monotone, in this case R; C S|4, C (5%, R;)|a, C R;. O

There are further categorical aspects of relational databases which it might
prove interesting to pursue. In particular, one can define categories of schemas
and of instances and their morphisms, and the construction of colimits in these
categories may be applicable to issues of data integration. However, we shall
not pursue these ideas here. Instead, we will turn to a natural generalization of
relational databases which arises rather effortlessly from the formalism we have
developed to this point.

3 Algebraic Databases

We begin by revisiting the definition of the relational presheaf R in terms of
the covariant powerset functor P. An alternative presentation of subsets is in
terms of characteristic functions. That is, we have the familiar isomorphism
P(X) = 2% where 2 := {0,1} is the 2-element boolean algebra.

We can also use this representation to define the functorial action of powerset.
Givens: X — 2 and f: X - Y, we define f*(s) : ¥ — 2 by

)iy s, (2)
flz)=y

It is easy to see that this is equivalent to

ff&)y)=1 = Fres flz)=y.

Here S is the subset of X whose characteristic function is s.
We can specialise this to the case of an inclusion function ¢ : A —— B which
induces a map 27 — 24 by restriction:

s:B—=2 — (slq):A—=2

What we obtain in this case is exactly the notion of projection of a relation, as
defined in the previous section.

Relational Databases and Bell’s Theorem 21

The advantage of this ‘matrix’ style of definition of the powerset is that it can
immediately be generalized rather widely. There is a minor caveat. In the above
definition, we used the fact that 2 is a complete boolean algebra, since there was
no restriction on the cardinality of the preimages of f. In the database context,
of course, all sets are typically finite[) We shall enforce a finiteness condition
explicitly in our general definition.

We recall that a commutative semiring is a structure (R, +,0,-,1), where
(R, +,0) and (R,-,1) are commutative monoids, and moreover multiplication
distributes over addition:

z-(yt+z)=x-ytax- -z

Many examples of commutative semirings arise naturally in Computer Science:
we list a few of the most common.

The reals
(R7 +1 07 X? 1)'

More generally, any commutative ring is a commutative semiring.
— The non-negative reals
(R>0,+,0,x,1).

— The booleans
2= ({0,1},v,0,A,1).

More generally, idempotent commutative semirings are exactly the distribu-
tive lattices.

The min-plus semiring
(R>(U {00}, min, oo, +, 0).

We also note the réle played by provenance semirings in database theory [14[9]11].
We fix a semiring R. Given a set X, the support of a function v : X — R is
the set of x € X such that v(x) # 0. We write supp(v) for the support of v. We
shall write V(X)) for the set of functions v : X — R of finite support. We shall
write Dr(X) for the subset of Vg(X) of those functions d : X — R such that

> d(x) = 1.

zeX

Note that the finite support condition ensures that this sum is well-defined.
We shall refer to elements of Vg(X) as R-valuations on X, and of Dgr(X) as
R-distributions.
We consider a few examples:

— If we take R = 2, then VR(X) is the set of finite subsets of X, and Dg(X)
is the set of finite non-empty subsets.

3 The sets of data values D, may be infinite, but only finitely many values will appear
in a database instance.

22 S. Abramsky

— If we take R = (R>q,+,0, x,1), then Dr(X) is the set of discrete (finite-
support) probability distributions on X.

Algebraically, Vgr(X) is the free R-semimodule over the set X [13].
These constructions extend to functors on Set. Given f: X — Y, we define

Ve(f) : Ve(X) = Vr(Y) tv = [y— Z v(x)].
flz)=y

This restricts to Dg in a well-defined fashion. Taking R = 2, we see that V(f)
is exactly the direct image of f, defined as in (2).

We can now generalize databases from the standard relational case to ‘rela-
tions valued in a semiring’ by replacing P by Vg (or Dgr) in our definition of
R; that is, we take R := F o T, where F is Vg or Dp for some commutative
semiring R. We recover the standard notion exactly when R = 2. In the case
where R = (R>o,+,0, x,1) and F = Dg, we obtain a notion of probabilistic
database, where each relation specifies a probability distribution over the set of
tuples for its attribute-set.

Moreover, our descriptions of the key database operations all generalise to
any semiring. If we apply the definition of the functorial action of Vi or Dy to
the case of restriction maps induced by inclusions, we obtain the right notion of
generalised projection, which can be applied to any algebraic database. We have
already seen that we recover the standard notion of projection in the Boolean
case. In the case where the semiring is the non-negative reals, so we are dealing
with probability distributions, projection is exactly marginalization.

We also note an important connection between probabilistic and relational
databases. We can always pass from a probabilistic to a relational instance by
taking the support of the distribution. Algebraically, this corresponds to mapping
all positive probabilities to 1; this is in fact the action of the unique semiring
homomorphism from the non-negative reals to the booleans.

In general, many natural properties of databases will be preserved by this
homomorphic mapping. This means that if we show that such a property is
not satisfied by the support, we can conclude that it is not satisfied by the
probabilistic instance. Thus we can leverage negative results at the relational
level, and lift them to the probabilistic setting.

We shall see a significant example of a probabilistic database in the next
section.

4 From Databases to Observational Scenarios

We shall now offer an alternative interpretation of the relational database formal-
ism, with a very different motivation. This will expose a surprising connection
between database theory, and on face value a completely different topic, namely
Bell’s theorem in the foundations of quantum mechanics [8].

Our starting point is the idealized situation depicted in the following diagram.

Relational Databases and Bell’s Theorem 23

£ K™

7] 7}
O O
C Cl
Alice Bob

There are several agents or experimenters, who can each select one of sev-
eral different measurements a, b, ¢, d, ... to perform, and observe one of several
different outcomes. These agents may or may not be spatially separated. When
a system is prepared in a certain fashion and measurements are selected, some
corresponding outcomes will be observed. These individual occurrences or ‘runs’
of the system are the basic events. Repeated runs allow relative frequencies to
be tabulated, which can be summarized by a probability distribution on events
for each selection of measurements. We shall call such a family of probability
distributions, one for each choice of measurements, an empirical model.

As an example of such a model, consider the following table.

(0,0) (1,0) (0,1) (1,1)
ab|1/2 0 0 1/2
adb|3/8 1/8 1/8 3/8
a V| 3/8 1/8 1/8 3/8
d V| 1/8 3/8 3/8 1/8

The intended scenario here is that Alice can choose between measurement set-
tings a and «’, and Bob can choose b or &'. These will correspond to different
quantities which can be measured@ We assume that these choices are made
independently. Thus the measurement contexts are

{a,b}, {d,0}, {a ¥}, {d,V},

and these index the rows of the table. Each measurement has possible outcomes
0orl.

Note that, with a small change of perspective, we can see this in database
terms. Take the global set of attributes A = {a, a’, b, ¥}, and consider the schema

Y= ({a,b}, {d',b}, {a,b'}, {d',V'}).
For each a € A, we take D, := {0, 1}.

4 For example, in the quantum case these settings may correspond to different direc-
tions along which to measure ‘Spin Up’ or ‘Spin Down’ [29].

24 S. Abramsky

For each A € X' we have a ‘table’ in the algebraically generalized sense
discussed in the previous section. That is, we have a distribution d4 € DroT (A),
where R = R>(is the semiring of non-negative reals. Thus d 4 is a probability
distribution on T (A4), the set of A-tuples.

