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A foreword to the practical

Why use infinite dimensional analysis?

Why should practical people, such as engineers and economists, learn about in-
finite dimensional spaces? Isn’t the world finite dimensional? How can infinite
dimensional analysis possibly help to understand the workings of real economies?

Infinite dimensional models have become prominent in economics and finance
because they capture natural aspects of the world that cannot be examined in finite
dimensional models. It has become clear in the last couple of decades that eco-
nomic models capable of addressing real policy questions must be both stochastic
and dynamic. There are fundamental aspects of the economy that static mod-
els cannot capture. Deterministic models, even chaotically deterministic models,
seem unable to explain our observations of the world.

Dynamic models require infinite dimensional spaces. If time is modeled as
continuous, then time series of economic data reside in infinite dimensional func-
tion spaces. Even if time is modeled as being discrete, there is no natural terminal
period. Furthermore, models including fiat money with a terminal period lead to
conclusions that are not tenable. If we are to make realistic models of money or
growth, we are forced to use infinite dimensional models.

Another feature of the world that arguably requires infinite dimensional mod-
eling is uncertainty. The future is uncertain, and infinitely many resolutions of
this uncertainty are conceivable. The study of financial markets requires models
that are both stochastic and dynamic, so there is a double imperative for infinite
dimensional models.

There are other natural contexts in which infinite dimensional models are nat-
ural. A prominent example is commodity differentiation. While there are only
finitely many types of commodities actually traded and manufactured, there are
conceivably infinitely many that are not. Any theory that hopes to explain which
commodities are manufactured and marketed and which are not must employ in-
finite dimensional analysis. A special case of commodity differentiation is the
division of land. There are infinitely many ways to subdivide a parcel of land, and
each subdivision can be regarded as a separate commodity.

Let us take a little time to briefly introduce some infinite dimensional spaces
commonly used in economics. We do not go into any detail on their properties
here—indeed we may not even define all our terms. We introduce these spaces
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now as a source of examples. In their own way each of these spaces can be thought
of as an infinite dimensional generalization of the finite dimensional Euclidean
space R", and each of them captures some salient aspects of R".

Spaces of sequences

When time is modeled as a sequence of discrete dates, then economic time series
are sequences of real numbers. A particularly important family of sequence spaces
is the family of £,-spaces. For 1 < p < oo, £, is defined to be the set of all
sequences X = (xy, X2,...) for which 37 |x,|” < co. The the £,-norm of the
sequence x is the number |||, = (3,7, Ixnlp)”p.

As p becomes larger, the larger values of x, tend to dominate in the calculation
of the £,-norm and indeed, lim,_ |Ixll, = sup{|x,|}. This brings us to £,. This
space is defined to be the set of all real sequences x = (xj,x,...) satisfying
sup{|x,|} < co. This supremum is called the £,,-norm of x and is denoted ||x]|o.
This norm is also called the supremum norm or sometimes the uniform norm,
because a sequence of sequences converges uniformly to a limiting sequence in
{. if and only if it converges in this norm.

All of these spaces are vector spaces under the usual (pointwise) addition and
scalar multiplication. Furthermore, these spaces are nested. If p < g, then £, C £,.

There are a couple of other sequence spaces worth noting. The space of all
convergent sequences is denoted c. The space of all sequences converging to
zero is denoted ¢. Finally the collection of all sequences with only finitely many
nonzero terms is denoted ¢. All of these collections are vector spaces too, and for
1 € p < co we have the following vector subspace inclusions:

gcl,CceyccclecRY.

Chapter 16 discusses the properties of these spaces at length.

The space {., plays a major role in the neoclassical theory of growth. Under
commonly made assumptions in the one sector growth model, capital/labor ratios
are uniformly bounded over time. If there is an exhaustible resource in fixed
supply, then £; may be an appropriate setting for time series.

Spaces of functions

One way to think of R" is as the set of all real functions on {1,...,n}. If we
replace {1, ...,n} by an arbitrary set X, the set of all real functions on X, denoted
RX, is a natural generalization of R". In fact, sequence spaces are a special case of
function spaces, where X is the set of natural numbers {1,2,3,...}. When X has a
topological structure (see Chapter 2), it may be acceptable to restrict attention to
C(X), the continuous real functions on X.
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Function spaces arise in models of uncertainty. In this case X represents the
set of states of the world. Functions on X are then state-contingent variables. In
statistical modeling it is common practice to denote the set of states by Q and to
endow it with additional structure, namely a o-algebra T and a probability mea-
sure u. In this case it is natural to consider the L,-spaces. For 1 < p < oo,
Ly (u) is defined to be the collection of all (u-equivalence classes of) u-measurable
functions f for which fn [fIP du < oo. (These terms are all explained in Chap-

ter 11. It is okay to think of these integrals as J[;l | f(x)|P dx for now.) The number
A, = (fn |f1? dp)”” is the Ly-norm of f. The L-norm is defined by

Iflleo = ess sup f = sup {z: u({x : |f(x)| = 1}) > 0}.

This norm is also known as the essential supremum of f. The space L, is the
space of all p-measurable functions with finite essential supremum. Chapter 13
covers the L,-spaces.

Spaces of measures

Given a vector x in R” and a subset A of indices {1, ..., n} define the set function
X(A) = Yieaxi. fANB = @, then x(A U B) = x(A) + x(B). In this way we
can think of R” as the collection of additive functions on the subsets of {1,...,n}.
The natural generalization of R" from this point of view is to consider the spaces
of measures or charges on an algebra of sets. (These terms are all defined in
Chapter 11.) Spaces of measures on topological spaces can inherit some of the
properties from the underlying space. For instance, the space of Borel probability
measures on a compact metrizable space is naturally a compact metrizable space.
Results of this sort are discussed in Chapters 12 and 15.

The compactness properties of spaces of measures makes them good candi-
dates for commodity spaces for models of commodity differentiation. They are
also central to models of stochastic dynamics, which are discussed in Chapter 19.

Spaces of sets

Since set theory can be used as the foundation of almost all mathematics, spaces
of sets subsume everything else. In Chapter 3 we discuss natural ways of topolo-
gizing spaces of subsets of metrizable spaces. These results are also used in Chap-
ter 17 to discuss continuity and measurability of correspondences. The topology
of closed convergence of sets has proven to be useful as a way of topologizing
preferences and demand correspondences. Topological spaces of sets have also
been used in the theory of incentive contracts.



XXii A foreword to the practical

Prerequisites

The main prerequisite is what is often called “mathematical sophistication.” This
is hard to define, but it includes the ability to manipulate abstract concepts, and an
understanding of the notion of “proof.”

We assume that you know the basic facts about the standard model of the
real numbers. These include the fact that between any two distinct real numbers
there is a rational number and also an irrational number. (You can see that we
already assume you know what these are. It was only a few centuries ago that
this knowledge was highly protected.) We take for granted that the real numbers
are complete. We assume you know what it means for sequences and series of
real numbers to converge. We trust you are familiar with naive set theory and its
notation. We assume that you are familiar with arguments using induction. We
hope that you are familiar with the basic results about metric spaces. Aliprantis
and Burkinshaw [13, Chapter 1], Dieudonné [97, Chapter 3], and Rudin [292,
Chapter 2] are excellent expositions of the theory of metric spaces. It would be
nice, but not necessary, if you had heard of the Lebesgue integral; we define it in
Chapter 11. We assume that you are familiar with the concept of a vector space. A
good brief reference for vector spaces is Apostol [17]. A more detailed reference
is Halmos [147].



Chapter 1

Odds and ends

One purpose of this chapter is to standardize some terminology and notation. In
particular, Definition 1.1 defines what we mean by the term “function space,” and
Section 1.4 introduces a number of kinds of binary relations. We also use this
chapter to present some useful odds and ends that should be a part of everyone’s
mathematical tool kit, but which don’t conveniently fit anywhere else. We intro-
duce correspondences and the notion of the evaluation duality. Our presentation is
informal and we do not prove many of our claims. We also feel free to get ahead
of ourselves and refer to definitions and examples that appear much later on.

We do prove a few theorems including Szpilrajn’s Extension Theorem 1.9 for
partial preorders, the existence of a Hamel basis (Theorem 1.8), and the Knaster—
Tarski Fixed Point Theorem 1.10. These are presented as applications of Zorn’s
Lemma 1.7. Example 1.4 uses a standard cardinality argument to show that the
lexicographic order cannot be represented by a numerical function.

We also try to present the flavor of the subtleties of modern set theory without
actually proving the results. We do however prove Cantor’s Diagonal Theorem 1.5
and describe Russell’s Paradox. We mention some of the more esoteric aspects of
the Axiom of Choice in Section 1.11 in order to convince you that you really
do want to put up with it, and all it entails, such as non-measurable sets (Corol-
lary 10.42). We also introduce the ordinals in Section 1.13.

1.1 Numbers

Leopold Kronecker is alleged to have remarked that, “God made the integers, all
the rest is the work of man.”' The natural numbers are 1,2,3,..., etc., and the
set of natural numbers is denoted N. (Some authors consider zero to be a natural
number as well, and there are times we may do likewise.) We do not attempt to
develop a construction of the real numbers, or even the natural numbers here. A
very readable development may be found in E. Landau [221] or C. D. Aliprantis
and O. Burkinshaw [13, Chapter 1].

! According to E. T. Bell [36, p. 477).
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1.3 Relations, correspondences, and functions

Given two sets X and Y, we can form the Cartesian product X x Y, which is the
collection of ordered pairs of elements from X and Y. (We assume you know
what ordered pairs are and do not give a formal definition.) A relation between
members of X and members of ¥ can be thought of as a subset of X x ¥.> A
relation between members of X is called a binary relation on X. For a binary
relation R on a set X, that is, R C X x X, it is customary to write x R y rather than
(x,y) €R.

A near synonym for relation is correspondence, but the connotation is much
different. We think of a correspondence ¢ from X to ¥ as associating to each x in
X a subset ¢(x) of ¥, and we write ¢: X —» Y. The graph of ¢, denoted Grg is
{(x,y) € Xx Y :y € ¢(x)}. The space X is the domain of the correspondence and
Y is the codomain. Given a subset A C X, the image ¢(A) of A under ¢ is defined
by ¢(A) = Ule(x) : x € A}. The range of ¢ is the image of X itself. We may
occasionally call Y the range space of ¢. When the range space and the domain
are the same, we say that a point x is a fixed point of the correspondence ¢ if
x € @(x). We have a lot more to say about correspondences in Chapters 17 and 18.

A special kind of relation is a function. A relation R between X and Y is
a function if (x,y) € R and (x,z) € R imply y = z. A function is sometimes
called a mapping or map. We think of a function f from X into ¥ as “mapping”
each point x in X to a point f(x) in Y, and we write f: X — Y. We may also
write x — f(x) to refer to the function f. The graph of f, denoted Gr f is
{(x,y) € XX Y :y= f(x)}). As with correspondences, the space X is the domain
of the function and Y is the codomain. Given a subset A C X, the image of A
under f is f(A) = {f(x) : x € A}. The range of f is the image of X itself. When
the range space and the domain are the same, we say that a point x is a fixed point
of the function f if x = f(x).

The graph of a function f is also the graph of a singleton-valued correspon-
dence ¢ defined by ¢(x) = {f(x)}, and vice versa. Clearly f and ¢ represent the
same relation, but their values are not exactly the same objects.

A partial function from X to Y is a function from a subset of X to Y. If
f: X — Yand A C X, then f], is the restriction of f to A. That is, f|4 has
domain A, and for each x € A, fl4(x) = f(x). We also say that f is an extension
of fla.

A function x: N — X, from the natural numbers to the set X, is called a
sequence in the set X. The traditional way to denote the value x(n) is x,, and it
is called the n™ term of the sequence. Using an abused (standard) notation, we
shall denote the sequence x by {x,}, and we shall consider it both as a function and

5 Some authors, e.g., N. Bourbaki [62] and K. J. Devlin [91] pointedly make a distinction between
a relation, which is a linguistic notion, and the set of ordered pairs that stand in that relation to each
other, which is a set theoretic construct. In practice, there does not seem to be a compelling reason to
be so picky.
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as its range—a subset of X. A subsequence of a sequence {x,} is a sequence {y,}
for which there exists a strictly increasing sequence {k,} of natural numbers (that
is, 1 €k <k <k3 <---)suchthaty, = x; holds for each n.

The indicator function (or characteristic function) y4 of a subset A of X is
defined by ya(x) = 1 if x € A and y5(x) = 0 if x ¢ A. The set of all functions
from X to Y is denoted Y*. Recall that the power set of X is denoted 2X. This is
also the notation for the set of all functions from X into 2 = {0, 1}. The rationale
for this is that every subset A of X can be identified with its characteristic function
Xa, which assumes only the values 0 and 1.

If f: X - Yand g: ¥ — Z, the composition of g with f, [

denoted g o f, is the function from X to Z defined by the formula
(g o f)(x) = g(f(x)). We may also draw the accompanying sort h g
of diagram to indicate that h = g o f. We sometimes say that this Y

diagram commutes as another way of saying h = g o f.
More generally, for any two relations R € XxY and § C ¥Y'xZ, the composition
relation § o R is defined by

SoR={(x,z)e XxZ:3ye Y with(x,y) € Rand (y,2) € S}.

A function f: X — Y is one-to-one, or an injection, if for every y in the range
space, there is at most one x in the domain satisfying y = f(x). The function f
maps X onto Y, or is a surjection, if for every y in Y, there is some x in X with
f(x) = y. A bijection is a one-to-one onto function. A bijection may sometimes
be referred to as a one-to-one correspondence. The inverse image, or simply
inverse, of a subset A of Y under f, denoted f~'(A), is the set of x with f(x) € A.
If f is one-to-one, the inverse image of a singleton is either a singleton or empty,
and there is a function g: f(X) — X, called the inverse of f, that satisfies x = g(y)
if and only if f(x) = y. The inverse function is usually denoted f~!. Note that
we may write f~'(y) to denote the inverse image of the singleton {y} even if the
function f is not one-to-one.

You should verify that the inverse image preserves the set theoretic operations.
That is,

f"(g A) = Qf“(A.-), f"(_Lé; A) = LEJ’r'(A,-),

FHANB) = A\ fU(B).

1.4 A bestiary of relations

There are many conditions placed on binary relations in various contexts, and we
summarize a number of them here. Some we have already mentioned above. We
gather them here largely to standardize our terminology. Not all authors use the
same terminology that we do. Each of these definitions should be interpreted as
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if prefaced by the appropriate universal quantifiers “for every x, y, z,” etc. The
symbol - indicates negation, and a compound expression such as xRyand y Rz
may be abbreviated x Ry R z.

A binary relation R on a set X is:

reflexive if x R x.

e irreflexive if =(x R x).
e symmetric if x R y implies y R x. Note that this does not imply reflexivity.
e asymmetric if x Ry implies —~(y R x). An asymmetric relation is irreflexive.

e antisymmetric if xRy and yR x imply x = y. An antisymmetric relation may
or may not be reflexive.

e transitiveif xRyand yRzimply xR z.