To make a direct connection with standard relational databases, we can pass
to the support of the above table, which yields the following:

[(0,0) (1,0) (0,1) (1,1)

ab| 1 0 0 1
abl| 1 1 1 1
a b 1 1 1 1
a bt 1 1 1 1

This corresponds to the instance of the schema X where for each A = {«, 8} €
Y\ {{a,b}}, there is the ‘full’ table of all possible tuples:

}8

e L K=] K=1 | B*=}
[l el Bl)

while for {a,b} we have the table with only two tuples:

[0

Thus we have a formal passage between empirical models and relational

databases. To go further, we must understand how empirical models such as
these can be used to draw striking conclusions about the foundations of physics.

5 Empirical Models and Hidden Variables

Most of our discussion is independent of any particular physical theory. How-
ever, it is important to understand how quantum mechanics, as our most highly
confirmed theory, gives rise to a class of empirical models of the kind we have
been discussing.

To obtain such a model, we must provide the following ingredients:

— A quantum state.

— For each of the ‘measurement settings’, which correspond to attributes in
database terms, a physical observable or measurable quantity. Each such
observable will have a set of associated possible outcomes, which will corre-
spond to the set of data values associated with that attribute.

The ‘statistical algorithm’ of quantum mechanics will then prescribe a probabil-
ity for each measurement outcome when the given state is measured with that
observable.

Although we shall not really need the details of this, we briefly recall some
basic definitions. For further details, see e.g. |24]29].

Relational Databases and Bell’s Theorem 25

A Crash Course in Qubits

Whereas a classical bit register has possible states 0 or 1, a qubit state is given
by a superposition of these states. More precisely, a (pure) qubit state is given
by a vector in the 2-dimensional complex vector space C2, i.e. a complex linear
combination ag|0) +a;|1), subject to the normalization constraint || +|ay |2 =
1. Here |0), |1} is standard Dirac notation for the basis vectors [1,0]7 and [0, 1]T.

Measurement of such a state (in the |0}, |1) basis) is inherently probabilistic;
we get |i) with probability |a;|?.

There is a beautiful geometric picture of this complex 2-dimensional geometry
in real three-dimensional space. This is the Bloch sphere representation:

The pure qubit states correspond to points on the surface of the sphere. How-
ever, this one-qubit case does not yet provide non-classical resources for infor-
mation processing. Things get interesting with n-qubit registers

> aili), ief{o, 1}
i
It is at this point, in particular, that entanglement phenomena arise.
A typical example of an entangled state is the Bell state:

. |00) + |11) .

We can think of two particles, each with a qubit state, held by Alice and Bob.
However, these two particles are entangled. If Alice measures her qubit, then if
she gets the answer |0}, the state will collapse to |00), and if Bob measures his
qubit, he will get the answer |0) with certainty; similarly if the result of Alice’s
measurement is |1). This non-local effect creates new possibilities for quantum
information processing.

Mathematically, compound systems are represented by the tensor product,
Hi @ Ha, with typical element

ZAi'ﬁbi@wi-

Superposition encodes correlation.

Entanglement is the physical phenomenon underlying Einstein’s ‘spooky ac-
tion at a distance’. Even if the particles are spatially separated, measuring one
has an effect on the state of the other.

26 S. Abramsky

Bell’s achievement was to turn this puzzling feature of quantum mechanics
into a theorem: quantum mechanics is essentially non-local.

5.1 Bell’s Theorem

We look again at the empirical model

|(0,0) (1,0) (0,1) (1,1)
(a,0) [1/2 0 0 1/2
(a, /)| 3/8 1/8 1/8 3/8
(a/,b) | 3/8 1/8 1/8 3/8
(a/,0")| 1/8 3/8 3/8 1/8

This can be realized in quantum mechanics, using a Bell state

[00) + [11)
—\/§)

subjected to measurements in the XY-plane of the Bloch sphere, at relative
angle /3. Systems of this kind have been the subject of extensive experimental
investigation, and the predictions of quantum mechanics can be taken to be very
highly confirmed.

The question we shall ask, following Bell, is this: Can we explain these
empirical findings by a theory which is local and realistic in the following sense.

— A theory is realistic if it ascribes definite values to all observables for every
physical state, independently of the activities of any external observers.

— A theory is local if the outcomes of measurements on spatially separated
subsystems depend only on common causal factors. In particular, for space-
like separated measurements, the outcomes of the measurements should be
independent of each other.

We allow for the fact that there may be salient features in the theory determining
the outcomes of measurements of which we are not aware. These features are
embodied in the notion of hidden variable. Thus we take measurement outcomes
to be determined, given some value of this hidden variable. Moreover, we assume
that this hidden variable acts in a local fashion with respect to spatially separated
subsystems.

This gives a general notion of theory which behaves in a fashion broadly
consistent with classical physical intuitions. The import of Bell’s theorem is
exactly that no such theory can account for the empirical predictions of quan-
tum mechanics. Hence, given that these predictions are so well-confirmed, we
must abandon the classical world-view which underpins the assumptions of local
realism.

To give a precise statement of Bell’s theorem, we must formalize the notion of
local hidden variable theory. We shall give this in a streamlined form, which can
be shown to be equivalent to more general definitions which have been considered
(see e.g. Theorem 7.1 in [3]).

Relational Databases and Bell’s Theorem 27

We shall explain this notion in relation to the Bell table given above. We have
a total set of four measurement settings we are considering, two for Alice and
two for Bob:
{a,a’ b b'}.

A simultaneous assignment of outcomes (0 or 1) to each of these is given by a
function
s:{a,d b,b} — {0,1}.

The fact that an (unknown) hidden variable may be affecting the outcome is
captured by saying that we have a probability distribution d on the set of all
such functions s. Such a probability distribution can be taken to be a canonical
form for a hidden variable.

The requirement on this distribution d to be consistent with the empirical data
is that, for each of the experimentally accessible combinations of measurement

settings
{a" b}’ {a’,'lb}’ {(1, b’}: {a'fvbl}'J

the restriction (or marginalization) of d to this set of measurements yields exactly
the observed distribution on outcomes from the corresponding row of the table.
For example, we must have d|{a, b} = d;, where

di(0,0) = dy(1,1) = 1/2, dy(0,1) = dy(1,0) = 0.

A precise statement of a particular instance of Bell’s theorem can now be
given as follows:

Proposition 4. There is no distribution d on the whole set of measurements
which yields the observable distributions by restriction.

Proof. Assume for a contradiction that such a distribution d exists. It will
assign a number X; € [0,1] to each s; : {a,d’,b,b'} —— {0,1}. There are 16
such functions: we enumerate them by viewing them as binary strings, where
the j'th bit indicates the assignment of an outcome to the j’'th measurement,
listed as a,a’, b, b'.

The requirement that this distribution projects onto the distributions in the
empirical model translates into 16 equations, one for each entry in the table. It
suffices to consider 4 of these equations:

X1+ Xo+ X3 +Xy =1/2
Xo+Xy+Xs +Xs =1/8
Xs+Xyg+ X1+ X12=1/8
X1+ Xs+Xo +X15=1/8

Adding the last three equations yields
X1 +X2 +X3+2X4+X5 +X5+X8+X9+X11 +X12+X13 = 3/8

Since all these terms must be non-negative, the left-hand side of this equation
must be greater than or equal to the left-hand side of the first equation, yielding
the required contradiction. O

28 S. Abramsky

This argument seems very specific to the probabilistic nature of the empirical
model. However, an important theme in the work on no-go theorems in quantum
mechanics is to prove results of this kind in a probability-free fashion [15]16].
This will bring us directly into the arena of relational databases.

5.2 Hardy’s Construction

Hardy’s construction vields a family of empirical models which can be real-
ized in quantum mechanics in similar fashion to the Bell model. However, these
families exhibit a stronger form of non-locality property, which does not depend
on the probabilities, but only on the support.

We exhibit an example of a support table arising from Hardy’s construction.

|(0,0) (1,0) (0,1) (1,1)
(a,b) | 1 1 1 1

@byl 0 1 1 1
(a¥)| 0 1 1 1
@bv) 1 1 1 0

This arises from a probability table by replacing all positive probabilites by 1.

Note that we can view this table as encoding a small relational database, as
in our discussion in the previous section. There will be four relation tables in
this database, one for each of the above rows. The table corresponding to the
first row will have the full set of tuples over {0,1}. The tables for the second
and third rows will have the form

w

o Bl B=1| B*}

—[ol —

while that for the fourth row will have the form

Ibf

Q

Ll E==] Rl
ol =S

The property which shows the non-locality of this model is the exact relational
analogue of the probabilistic version we considered in relation to the Bell model.

Proposition 5. There is no A-relation R, where A = {a,a’,b,b'}, which s
consistent with the empirical observable supports; that is, for which R|{«, 3}
yields the relational table for all {o, B}, o € {a,d’}, g€ {b,¥'}.

In database language, this says exactly that there is no ‘universal relation’
on the whole set of attributes which yields each of the ‘observable relations’ by
projection.

Relational Databases and Bell’s Theorem 31

Proof. We consider the case where n = 4k, k > 1. Assume for a contradiction
that we have a global section s € S, for the GHZ model e.

If we take Y measurements at every part, the number of 1 outcomes under the
assignment is even. Replacing any two Y’s by X'’s changes the residue class mod 4
of the number of Y’s, and hence must result in the opposite parity for the number
of 1 outcomes under the assignment. Thus for any Y Y) assigned the same
value, if we substitute X'’s in those positions they must receive different values
under s. Similarly, for any Y9 YU) assigned different values, the corresponding
X@ X must receive the same value.

Suppose firstly that not all Y*) are assigned the same value by s. Then for
some i, j, k, Y is assigned the same value as Y and Y7 is assigned a
different value to Y*), Thus Y is also assigned a different value to Y*). Then
X is assigned the same value as X*) and X is assigned the same value
as X®). By transitivity, X¥ is assigned the same value as X, yielding a
contradiction.

The remaining cases are where all Y’s receive the same value. Then any pair
of X’s must receive different values. But taking any 3 X's, this vields a con-
tradiction, since there are only two values, so some pair must receive the same
value.

The case when n = 4k 42, k > 1, is proved in the same fashion, interchanging
the parities. When n > 5 is odd, we start with a context containing one X, and
again proceed similarly.

The most familiar case, for n = 3, does not admit this argument, which relies
on having at least 4 Y’s in the initial configuration. However, for this case one
can easily adapt the well-known argument of Mermin using ‘instruction sets’
to prove strong contextuality. This uses a case analysis to show that there are
8 possible global sections satisfying the parity constraint on the 3 measurement
combinations with 2 ¥Y’s and 1 X; and all of these violate the constraint for the
XXX measurement. O

6.2 The Kochen-Specker Theorem

Kochen-Specker-type theorems can be understood as generic strong contex-
tuality results. In database terms, they say that, if the database schema has a
certain combinatorial structure, then every instance satisfying some conditions
is strongly contextual. This can be interpreted in the quantum context in such
a way that the conditions will be satisfied by every quantum state, and hence
we obtain a state-independent form of strong contextuality result.

The condition which is typically imposed on the instances, assuming that
the possible data values for each attribute lie in {0, 1}, is that every tuple con-
tains exactly one 1. If we think in terms of satisfiability, this corresponds to a
‘POSITIVE ONE-IN-£-SAT” condition.

To show that the Kochen-Specker result holds is exactly to show that there
is no satisfying assignment for the corresponding set of clauses.

32 S. Abramsky

The simplest example of this situation is the ‘triangle’, i.e. the schema with
elements

{a,b},{b,c}, {a,c}.

However, this example cannot be realized in quantum mechanics [3].

An example which can be realized in quantum mechanics, where A has 18
elements, and there are 9 sets in the database schema, each with four elements,
such that each element of A is in two of these, appears in the 18-vector proof of
the Kochen-Specker Theorem in [10].

(UL U2 |Us U4 U5 |Us U7 [Us|Us|

AlA\H|\H|B|I |P|P|Q
B|E|I|K|E|K|Q|R|R
C|F|C|G\M|N|D|F|M
D|G|J|L|N|O|J|L|O

Here the schema is X' = {Uy,...,Us}.

We shall give a simple combinatorial condition on the schema X which is
implied by the existence of a global section s satisfying the ‘POSITIVE ONE-
IN-k-SAT’ condition. Violation of this condition therefore suffices to prove that
no such global section exists.

For each a € A, we define

Ya):={Ae X :ac A}.

Proposition 8. If a global seclion satisfying the condition exists, then every
common dwisor of {|X(a)| : a € A} must divide |X|.

Proof. Suppose there is a global section s : 4 — {0, 1} satisfying the condition.
Consider the set X C A of those a such that s(a) = 1. Exactly one element of
X must occur in every A € Y. Hence there is a partition of X' into the subsets
X(a) indexed by the elements of X. Thus

121 =) 1Z(a)l-

acX

It follows that, if there is a common divisor of the numbers | X(a)|, it must divide
| . (]

For example, if every a € A appears in an even number of elements of X,
while X' has an odd number of elements, then there is no global section. This
corresponds to the ‘parity proofs’ which are often used in verifying Kochen-
Specker-type results [10]28]. For example, in the 18-attribute schema with 9
relations given above, each attribute appears in two relations in the schema;
hence the argument applies.

For further discussion of these ideas, including connections with graph theory,

see [3].

Relational Databases and Bell’s Theorem 33

7 Further Directions

We mention some further directions for developing the connections between
databases and the study of non-locality and contextuality in quantum mechanics.

— We may consider conditions on the database schema which guarantees that
global sections can be found. The important notion of acyclicity in database
theory is relevant here. On the probabilistic side there is a result by
Vorob'ev (motivated by game theory), which gives necessary and suffi-
cient combinatorial conditions on a schema for any assignment of probability
distributions on the tuples for each relation in the schema to have a global
section; that is, for a universal relation in the probabilistic sense to always
exist for any probabilistic instance of the database. Rui Soares Barbosa (per-
sonal communication) has shown that the Vorob’ev condition is equivalent
to acyclicity in the database sense. This provides another striking connec-
tion between database theory and the theory of quantum non-locality and
contextuality.

— A logical approach to Bell inequalities in terms of logical consistency condi-
tions is developed in [5]. It would be interesting to interpret and apply this
notion of Bell inequalities in the database context.

— The tools of sheaf cohomology are used to characterize the obstructions to
global sections in a large family of cases in [6]. In principle, these sophisti-
cated tools can be applied to databases. There may be interesting connec-
tions with acyclicity in the database sense.

We can summarise the connections which we have exposed between database
theory and quantum non-locality and contextually in the following table:

Relational databases measurement scenarios

attribute measurement

set of attributes defining a relation table|compatible set of measurements
database schema measurement cover

tuple local section (joint outcome)
relation/set of tuples boolean distribution on joint outcomes
universal relation instance global section/hidden variable model
acyclicity Vorob’ev condition

Acknowledgements. Discussions with and detailed comments by Phokion Ko-
laitis are gratefully acknowledged. Leonid Libkin also gave valuable feedback.
This paper was written while in attendance at the program on ‘Semantics and
Syntax: the legacy of Alan Turing’ at the Isaac Newton Institute, Cambridge,
April-May 2012.