¢ complete, or connected, if either x Ry or y R x or both. Note that a complete
relation is reflexive.

e total, or weakly connected, if x # y implies either x R y or y R x or both.
Note that a total relation may or may not be reflexive. Some authors call a total
relation complete.

e  apartial order if it is reflexive, transitive, and antisymmetric. Some authors
(notably J. L. Kelley [198]) do not require a partial order to be reflexive.

e alinear order if it is total, transitive, and antisymmetric; a total partial order,
if you will. It obeys the following trichotomy law: For every pair x, y exactly one
of xRy, yR x, or x = y holds.

e an equivalence relation if it is reflexive, symmetric, and transitive.

e apreorder, or quasiorder, if it is reflexive and transitive. An antisymmetric
preorder is a partial order.

e the symmetric part of the relation S if xRy & (xSy&yS§ x).
e the asymmetric part of the relation § if xRy = (xS y & -y § x).

e the transitive closure of the relation § when x R y whenever either x S y or
there is a finite set {x,, ..., x,} such that xS x; § x; - - - x,§ y. The transitive closure
of § is the intersection of all the transitive relations (as sets of ordered pairs) that
include S. (Note that the relation X x X is transitive and includes S, so we are not
taking the intersection of the empty set.)
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1.5 Equivalence relations

Equivalence relations are among the most important. As defined above, an equiv-
alence relation on a set X is a reflexive, symmetric, and transitive relation, often
denoted ~. Here are several familiar equivalence relations.

e  Equality is an equivalence relation.

e  For functions on a measure space, almost everywhere equality is an equiva-
lence relation.

e In a semimetric space (X, d), the relation defined by x ~ y if d(x,y) = 0 is an
equivalence relation.

e  Given any function f with domain X, we can define an equivalence relation
~on X by x ~ y whenever f(x) = f(y).

Given an equivalence relation ~ on a set X we define the equivalence class [x]
of xby [x] ={y:y~ x}. If x ~ y, then [x] = [y]; and if x » y, then [x] N [y] = @.
The ~-equivalence classes thus partition X into disjoint sets. The collection of
~-equivalence classes of X is called the quotient of X modulo ~, often written
as X/~. The function x +— [x] is called the quotient mapping. In many contexts,
we identify the members of an equivalence class. What we mean by this is that
we write X instead of X/~, and we write x instead of [x]. Hopefully, you (and
we) will not become confused and make any mistakes when we do this. As an
example, if we identify elements of a semimetric space as described above, the
quotient space becomes a true metric space in the obvious way. In fact, all the
L,-spaces are quotient spaces defined in this manner.

A partition {D;};c; of a set X is a collection of nonempty subsets of X satisfy-
ing D;ND; = @ fori# jand |J,; Di = X. Every partition defines an equivalence
relation on X by letting x ~ y if x,y € D; for some i. In this case, the equivalence
classes are precisely the sets D;.

1.6 Orders and such

A partial order (or partial ordering, or simply order) is a reflexive, transitive,
and antisymmetric binary relation. It is traditional to use a symbol like > to denote
a partial order. The expressions x > y and y < x are synonyms. A set X equipped
with a partial order is a partially ordered set, sometimes called a poset. Two
elements x and y in a partially ordered set are comparable if either x > y or
¥ = x (or both, in which case x = y). A total order or linear order > is a partial
order where every two elements are comparable. That is, a total order is a partial
order that is total. A chain in a partially ordered set is a subset that is totally
ordered—any two elements of a chain are comparable. In a partially ordered set
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the notation x > y means x > y and x # y. The order interval [x, y] is the set
{ze X : x<z<y}. Note thatif y # x, then [x,y] = @.

Let (X, >) be a partially ordered set. An upper bound for a set A C X is
an element x € X satisfying x > y for all y € A. An element x is a maximal
element of X if there is no y in X for which y > x. Similarly, a lower bound
for A is an x € X satisfying y > x for all y € A. Minimal elements are defined
analogously. A greatest element of A is an x € A satisfying x > y for all y € A.
Least elements are defined in the obvious fashion. Clearly a nonempty subset of
X has at most one greatest element and a greatest element if it exists is maximal.
If the partial order is complete, then a maximal element is also the greatest. The
supremum of a set is its least upper bound and the infimum is its greatest lower
bound. The supremum and infimum of a set need not exist. We write x V y for the
supremum, and x A y for the infimum, of the two point set {x, y}. For linear orders,
x Vy = max{x,y} and x A y = min{x,y}. A lattice is a partially ordered set in
which every pair of elements has a supremum and an infimum. It is easy to show
(by induction) that every finite set in a lattice has a supremum and an infimum. A
sublattice of a lattice is a subset that is closed under pairwise infima and suprema.
A complete lattice is a lattice in which every nonempty subset A has a supremum
\/ A and an infimum A A. In particular, a complete lattice itself has an infimum,
denoted 0, and a supremum denoted 1. The monograph by D. M. Topkis [331]
provides a survey of some of the uses of lattices in economics.

A function f: X — Y between two partially ordered sets is monotone if x > y
in X implies f(x) =z f(y) in Y. Some authors use the term isotone instead. The
function f is strictly monotone if x > y in X implies f(x) > f(y) in Y. Monotone
functions are also called increasing or nondecreasing function.® We may also
say that f is decreasing or nonincreasing if x > y in X implies f(y) > f(x)in Y.
Strictly decreasing functions are defined in the obvious way.

1.7 Real functions

A function whose range space is the real numbers is called a real function or a
real-valued function. A function whose range space is the extended real numbers
is called an extended real function. If an extended real function satisfies f(x) = 0
for all x in a set A, we say that f vanishes on A. Or if x ¢ B implies f(x) = 0,
we say that f vanishes outside B. For traditional reasons we also use the term
functional to indicate a real linear or sublinear function on a vector space. (These
terms are defined in Chapter 5.)

The epigraph of an (extended) real function f on a set X, denoted epi f, is the
setin X x R defined by epi f = {(x,@) € X xR : @ > f(x)}. That is, epi f is the
set of points lying on or above the graph of f. Notice that if f(x) = oo, then the

6We use this terminology despite the fact, as D. M. Topkis [331] points out, the negation of “f is
increasing” is not “f is nonincreasing.” Do you see why?
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In particular, the set of rational numbers is countable. (Why?) The following fact
is an immediate consequence of those above.

e  The set of all finite subsets of a countable set is again countable.

We use the countability of the rationals to jump ahead and prove the following
well-known and important result.

1.3 Theorem (Discontinuities of increasing functions) Let I be an interval in
R and let f: I — R be nondecreasing, that is, x >y implies f(x) 2 f(y). Then f
has at most countably many points of discontinuity.

Proof: For each x, since f is nondecreasing,

sup{f(y) 1 y < x} = f(x-) € f(x) € f(x;) = inf{f(y) 1 y > x}.

Clearly f is continuous at x if and only if f(x_) = f(x) = f(x;). Soif x is a point
of discontinuity, then there is a rational number g, satisfying f(x-) < g, < f(x}).
Furthermore if x and y are points of discontinuity and x < y, then g, < g,. (Why?)
Thus f has at most countably many points of discontinuity. |

Not every infinite set is countable; some are larger. G. Cantor showed that
the set of real numbers is not countable using a technique now referred to as the
Cantor diagonal process. It works like this. Suppose the unit interval [0, 1] were
countable. Then we could list the decimal expansion of the reals in [0, 1] in or-
der. We now construct a real number that does not appear on the list by romping
down the diagonal and making sure our number is dif-
ferent from each number on the list. One way to do this N R
is to choose a real number b whose decimal expansion | O.apapas...
0.b1byb; . .. satisfies b, = 7 unless a,,, = 7 in which case 2 0.az1anas. ..
we choose b, = 3. In this way, b differs from every num- 3 0.az1a34a3. ...
ber on the list. This shows that it is impossible to enu- 4 0.a41a42043. . .
merate the unit interval with the integers. It also shows
that NV, the set of all sequences of natural numbers, is
uncountable.

A corollary of the uncountability of the reals is that there are well behaved
linear orderings that have no real-valued representation.

1.4 Example (An order with no utility) Define the linear order > on R? by
(x1,x2) = (y1,y2) if and only if either x; > y; or x; = y; and x» > y;. (This
order is called the lexicographic order on the plane.) A utility for this order is
a function u: R? — R satisfying x > y if and only if u(x) > u(y). Now suppose
by way of contradiction that this order has a utility. Then for each real number
x, we have u(x,1) > u(x,0). Consequently there must be some rational number
ry satisfying u(x, 1) > r, > u(x,0). Furthermore, if x > y, then r, > r,. Thus
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X e ry is a one-to-one correspondence between the real numbers and a set of
rational numbers, implying that the reals are countable. This contradiction proves
the claim. |

The cardinality of the set of real numbers R is called the cardinality of the
continuum, written card R = ¢. Here are some familiar sets with cardinality c.

e  The intervals [0, 1] and (0, 1) (and as a matter of fact any nontrivial subinter-
val of R).

e  The Euclidean spaces R".

e  The set of irrational numbers in any nontrivial subinterval of R.
e  The collection of all subsets of a countably infinite set.

e  The set N" of all sequences of natural numbers.

For more about the cardinality of sets see, for instance, T. Jech [185].

1.10 The Diagonal Theorem and Russell’s Paradox

The diagonal process used by Cantor to show that the real numbers are not count-
able can be viewed as a special case of the following more general argument.

1.5 Cantor’s Diagonal Theorem Let X be a set and let ¢: X —» X be a
correspondence. Then the set A = {x € X : x € @(x)} of non-fixed points of ¢ is
not a value of . That is, there is no x satisfying ¢(x) = A.°

Proof: Assume by way of contradiction that there is some xy € X satisfying
@(xp) = A. If xp is not a fixed point of ¢, that is, xo ¢ ¢(xp), then by definition
of A, we have xo € A = ¢(xp), a contradiction. On the other hand, if x is a fixed
point of ¢, that is, xo € ¢(xg), then by definition of A, we have xo € A = @(xp),
also a contradiction. Hence A is not the value of ¢ at any point. |

Russell’s Paradox is a clever argument devised by Bertrand Russell as an
attack on the validity of the proof of the Diagonal Theorem. It goes like this. Let
S be the set of all sets, and let ¢: § — S be defined by ¢(A) = {(B€ S : B € A}
for every A € §. Since ¢(A) is just the set of members of A, we have ¢(A) = A.
That is, ¢ is the identity on S, so the set of its values is just § again. By Cantor’s
Diagonal Theorem, the set C = {A € § : A & ¢(A)} is not a value of ¢, so it cannot
be a set, which is a contradiction.

Y Descriptive set theorists state the theorem as “A is not in the range of ¢.” but they think of ¢ as a
function from X to its power set 2%, For them the range is a subset of 2%, namely {¢(x) : x € X}, but
by our definition, the range is a subset of X, namely | J{¢(x) : x € X).
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The paradox was resolved not by repudiating the Diagonal Theorem, but by
the realization that S, the collection of all sets, cannot itself be a set. What this
means is that we have to be very much more careful about deciding what is a set
and what is not a set.

1.11 The axiom of choice and axiomatic set theory

In Section 1.2, we were sloppy, even for us, but we were hoping you would not
notice. For instance, we took it for granted that the union of a set of sets was a
set, and that /-tuples (whatever they are) existed. Russell’s Paradox tells us we
should worry if these really are sets. Well maybe not we, but someone should
worry. If you are worried, we recommend P. R. Halmos [149], or A. Shen and
N. K. Vereshchagin [303] for “naive set theory.” For an excellent exposition of
“axiomatic set theory,” we recommend K. J. Devlin [92] or T. Jech [185].

Axiomatic set theory is viewed by many happy and successful people as a
subject of no practical relevance. Indeed you may never have been exposed to
the most popular axioms of set theory, the Zermelo-Frankel (ZF) set theory.
For your edification we mention that ZF set theory proper has eight axioms. For
instance, the Axiom of Infinity asserts the existence of an infinite set. There is also
a ninth axiom, the Axiom of Choice, and ZF set theory together with this axiom
is often referred to as ZFC set theory. We shall not list the others here, but suffice
it to say that the first eight axioms are designed so that the collection of objects
that we call sets is closed under certain set theoretic operations, such as unions
and power sets. They were also designed to ward off Russell’s Paradox.

The ninth axiom of ZFC set theory, the Axiom of Choice, is a seemingly
innocuous set theoretic axiom with much hidden power.

1.6 Axiom of Choice If {A; i € I} is a nonempty set of nonempty sets,
then there is a function f: I — |J;e; Ai satisfying f(i) € A; for eachi € I. In
other words, the Cartesian product of a nonempty set of nonempty sets is itself a
nonempty set.

The function f, whose existence the axiom asserts, chooses a member of A;
for each i. Hence the term “Axiom of Choice.” This axiom is both consistent
with and independent of ZF set theory proper. That is, if the Axiom of Choice
is dropped as an axiom of set theory, it cannot be proven by using the remaining
eight axioms that the Cartesian product of nonempty sets is a nonempty set. Fur-
thermore, adding the Axiom of Choice does not make the axioms of ZF set theory
inconsistent. (A collection of axioms is inconsistent if it is possible to deduce both
a statement P and its negation —~P from the axioms.)

There has been some debate over the desirability of assuming the Axiom of
Choice. (G. Moore [251] presents an excellent history of the Axiom of Choice
and the controversy surrounding it.) Since there may be no way to describe the
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choice function, why should we assume it exists? Further, the Axiom of Choice
has some unpleasant consequences. The Axiom of Choice makes it possible, for
instance, to prove the existence of non-Lebesgue measurable sets of real numbers
(Corollary 10.42). R. Solovay [316] has shown that by dropping the Axiom of
Choice, it is possible to construct models of set theory in which all subsets of
the real line are Lebesgue measurable. Since measurability is a major headache
in integration and probability theory, it would seem that dropping the Axiom of
Choice would be desirable. Along the same lines is the Banach-Tarski Paradox
due to S. Banach and A. Tarski [32]. They prove, using the Axiom of Choice,
that the unit ball U in R* can be partitioned into two disjoint sets X and ¥ with the
property that X can be partitioned into five disjoint sets, which can be reassembled
(after translation and rotation) to make a copy of U, and the same is true of Y.
That is, the ball can be cut up into pieces and reassembled to make two balls of
the same size! (These pieces are obviously not Lebesgue measurable. Worse yet,
this paradox shows that it is impossible to define a finitely additive volume in
any reasonable manner on R3.) For a proof of this remarkable result, see, e.g.,
T. Jech [184, Theorem 1.2, pp. 3-6].

On the other hand, dropping the Axiom of Choice also has some unpleasant
side effects. For example, without some version of the Axiom of Choice, our
previous assertion that the countable union of countable sets is countable ceases to
be true. Its validity can be restored by assuming the Countable Axiom of Choice, a
weaker assumption that says only that a countable product of sets is a set. Without
the Countable Axiom of Choice, there exist infinite sets that have no countably
infinite subset. (See, for instance, T. Jech [184, Section 2.4, pp. 20-23].)

From our point of view, the biggest problem with dropping the Axiom of
Choice is that some of the most useful tools of analysis would be thrown out with
it. J. L. Kelley [197] has shown that the Tychonoff Product Theorem 2.61 would
be lost. Most proofs of the Hahn-Banach Extension Theorem 5.53 make use of
the Axiom of Choice, but it is not necessary. The Hahn—Banach theorem, which is
central to linear analysis, can be proven using the Prime Ideal Theorem of Boolean
Algebra, see W. A. J. Luxemburg [232]. The Prime Ideal Theorem is equivalent
to the Ultrafilter Theorem 2.19, which we prove using Zorn’s Lemma 1.7 (itself
equivalent to the Axiom of Choice). J. D. Halpern [152] has shown that the Ultra-
filter Theorem does not imply the Axiom of Choice. Nevertheless, M. Foreman
and F. Wehrung [126] have shown that if the goal is to eliminate non-measurable
sets, then we have to discard the Hahn—Banach Extension Theorem. That is, any
superset of the ZF axioms strong enough to prove the Hahn-Banach theorem is
strong enough to prove the existence of non-measurable sets. We can learn to
live with non-measurable sets, but not without the Hahn—Banach theorem. So we
might as well assume the Axiom of Choice. For more on the Axiom of Choice,
we recommend the monograph by P. Howard and J. E. Rubin [170]. In addition,
P. R. Halmos [149] and J. L. Kelley [198, Chapter 0] have extended discussions
of the Axiom of Choice.
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1.12 Zorn’s Lemma

A number of propositions are equivalent to the Axiom of Choice. One of these is
Zorn’s Lemma, due to M. Zorn [350]. That is, Zorn’s Lemma is a theorem if the
Axiom of Choice is assumed, but if Zorn’s Lemma is taken as an axiom, then the
Axiom of Choice becomes a theorem.