34 S. Abramsky
References
1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

Reading (1995)

. Abramsky, S.: Relational Hidden Variables and Non-Locality. Studia Logica 101(2),

411-452 (2013)

. Abramsky, S., Brandenburger, A.: The sheaf-theoretic structure of non-locality and

contextuality. New Journal of Physics 13(2011), 113036 (2011)

. Abramsky, S., Gottlob, G., Kolaitis, P.: Robust constraint satisfaction and local

hidden variables in quantum mechanics. In: Rossi, F. (ed.) Proceedings of the
International Joint Conference in Artificial Intelligence (IJCAI) (2013)

. Abramsky, S., Hardy, L.: Logical Bell Inequalities. Physical Review A 85, 062114

(2012)

. Abramsky, S., Mansfield, S., Barbosa, R.S.: The cohomology of non-locality and

contextuality. In: Proceedings of Quantum Physics and Logic 2011. EPTCS, vol. 95,
pp. 1-15 (2012)

. Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic

database schemes. Journal of the ACM (JACM) 30(3), 479-513 (1983)

. Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1(3), 195-200 (1964)

. Buneman, P., Tan, W.C.: Provenance in databases. In: Proceedings of the 2007

ACM SIGMOD International Conference on Management of Data, pp. 1171-1173.
ACM (2007)

Cabello, A., Estebaranz, J.M., Garcifa-Alcaine, G.: Bell-Kochen-Specker theorem:
A proof with 18 vectors. Physics Letters A 212(4), 183-187 (1996)

Cheney, J., Chiticariu, L., Tan, W.C.: Provenance in databases: Why, how, and
where. Foundations and Trends in Databases 1(4), 379-474 (2009)

Fagin, R., Mendelzon, A.O., Ullman, J.D.: A simplified universal relation assump-
tion and its properties. ACM Transactions on Database Systems (TODS) 7(3),
343-360 (1982)

Golan, J.S.: Semirings and their Applications. Springer (1999)

Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: Proceedings
of the Twenty-Sixth ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, pp. 31-40. ACM (2007)

Greenberger, D.M., Horne, M.A., Zeilinger, A.: Going beyond Bell’s theorem. In:
Kafatos, M. (ed.) Bell’'s Theorem, Quantum Theory, and Conceptions of the Uni-
verse, pp. 69-72. Kluwer (1989)

Hardy, L.: Quantum mechanics, local realistic theories, and Lorentz-invariant re-
alistic theories. Physical Review Letters 68(20), 2081-2984 (1992)

Honeyman, P., Ladner, R.E., Yannakakis, M.: Testing the universal instance as-
sumption. Information Processing Letters 10(1), 14-19 (1980)

Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics.
Journal of Mathematics and Mechanics 17(1), 59-87 (1967)

Korth, H.F., Kuper, G.M., Feigenbaum, J., Van Gelder, A., Ullman, J.D.: SYS-
TEM/U: A database system based on the universal relation assumption. ACM
Transactions on Database Systems (TODS) 9(3), 331-347 (1984)

Mac Lane, S.: Categories for the working mathematician, vol. 5. Springer (1998)
Maier, D., Ullman, J.D.: Maximal objects and the semantics of universal relation
databases. ACM Transactions on Database Systems (TODS) 8(1), 1-14 (1983)
Maier, D., Ullman, J.D., Vardi, M.Y.: On the foundations of the universal relation
model. ACM Transactions on Database Systems (TODS) 9(2), 283-308 (1984)

23.
24,

25.
26.
27.
28.

29.

Relational Databases and Bell’s Theorem 35

Mermin, N.D.: Quantum mysteries revisited. Am. J. Phys. 58(8), 731-734 (1990)
Nielsen, M.Q.C., Chuang, I.: Quantum Computation and Quantum Information.
Cambridge University Press (2000)

Pierce, B.C.: Basic category theory for computer scientists. The MIT Press (1991)
Ullman, J.D.: Principles of database systems. Prentice-Hall (1983)

Vorob’ev, N.N.: Consistent families of measures and their extensions. Theory of
Probability and its Applications 7, 147 (1962)

Waegell, M., Aravind, P.K.: Parity proofs of the Kochen-Specker theorem based
on the 24 rays of Peres. Arxiv preprint arXiv:1103.6058v1 (2011)

Yanofsky, N.S., Mannucci, M.A.: Quantum computing for computer scientists,
vol. 20. Cambridge University Press, Cambridge (2008)

38 B. Alexe et al.

language design choices and primitives of HIL, as well as its compilation and
execution, are described in [22]. While HIL answers some of the research chal-
lenges outlined in this article, several important problems remain largely open,
such as the need for tools or systems to support large-scale data exploration or
to assist users with the actual development of a good set of data analysis rules.

1.1 Overview of the Paper

We start in Section [2]by describing some of the features of the data in DBpedia,
as well as the challenges involved in data exploration, which is a phase that
precedes the actual writing of the rules. We then illustrate some concrete rules
for extracting facts from DBpedia. Here, the output of an extraction rule has
a relatively simple structure (or schema), but the input is semi-structured and
largely heterogeneous. Extraction from completely unstructured data (i.e., text)
is highly related in this context; however, in this paper, we focus our atten-
tion specifically on extraction from semi-structured data (e.g., RDF, or XML,
or JSON). We also note that extraction from text, technically, is of a different
nature and is discussed extensively elsewhere (e.g., [§]).

In addition to giving examples of extraction rules, we also include a discussion
of the need for automatic or semi-automatic extraction of structured records
that is based on data examples. Such technology, while non-trivial, would be
particularly useful when the developer is in the exploration phase and does not
know enough about the data and its peculiarities. Based on a few examples
that are representative of the type of entities that the developer is interested
to extract, the system must first be able to derive all the other entries that are
“similar” to the given examples. More challenging, the system should come up
with a set of extraction rules that would result in such entries. While existing
work on query discovery based on data instances or on schema mapping
design based on examples may provide a starting point here, new types of
algorithms will have to be developed to account for highly heterogeneous data
with “less” schema (such as DBpedia).

The next integration component that we address is entity resolution, in Sec-
tion[3] Rather than looking at specific algorithms or implementations that match
records based on various similarity measures on their fields, we take a higher-
level approach where the goal is to provide the specification framework for entity
resolution. We advocate a framework that is based on logical constraints that
are similar, in spirit, to the dependencies used in data exchange [15]. However,
different from data exchange where the dependencies are source-to-target, our
entity resolution constraints are target-to-source: they define declaratively all the
desired properties of the target (i.e., of the links) in terms of the sources. Fur-
thermore, these constraints incorporate disjunction (of the alternative matching
rules that may apply), rely on user-defined functions for computing similarity
of values, and can include cardinality constraints (e.g., to express many-to-one
type of links). We include a discussion to illustrate the differences between this
framework and previous approaches such as the Dedupalog language [2].

High-Level Rules for Integration and Analysis of Data: New Challenges 39

One of the main research problems that we outline, as part of declarative entity
resolution, is the compilation of the declarative constraints into an execution plan
that produces a good instantiation of the links. An important related question
is formulating the semantics of the declarative constraints, which then needs
to be implemented by the execution plan. Finally, a major challenge for entity
resolution, which goes beyond the design of the specification language, is the
development of methods and tools to help users interactively resolve the inherent
ambiguities in their specification. These tools can help users refine the declarative
constraints, based on the actual data sets that need to be linked, to ultimately
achieve a high quality specification for entity resclution.