1.7 Zorn’s Lemma  If every chain in a partially ordered set X has an upper
bound, then X has a maximal element.

We indicate the power of Zorn’s Lemma by employing it to prove a number
of useful results from mathematics and economics. In addition to the results that
we present in this section, we also use Zorn’s Lemma to prove the Ultrafilter
Theorem 2.19, the Tychonoff Product Theorem 2.61, the Hahn—Banach Extension
Theorem 5.53, and the Krein—-Milman Theorem 7.68.

The first use of Zorn’s Lemma is the well-known fact that vector spaces pos-
sess Hamel bases. Recall that a Hamel basis or simply a basis of a vector space
V is a linearly independent set B (every finite subset of B is linearly independent)
such that for each nonzero x € V there are by,...,b;y € B and nonzero scalars
ay,...,a; (all uniquely determined) such that x = Zf.‘:l a;b;.

1.8 Theorem Every nontrivial vector space has a Hamel basis.

Proof: Let V be a nontrivial vector space, that is, V # {0}. Let X denote the
collection of all linearly independent subsets of V. Since {x} € X for each x # 0,
we see that X # @. Note that X is partially ordered by set inclusion. In addition,
note that an element of X is maximal if and only if it is a basis. (Why?) Now if
€ is a chain in X, then A = |Jcce C is a linearly independent subset of V, so A
belongs to X and is an upper bound for €. By Zorn’s Lemma 1.7, X has a maximal
element. Thus V has a basis. |

As another example of the use of Zorn’s Lemma, we present the following
result, essentially due to E. Szpilrajn [327]. It is used to prove the key results in
the theory of revealed preference, see M. K. Richter [283, Lemma 2, p. 640]. The
proof of the result is not hard, but we present it in agonizing detail because the
argument is so typical of how to use Zorn’s Lemma.

It is always possible to extend any binary relation R on a set X to the total
relation § defined by x S y for all x,y. But this is not very interesting since it
destroys any asymmetry present in R. Let us say that the binary relation S on a
set X is a compatible extension of the relation R if S extends R and preserves the
asymmetry of R. That is, x Ry implies xS y, and together x Ry and —(y R x) imply
=(y S x).

1.9 Theorem (Total extension of preorders) Any preorder has a compatible
extension to a total preorder.
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Some care must be taken in the interpretation of this result. The theorem does
not assert that the set F of fixed points is a sublattice of X. It may well be that
the supremum of a set in the lattice (F, =) is not the same as its supremum in the
lattice (X, >). For example, let X = {0, 1,a, b, b’} and define the partial order >
byl>a>b>0and1 >a > b > 0 (and all the other comparisons implied
by transitivity and reflexivity). Note that b and b’ are not comparable. Define the
monotone function f: X — X by f(x) = x for x # @ and f(a) = 1. The set of F
of fixed points of f is {0, b, b’, 1}, which is a complete lattice. Let B = {b, b’} and
note that \/ B = | when B viewed as a subset of F, but \/ B = a, when B viewed
as a subset of X.

In a converse direction, any incomplete lattice has a fixed point-free monotone
function into itself. For a proof, see A. C. Davies [81]. Tarksi’s Theorem has
been extended to cover increasing correspondences by R. E. Smithson [314] and
X. Vives [336]. See F. Echenique [113] for more constructive proofs of these and
related results.

1.13 Ordinals

We now apply Zorn’s Lemma to the proof of the Well Ordering Principle, which
is yet another equivalent of the Axiom of Choice.

1.12 Definition A set X is well ordered by the linear order < if every nonempty
subset of X has a first element. An element x of Aisfirstin Aifx < yforally € A.
An initial segment of (X, <) is any set of the form I(x) = {y€ X : y < x}.
Anideal in a well ordered set X is a nonempty subset A of X such that for each
a € A the initial segment I(a) is included in A.

1.13 Well Ordering Principle Every nonempty set can be well ordered.
Proof: Let X be a nonempty set, and let
X ={(A,<4):Ac Xand <, well orders A}.

Note that X is nonempty, since every finite set is well ordered by any linear order.
Define the partial order > on X by (A, <4) > (B, <p) if B is an ideal in A and <4
extends <p. If € is a chain in X, set C = |J{A : (A, <4) € €}, and define <¢ on
C by x <¢c yif x <4 y for some (A,<4) € C. Then <¢ is a well defined order
on C, and (C, <¢) belongs to X (that is, <¢ well orders C) and is an upper bound
for C. (Why?) Therefore, by Zorn’s Lemma 1.7, the partially ordered set X has a
maximal element (A, <). We claim that A = X, so that X is well ordered by <. For
if there is some x ¢ A, extend < to A U {x} by y < x for all y € A. This extended
relation well orders A U {x} and A is an ideal in A U {x} (why?), contradicting the
maximality of (A, <). [ |
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We now prove the existence of a remarkable and useful well ordered set.

1.14 Theorem There is an ordered set (Q, <) satisfving the following properties.

1. Q is uncountable and well ordered by <.
. & has a greatest element w;.

. If x < wy, then the initial segment I(x) is countable.

2

3

4. If x < wy, then |y € Q : x <y < w,} is uncountable.
5. Every nonempty subset of € has a least upper bound.
6

. A nonempty subset of Q\{w,} has a least upper bound in Q\{w, } if and only
if it is countable. In particular, the least upper bound of every uncountable
subset of Q is w.

Proof: Let (X, <) be an uncountable well ordered set, and consider the set A of
elements x of X such that the initial segment /(x) = {y € X : y £ x} is uncountable.
Without loss of generality we may assume A is nonempty, for if A is empty, append
a point y to X, and extend the ordering < by x < y for all x € X. This order well
orders X U {y}. Under the extension, A is now nonempty. The set A has a first
element, traditionally denoted w,. Set Q = I(w)), the initial segment generated by
w;. Clearly € is an uncountable well ordered set with greatest element w;.

The proofs of the other properties except (6) are straightforward, and we leave
them as exercises. So suppose C = {x;, x2,...} is a countable subset of Q \ {w,}.
Then |, I(x,) is countable, so there is some x < w; not belonging to this union.
Such an x is clearly an upper bound for C so its least upper bound b (which exists
by (5)), satisfies b < x < w;. For the converse, observe that if b < w, is a least
upper bound for a set C, then C is included in the countable set /(b). [ |

The elements of Q are called ordinals, and w is called the first uncountable
ordinal. The set Qg = Q \ {w,} is the set of countable ordinals. Also note that
we can think of the natural numbers N = {1,2,...} as a subset of Q: Identify
1 with the first element of Q, and recursively identify n with the first element of
O\(1,2,...,n—1}. Ininterval notation we may write Q = [1, w;] and Qp = [1, wy).

The first element of Q \ N is denoted wy. It is the first infinite ordinal. '°
Clearly, n < wy for each n € N. The names are justified by the fact that if we
take any other well ordered uncountable set with a greatest element and find the
first uncountable initial segment ' = [1’, '], then there is a strictly monotone
function f from Q onto Q’. To establish the existence of such a function f argue
as follows. Let

X={(x,g) | xeQandg: I(x) = Q' is strictly monotone and has range /(g(x))}.

10 Be aware that some authors use € to denote the first uncountable ordinal and w to denote the first
infinite ordinal.
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IfN = {1,2,...} and N’ = {1’,2',...} are the natural numbers of Q2 and Q' re-
spectively, and g: N — Q' is defined by g(n) = n’, then (n,g) € X for each
n € N. This shows that X is nonempty. Next, define a partial order > on X by
(x,g) = (v,h)if x > yand g = h on I(y). Now let {(x4, 8+)}aea be a chain in X.
Put x = sup,.4 X, in Q and define g: I(x) — Q' by g(y) = go(y) if y < x, for
some « and g(x) = sup,., 8(x,). Notice that g is well defined, strictly monotone,
and satisfies g(/(x)) = I(g(x)) and (x, g) > (x.,8.) for each @ € A. This shows
that every chain in X has an upper bound. By Zorn’s lemma, X has a maximal
element, say (x, f). We now leave it as an exercise to you to verify that x = w,
and that f(w;) = w|. You should also notice that f is uniquely determined and, in
fact, f(x) is the first element of the set Q' \ {f(y) : y < x}.
In the next chapter we make use of the following result.

1.15 Interlacing Lemma  Suppose {x,} and {y,} are interlaced sequences in
Qo. That is, X, < Yn < Xu41 for all n. Then both sequences have the same least
upper bound in €.

Proof: By Theorem 1.14 (6), each sequence has a least upper bound in ;. Call
the least upper bounds x and y respectively. Since y, > x, for all n, we have y > x.
Since x,41 = y, for all n, we have x > y. Thus x = y. |

As an aside, here is how the Well Ordering Principle implies the Axiom of
Choice. Let {A; : i € I} be a nonempty family of nonempty sets. Well order
(Uier Ai and let f(i) be the first element of A;. Then f is a choice function.



Chapter 2

Topology

We begin with a chapter on what is now known as general topology. Topology is
the abstract study of convergence and approximation. We presume that you are
familiar with the notion of convergence of a sequence of real numbers, and you
may even be familiar with convergence in more general normed or metric spaces.
Recall that a sequence {x,} of real numbers converges to a real number x if {|x, — x|}
converges to zero. That is, for every £ > 0, there is some ng such that |x, — x| < &
for all n > ng. In metric spaces, the general notion of the distance between two
points (given by the metric) plays the role of the absolute difference between real
numbers, and the theory of convergence and approximation in metric spaces is
not all that different from the theory of convergence and approximation for real
numbers. For instance, a sequence {x,} of points in a metric space converges to a
point x if the distance d(x,, x) between x,, and x converges to zero as a sequence
of real numbers. That is, if for every £ > 0, there is an ng such that d(x,, x) < & for
all n > ny. However, metric spaces are inadequate to describe approximation and
convergence in more general settings. A very real example of this is given by the
notion of pointwise convergence of real functions on the unit interval. It turns out
there is no way to define a metric on the space of all real functions on the interval
[0, 1] so that a sequence {f,} of functions converges pointwise to a function f if
and only if the distance between f;, and f converges to zero. Nevertheless, the
notion of pointwise convergence is extremely useful, so it is imperative that a
general theory of convergence should include it.

There are many equivalent ways we could develop a general theory of con-
vergence.! In some ways, the most natural place to start is with the notion of a
neighborhood as a primitive concept. A neighborhood of a point x is a collec-
tion of points that includes all those “sufficiently close” to x. (In metric spaces,
“sufficiently close” means within some positive distance £.) We could define the
collection of all neighborhoods and impose axioms on the family of neighbor-
hoods. Instead of this, we start with the concept of an open set. An open set
is a set that is a neighborhood of all its points. It is easier to impose axioms on

! The early development of topology used many different approaches to capture the notion of ap-
proximation: closure operations, proximity spaces, L-spaces, uniform spaces, etc. Some of these
notions were discarded, while others were retained because of their utility.
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the family of open sets than it is to impose them directly on neighborhoods. The
family of all open sets is called a topology, and a set with a topology is called a
topological space.

Unfortunately for you, a theory of convergence for topological spaces that is
adequate to deal with pointwise convergence has a few quirks. Most prominent
is the inadequacy of using sequences to describe continuity of functions. A func-
tion is continuous if it carries points sufficiently close in the domain to points
sufficiently close in the range. For metric spaces, continuity of f is equivalent to
the condition that the sequence {f(x,)} converges to f(x) whenever the sequence
{x,} converges to x. This no longer characterizes continuity in the more general
framework of topological spaces. Instead, we are forced to introduce either nets or
filters. A net is like a sequence, except that instead of being indexed by the natural
numbers, the index set can be much larger. Two particularly important techniques
for indexing nets include indexing the net by the family of neighborhoods of a
point, and indexing the net by the class of all finite subsets of a set.

There are offsetting advantages to working with general topological spaces.
For instance, we can define topologies to make our favorite functions continuous.
These are called weak topologies. The topology of pointwise convergence is actu-
ally a weak topology, and weak topologies are fundamental to understanding the
equilibria of economies with an infinite dimensional commodity space.

Another important topological notion is compactness. Compact sets can be
approximated arbitrarily well by finite subsets. (In Euclidean spaces, the compact
sets are the closed and bounded sets.) Two of the most important theorems in this
chapter are the Weierstrass Theorem 2.35, which states that continuous functions
achieve their maxima on compact sets, and the Tychonoff Product Theorem 2.61,
which asserts that the product of compact sets is compact in the product topology
(the topology of pointwise convergence). This latter result is the basis of the
Alaoglu Theorem 5.105, which describes a general class of compact sets in infinite
dimensional spaces.

Liberating the notions of neighborhood and convergence from their metric
space setting often leads to deeper insights into the structure of approximation
methods. The idea of weak convergence and the keystone Tychonoff Product
Theorem are perhaps the most important contributions of general topology to
analysis—although at least one of us has heard the complaint that “topology is
killing analysis.” We collect a few fundamental topological definitions and re-
sults here. In the interest of brevity, we have included only material that we use
later on, and have neglected other important and potentially useful results. We
present no discussion of algebraic or differential topology, and have omitted dis-
cussion of quotient topologies, projective and inductive limits, metrizability theo-
rems, extension theorems, and a variety of other topics. For more detailed treat-
ments of general topology, there are a number of excellent standard references,
including Dugund;ji [106], Kelley [198], Kuratowski [218], Munkres [256], and
Willard [342]. Willard’s historical notes are especially thorough.
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The intersection of a family of topologies on a set is again a topology. (Why?)
If A is an arbitrary nonempty family of subsets of a set X, then there exists a small-
est (with respect to set inclusion) topology that includes .A. It is the intersection
of all topologies that include .A. (Note that the discrete topology always includes
A.) This topology is called the topology generated by .A and consists precisely
of @, X and all sets of the form [ J, V,, where each V, is a finite intersection of
sets from A.

A base for a topology 7 is a subfamily B of T such that each U € T is a union
of members of B. Equivalently, B is a base for 7 if for every x € X and every
open set U containing x, there is a basic open set V € B satisfying x € V c U.
Conversely, if B is a family of sets that is closed under finite intersections and
U B = X, then the family 7 of all unions of members of B is a topology for which
B is a base. A subfamily § of a topology 7 is a subbase for 7 if the collection of
all finite intersections of members of § is a base for . Note that if @ and X belong
to a collection 8 of subsets, then § is a subbase for the topology it generates. A
topological space is called second countable if it has a countable base. (Note that
a topology has a countable base if and only if it has a countable subbase.)