We discuss mapping and transformation, as well as data fusion and aggre-
gation aspects in Section[4] While there is work on schema mapping tools [14],
data exchange semantics [15], and data fusion methods [6], our goal is to develop
an expressive scripting language that allows developers to combine non-trivial
mapping, fusion and aggregation tasks (e.g., that are often not possible within
a schema mapping tool paradigm) with the declarative entity resolution and ex-
traction operations discussed earlier. At the same time, we emphasize simplicity
and ease of programming as important requirements for the language design.

We discuss several other related papers and systems in Section[5land conclude
the paper in Section[6] where we reiterate the need for a single, unified framework
that incorporates all the aspects outlined in the previous sections.

2 Data Exploration and Extraction

The first step before the actual writing of extraction and integration rules is the
exploration phase, where a human user needs to understand what is in the source
data and what can be extracted. This step is usually expensive; any help that a
system or tool can provide in assisting the human user can be valuable. Even if
the user has an idea of what concepts need to be extracted, the form in which
these concepts manifest in the actual data source can vary significantly. Hence,
heterogeneity is a challenge.

We start with an example from DBpedia to illustrate the issues. We focus on
financial companies (e.g., Bank of America, Citigroup); the goal here will be to
extract structured records that are relevant for such financial companies and that
are deemed useful towards building the final integrated view. First, we assume
that the DBpedia data set is given as a set of JSON records, each corresponding
to one entity. A record has a subject field (which is also the identifier of that
entity), and then all the various properties recorded for that entity. This JSON
representation can be easily obtained from the RDF version of Dbpedia, which
records RDF triples of the form (subject, property, value) The conversion from
RDF to JSON is already a step towards a more unified view of the data, since it
yields full objects rather triples. However, the format of these objects is wildly
heterogeneous, even for the same “type” of entity, as we shall see shortly. A large

% See the Ontology Infobox Properties data set at
http://wiki.dbpedia.org/Downloads.

40 B. Alexe et al.

"assets”: “USS$ 2.264 trillion", "areaServed": "Worldwide",
"foundation": “1904", "assets": "$ 1.119 trillion (2007)",
"homepage": ["http://www.bankofamerica.com", "companyName": "Goldman_Sachs",
“http://www.bofa.com”], "companySlogan": "Our clients\' interests always come first",
"industry": ["Banking", “Financial services”] "companyType": "Public_company",
"keyPeople™: ["foundation": "1869",
“Bryan Moynihan", "founder": ["Marcus_Goldman®, “Samuel Sachs”].
“{President and CEQ)", "homepage": "http://www.gs.com/",
“Charles Holliday", "industry": "Finance_and_insurance”,
“(Chairman)" "keyPeople": [
I "Lloyd_Blankfein",
"location": [(Chairman & CEO)”,
"Charlotte,_ North_Carolina", "Gary_Cohn",
"United_States", “(President & CO0)",
"North_Carolina" “David Viniar®,
1, “(Executive VP & CFO)”
"name": "Bank of America Corporation”, 1.
"numEmployees": "288000", "location”: ["United_States”, "New_York_City"],
"slogan": "Bank of Opportunity", "marketCap": "$ 65.91 billion (2007)",
"subject”: "Bank_of America", "numEmployees": 30,522 (2007)",
"type": "Public_company", "products”: [
"wikiPageUsesTemplate": "Template:infobox_company" "Financial_services",
1 "Investment_bank"

1,
"revenue": "$ 87.968 billion (2007)",

"subject": "Goldman_Sachs",

"wikiPageUsesTemplate": "Template:infobox_company”

b

Fig. 1. Sample DBpedia records

part of the subsequent processing will be devoted to extracting the relevant parts
of the objects of interest, bringing the extracted parts to a uniform format, and
then linking and integrating them with data from other sources (e.g., SEC).

Figure[Tillustrates two sample input records, in JSON, corresponding to the
DBpedia entries for Bank of America and Goldman Sachs. Even though both of
these records represent entities of a similar type (i.e., financial institutions), there
is significant variation in the structure of the records (i.e., the attributes that are
present, their types), in the naming of the attributes, and in the values and for-
mat of the values that populate the attributes. For example, Goldman Sachs has
attributes such as “founder” and “marketCap”, while Bank of America does not
include these attributes. Goldman Sachs has a “companyName” attribute, while
the equivalent attribute for Bank of America is “name”. The “homepage” at-
tribute for Goldman Sachs is a single string, while the similar attribute for Bank
of America is an array of strings. Finally, the values themselves are not always
clean or cleanly organized. For example, Bank of America includes “Banking”
and “Financial services” under the “industry” attribute; the corresponding infor-
mation for Goldman Sachs is actually distributed over two attributes (“industry”
and “products”). Furthermore, the entries under the “keyPeople” attribute, in
both records, are a mixture of person names and positions (titles), without an
explicit tagging of the data.

After exploring several more representative DBPedia entries for financial com-
panies, the user may decide on a set of important concepts to be extracted from
this collection of heterogeneous records. Each concept is based on a subset of

High-Level Rules for Integration and Analysis of Data: New Challenges 41

FinancialCompany =
for (r in DBpedia)
let industryTerms = extractinaustries (r.industry),
compName = extractCompanyName (r)
where contains (compName, “Bank|Insurance|Investment”) or
(some (i in industryTerms) satisfies
contains (i, “bank|banking|insurance|finance|financial”))
return {company id: r.subject,
name: compName,
foundation: r.foundation,
industry: industryTerms,
revenue: cleanDollarAmount (r.revenue)

}

Fig. 2. Extraction rule for financial companies

attributes and, hence, it is a piece of a schema. In our scenario, the user may be
interested in the following three concepts.

FinancialCompany (company_id, name, foundation, industry, revenue, ...)
CompanyAddress (company_id, streetl, street2, zipcode, city, state, country)
KeyPeople (person_name, titles, company_name, age, biography, ...)

Note that, in general, the schema for these concepts must be open (see the
above ... notation) to account for possibly other attributes of interest that may
be added later. The high-level integration language will have to be flexible and
account for such open schema by either not requiring the user to explicitly hav-
ing to define the schemas of the concepts, or by using advanced programming
language features such as record polymorphism to represent extensible record
types [24]125]28].

Finally, other concepts can be defined later from either the same source (DB-
Pedia) or from other sources (e.g., SEC, as we will see later). All of these ex-
tracted concepts will then be processed together, in the subsequent integration
flow, to generate clean target entities with richer structure.

We focus next on how to extract the data to populate such concepts from the
underlying collection of heterogeneous records.

2.1 Extraction Rules: Examples

Figure[2lgives a first example of a rule that extracts data for financial companies
from DBpedia. This rule populates into the FinancialCompany concept. There
may be other rules to further populate into this same concept (and possibly add
new attributes). Thus, the actual instance of a concept will be given by a union
of extraction rules.

The rule uses an XQuery-like syntax (although other types of syntax could
also be used) to express the search for DBPedia records that match the charac-
teristics of a financial company and also to express the extraction of the relevant

42 B. Alexe et al.

attributes. Note the complex predicate that is used in the where clause to rec-
ognize a financial company. This predicate includes multiple string matching
conditions that are based on financial keywords. Note also the extensive pres-
ence of user-defined functions (UDF's) that are used for various purposes:

— to clean the data in the individual attributes. For example, cleanDollarAmount
is a function that transforms various heterogeneous string values that rep-
resent dollar amounts into a standardized form. Concretely, strings such as
“$ 87.968 billion (2007)” and “US$ 2.264 trillion” could be transformed into
“$87.96 billion” and “$2.26 trillion”, respectively.

— to extract certain expected strings from an input record or value (e.g., ex-
tractCompanyName from r and extractIndustries from r.industry).

— more generally, to account for the heterogeneity in the input data or struc-
ture. For example, extractIndustries must account for the fact that the input
r.industry could be a string such as “Finance_and_insurance” or an array such
as [“Banking”, “Financial services”]. The function must uniformly generate
an array of terms identifying the various relevant industries (i.e., [“finance”,
“insurance”] from the first input and [“banking”, “financial services” | from
the second input).

As another example, extractCompanyName has to account for the fact that
the company name can appear under various attributes in the input record r
(e.g., sometime name, and sometime companyName). Furthermore, the value
itself must be normalized (e.g., “Goldman_Sachs” must be transformed to
“Goldman Sachs”).

Note that the extracted and normalized industry terms and company
name are used both in the predicate in the where clause that identifies a
financial company and in the output of the rule.

In Figure[3] we show another example of an extraction rule from DBPedia, to
produce records for the key people that are associated with the financial compa-
nies. As before, the rule makes use of UDF's to restrict to financial companies. An
additional UDF extractNameTitles is used to convert an array of strings into a set
of structured records with explicit name and titles fields. For example, the array
of uninterpreted strings that is the value of the keyPeople field in the “Goldman
Sachs” record in Figure[I]is converted into a set of three records:

{ name: “Lloyd Blankfein", titles: ["Chairman”, "CEO"] }
{ name: “Gary Cohn", titles: [“President”, “CEQ"] }
{ name: “David Viniar", titles: [“Executive VP", “CFO"] }

Note that the above UDF must employ a name recognizer as well as a title
recognizer. Also, it must take into account the sequence in which the names and
the titles appear in the input string. In particular, the function must detect that
the titles of a person follow the actual person name, and also it must be able to
handle the absence of title information (e.g., two consecutive names).

High-Level Rules for Integration and Analysis of Data: New Challenges 45

Structured facts extracted from DBpedia

KeyPeople (
person_name

titles
company_name

rd o

el id
cik
SecPerson (
name Result of entity resolution
employment:
(company
position

date)

)

Structured facts extracted from SEC

Fig. 4. Entity resolution diagram

other contextual information such as employment. Figure[d]depicts schematically
the concrete entity resolution scenario that we are considering.

3.1 Declarative Constraints for Entity Resolution

We now illustrate the logic that is needed to express the above entity resolution
problem. We advocate a declarative formalism where one specifies the properties
or constraints that the outcome of entity resolution (i.e., the link table) must
satisfy, without having to specify a concrete procedure or implementation for
computing this outcome. It will be the role of the underlying system to materi-
alize a good solution (i.e., a set of links) that satisfies the specified constraints
in the best possible way.

For our entity resolution example, we show in Figure [5] a set of declarative
constraints that can be used to specify the desired properties of the link table.
We believe that such constraints (and their extensions) should form the basic
ingredients of any language that attempts to specify entity resolution at a high-
level We explain the constraints first and then discuss the issues involved in
building a language and system that implements such specification.

First, we have provenance or identification constraints that specify the at-
tributes or combinations of attributes that identify the source objects to be

3 However, the syntax of the actual language does not have to have follow the logical
notation we use here. Furthermore, some of these constraints may be implicit in the
semantics of the language.

46 B. Alexe et al.

Link [rid] < KeyPeople [rid]
Link [cik] < SecPerson [cik]

Link : rid — cik

(m) every Link
satisfies
KeyPeople.person_name = SecPerson.name
or
(KeyPeople. person_name ~,_ . SecPerson.name
and
KeyPeople.company_name in SecPerson.employment [company]

)

Fig. 5. Declarative constraints for entity resolution

linked. In this example, the two inclusion dependencies from Link to the sources
specify that the projection of Link on rid must be a subset of the projection of
KeyPeople on rid and, similarly, the projection of Link on cik must be a subset
of the projection of SecPerson on cik. Thus, the intention behind Link is to be
a subset of all the pairs of rid and cik values that appear in the two sources. In
general, it is up to the user to define what constitutes the identifier of an object
of interest for entity resolution. The framework we suggest is independent of
what makes the identifier of an object. As a result, we can naturally capture
most types of entity resolution described in the literature, from record linkage
and deduplication to reference reconciliation and to more general,
semantic type of linkage among entities (e.g., the relationship between compa-
nies and subsidiaries). To follow some of the terminology in the literature, in our
example, the first type of object that participates in Link can be viewed as an
entity reference (since it refers indirectly to an actual person, via person name
and other non-identifying attributes), while the second type of object can be
viewed as an entity (since it identifies a person in SEC).

The next constraint in the specification is a functional dependency (on the
Link table) to specify that an rid from the first source must be linked to a unique
cik in the second source. Note that, in this example, it is is ok to have multiple
rid’s linked to the same person cik. Thus, by using a functional dependency, we
encode an N:1 type of entity resolution (where multiple objects of interest in
one source must be linked to a single object in another source). For 1:1 type of
entity resolution, we would write a functional dependency in the other direction
as well. For an N:M type of entity resolution, we do not need to specify any
functional dependencies.

The final constraint in this example, probably the most important, is used
to declare a disjunction of all the valid reasons for why two objects can match.
Essentially this constraint specifies that a link can exist only if at least one of
several matching conditions holds. The matching conditions are formulated with

High-Level Rules for Integration and Analysis of Data: New Challenges 47

respect to the source tuples that are related via the link. In the example, we can
have a match because of exact equality of person names, or because of similarity
of person names (via a user-defined similarity predicate) and, moreover, because
the company_name in the KeyPeople record appears in the employer set in the
SecPerson record. Note that the second matching condition relaxes the equality
on person names, when compared to the first matching rule, but at the same adds
a strenghtening condition that is based on employment information. Note that
the employment-based condition, although a strengthening, may apply to less
tuples (those that have a non-empty employment set in SecPerson). In practice,
one will have to formulate multiple matching conditions, in order to improve
the recall of entity resolution. Furthermore, each matching condition has to be
strong enough to prevent the generation of accidental links.

Other types of constraints that appear in practice are structural type of con-
straints requiring properties such as transitivity of matching or variations of it.
Such constraints are needed to specify clustering behavior or to specify the link-
ing of two objects in two sources due to another object in a third source that
links to them.

A slight extension to this basic framework of constraints allows us to express
collective entity resolution [5], where the task is to create multiple, inter-related
types of links (rather than to create a single type of link). For example, assume
that we have the following two source relations:

Paper (pid, title, venue, year, ...)
Venue (venue, conferenceOrJournal, sponsor, ...)

In this context, we may want to specify links between papers and links between
venues. Assume that the first type of link is represented as a binary relation
PaperLink(pidl, pid2), while the second type of link is represented as a binary
relation VenueLink(venuel, venue2). Then, the matching rules for one type of link
may depend on the other type of link. For example, we can declare the matching
conditions for Venuelink as follows:

every Venuelink satisfies
_.(some similarity condition on venue names) ...
or
... (other condition) ...
or
exists (pl in Paper, p2 in Paper)
pl.venue = Venuelink.venuel and p2.venue = Venuelink.venue2 and
PaperLink (pl.pid, p2.pid)

In particular, the last condition says that a possible reason for a venue link is
that there exist two papers that are linked via PaperLink and whose venues are
the two venues related by the link.