If Y is a subset of a topological space (X, ), then an easy argument shows that
the collection 1y of subsets of Y, defined by

y={VNnY:Ver},

is a topology on Y. This topology is called the relative topology or the topology
induced by 7 on Y. When Y C X is equipped with its relative topology, we call
Y a (topological) subspace of X. A set in 7y is called (relatively) open in Y. For
example, since X € Tand ¥ N X =Y, then Y is relatively open in itself. Note that
the relatively closed subsets of Y are of the form

Yni¥rnv)y=Y\v=rYnX\V),

where V € 1. That is, the relatively closed subsets of Y are the restrictions of the
closed subsets of X to Y. Also note that for a semimetric topology, the relative
topology is derived from the same semimetric restricted to the subset at hand.
Unless otherwise stated, a subset Y of X carries its relative topology.

Part of the definition of a topology requires that a finite intersection of open
sets is also an open set. However, a countable intersection of open sets need not
be an open set. For instance, {0} = ﬂ;‘:’:,(—%, ,11) is a countable intersection of open
sets in R that is not open. Similarly, although finite unions of closed sets are closed
sets, an arbitrary countable union of closed sets need not be closed; for instance,
0,11=U;2, [%, 1] is a countable union of closed sets in R that is neither open nor
closed. The sets that are countable intersections of open sets or countable unions
of closed sets are important enough that they have been given two special, albeit
curious, names.
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2.3 Definition A subset of a topological space is:
e a Gs-set, or simply a G, if it is a countable intersection of open sets.

o an Fy-set, or simply an F, if it is a countable union of closed sets.”

The example (0,1] = ;2 [2.1] = M;2,(0.1 + 1) shows that a set can be
simultaneously a Gs- and an F,,-set.

2.2 Neighborhoods and closures

Let (X, 7) be a topological space, and let A be any subset of X. The topology T
defines two sets intimately related to A. The interior of A, denoted A°, is the
largest (with respect to inclusion) open set included in A. (It is the union of all
open subsets of A.) The interior of a nonempty set may be empty. The closure
of A, denoted A, is the smallest closed set including A; it is the intersection of all
closed sets including A. It is not hard to verify that A ¢ B implies A° € B° and
A C B. Also, it is obvious that a set A is open if and only if A = A°, and a set B is

closed if and only if B = B. Consequently, for any set A, (A) = A and (A°)° = A°.
24 Lemma For any subset A of a topological space, A° = (A°)".
Proof: Clearly,

A°CA = A°C(A°) = A°c (A°) = (A°)° = A° C (A°).

Also, A° C A€ implies (A°)° C A. Since (A°)" is an open set and A° is the largest
open set included in A, we see that A° = (A°)°. |

The following property of the closure of the union of two sets easy to prove.

2.5 Lemma If A and B are subsets of a topological space, then AU B = AUB.

A neighborhood of a point x is any set V containing x in its interior. In
this case we say that x is an interior point of V. According to our definition, a
neighborhood need not be an open set, but some authors define neighborhoods to
be open.

2.6 Lemma A set is open if and only if it is a neighborhood of each of its points.

2 This terminology seems to be derived from the common practice of using G to denote open sets
and F for closed sets. The use of F probably comes from the French fermé, and G follows F. The
letter o probably comes from the word sum, which was often the way unions are described. According
to H. L. Royden [290, p. 53], the letter § is for the German durchschnitt.
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The collection of all neighborhoods of a point x, called the neighborhood
base, or neighborhood system, at x, is denoted N,. It is easy to verify that N,
satisfies the following properties.

1. XeN,.

2. ForeachV € N,, we have x € V (so @ ¢ N,).
3.If VU e N, then VN U eN,.

4. If VeN,and Vc W, then W € N,.

2.7 Definition A topology on X is called Hausdorff (or separated) if any two
distinct points can be separated by disjoint neighborhoods of the points. That is,
for each pair x,y € X with x # y there exist neighborhoods U € N, and V € N,
suchthatUNV = @.

It is easy to see that singletons are closed sets in a Hausdorff space. (Why?)
Topologies defined by metrics are Hausdorff. The trivial topology and the topolo-
gies in Examples 2.2.8 and 2.2.9 are not Hausdorff.

A neighborhood base at x is a collection B of neighborhoods of x with the
property that if U is any neighborhood of x, then there is a neighborhood V € B
with V < U. A topological space is called first countable if every point has
a countable neighborhood base.? Every semimetric space is first countable: the
balls of radius % around x form a countable neighborhood base at x. Clearly
every second countable space is also first countable, but the converse is not true.
(Consider an uncountable set with the discrete metric.)

A point x is a point of closure or closure point of the set A if every neighbor-
hood of x meets A. Note that A coincides with the set of all closure points of A. A
point x is an accamulation point (or a limit point, or a cluster point) of A if for
each neighborhood V of x we have (V \ {x})) N A # @.

To see the difference between closure points and limit points, consider the
subset A = [0, 1) U {2} of R. Then 2 is a closure point of A in R, but not a limit
point. The point 1 is both a closure point and a limit point of A.

We say that x is a boundary point of A if each neighborhood V of x satisfies
both VNA # @ and V N A° # @. Clearly, accumulation and boundary points
of A belong to its closure A. Let A’ denote the set of all accumulation points of
A (called the derived set of A) and JA denote the boundary of A, the set of all
boundary points of A. We have the following identities:

A=A°UJA and OA = DA° = AN A",

From the above identities, we see that a set A is closed if and only if A" € A (and
also if and only if A C A). In other words, we have the following result.

3 Now you know why the term “second countable™ exists.
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2.8 Lemma A set is closed if and only if it contains all its limit points.

To illustrate this morass of definitions, again let A = [0, 1) U {2} be viewed as
a subset of R. Then the boundary of A is (0, 1, 2} and its derived set is [0, 1]. The
closure of A is [0, 1] U {2} and its interior is (0, 1). Also note that the boundary of
the set of rationals in R is the entire real line.

A subset A of a topological space X is perfect (in X) if it is closed and every
point in A is an accumulation point of A. In particular, every neighborhood of a
point x in A contains a point of A different from x. The space X is perfect if all of
its points are accumulation points. A point x € A is an isolated point of A if there
is a neighborhood V of x with (V' \ {x}) N A = @. That is, if {x} is a relatively open
subset of A. A set is perfect if and only if it is closed and has no isolated points.
Note that if A has no isolated points, then its closure, A, is perfect in X. (Why?)
Also, note that the empty set is perfect.

2.3 Dense subsets

A subset D of a topological space X is dense (in X) if D = X. In other words, a
set D is dense if and only if every nonempty open subset of X contains a point in
D. In particular, if D is dense in X and x belongs to X, then every neighborhood
of x contains a point in D. This means that any point in X can be approximated
arbitrarily well by points in D. A set N is nowhere dense if its closure has empty
interior. A topological space is separable if it includes a countable dense subset.

29 Lemma Every second countable space is separable.

Proof: Let {By, B, ...} be a countable base for the topology, and pick x; € B; for
each i. Then {x,, x5, ...} is dense. (Why?) |

The converse is true for metric spaces (Lemma 3.4), but not in general.

2.10 Example (A separable space with no countable base)  We give two
examples of separable spaces that do not have countable bases. The first example
is highly artificial, but easy to understand. The second example is both natural and
important, but it requires some material that we do not cover till later.

1. Let X be an uncountable set and fix x) € X. Take the topology consisting
of the empty set and all sets containing x, cf. Example 2.2 (8). The set {xp}
is dense in X, so X is separable. Furthermore, each set of the form {xo, x},
x € X, is open, so there is no countable base.

2. In order to understand this example you need some knowledge of weak
topologies (Section 2.13) and the representation of linear functionals on
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sequence spaces (see Chapter 16). The example is the space ¢; of all abso-
lutely summable real sequences equipped with the weak topology o (€}, ).
The countable set of all eventually zero sequences with rational components
is a dense subset of ¢} (why?), so (£1,0(£}, €~)) is a separable Hausdorff
space. However, o(f}, £.) is not first countable; see Theorem 6.26. |

24 Nets

A sequence in X is a function from the natural numbers N = {1,2,...} into X.
We usually think of a sequence as a subset of X indexed by N. A net is a direct
generalization of the notion of a sequence. Instead of the natural numbers, the
index set can be more general. The key issue is that the index set have a sense
of direction. A direction > on a (not necessarily infinite) set D is a reflexive
transitive binary relation with the property that each pair has an upper bound.
That is, for each pair a, 8 € D there exists some y € D satisfying y > @ and y > B.
Note that a direction need not be a partial order since we do not require it to be
antisymmetric. In practice, though, most directions are partial orders. Also note
that for a direction, every finite set has an upper bound. A directed set is any set
D equipped with a direction >. Here are a few examples.

1. The set of all natural numbers N = {1,2, ...} with the direction > defined
by m > n whenever m > n.

2. The set (0, co) under the direction > defined by x > y whenever x > y.
3. The set (0, 1) under the direction > defined by x > y whenever x < y.

4. The neighborhood system N, of a point x in a topological space under the
direction > defined by V > W whenever V ¢ W. (The fact that the neigh-
borhood system of a point is a directed set is the reason nets are so useful.)

5. The collection @ of all finite subsets of a set X under the direction > defined
by A > B whenever A D B.

If D is a directed set, then it is customary to denote the direction of D by >
instead of >. The context in which the symbol > is employed indicates whether
or not it represents the direction of a set. If A and B are directed sets, then their
Cartesian product A X B is also a directed set under the product direction defined
by (a,b) 2 (c,d) whenever a > c and b > d. As a matter of fact, if {D; : i € I} is an
arbitrary family of directed sets, then their Cartesian product D = [];e; D; is also
a directed set under the product direction defined by (a;)ic; 2 (bi)ies Whenever
a; > b; for each i € I. Unless otherwise indicated, the Cartesian product of a
family of directed sets is directed by the product direction.
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¢@: A — A be the mapping appearing in the definition of the subnet. Also, pick
some Ay € A satisfying y; € V for each A > Ap. Next, choose some 4; € A such
that ¢, > o for each A > A;. If A, € A satisfies 4, > 4; and Ap > Ay, then the
index 8 = ¢,, satisfies 8 > @ and xg = x,, = ya, € V, so that x is a limit point of
the net {x,}. [ |

2.17 Lemma  [In a topological space, a net converges to a point if and only if
every subnet converges to that same point.

Proof: Let {x,} be a net in the topological space X converging to x. Clearly, for
every subnet {v,} of {x,} we have y, — x. For the converse, assume that every
subnet of {x,} converges to x, and assume by way of contradiction that {x,} does
not converge to x. Then, there exists a neighborhood V of x such that for any
index a € A there exists some ¢, = @ with x,, € V. Now if y, = x,_, then {Ya}aea
is a subnet of {x,} that fails to converge to x. This is a contradiction, so x, — Xx,
as desired. Note that limits do not need to be unique for this result. [

As with sequences, every bounded net {x,} of real numbers has a largest and
a smallest limit point. The largest limit point of {x,} is called the limit supe-
rior, written limsup, x,, and the smallest is called the limit inferior, written
liminf, x,. It is not difficult to show that

liminf x, = supinf xg < limsup x, = inf sup xz.
43 @ Za a @ pBza

Also, note that x, — x in R if and only if

x = liminf x, = lim sup x,.
o a

2.5 Filters

The canonical example of a filter (and the reason filters are important in topology)
is the neighborhood system N, of a point x in a topological space. We intro-
duce filters not to maximize the number of new concepts, but because they are
genuinely useful in their own right, see for instance, Theorem 2.86.

2.18 Definition A filter on a set X is a family F of subsets of X satisfying:
l. 2¢Fand X € F;
2. IfA,Be 3, then AN BeF; and
3. fAcBand A € J, then Be J.

A free filter is a filter F with empty intersection, that is, (\se5 A = @. Filters that
are not free are called fixed.
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Here are two more examples of filters.

e Let X be an arbitrary set, and let § be a nonempty subset of X. Then the
collection of sets
F={AcX:§5 cA)

is a filter. Note that this filter is fixed.

e Let X be an infinite set and consider the collection F of cofinite sets. (A set
is cofinite if it is the complement of a finite set.) That is,

F={A c X : A is a finite set}.
Observe that F is a free filter.

A filter G is a subfilter of another filter F if ¥ € G. In this case we also say
that G is finer than F. Note that despite the term subfilter, this partial order on
filters is the opposite of inclusion. A filter U is an ultrafilter if U has no proper
subfilter. That is, U is an ultrafilter if U c § for a filter G implies U = G.

2.19 Ultrafilter Theorem  Every filter is included in at least one ultrafilter.
Consequently, every infinite set has a free ultrafilter.

Proof: Let F be a filter on a set X, and let C be the nonempty collection of all
subfilters of F. That is,

C=1{G:Gisafilterand F c G}.

The collection C is partially ordered by inclusion. Given a chain B in C, the family
{A: A € G forsome G € B} is a filter that is an upper bound for B in C. Thus the
hypotheses of Zorn’s Lemma 1.7 are satisfied, so € has a maximal element. Note
that every maximal element of C is an ultrafilter including .

For the last part, note that if X is an infinite set, then

F={AcX:ACis finite}
is a free filter. Any ultrafilter that includes J is a free ultrafilter. |
Several useful properties of ultrafilters are included in the next three lemmas.
2.20 Lemma  Every fixed ultrafilter on a set X is of the form
Uy ={ACX:xeA)
for a unique x € X.

Proof: Let U be a fixed ultrafilter on X and let x € (4 A. Then the family
U, ={A C X : x € A} is a filter on X satisfying U C U,. Hence U = U,. [ |
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A nonempty collection B of subsets of a set X is a filter base if
1. @ ¢ B; and

2. if A, B € B, then there exists some C € B with C ¢ AN B. (That is, B is
directed by C.)

Every filter is, of course, a filter base. On the other hand, if B is a filter base for a
set X, then the collection of sets

Fp5 ={AC X :BcC A forsome B € B}

is a filter, called the filter generated by B. For instance, the open neighborhoods
at a point x of a topological space form a filter base B satisfying Fg = N, (the
filter of all neighborhoods at x).

221 Lemma  An ultrafilter U on a set X satisfies the following:
1. If Ay U---UA, €, then A; € U for some i.
2.IfANB#@forall Be U, then A € U.

Proof: (1) Let U be an ultrafilter on X and let AU B € U. If A ¢ U, then the
collection of sets F = (C ¢ X : AU C € U} is a filter satisfying B€ Fand U C F.
Hence, F = U, so B € U. The general case follows by induction.

(2) Assumethat ANB# @forallBe U. If B={ANB: B e U}, then Bis
a filter base and the filter JF it generates satisfies U ¢ F and A € F. Since U is an
ultrafilter, we see that ¥ = U, so A € U. |

2.22 Lemma If W is a free ultrafilter on a set X, then U contains no finite
subsets of X. In particular, only infinite sets admit free ultrafilters.

Proof: We first note that a free filter U contains no singletons. For if {x} € U,
then {x} N A # @ for each A € U, so x € A for each A € U. Hence (e A # @, a
contradiction.

Now for an ultrafilter U, if the finite set {xy, ..., x,} = UL, {x;} belongs to U,
then by Lemma 2.21 (1) we have {x;} € U for some i, contrary to the preceding
observation. Hence, no finite subset of X can be a member of U. |

We now come to the definition of convergence for filters. A filter F in a topo-
logical space converges to a point x, written ¥ — x, if F includes the neighbor-
hood filter N, at x, that is, N, ¢ F. Similarly, a filter base B converges to some
point x, denoted B — ux, if the filter generated by B converges to x. Clearly,
N, — x for each x.