Note that in the framework we suggest, we do not force the generation of
links, but rather define them #mplicitly through a declaration of the possible
matching rules. For example, satisfying the last matching condition in the above

48 B. Alexe et al.

constraint does not mean that a VenueLink tuple will necessarily be created,
since the existence of such tuple may be prevented due to other constraints. In
fact, creating such link may be the wrong choice sometimes (e.g., a conference
version and a journal version of a paper may be linked via PaperLink, but that
does not mean that the conference and the journal represent the same venue).
The disjunction allows us to enumerate, declaratively, all the possible reasons
for why a link may exist without forcing the link generation. It is then the job
of the underlying system to take into account all the constraints to reach a good
set of links, as we discuss in the next section.

Other frameworks aimed at declarative entity resolution exist. Perhaps, the
most comprehensive one is the Dedupalog [2] language which allows the use of
constraints, expressed in a Datalog style of syntax, to drive the identification of
duplicate entities. Several remarks are in order here. First, Dedupalog limits itself
to links that are equivalence relations, thus focusing strictly on deduplication.
In contrast, we require a more flexible framework for links that represent more
general semantic relationships, going beyond the “same-as” type of relationship.
Furthermore, Dedupalog rules are not entirely declarative. Generally speaking,
rules in Dedupalog are a guideline for the implementation, and the intention of a
rule is to populate links based on conditions on the sources or other links. Since
forcing links may create inconsistencies in the result, Dedupalog compensates
by allowing some rules to be soft: for such rules, links are “likely” to be gen-
erated. The system then figures out to what extent to satisfy these rules (e.g.,
by attempting to minimize the overall number of constraint violations). As a
consequence, an important downside is that the result of Dedupalog evaluation
does not satisfy, in a precise first-order logic sense, the Dedupalog rules that
were given as a specification. Furthermore, it may not be easy for a user of the
system to understand the properties of the final result.

In contrast, the matching constraints that we envision have a purely declar-
ative flavor, where we specify all the desired properties on the target links,
without worrying about how to actually generate the links. This achieves a bet-
ter separation between specification and execution. Furthermore, we require all
the declarative constraints to be satisfied, in a precise first-order logic sense, by
any solution that implements the specification. Ultimately, we believe that such
framework forms a better foundation for entity resolution that is transparent
and high-quality while at the same time high-level.

3.2 From Declarative Constraints to Execution: Challenges

There are many foundational and architectural challenges that need to be solved,
in order to achieve a functional framework for declarative entity resolution. The
main research questions here will be to define precisely the language that cap-
tures all of the above types of constraints, to formulate its semantics, and to
investigate the expressive power and computational aspects of the language. We
outline some of the issues here, and leave further details, solutions or algorithms
for future work.

A New Framework for Designing Schema Mappings 87

The authors are grateful to Balder ten Cate, Laura Chiticariu, Mauricio A. Herndndez,

Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa for their collaboration on various
aspects of this work. This work is supported by NSF Grant IIS-0905276 and a Google
Faculty Award. Part of this work was done while Tan was at IBM Research - Almaden.

References

13.
14.

15.

. Alexe, B., ten Cate, B., Kolaitis, P.G., Tan, W.C.: Designing and Refining Schema Mappings

via Data Examples. In: SIGMOD Conference (2011)

. Alexe, B., Chiticariu, L., Miller, R.J., Pepper, D., Tan, W.C.: Muse: a System for Under-

standing and Designing Mappings. In: SIGMOD Conference, pp. 1281-1284 (2008)

. Alexe, B., Chiticariu, L., Miller, R.J., Tan, W.C.: Muse: Mapping Understanding and deSign

by Example. In: ICDE, pp. 10-19 (2008)

. Alexe, B., et al.: Simplifying Information Integration: Object-Based Flow-of-Mappings

Framework for Integration. In: Castellanos, M., Dayal, U., Sellis, T. (eds.) BIRTE 2008.
LNBIP, vol. 27, pp. 108-121. Springer, Heidelberg (2009)

. Alexe, B., Herndndez, M.A., Popa, L., Tan, W.C.: MapMerge: Correlating Independent

Schema Mappings. PVLDB 3(1), 81-92 (2010)

. Alexe, B., Hernandez, M.A., Popa, L., Tan, W.C.: MapMerge: Correlating Independent

Schema Mappings. VLDB Journal 21(1), 1-21 (2012)

. Alexe, B., Kolaitis, P.G., Tan, W.C.: Characterizing Schema Mappings via Data Examples.

In: ACM PODS, pp. 261-272 (2010)

. Alexe, B.: Interactive and Modular Design of Schema Mappings. Ph.D. thesis, University of

California, Santa Cruz (2011)

. Alexe, B., ten Cate, B., Kolaitis, P.G., Tan, W.C.: Characterizing schema mappings via data

examples. ACM TODS 36(4) (2011)

. Alexe, B., ten Cate, B., Kolaitis, P.G., Tan, W.C.: Eirene: Interactive design and refinement

of schema mappings via data examples. PVLDB (Demonstration Track) (2011)

. Beeri, C., Vardi, M.Y.: A Proof Procedure for Data Dependencies. JACM 31(4), 718-741

(1984)

. Bernstein, P.A., Haas, L.M.: Information Integration in the Enterprise. Commun. ACM 51(9),

72-79 (2008)

Microsoft BizTalk Server, http: //www.microsoft.com/biztalk

Bonifati, A., Chang, E.Q., Ho, T., Lakshmanan, L.V.S.: HepToX: Heterogeneous Peer to Peer
XML Databases (2005),
http://www.citebase.org/abstract?id=ocai:arXiv.org:cs/0506002
Bonifati, A., Chang, E.Q., Ho, T., Lakshmanan, V.S., Pottinger, R.: HePToX: Marrying XML
and Heterogeneity in Your P2P Databases. In: VLDB, pp. 1267-1270 (2005)

. Fagin, R., Haas, L.M., Herndndez, M., Miller, R.J., Popa, L., Velegrakis, Y.: Clio: Schema

Mapping Creation and Data Exchange. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu,
E.S. (eds.) Conceptual Modeling: Foundations and Applications. LNCS, vol. 5600, pp. 198—
236. Springer, Heidelberg (2009)

. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data Exchange: Semantics and Query An-

swering. TCS 336(1), 89-124 (2005)

. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.C.: Composing Schema Mappings: Second-Order

Dependencies to the Rescue. TODS 30(4), 994-1055 (2005)

. Fuxman, A., Hernandez, M.A., Ho, H., Miller, R.J., Papotti, P., Popa, L.: Nested Mappings:

Schema Mapping Reloaded. In: VLDB, pp. 67-78 (2006)

. International Nucleotide Sequence Database Collection, http: / /www. insdc.org

88

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

B. Alexe and W.-C. Tan

Kolaitis, P.G.: Schema Mappings, Data Exchange, and Metadata Management. In: PODS,
pp. 61-75 (2005)

Lenzerini, M.: Data Integration: A Theoretical Perspective. In: PODS, pp. 233-246 (2002)
Madhavan, J., Halevy, A.Y.: Composing Mappings Among Data Sources. In: VLDB, pp.
572-583 (2003)

Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing Implications of Data Dependencies.
TODS 4(4), 455-469 (1979)

Altova MapForce, http: //www.altova.com

Marnette, B., Mecca, G., Papotti, P., Raunich, S., Santoro, D.: ++spicy: an opensource
tool for second-generation schema mapping and data exchange. PVLDB 4(12), 1438-1441
(2011)

Nash, A., Bernstein, P.A., Melnik, S.: Composition of Mappings Given by Embedded De-
pendencies. In: PODS, pp. 172-183 (2005)