An element x in a topological space is a limit point of a filter ¥ whenever
x € A for each A € F. The set of all limit points of F is denoted Lim F. Clearly,
Lim F = N5 A. As with nets, the limit points of a filter are precisely the limits
of its subfilters.
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2.23 Theorem In a topological space, a point is a limit point of a filter if and
only if there exists a subfilter converging to it.

Proof: Let x be a limit point of a filter F in a topological space. That is, let
X € (Nseg A. Then, the collection of sets

B={VNA:VeN,and A € F}

is a filter base. Moreover, if G is the filter it generates, then both ¥ c G and
N, c G. That is, G is a subfilter of F converging to x.

For the converse, assume that G is a subfilter of F (that is, F C §) satisfying
§ — x (that is, N, ¢ G). Then each V € N, and each A € F both belong to §.
Consequently, VN A # @. Therefore, x € ey A. |

We state without proof the following characterization of convergence.

2.24 Lemma In a topological space, a filter converges to a point if and only if
every subfilter converges to that same point.

2.6 Nets and Filters

There is an intimate connection between nets and filters. Let {x,},cp be anet in a
topological space X. For each « define the section or tail F, = {xz : 8 > @} and
consider the family of sets B = {F, : @ € D}. Itis a routine matter to verify that
B is a filter base. The filter F generated by B is called the section filter of {x,} or
the filter generated by the net {x,}.

The net {x,}.ep and its section filter F have the same limit points. That is,
Lim{x,} = Lim . Indeed, if x € Lim {x,}, then x is (by Theorem 2.16) the limit
of some subnet {y,} of {x,}. A simple argument shows that the filter § generated
by {y.} is a subfilter of F and G — x. Conversely, if x € Lim F, then for each index
a and each V € N, we have V N F, # @. Thus if we choose some y,y € V N F,,
then {y..v}e.viepxN, defines a subnet of {x,} satisfying y, v — x, so x € Lim {x,]}.

Next, consider an arbitrary filter F in a topological space X and then define
the set D = {(a,A) : A € F and a € A}. The set D has a natural direction
> defined by (a,A) = (b, B) whenever A C B, so the formula x,4 = a defines
a net in X, called the net generated by the filter . Observe that the section
Faa = A, so the filter generated by the net {x, 4} is precisely F. In particular, we
have Lim {x, 4} = Lim F.

This argument establishes the following important equivalence result for nets
and filters.

2.25 Theorem (Equivalence of nets and filters) In a topological space, a net
and the filter it generates have the same limit points. Similarly, a filter and the net
it generates have the same limit points.
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2.7 Continuous functions

One of the most important duties of topologies is defining the class of continuous
functions.

2.26 Definition A function f: X — Y between topological spaces is continuous
if f~Y(U) is open in X for each open set U in Y.

We say that f is continuous at the point x if f~'(V) is a neighborhood of x
whenever V is an open neighborhood of f(x).

In a metric space, continuity at a point x reduces to the familiar -6 definition:
For each £ > 0, the &-ball at f(x) is a neighborhood of f(x). The inverse image of
the ball is a neighborhood of x, so for some & > 0, the §-ball at x is in the inverse
image. That is, if y is within § of x, then f(y) is within & of f(x). The next two
theorems give several other characterizations of continuity.

2.27 Theorem  For a function f: X — Y between topological spaces the fol-
lowing statements are equivalent.

1. f is continuous.

2. f is continuous at every point.

3. If C is a closed subset of Y, then f~'(C) is a closed subset of X.
4. If Bis an arbitrary subset of ¥, then f~'(B°) < [f~'(B)| .

5. If A is an arbitrary subset of X, then f(A) C f(A).
6. f~'(V) is open in X for each V in some subbase for the topology on Y.

Proof: (1) = (2) This is obvious.

(2) = (3) Let C be aclosed subset of ¥ and let x € [f~1(C)]° = f~(C®).
So f(x) € C°. Since C° is an open set, the continuity of f at x guarantees the
existence of some neighborhood V of x such that y € V implies f(y) € C®. The
latter implies V C f~'(C*), so f~'(C®) is a neighborhood of all of its points. Thus
f£71(C*) is open, which implies that f~1(C) = [f~'(C®)]° is closed.

(3) = (4) Let Bbe asubsetof Y. Since B° is open, the set (B°)° is closed,
so by hypothesis [f‘l(BD)]C = f1((B°)°) is also closed. This means that f~'(B°)
is open, and since f~'(B°)  f~'(B) is true, we see that f~'(B°) C | f-‘(B)]".

(4) = (5) Let A be an arbitrary subset of X and let y € f(Z). Then,
there exists some x € A with y = f(x). If V is an open neighborhood of y, then
Wy = v e [ ) so (V) = [£71 V)], proving that £1(V) is an
open neighborhood of x. Since x € A, we see that FUVINA £ @,50 VN f(A) # @.
Therefore y € m
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A family of sets has the finite intersection property if every finite subfamily
has a nonempty intersection. Every filter has the finite intersection property, and
an ultrafilter is a maximal family with the finite intersection property. Compact-
ness can also be characterized in terms of the finite intersection property.

2.31 Theorem  For a topological space X, the following are equivalent.
1. X is compact.

2. Every family of closed subsets of X with the finite intersection property has
a nonempty intersection.

3. Every net in X has a limit point (or, equivalently, every net has a convergent
subnet).

4. Every filter in X has a limit point, (or, equivalently, every filter has a con-
vergent subfilter).

5. Every ultrafilter in X is convergent.

Proof: (1) & (2) Assume that X is compact, and let £ be a family of closed
subsets of X. If Ngeg £ = @, then X = |Jgee ES, therefore {E€ : E € &} is an
open cover of X. Thus there exist Ey,...,E, € € satisfying X = [Ji_, E{. This
implies N, E; = @, so € does not have the finite intersection property. Thus, if
€ possesses the finite intersection property, then (Ngee E # @.

For the converse, assume that (2) is true and that 'V is an open cover of X. Then
Myvey V¢ = @, so the finite intersection property must be violated. That is, there
exist Vi, ..., V, € Vsatisfying (}_, Vi=o,orX = (-1 V;, which proves that X
is compact.

(3) & (4) This equivalence is immediate from Theorem 2.25.

(4) < (5) This equivalence follows from Theorems 2.23 and 2.19.

(4) & (2) Assume first that G is a family of closed subsets of X with the
finite intersection property. Then G is a filter base, so by hypothesis the filter F it
generates has a limit point. Now note that (\geg G = (se5 A = Lim F # @.

For the converse, assume that (2) is true and that F is a filter on X. Then the
family of closed sets G = {A : A € F) satisfies the finite intersection property, so
Lim F = s A # @.

A subset A of a topological space is sequentially compact if every sequence
in A has a subsequence converging to an element of A. A topological space X is
sequentially compact if X itself is a sequentially compact set.

In many ways compactness can be viewed as a topological generalization of
finiteness. There is an informal principle that compact sets behave like points in
many instances. We list a few elementary properties of compact sets.
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e  Finite sets are compact.
e  Finite unions of compact sets are compact.
e  Closed subsets of compact sets are compact.

e IfK CY cX,then K is a compact subset of X if and only if K is a compact
subset of Y (in the relative topology).

We note the following result, which we use frequently without any special
mention. It is an instance of how compact sets act like points.

232 Lemma If K is a compact subset of a Hausdor{f space, and x ¢ K, then
there are disjoint open sets U and V with K C U and x € V. In particular, compact
subsets of Hausdorf{f spaces are closed.

Proof: Since X is Hausdorff, for each y in K, there are disjoint open neighbor-
hoods Uy of y and V, of x. The U,s cover K, so there is a finite subfamily
Uy,,...,U,, covering K. Now note that the disjoint open sets U = (Ji_, U,, and
V =, V,, have the desired properties. i

Compact subsets of non-Hausdorff spaces need not be closed.
2.33 Example (A compact set that is not closed) Let X be a set with at least
two elements, endowed with the indiscrete topology. Any singleton is compact,

but X is the only nonempty closed set. |

2.34 Theorem  Every continuous function between topological spaces carries
compact sets to compact sets.

Proof: Let f: X — Y be a continuous function between two topological spaces,
and let K be a compact subset of X. Also, let {V; : i € I} be an open cover of f(K).

Then {f~'(V;) : i € I} is an open cover of K. By the compactness of K there exist
indexes iy, ..., I, satisfying K C U’}=l f"(V,-l,). Hence,

fK)c f(.L"JI i) = L"J]f(f*'(v,-,)) c Ul Vi,
J= i= J=

which shows that f(K) is a compact subset of Y. | |

Since a subset of the real line is compact if and only if it is closed and bounded,
the preceding lemma yields the following fundamental result.

2.35 Corollary (Weierstrass) A continuous real-valued function defined on a
compact space achieves its maximum and minimum values.
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A function f: X — Y between topological spaces is open if it carries open
sets to open sets (f(U) is open whenever U is), and closed if it carries closed sets
to closed sets (f(F) is closed whenever F is). If f has an inverse, then f~! is
continuous if and only if f is open (and also if and only if f is closed).

The following is a simple but very useful result.

2.36 Theorem A one-to-one continuous function from a compact space onto a
Hausdorff space is a homeomorphism.

Proof: Assume that f: X — Y satisfies the hypotheses. If C is a closed subset
of X, then C is a compact set, so by Theorem 2.34 the set f(C) is also compact.
Since Y is HausdorfT, it follows that f(C) is also a closed subset of Y. That is, f
is a closed function. Now note that (f~')"'(C) = f(C), and by Theorem 2.27, the
function f~': ¥ — X is also continuous. |

We close with an example of a compact Hausdorff space whose unusual prop-
erties are exploited in Examples 12.9 and 14.13.

2.37 Example (Space of ordinals) The set Q = [1, w;] of ordinals is a Haus-
dorff topological space with its order topology. A subbase for this topology con-
sists of all sets of the form (y € Q : y < x}or{y € Q : y > x} for some x € Q.
Recall that any increasing sequence in ( has a least upper bound. The least upper
bound is also the limit of the sequence in the order topology.

The topological space £ is compact. To see this, let V be an open cover of Q.
Since w, is contained in some open set, then for some ordinal xy < w, the interval
(xp,w1] = {y € Q: xyp <y < w,} is included in some member of the cover. Let
x; be the first such ordinal, and let V; € V satisfy (x;,w;] € V,. By the same
reasoning, unless x; = 1 there is a first ordinal x, < x; with (x,, x;] included in
some V; € V. Proceeding inductively, as long as x,-; # 1, we can find x, < x,-1,
the first ordinal with (x,, x,-;] ¢ V, € V. We claim that x, = 1 for some n, so
this process stops. Otherwise the set {x; > x > ---} has no first element. Thus
Vi,..., V, cover Q with the possible exception of the point 1, which belongs to
some member of V.

Note that € is not separable: Let C be any countable subset of €2, and let b be
the least upper bound of C \ {w}. Then any x with » < x < w, cannot lie in the
closure of C, so C is not dense. A consequence of this is that  is not metrizable,
since by Lemma 3.26 below, a compact metrizable space must be separable.

2.9 Nets vs. sequences
So far, we have seen several similarities between nets and sequences, and you may

be tempted to think that for most practical purposes nets and sequences behave
alike. This is a mistake. We warn you that there are subtle differences between



42 Chapter 2. Topology

nets and sequences that you need to be careful of. The most important of them is
highlighted by the following theorem and example.

2.38 Theorem [n a topological space, if a sequence {x,} converges to a point x,
then the set {x, x|, X3, ...} of all terms of the sequence together with the limit point
X is compact.

Proof: Let {U,}ie; be an open cover of § = {x, x|, X2, ...}. Pick some index iy with
x € Uj, and note that there exists some m such that x, € Uj, for all n > m. Now
for each 1 < k < m pick an index i; with x; € U;, and note that § C (L, Uj,
which shows that § is compact. |

Nets need not exhibit this property.

2.39 Example (A convergent net without compact tails) Let D be the set
of rational numbers in the interval (0, 1), directed by the usual ordering > on the
real numbers. It defines a net {x,}.ep in the compact metric space [0, 1] by letting
X, = a. Clearly, x, — 1in [0, 1]. If ag € D, then note that

{xqo : @ 2 ap) U {1} = {r € [ap, 1] : ris a rational number},

which fails to be compact (or even closed) for any aq € D.

It is also interesting to note that for any g € D, every real number z € [ap, 1)
is an accumulation point of the set {x, : @ > ap}. However, note that there is no
subnet of {x,} that converges to z. (Every subnet of {x,} converges to 1.) [ |

Whenever possible, it is desirable to replace nets with sequences, and theo-
rems to this effect are very useful. One case that allows us to replace nets with
sequences is the case of a first countable topology (each point has a countable
neighborhood base). This class of spaces includes all metric spaces.

2.40 Theorem Let X be a first countable topological space.

1. If A is a subset of X, then x belongs to the closure of A if and only if there is
a sequence in A converging to Xx.

2. A function f: X — Y, where Y is another topological space, is continuous
if and only if x, — x in X implies f(x,) — f(x)inY.

Proof: (1) Letxe A. Let {V1, Va,...} be a countable base for the neighborhood
system N, at x. Since x € A, we have (ﬂf:l Vk) N A # @ for each n. Pick

Xy € (ﬂZ:l Vk) N A and note that x, — x.

(2) If f: X — Y is continuous, then x, — x implies f(x,) — f(x). For the
converse, assume that x, — x in X implies f(x,) — f(x)in Y and let A C X. By
Theorem 2.27 (5), it suffices to show that f(A) C f(A). So let x € A. By part (1),
there exists a sequence {x,} C A satisfying x, — x. By hypothesis, f(x,) — f(x),

so f(x) € f(A). | |
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2.10 Semicontinuous functions

A function f: X — [—o0, c0] on a topological space X is:

e lower semicontinuous if for each ¢ € R the set {x € X : f(x) < ¢} is closed
(or equivalently, the set {x € X : f(x) > c} is open).

e upper semicontinuous if for each ¢ € R the set {x € X : f(x) 2 ¢} is closed
(or equivalently, the set {x € X : f(x) < ¢} is open).

Clearly, a function f is lower semicontinuous if and only —f is upper semi-
continuous, and vice versa. Also, a real function is continuous if and only if it is
both upper and lower semicontinuous.

2.41 Lemma The pointwise supremum of a family of lower semicontinuous
Sfunctions is lower semicontinuous. Similarly, the pointwise infimum of a family of
upper semicontinuous functions is upper semicontinuous.

Proof: We prove the lower semicontinuous case only. To this end, let {f,} be a
family of lower semicontinuous functions defined on a topological space X, and
let f(x) = sup, fo(x) for each x € X. From the identity

(xeX:fx)<cl=xeX: fulx) <c},

we see that {x € X : f(x) <€ ¢} is closed for each ¢ € R. |

The next characterization of semicontinuity is sometimes used as a definition.
Later, in Corollary 2.60, we present another characterization of semicontinuity.

242 Lemma Let f: X — [—00,00] be a function on a topological space. Then:
f is lower semicontinuous if and only if x, —» x = liminf f(x;) > f(x).
@

[ is upper semicontinuous if and only if x, = x = limsup f(x,) < f(x).

@

When X is first countable, nets can be replaced by sequences.

Proof: We establish the lower semicontinuous case. So assume first that f is
lower semicontinuous, and let x, — x in X. If f(x) = —oo, then the desired
inequality is trivially true. So suppose f(x) > —oo. Fix ¢ < f(x) and note that (by
the lower semicontinuity of f)theset V = {y € X : f(y) > ¢} is open. Since x € V,
there is some ay such that xz € V for all 8 > ay, that is, f(xg) > ¢ for all B > ay.
Hence,

. i S i S
lim inf f(x,) sgpéggf(xﬁ) 5;1({0 flxg) = ¢

for all ¢ < f(x). This implies that liminf, f(x,) = f(x).
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2.48 Theorem Every compact Hausdor(f space is normal, and therefore com-
pletely regular.

Proof: Let X be a compact Hausdorff space and let E and F be disjoint nonempty
closed subsets of X. Then both E and F are compact. Choose a point x € E.
By Lemma 2.32 for each y € F, there exist disjoint open sets V, and U, with
y € Vyand E C U,. Since {V), : y € F}is an open cover of F, which is compact,
there exist y;,...,yx € F such that F ¢ U, V,,. Now note that the open sets
V=UL, V,andU =%, Uy, satisfy ECU,FcV,andUNV = 2. |

We can modify the proof of Theorem 2.48 in order to prove a slightly stronger
result. Before we can state the result we need the following definition. A topo-
logical space is a Lindelof space if every open cover has a countable subcover.
Clearly every second countable space is a Lindelof space.

2.49 Theorem  Every regular Lindelof space is normal.

Proof: Let A and B be nonempty disjoint closed subsets of a Lindelof space X.
The regularity of X implies that for each x € A there exists an open neighborhood
V, of x such that V, N B = @. Similarly, for each y € B there exists an open
neighborhood W, of y such that Wy N A = @. Clearly the collection of open sets
[Vi:xe AJU (W, : y € BJU{X \ AU B} covers X. Since X is a Lindelof space,
there exist a countable subcollection {V,,} of {V,}ea and a countable subcollection
{W,.} of {Wy}ep such that A C | J;~, V, and B C J,_; Wy.

Now for each n let V; = V, \ UL, W; and W, = W, \ U, Vi. Then the
sets V; and W, are open, V, N W, = @ forallnandm, A c |J;,V, = V, and
B c |J,.; W, = W. To finish the proof note that VN W = @. 1

In addition to the properties already mentioned, there is another classification
of topological spaces that you may run across, but which we eschew. A topo-
logical space is called a Ty-space if for each pair of distinct points, there is a
neighborhood of one of them that does not contain the other. A T-space is one
in which for each pair of distinct points, each has a neighborhood that does not
contain the other. This is equivalent to each singleton being closed. A T>-space is
another name for a Hausdorff space. A T3-space is a regular 7';-space. A T4-space
is a normal T'j-space. Finally, a T, 1-space or a Tychonoff space is a completely

regular T';-space.®

Here are some of the relations among the properties: Every Hausdorff space
is T}, and every T-space is Ty. A regular or normal space need not be Hausdorft:
consider any two point set with the trivial topology. Every normal T-space is
Hausdorff. A Tychonoff space is Hausdorff. For other separation axioms see
A. Wilansky [340].

S If we had our way, the Hausdorff property would be part of the definition of a topology, and life
would be much simpler.
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2.12 Comparing topologies

The following two lemmas are trivial applications of the definitions, but they are
included for easy reference. We feel free to refer to these results without comment.
The proofs are left as an exercise.

2.50 Lemma  For two topologies v' and T on a set X the following statements
are equivalent.

1. 7’ is weaker than 7, that is, T C T.

2. The identity mapping x — x, from (X, 1) to (X, T’), is continuous.
3. Every t'-closed set is also T-closed.

4. Every T-convergent net is also T’-convergent to the same point.
5. The t-closure of any subset is included in its T'-closure.

2.51 Lemma If 7’ is weaker than T, then each of the following holds.
1. Every T-compact set is also T’'-compact.
2. Every T’ continuous function on X is also T continuous.

3. Every t-dense set is also T’-dense.

When we have a choice of what topology to put on a set, there is the follow-
ing rough tradeoff. The finer the topology, the more open sets there are, so that
more functions are continuous. On the other hand, there are also more insidious
open covers of a set, so there tend to be fewer compact sets. There are a number
of useful theorems involving continuous functions and compact sets. One is the
Weierstrass Theorem 2.35, which asserts that a real continuous function on a com-
pact set attains its maximum and minimum. The Brouwer—Schauder-Tychonoff
Fixed Point Theorem 17.56 says that a continuous function from a compact con-
vex subset of a locally convex linear space into itself has a fixed point. Another
example is a Separating Hyperplane Theorem 5.79 that guarantees the existence
of a continuous linear functional strongly separating a compact convex set from a
disjoint closed convex set in a locally convex linear space.

2.13 Weak topologies
There are two classes of topologies that by and large include everything of interest.

The first and most familiar is the class of topologies that are generated by a metric.
The second class is the class of weak topologies.
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Let X be a nonempty set, let {(Y;, 7:)}ics be a family of topological spaces and
foreachi € I'let f;: X — Y, be a function. The weak topology or initial topology
on X generated by the family of functions {f;};e; is the weakest topology on X that
makes all the functions f; continuous. It is the topology generated by the family
of sets

(ff'v)y:ielTand Ve 1;}.

Another subbase for this topology consists of
(' v):ieland V€ 8},

where 8; is a subbase for 7;. Let w denote this weak topology. A base for the weak
topology can be constructed out of the finite intersections of sets of this form. That
is, the collection of sets of the form }_, f,.:'(V.-k), where each V;, belongs to 7;,
and (i, ...,i,) is an arbitrary finite subset of /, is a base for the weak topology.
The next lemma is an important tool for working with weak topologies.

252 Lemma A net satisfies x, > x for the weak topology w if and only if
filxq) < fi(x) for eachi€ I.

Proof: Since each f; is w-continuous, if x, 2 x, then fi(x,) 5 fi(x) for all
i € I. Conversely, let V = N;_, fi"'(V,-,) be a basic neighborhood of x, where
each V;, € ;. For each k, if f;,(x,) = f;,(x), then there is a;, such that @ > a;
implies x, € fi:'(V,-k). Pick ag > a;, for all k. Then @ > a, implies x, € V. That

is, xg 25 x. |

An important special case is the weak topology generated by a family of real
functions. For a family J of real functions on X, the weak topology generated by
F is denoted o (X, F). It is easy to see that a subbase for o(X, F) can be found by
taking all sets of the form

U(f,x,e) =y e X |f() - f0)l < &},

where f € F, x € X, and &€ > 0.

We say that a family F of real functions on X is total, or separates points in
X, if f(x) = f(y) for all £ in F implies x = y. Another way to say the same thing is
that F separates points in X if for every x # y there is a function f in F satisfying
f(x) # f(v). The weak topology (X, F) is Hausdorff if and only if F is total.

Here is a subtle point about weak topologies. Let J be a family of real-valued
functions on a set X. Every subset A C X has a relative topology induced by the
o(X,F) weak topology on X. It also has its own weak topology, the o(A, F|,)
topology, where J|, is the family of restrictions of the functions in F to A. Are
these topologies the same? Conveniently the answer is yes.
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2.53 Lemma (Relative weak topology) Let F be a family of real-valued
Junctions on a set X, and let A be a subset of X. The (A, F|4) weak topology on
A is the relative topology on A induced by the o(X, F) weak topology on X.

Proof: Use Lemma 2.52 to show that the convergent nets in each topology are the
same. This implies that the identity is a homeomorphism.

We employ the following standard notation throughout this monograph:
e  R¥ denotes the vector space of real-valued functions on a nonempty set X.

e (C(X) denotes the vector space of continuous real-valued functions on the
topological space (X, 7). We may occasionally use the abbreviation C for C(X)
when X is clear from the context. We also use the common shorthand C[0, 1] for
C([0, 17), the space of continuous real functions on the unit interval [0, 1].

e  Cp(X) is the space of bounded continuous real functions on (X, 7). Itis a
vector subspace of C(X).”

e  The support of a real function f: X — R on a topological space is the
closure of the set {x € X : f(x) # 0}, denoted supp f. That is,

suppf={xe X : f(x) #0}.

C(X) denotes the vector space of all continuous real-valued functions on X with
compact support.

The vector space RX coincides, of course, with the vector space C(X) when X
is equipped with the discrete topology.
We now make a simple observation about weak topologies.

2.54 Lemma The weak topology on the topological space X generated by C(X)
is the same as the weak topology generated by Cy(X).

Proof: Consider a subbasic open set U(f,x,&) = {y € X : |[f(y) — f(x)| < &},
where f € C(X). Define the function g: X — R by

8(z) = min{f(x) + &, max{f(x) — &, f(2)}}.

Then g € Cp(X) and U(g, x, &) = U(f, x,&). Thus o(X, Cp) is as strong as o (X, C).
The converse is immediate. Therefore o (X, Cy) = (X, C). |

We can use weak topologies to characterize completely regular spaces.

2.55 Theorem A topological space (X, 1) is completely regular if and only if
T = 0(X, C(X)) = o(X, Cp(X)).

7'The notation C* is used in some specialties for denoting C.
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Proof: For any topological space (X, 7), we have oo(X,C) C 7.

Assume first that (X, 7) is completely regular. Let x belong to the T-open set
U. Pick f € C(X) satisfying f(x) = O and f(U®) = {1}. Then{y € X : f(y) < 1}
is a o(X, C)-open neighborhood of x included in U. Thus U is also o(X, C)-open,
soo(X,C)=r.

Suppose now that 7 = o(X,C). Let F be closed and x ¢ F. Since F° is
o (X, C)-open, there is a neighborhood U c F* of x of the form

U= ﬁ{yeX:mw—ﬁ(xn <1),

where each f; € C(X). Foreach 1 < i < mlet gi(z) = min{l,|fi(z) - fi(x)|} and
g(z) = max; g;(z). Then g continuously maps X into [0, 1], and satisfies g(x) = 0
and g(F) = {1}. Thus X is completely regular. |

2.56 Corollary  The completely regular spaces are precisely those whose topol-
ogy is the weak topology generated by a family of real functions.

Proof: If (X, 7) is completely regular, then T = o(X, C(X)).

Conversely, suppose T = o(X,d) for a family F of real functions. Then
F c CX),sot = o(X,F) c o(X,C(X)). But on the other hand, t always in-
cludes o(X, C(X)). Thus T = (X, C(X)), so by Theorem 2.55, (X, 7) is completely
regular. |

The next easy corollary of Theorem 2.55 and Lemma 2.52 characterizes con-
vergence in completely regular spaces.

2.57 Corollary  If X is completely regular, then a net x, — x in X if and only if
f(xa) = f(x) for all f € Co(X).

For additional results on completely regular spaces see Chapter 3 of the excel-
lent book by L. Gillman and M. Jerison [138].

2.14 The product topology

Let {(X;, T:)}ies be a family of topological spaces and let X = [];; X; denote its
Cartesian product. A typical element x of the product may also be denoted (x;);es
or simply (x;). For each j € I, the projection P;: X — X is defined by P;(x) = x;.
The product topology 7, denoted [];, 7;, is the weak topology on X generated by
the family of projections {P; : i € I}. That is, 7 is the weakest topology on X that
makes each projection P; continuous. A subbase for the product topology consists
of all sets of the form PJ‘.'(VJ) = [1ie; Vi where V; = X; for all i # j and V; is open
in X;. A base for the product topology consists of all sets of the form

V=l—[V,.

iel
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and note that U, is an open neighborhood of x. Similarly, for every y € K set
Vy = ﬂyev,- V;. Observe that for each (x, y), the neighborhood U, x V is included
in one of the original U; x V;. (Why?) From the compactness of K, and K>,
there exist elements xy,...,x, € K; and y,...,y; € K; with K] C UT:1 Uy, and
Ky € Uy, Vy,. Next, note that the open sets U = 7L, Uy, and V = (J_, V),
satisfy
n
KixKzcUxVclJU;jxV;cG.
J=1
So the conclusion is true for a family of two topological spaces. By induction,
the claim is true for any finite family of topological spaces. (Why?) For the

K = [liaKi C U’}:l(ﬂie, V/) ¢ G. (This is possible since K is compact by
the Tychonoff Product Theorem 2.61.) This implies that the general case can be
reduced to that of a finite family of topological spaces. We leave the remaining
details as an exercise. [ |

2.15 Pointwise and uniform convergence

For a nonempty set X, the product topology on R¥ is also called the topology of
pointwise convergence on X because a net {f,} in RX satisfies f, — f in RX if
and only if f,(x) = f(x) in R for each x € X.

Remarkably, if J is a set of real-valued functions on X, we can also regard
X as a set of real-valued functions on F. Each x € X can be regarded as an
evaluation functional ¢,: & — R, where ¢,(f) = f(x). As such, there is also a
weak topology on F, (¥, X). This topology is identical to the relative topology
on J as a subset of R¥ endowed with the product topology. We also note the
following important result.

2.63 Lemma If J is a total family of real functions on a set X, the function
x > e, mapping (X, (X, F)) into R with its product topology, is an embedding.

Proof: Since ¥ is a total, the mapping x + e, is one-to-one. The rest is just a
restatement of Lemma 2.52, using the observation that the product topology on
R7 is the topology of pointwise convergence on F.

From the Tychonoff Product Theorem 2.61, it follows that a subset F of RX is
compact in the product topology if and only if it is closed and pointwise bounded.
Since a subset of F is compact in F if and only if it is compact in R¥, we see that
a subset of F is weakly compact (compact in the product topology) if and only if
it is pointwise bounded and contains the pointwise limits of its nets.

We are now in a position to give a natural example of the inadequacy of se-
quences. They cannot describe the product topology on an uncountable product.
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2.64 Example Let [0, 11! be endowed with its product topology, the topology
of pointwise convergence. Let F denote the family of indicator functions of finite
subsets of [0, 1]. Recall that the indicator function y4 of a set A is defined by

(1 ifxeA,
XA =10 ifxeA.

Then 1, the function that is identically one, is not the pointwise limit of any se-
quence in F: Let x4, be a sequence in F. Then A = | J, A, is countable, so there
is some point x not belonging to A. Since y4,(x) = O for all n, the sequence does
not converge pointwise to 1.

However there is a net in F that converges pointwise to 1: Take the family F
of all finite subsets of [0, 1] directed upward by inclusion—thatis, A > Bif A D B.
Then the net {y4 : A € F} converges pointwise to 1. (Do you see why?) |

A net {f,} in RX converges uniformly to a function f € RX whenever for each
& > 0 there exists some index ¢ (depending upon & alone) such that

o) - f0)| < &

for each @ > a( and each x € X. Clearly, uniform convergence implies pointwise
convergence, but the converse is not true.

2.65 Theorem  The uniform limit of a net of continuous real functions is con-
tinuous.

Proof: Let {f,} be a net of continuous real functions on a topological space X that
converges uniformly to a function f € R*. Suppose x; — x in X. We now show

that f(x,;) — f(x)

Let £ > 0 be given, and pick some a satisfying |f,(y)—f(y)| < e forall @ > ap
and all y € X. Since f,, is a continuous function, there exists some Ay such that
[fao(x2) = fao(x)] < € forall A > Ay. Hence, for 4 > 4y we have

|f(x) = )|
< £ ) = fao x| + |faro (x) = fao (0] + | o () = £ ()|

<et+te+e=3e
Thus, f(x;) — f(x), so f is a continuous function. [ |
Here is a simple sufficient condition for a net to converge uniformly.

2.66 Dini’s Theorem If a net of continuous real functions on a compact space
converges monotonically to a continuous function pointwise, then the net con-
verges uniformly.
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Proof: Let{f,} be a net of continuous functions on the compact space X satisfying
fo(x) 1 f(x) for each x € X, where f is continuous. Replacing f, by f, — f we
may assume that f is identically zero.