Popa, L., Velegrakis, Y., Miller, R.J., Hernandez, M. A., Fagin, R.: Translating Web Data. In:
VLDB, pp. 598-609 (2002)

Rahm, E.. Bernstein, P.A.: A Survey of Approaches to Automatic Schema Matching. VLDB
Journal 10(4), 334-350 (2001)

Roth, M., Hernandez, M.A., Coulthard, P., Yan, L., Popa, L., Ho, H.C.T., Salter, C.C.:
XML Mapping Technology: Making Connections in an XML-centric World. IBM Sys. Jour-
nal 45(2), 389—410 (2006)

Shu, N.C., Housel, B.C., Taylor, R.W., Ghosh, S.P., Lum, V.Y.: EXPRESS: A Data EX-
traction, Processing, and REStructuring System. ACM Trans. Database Syst. 2(2), 134-174
(1977)

Smith, J.M., Bernstein, P.A., Dayal, U., Goodman, N., Landers, T.A., Lin, KW.T., Wong,
E.: Multibase: Integrating Heterogeneous Distributed Database Systems. In: AFIPS National
Computer Conference, pp. 487-499 (1981)

. Stylus Studio, http: //www.stylusstudio.com
. U.S. Census Bureau, http: //www.census.gov
. Yan, L., Miller, R., Haas, L., Fagin, R.: Data-Driven Understanding and Refinement of

Schema Mappings. In: SIGMOD, pp. 485-496 (2001)

. Yu, C., Popa, L.: Semantic Adaptation of Schema Mappings when Schemas Evolve. In:

VLDB, pp. 1006-1017 (2005)

User Trust and Judgments
in a Curated Database with Explicit Provenance

David W. Archer', Lois M.L. Delcambre?, and David Maier*

! Galois Inc., Portland, OR 97204
2 Portland State University, Portland, OR 97207-0751
dwa@galois.com, {lmd,maier}@cs.pdx.edu

Abstract. We focus on human-in-the-loop, information-integration settings
where users gather and evaluate data from a broad variety of sources and where
the levels of trust in sources and users change dynamically. In such settings,
users must use their judgment as they collect and modify data. As an example,
a battlefield information officer preparing a report to inform his or her superiors
about the current state of affairs must gather and integrate data from many
(including non-computerized) sources. By tracking multiple sources for
individual values, the officer may eliminate a value from the current state
whenever all of the sources where this value was found are no longer trusted.
We define a conceptual model for a curated database with provenance for such
settings, the Multi-granularity, Multi-provenance Model (MMP), which
supports multiple insertions and multiple (copy-and-)paste operations for a
single database element, captures the external source for all operations, and
includes a Data Confidence Language that allows users to confirm or doubt
values to record their atomic judgments about the data. In this paper, we briefly
summarize the MMP model and show how it can be extended to support
potentially complex operations including compound judgment operators (such
as merging tuples to achieve entity resolution), while capturing a complete
record of data provenance.

1 Introduction: Our Data-Curation Setting

Our work is motivated by our interest in a data curation setting — typically a human-
in-the-loop setting — where a user is continually making judgments about the
trustworthiness of data items. Green et al. point out that users often consider where
data came from and how or by whom it has been modified in making such judgments
[Green07]. As observed by Buneman et al., [Buneman0O6] data curators are quite
naturally performing information integration as they “use a wide variety of sources to
select, organize, classify and annotate existing data into a database on some topic.”
Buneman and his colleagues also identified copy-and-paste as one of the key
operations performed by data curators and noted that keeping track of the provenance
due to user actions (in the form of data manipulations) is as important as keeping
track of the resulting data. Their work was motivated, in part, by settings where the
collective scientific community works together to evolve local copies of a single,
shared database.

V. Tannen et al. (Eds.): Buneman Festschrift, LNCS 8000, pp. 89 2013.
© Springer-Verlag Berlin Heidelberg 2013

An Abstract, Reusable, and Extensible Programming Language Design Architecture 165

14. Cardelli, L.: The functional abstract machine. Technical Report TR-107, AT&T Bell Labo-

15.

ratories, Murray Hill, New Jersey (May 1983;.

Banétre, J.P., Le Métayer, D.: A new computational model and its discipline of program-
ming. INRIA Technical Report 566, Institut National de Recherche en Informatique et
Automatique, Le Chesnay, France (1986)

16. Berry, G., Boudol, G.: The chemical abstract machine. In: Proceedings of the 17th ACM

S

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 1990, pp.
81-94. ACM Press, New York (1990

Ait-Kaci, H.: Warren’s Abstract Machine—A Tutorial Reconstruction. Logic Programming.
MIT Press, Cambridge (1991)

18. Grust, T.: Monad comprehensions—a versatile representation for queries. In: Gray, P.,

R B
E e

F

2

Kerschberg, L., King, P., Poulovassilis, A. (eds.) The Functional Approach to Data Man-
agement: Modeling, Analyzing and Integrating Heterogeneous Data. Springer (September
2003

Bothner, P.: XQuery tutorial. Online tutoria

Nic, M., Jirat, J.: XPath tutorial. Online tutoria

Gesbert, N., Geneves, P., Layaida, N.: Parametric polymorphism and semantic subtyping: the
logical connection. In: Proceedings of the 16th ACM SIGPLAN International Conference on
Functional Programming (ICFP 2011), Tokyo Japan, September 19-21, pp. 107-116. Asso-
ciation for Computing Machinery, New York (201 l)

. Gesbert, N., Geneves, P., Layaida, N.: Parametric polymorphism and semantic subtyping: the
logical connection. SIGPLAN Notices 46(9) (September 2011); N.B.: full version of [21]
Bierman, G.M., Gordon, A.D., Hrillcu, C., Langworthy, D.: Semantic subtyping with an
SMT solver. In: Proceedings of the 15th ACM SIGPLAN International Conference on Func-
tional Programmingm (ICFP 2010), Baltimore, MA USA, September 27-29, pp. 105-116.
Association for Computing Machinery, New York (2010

24, Bierman, G.M., Gordon, A.D., Hrilcu, C., Langworthy, D.: Semantic subtyping with an

SMT solver. Journal of Functional Programming, 1-75 (2012); N.B.: full version of [23

25, Jaffar, J., Maher, M.J.: Constraint Logic Programming: A survey. Journal of Logic Program-

26.

ming 19/20, 503-581 (1994
Leroy, X.: Unboxed objects and polymorphic typing. In: Proceedings of the 19th Sympo-

sium on Principles of Programming Languages (POPL 1992), pp. 177-188. Association for
Computing Machinary. ACM Press (1992

27. Aho, A.V,, Sethi, R., Ullman, J.D.: Compilers—Principles, Techniques, and Tools. Addison-

Wesley (1986)

28. Choe, K.M.: Personal communication. Korean Advanced Institute of Science and Technol-

46
47
48
49
50
51
52

ogy. Seoul, South Korea (December 2000), choecompiler.kaist.ac.kr

http://lucacardelli.name/Papers/FAM.pdf

citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.127.3782

http://www-db.in.tum.de/ grust/files/monad-comprehensions.pdf
http://www.gnu.org/software/gexo/XQuery-Intro.html
http://www. zvon.org/xxl/XPathTutorial /General /examples.html
http://hal.inria.fr/inria-00585686/fr/
http://research.microsoft.com/apps/pubs/?1d=135577

3 http://www-infsec.cs.uni-saarland.de/ "hritcu/publications/

dminor-jfp2012.pdf

M http://citeseer.ist.psu.edu/jaffar94constraint.html
3 http://gallium.inria.fr/ xleroy/bibrefs/Leroy-unboxed.html