Let £ > 0. For each x € X pick an index a, such that 0 < f, (x) < &. By the
continuity of f,_there is an open neighborhood V, of x such that 0 < f, () < &
for all y € V,. Since a > a, implies f, < f,,, we see that 0 < f,(y) < & for each
azayandally e V,.

From X = | J,x V. and the compactness of X, we see that there exist xi, ..., Xk
in X with X = Ule V. Now choose some index ay satisfying @y > a,, for all
i =1,...,kand note that @ > a, implies 0 < f,(y) < & for all y € X. That is, the
net {f,} converges uniformly to zero. |

2.16 Locally compact spaces

A topological space is locally compact if every point has a compact neighbor-
hood.® The existence of a single compact neighborhood at each point is enough
to guarantee many more.

2.67 Theorem (Compact neighborhood base) In a locally compact Hausdorff
space, every neighborhood of a point includes a compact neighborhood of the
point. Consequently, in a locally compact Hausdorff space, each point has a
neighborhood base of compact neighborhoods.

Proof: Let G be an open neighborhood of x and let W be a compact neighborhood
of x. If W C G, we are done, so assume A = WNG® # @. For each y € A choose an
open neighborhood U, of y and an open neighborhood W, of x satisfying W, ¢ W
and Uy N W, = @. Since A (= W N G°) is compact, there exist y1,...,y € A
suchthatAC UL, Uy, Put vV = N5 Wy, and U = UL, U,,. Now V is an open
neighborhood of x, and we claim that V is compact and mcluded inG.

To see this, note first that V ¢ W implies that V is compact. Now, since U and
V are both open and V N U = @, it follows that V N U = @. Consequently, from

VNG =VnNn(WNG)=VNAcVnU =g,
we see that VN G = @. Hence VC G is a compact neighborhood of x. i

Every compact space is locally compact. In fact, the following corollary is
easily seen to be true.

2.68 Corollary  The intersection of an open subset with a closed subset of a
locally compact Hausdor{f space is locally compact.

In particular, every open subset and every closed subset of a locally compact
Hausdorff space is locally compact.

8 Some authors require that a locally compact space be Hausdorff.
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The next result is another useful corollary.

2.69 Corollary  If K is a compact subset of a locally compact Hausdorff space,
and G is an open set including K, then there is an open set V with compact closure
satisfying KcVcVcaG.

Proof: By Theorem 2.67, each point x in K has an open neighborhood V, with
compact closure satisfying x € V, C V, C G. Since K is compact there is a finite
subcollection {V,,,..., V. } of these sets covering K. Then V = [J., V,, is the
desired open set. (Why?) [ |

A compactification of a Hausdorff space X is a compact Hausdorff space
Y where X is homeomorphic to a dense subset of ¥, so we may treat X as an
actual dense subset of Y. Note that if X is already compact, then it is closed in
any Hausdorff space including it, so any compactification of a compact Hausdorff
space is the space itself. The locally compact Hausdorff spaces are open sets in all
of their compactifications. The details follow.

2.70 Theorem Let X be a compactification of a Hausdorff space X. Then X is
locally compact if and only if X is an open subset of X

In particular, if X is a locally compact Hausdorff space, then X is an open
subset of any of its compactifications.

Proof: Let (X,%) be a compactification of a Hausdorff space (X, 7). If X is an
open subset of X, then it follows from Corollary 2.68 that X is locally compact.
For the converse, assume that (X, 7) is locally compact and fix x € X. Choose
a compact T-neighborhood U of x and then pick an open 7-neighborhood V of x
such that V c U. Now select W € 7 such that V = W N X and note that

W=WnX=WnNnXcWnX=VcU=UcX.
This shows that x in a 7-interior point of X, so X € 7. |

2.71 Corollary  Only locally compact Hausdorff spaces can possibly be com-
pactified with a finite number of points.

The simplest compactification of a noncompact locally compact Hausdorff
space is its one-point compactification. It is obtained by appending a point co,
called the point at infinity, that does not belong to the space X, and we write X
for X U {co}. We leave the proof of the next theorem as an exercise.

2.72 Theorem (One-point compactification) Ler (X, 1) be a noncompact lo-
cally compact Hausdorff space and let X, = X U {co}, where co ¢ X. Then the
collection

Tow =TU{Xo \ K : K C X is compact)

is a topology on X.. Moreover, (X, Too) is a compact Hausdorff space and X is
an open dense subset of X, that is, X, is a compactification of X.
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The space (X, Tw) is called the Alexandroff one-point compactification of
X. As an example, the one-point compactification R, of the real numbers R is

homeomorphic to a circle. )
One such homeomorphism is described by map-
ping the “north pole” (0, 1) on the unit circleinR*>to R ﬁ\\
oo and every other point (x, y) on the circle is mapped 0
to the point on the x-axis where the ray through (x, y) UROO

from oo crosses the axis. See Figure 2.1. Mapmakers
have long known that the one-point compactification
of R? is the sphere. (Look up stereographic projection in a good dictionary.)

It is immediate from Theorem 2.72 that a subset F of X is closed in X, if and
only if F is compact. We also have the following observation.

Figure 2.1. R, is a circle.

2.73 Lemma For a subset A of X, the set A U {0} is closed in X if and only if
Ais closed in X.

Proof: To see this, just note that X, \ (A U {oo}) = X'\ A. |
The one-point compactification allows us to prove the following.

2.74 Corollary  In a locally compact Hausdorff space, nonempty compact sets
can be separated from disjoint nonempty closed sets by continuous functions. In
particular, every locally compact Hausdorff space is completely regular.

Proof: Let A be a nonempty compact subset and B a nonempty closed subset of a
locally compact Hausdorff space X satisfying ANB = @. Then A is a compact (and
hence closed) subset of the one-point compactification X, of X. Let C = BU {c0}.
Then C is a closed subset of X, (why?) and ANC = @.

Since X, is a compact Hausdorff space, it is normal by Theorem 2.48. Now
by Theorem 2.46 there exists a continuous function f: X, — [0, 1] satisfying
f(x)=1forall x € A and f(y) = 0 for all y € C. Clearly, the restriction of f to X
has the desired properties. |

2.75 Example (Topology of the extended reals) The extended real numbers
R* = [—o0, 0] are naturally topologized as a two-point compactification of the
space R of real numbers. A neighborhood base of oo is given by the collection
of intervals of the form (c, co] for ¢ € R, and the intervals [—co, ¢) constitute a
neighborhood base for —co. Note that a sequence {x,} in R* converges to oo if
for every n € N, there exits an ng such that for all n > ny we have x, > m. You
should verify that this is indeed a compact space, that it is first countable, and that
R is a dense subspace of R*. In fact by Theorem 3.40 it is metrizable. You should
further check that an extended real-valued function that is both upper and lower
semicontinuous is continuous with respect to this topology. |
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for each h € Cy(Y), where we use the notation I'u rather than I'() to denote the
value of I" at u € R@™, We claim that I' is a continuous function. To see this, let
{14} be a net in R and suppose y, — u pointwise on Cy,(X). This means that
Ue(f) = u(f) in R for each f in Cy(X). In particular, p,(h o g) — u(h o g) for
each h € Cyp(Y). Thus

Tpa(h) = po(h o g) — pu(h o g) = I'u(h),

or 'y, — Tu pointwise on Cy(Y). Thus I' is continuous.
Now notice that for x € X,

Fex(h) = ex(h o g) = h(g(x)) = egx(h)
for every h € Cp(Y), so identifying x with £x(x) and g(x) with ey(g(x)), we have
I'(x) = g(x).
That is, I' extends g. Using Theorem 2.27 (5), we see that

I'(BX) = I'(ex(X)) € I'(ex(X)) C ex(Y) = ey(Y).
Thus, I' is the unique continuous extension of g to all of SX. | |
There are a number of important corollaries.

2.80 Corollary (Uniqueness) Let K be a compactification of a completely
regular Hausdorff space X and suppose that whenever Y is a compact Hausdorff
space and g: X — Y is continuous, then g has a unique continuous extension from
K to Y. Then K is homeomorphic to BX.

Proof: Take Y = X in Theorem 2.79. | |

It is a good mental workout to imagine an element of X = s_(‘)?)' that does not
belong to &(X). For a real function g on Cy(X) to belong to £(X), there must be a
net {x,} in X with e,, — u pointwise on Cy,. That is, for each f € Cy,(X), we have
f(xq) = u(f). If {x,} converges, say to x, since € is an embedding, we conclude
i = e,, which belongs to &(X). Thus if u belongs to &(X) \ &(X) it cannot be the
case that the net {x,} converges. On the other hand, {x,} must have a limit point in
any compactification of X. Let xy be a limit point of {x,} in 8X. Then u acts like
an evaluation at xg.

Thus we can think of the Stone-Cech compactification SX as adding limit
points to all the nets in X in such a way that every f in Cy(X) extends continuously
to BX.'0 Indeed it is characterized by this extension property.

2.81 Corollary  Let K be a compactification of a completely regular Hausdor{f
space X and suppose that every bounded continuous real function on X has a
(unique) continuous extension from X to K. Then K is homeomorphic to gX.

10 professional topologists express this with the phrase “X is C*-embedded in SX."
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Proof: Given any f € Cy(X), let f denote its continuous extension to K. Since
the restriction of a continuous function on X is a bounded continuous function on
X, the mapping f - f from Cy(X) to C(K) is one-to-one and onto.

Define the mapping ¢ from K into R®X by ¢.(f) = f(x). Observe that ¢ is
continuous. Furthermore ¢ is one-to-one. To see this, suppose ¢, = ¢y, that is,
f(x) = f(y) for every f € Cp(X). Then f(x) = f(y) for every f € C(K). But C(K)
separates points of K (why?), so x = y. Consequently, ¢ is a homeomorphism
from K to ¢(K) (Theorem 2.36).

Treating X as a dense subset of K, observe that if x belongs to X, then ¢, is
simply the evaluation at x, so by definition, ¢(X) is the Stone-Cech compactifi-
cation of X. Since X is dense, ¢(X) C ¢(K) C M But ¢(K) is compact and
therefore closed. Thus ¢(K) = ¢(X), and we are done. |

We take this opportunity to describe the Stone—Cech compactification of the
space Qy = Q \ {w;} of countable ordinals. Recall that it is an open subset of the
compact Hausdorff space € of ordinals, and thus locally compact. We start with
the following peculiar property of continuous functions on €.

2.82 Lemma (Continuous functions on Qy) Any continuous real function on
Qo = Q\ {w} is constant on some tail of . That is, if f is a continuous real
Junction Qy, there is an ordinal x € Qg such that y > x implies f(y) = f(x).

Proof: We start by making the following observation. If f: Qy — R is contin-
uous, and a > b € R, then at least one of [f > a] or [f < b] is countable. To
see this, suppose that both are uncountable. Pick x; € € so that f(x;) > a.
Since the initial segment /(x;) is countable, there is some y; > x; with f(y;) < b.
Proceeding in this fashion we can construct two interlaced sequences satisfying
Xy < Yn < Xps1, f(xn) 2 a, and f(y,) < b for all n. By the Interlacing Lemma 1.15,
these sequences have a common least upper bound z, which must then be the limit
of each sequence. Since f is continuous, we must have f(z) = lim f(x,) > a and
f(z) = lim f(v,) < b, a contradiction. Therefore at least one set is countable.
Since € is uncountable, there is some (possibly negative) integer k, such that
the set [k < f < k + 1] is uncountable. Since [f > k] and [f < k + 1] are
uncountable, by the observation above we see that for each positive n, the sets
[f k- ,—"] and [f 2 k+ 1+ %] are countable. So except for countably many
x,we have k < f(x) < k+ 1. Let I} = [k, k + 1]. Now divide [, in half. Then
either [k < f < k+ ] or [k + 5 < f < k + 1] is uncountable. (Both sets may
be uncountable, for instance, if f is constant with value k + %.) Without loss of
generality, assume [k < f < k + 3] is uncountable, and set I; = [k, k + }]. Observe
that {x € Qp : f(x) ¢ I} is countable. Proceeding in this way we can find a nested
sequence {/,} of closed real intervals, with the length of I, being 2—',,, and having
the property that {x € Qg : f(x) ¢ I,,} is countable. Let a denote the unique point
in (2, .. Then {x € Q : f(x) # a} is countable. By Theorem 1.14 (6), this set
has a least upper bound b. Now pick any x > b. Then y > x implies f(y) =a. §
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We now come to the compactifications of €.

2.83 Theorem (Compactification of €2y) The compact Hausdorff space
can be identified with both the Stone—Cech compactification and the one-point
compactification of .

Proof: The identification with the one-point compactification is straightforward.
Now note that by Lemma 2.82, every continuous real function on £ has a unique
continuous extension to Q. Thus by Corollary 2.81, we can identify Q with the
Stone—Cech Compactification of Q. ]

There are some interesting observations that follow from this. Since Q is
compact, this means that every continuous real function on £, is bounded, even
though € is not compact. (The open cover {[1,x) : x € £} has no finite sub-
cover.) Since every initial segment of €, is countable, we also see that every
continuous real function on £ takes on only countably many values.

We observed above that f — f from Cp(X) into C(BX) is one-to-one and onto.
In addition, for f, g € Cy(X) it is easy to see that:

1. (f+g)=f+2 and (efy =afforalla €R;
2. (max{f,g)) = max{f,2] and (min{f,g)) = min{f,%}; and
3. Iflle = sup{lf(x)| : x € X} = sup{lf(x)| : x € BX} = ||f]|...

In Banach lattice terminology (see Definition 9.16), these properties are summa-
rized as follows.

2.84 Corollary  If X is a completely regular Hausdorff space, then the map-
ping f v f is a lattice isometry from Cy(X) onto C(BX). That is, under this
identification, Cp(X) = C(8X).

Getting ahead of ourselves a bit, we note that C,(X) is an AM-space with unit,
so by Theorem 9.32 it is lattice isometric to C(K) for some compact Hausdorff
space K. According to Corollary 2.84 the space K is just the Stone-Cech com-
pactification SX.

Unlike the one-point compactification, which is often very easy to describe,
the Stone—Cech compactification can be very difficult to get a handle on. For in-
stance, the Stone—Cech compactification of (0, 1] is not homeomorphic to [0, 1].
The real function sin(%) is bounded and continuous on (0, 1], but cannot be ex-
tended to a continuous function on [0, 1]. However, for discrete spaces, such as
the natural numbers N, there is an interesting interpretation of the Stone-Cech
compactification described in the next section.
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2.18 Stone-Cech compactification of a discrete set

In this section we characterize the Stone—-Cech compactification of a discrete
space. Any discrete space X is metrizable by the discrete metric, and hence com-
pletely regular and Hausdorff. Thus it has a Stone—Cech compactification SX.
Since every set is open in a discrete space, every such space X is extremally dis-
connected, that is, it has the property that the closure of every open set is itself
open. It turns out that SX inherits this property.

2.85 Theorem For an infinite discrete space X:

1. If A is a subset of X, then A is an open subset of BX, where the bar denotes
the closure in BX.

2. IfA,BC X satisfy ANB =@, thenANB = @.
3. The space BX is extremally disconnected.

Proof: (1 &2) LetA C X. PutC = X\ A and note that AN C = @. Define
f: X = [0,11by f(x) = 1if x € Aand f(x) = 0if x € C. Clearly, f is
continuous, so it extends uniquely to a continuous function f:BX — [0, 1]. From
AUC =X, we get AUC = BX. (Do you see why?) It follows that A = f~'({1})
and C = f~!({0}). Therefore, AN C = @, and A is open. Now if B C X satisfies
ANB=2,then BC C,s0ANB = @.

(3) Let V be an open subset of 8X. By (1), the set V N X is an open subset
of BX. Note that if x € V and W is an open neighborhood of x, then W NV # @,
soWNVNX#o,orxe VNX. Therefore, V = VN X, so that V is open. i

Let U denote the set of all ultrafilters on X. That is,
= {U : U is an ultrafilter on X}.

As we already know, ultrafilters on X are either fixed or free. Every x € X gives
rise to a unique fixed ultrafilter U, on X via the formula

U, ={AcCcX:xeA}

and every fixed ultrafilter on X is of the form U,.

Now let U be a free ultrafilter on X. Then U is a filter base in BX. Thus the
filter J it generates has a limit point in SX (Theorem 2.31). That is, we have
Nreg F = Nacy A # @. We claim that this intersection is a singleton. To see this,
assume that there exist x, y € Naey A With x # y. Then the collections

Bi={VNA:VeN,AelU} and B,={WnB:WeN,Bel},

are both filter bases on X. Since the filters they generate include the ultrafilter U,
it follows that B, U By c U. Since BX is a Hausdorff space, there exist V € N,
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and W € N, such that VN W = @. This implies @ € U, a contradiction. Hence,
Maeu A is a singleton.
Conversely, if x € BX \ X, then the collection

B={VNX:VeN,]} (%)

of subsets of X is a filter base on X. By Zorn’s Lemma there exists an ultrafilter
U on X including B. Then U is a free ultrafilter (on X) satisfying ey A = {x}.
(Why?) In other words, every point of X \ X is the limit point of a free ultrafilter
on X.

It turns out that every point of BX \ X is the limit point of exactly one free
ultrafilter on X. To see this, let U; and U, be two free ultrafilters on X such that
x € Maew,A = Naew,B- If A € Uy, then A € Up. Otherwise, A ¢ U, implies
X\ A € Uy, so (by Theorem 2.85) x € ANX\A = @, a contradiction. So
U, c U,. Similarly, U, c U,, and hence U; = U,.

For each point x € 8X \ X, we denote by U, the unique free ultrafilter on the
set X—whose filter base is given by (x)—having x as its unique limit point. Thus,
we have established a one-to-one mapping x — U, from 8X onto the set U of all
ultrafilters on X, where the points of X correspond to the fixed ultrafilters and the
points of X \ X to the free ultrafilters.

We can describe the topology on 8X in terms of : For each subset A of X, let

Uy ={Uell:Ae¢lU).
The collection A = {4 : A C X} enjoys the following properties.
a. Uy =U and Uy =@.
b. Wy NUg=Uyyp and Uy U Ug = Uynp.

From properties (a) and (b), we see that A is a base for a topology 7. This topology
is called the hull-kernel topology.'' The topological space (1, 7) is referred to as
the ultrafilter space of X.

The ultrafilter space is a Hausdorff space. To see this, let U; # U,. Then there
exists some A € U; with A ¢ U, (or vice versa), so B = X\ A ¢ U;. Hence
U, € Uy and Uy € Up, while Uy N U = Uyp = Uy = @.

And now we have the main result of this section: The ultrafilter space with the
hull-kernel topology is homeomorphic to the Stone—Cech compactification of X.

2.86 Theorem  For a discrete space X, the mapping x — U, is a homeomor-
phism from BX onto U. So X can be identified with the ultrafilter space U of X.

11 See, e.g., W. A. I. Luxemburg and A. C. Zaanen [235, Chapter 1] for an explanation of the name.
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292 Lemma  Let U be an open cover of a compact Hausdorff space X. Then
there is a locally finite family { fu}ueu of real functions such that:

1. fu: X — [0, 1] is continuous for each U.

2. fu vanishes on U°.

3. Yuveufu(x) =1forall x € X.

That is, { fulveu is a continuous locally finite partition of unity subordinated to .

Proof: For each x pick a neighborhood U, € U of x. By Theorem 2.48, the
space X is normal, so by Urysohn’s Lemma 2.46, for each x there is a continuous
real function g,: X — [0, 1] satisfying g, = 0 on US and g,(x) = 1. The set
Vi = {z € X : g«(z) > 0} is an open neighborhood of x, so {V, : x € X} is an open
cover of X. Thus there is a finite subcover {V,,,...,V, }. Observe that g, (z) > 0
for each z € V,, and vanishes outside U,,. Define g by g(z) = X7_, gx,(z) and
note that g(z) > 0 for every z € X. Replacing g,, by g, /g, we can assume that
21 8x(2) = 1 foreachz € X.

Finally, put fy = Xu, —v) &, (if {i : Uy, = U} = @, we let fyy = 0), and note
that the family {fy}yey of real functions satisfies the desired properties. | |

Theorem 3.22 below shows that metric spaces are paracompact.



Chapter 3

Metrizable spaces

In Chapter 2 we introduced topological spaces to handle problems of convergence
that metric spaces could not. Nevertheless, every sane person would rather work
with a metric space if they could. The reason is that the metric, a real-valued
function, allows us to analyze these spaces using what we know about the real
numbers. That is why they are so important in real analysis. We present here some
of the more arcane results of the theory of metric spaces. Most of this material
can be found in some form in K. Kuratowski’s [218] tome. Many of these results
are the work of Polish mathematicians in the 1920s and 1930s. For this reason, a
complete separable metric space is called a Polish space.

Here is a guide to the major points of interest in the territory covered in this
chapter. The distinguishing features of the theory of metric spaces, which are ab-
sent from the general theory of topology, are the notions of uniform continuity and
completeness. These are not topological notions, in that there may be two equiv-
alent metrics inducing the same topology, but they may have different uniformly
continuous functions, and one may be complete while the other isn’t. Neverthe-
less, if a topological space is completely metrizable, there are some topological
consequences. One of these is the Baire Category Theorem 3.47, which asserts
that in a completely metrizable space, the countable intersection of open dense sets
is dense. Complete metric spaces are also the home of the Contraction Mapping
Theorem 3.48, which is one of the fundamental theorems in the theory of dynamic
programming (see the book by N. Stokey, R. E. Lucas, and E. C. Prescott [322].)

Lemma 3.23 embeds an arbitrary metric space in the Banach space of its
bounded continuous real-valued functions. This result is useful in characterizing
complete metric spaces. By the way, all the Euclidean spaces are complete.

In a metric space, it is easy to show that second countability and separability
are equivalent (Lemma 3.4). The Urysohn Metrization Theorem 3.40 asserts that
every second countable regular Hausdorff is metrizable, and that this property
is equivalent to being embedded in the Hilbert cube. This leads to a number of
properties of separable metrizable spaces. Another useful property is that in metric
spaces, a set is compact if and only if it is sequentially compact (Theorem 3.28).

We also introduce the compact metric space called the Cantor set. It can be
viewed as a subset of the unit interval, but every compact metric space is the image
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of the Cantor set under a continuous function. In the same vein, we study the Baire
space of sequences of natural numbers. It is a Polish space, and every Polish space
is a continuous image of it. It is also the basis for the study of analytic sets, which
we describe in Section 12.5.

We also discuss topologies for spaces of subsets of a metric space. The most
straightforward way to topologize the collection of nonempty closed subsets of a
metric space is through the Hausdorff metric. Unfortunately, this technique is not
topological. That is, the topology on the space of closed subsets may be different
for different compatible metrics on the underlying space (Example 3.86). How-
ever, restricted to the compact subsets, the topology is independent of the com-
patible metric (Theorem 3.91). Since every locally compact separable metrizable
space has a metrizable compactification (Corollary 3.45), for this class of spaces
there is a nice topological characterization of the topology of closed convergence
on the space of closed subsets (Corollary 3.95). Once we have a general method
for topologizing subsets, our horizons are greatly expanded. For example, since
binary relations are just subsets of Cartesian products, they can be topologized in
a useful way; see A. Mas-Colell [240]. As another example, F. H. Page [268] uses
a space of sets in order to prove the existence of an optimal incentive contract.

Finally, we conclude with a discussion of the space C(X,Y) of continuous
functions from a compact space into a metrizable space under the topology of uni-
form convergence. It turns out that this topology depends only on the topology of
Y and not on any particular metric (Lemma 3.98). The space C(X, Y) is complete
if Y is complete, and separable if Y is separable; see Lemmas 3.97 and 3.99.

3.1 Metric spaces
Recall the following definition from Chapter 2.

3.1 Definition A metric (or distance) on a set X is a functiond: X x X - R
satisfying the following four properties:

1. Positivity: d(x,y) = 0 and d(x, x) = 0 for all x,y € X.

b4
e %
2. Discrimination: d(x,y) = 0 implies x = y. A

j o S——
3. Symmetry: d(x,y) = d(y, x) forall x,y € X. d(x,y)

4. The Triangle Inequality: d(x,y) < d(x,z) + d(z,y) for all x,y,z € X.

A semimetric on X is a function d: X x X — R satisfying (1), (3), and (4).
Obviously, every metric is a semimetric. If d is a metric on a set X, then the pair
(X, d) is called a metric space, and similarly if d is a semimetric, then (X,d) is a
semimetric space.
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If d is a semimetric, then the binary relation defined by x ~ y if d(x,y) = O is
an equivalence relation, and d defines a metric d on the set of equivalence classes
by 3([x], [y]) = d(x,y). For this reason we deal mostly with metric spaces. Be
aware that when we define a concept for metric spaces, there is nearly always a
corresponding notion for semimetric spaces, even if we do not explicitly mention
it. The next definition is a good example.

For a nonempty subset A of a metric space (X, d) its diameter is defined by

diam A = sup{d(x,y) : x,y € A}.

A set A is bounded if diamA < oo, while A is unbounded if diamA = oco. If
diam X < oo, then X is bounded and d is called a bounded metric. Similar
terminology applies to semimetrics.

In a semimetric space (X, d) the open ball centered at a point x € X with radius
r > 0 is the subset B,(x) of X defined by

B, (x)={ye X :d(xy) <r}.

The closed ball centered at a point x € X with radius r > 0 is the subset C,(x) of
X defined by
C(x) = yeX :dxy <rl.

3.2 Definition Let (X, d) be a semimetric space. A subset A of X is d-open (or
simply open) if for each a € A there exists some r > 0 (depending on a) such that
B.(a) C A.

You should verify that the collection of subsets
74 ={A C X : A is d-open}

is a topology on X, called the topology generated or induced by 4. When d is
a metric, we call 7, the metric topology on (X, d). A topological space (X, 1) is
metrizable if the topology T is generated by some metric. A metric generating
a topology is called compatible or consistent with the topology. Two metrics
generating the same topology are equivalent.

We have already seen a number of examples of metrizable spaces and com-
patible metrics in Example 2.2. There are always several metrics on any given
set that generate the same topology. Let (X,d) be a metric space. Then 2d
is also a metric generating the same topology. More interesting is the metric
J(x, y) = min{d(x, y), 1}. It too generates the same open sets as d, but X is bounded
under d. In fact, notice that the d-diameter of X is less than or equal to 1. A po-
tential drawback of d is that the families of balls of radius 7 around x are different
for d and d. (For instance, {x € R : |x| < 2} is a ball of radius 2 around O in the
usual metric on R, but in the truncated metric it is not a ball of any finite radius.)
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Lemma 3.6 below describes a bounded metric that avoids this criticism. The point
of this lemma is that for most anything topological that we want to do with a met-
ric space, it is no restriction to assume that its metric takes on values only in the
unit interval [0, 1].

The following lemma summarizes some of the basic properties of metric and
semimetric topologies. The proofs are straightforward applications of the defini-
tions. You should be able to do them without looking at the hints.

3.3 Lemma (Semimetric topology) Let (X, d) be a semimetric space. Then:
1. The topology T4 is Hausdorff if and only if d is a metric.
2. A sequence {x,} in X satisfies x, < x if and only if d(x,, x) — 0.
3. Every open ball is an open set.
4. The topology T4 is first countable.
5

. A point x belongs to the closure A of a set A if and only if there exists some
sequence {x,} in A with x,, — x.

o

A closed ball is a closed set.

7. The closure of the open ball B,(x) is included in the closed ball C.(x). But
the inclusion may also be proper.

8. If (X, d,) and (Y, d>) are semimetric spaces, the product topology on X x Y
is generated by the semimetric

p((x, ), (u,v)) = dy(x,u) + da(y, v).
It is also generated by max{d,(x, u), d2(y,v)} and (d;(x, u)* + d(y, v)z)”z.
9. For any four points u, v, x,y, the semimetric obeys

|d(x,y) = d(u,v)| < d(x,u) +d(y,v).

10. The real function d: X x X — R is jointly continuous.

Hints: The proofs of (1) and (2) are straightforward, and (5) follows from (4).

(3) Lety belong to the open ball B,(x). Put & = r —d(x,y) > 0. If z € B.(y),
then the triangle inequality implies d(x,z) < d(x,y) + d(y,z) < d(x,y) +&=r. So
B.(y) € B,(x), which means that B,(x) is a 74-open set.

(4) The countable family of open neighborhoods {B)/,(x) : n € N} is a base
for the neighborhood system at x.

(6) Suppose y ¢ C,(x). Then &€ = d(x,y) — r > 0, so by the triangle inequal-
ity, B¢(y) is an open neighborhood of y disjoint from C,(x). This shows that the
complement of C,(x) is open.
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A topological space X is completely metrizable if there is a consistent metric
d for which (X, d) is complete. A separable topological space that is completely
metrizable is called a Polish space. Such a topology is called a Polish topology.
Here are some important examples of complete metric spaces.

e  The space R" with the Euclidean metric d(x,y) = [XL,(x; — y,v)z]”2 isa
complete metric space.

e  The discrete metric is always complete.

e Let Y be a nonempty subset of a complete metric space (X, d). Then (Y, d|y)
is a complete metric space if and only if Y is a closed subset of X.

e If X is a nonempty set, then the vector space B(X) of all bounded real func-
tions on X is a complete metric space under the uniform metric defined by

d(f.g) = SU);; |f(x) — g(x)].

It is clear that a sequence {f,} in B(X) is d-convergent to f € B(X) if and only if
it converges uniformly to f. First let us verify that d is indeed a metric on B(X).
Clearly, d satisfies the positivity, discrimination, and symmetry properties of a
metric.

To see that d satisfies the triangle inequality, note that if f, g, € B(X), then for
each x € X we have

[f(x) = g(x)| < |f(x) = h(x)] + |h(x) — g(x)] < d(f, h) + d(h, g).

Therefore, d(f, g) = sup,ex |f(x) — g(x)| < d(f,h) + d(h,g).
Now we establish that (B(X), d) is complete. To this end, let {f,} be a d-Cauchy
sequence in B(X). This means that for each £ > 0 there exists some & such that

[fn(x) = fn(O| < d(frs fn) < & (%)

for all x € X and all n,m > k. In particular, {f,(x)} is a Cauchy sequence of real
numbers for each x € X. Let lim f,(x) = f(x) € R for each x € X. To finish
the proof we need to show that f is bounded and so belongs to B(X), and that
d(f,, f) — 0. Pick some M > 0 such that | fi(x)| < M for each x € X, and then use
(%) to see that

IFGOl < lim [fn(x) = fiCOl + (0l < & + M
for each x € X, so f belongs to B(X). Now another glance at (%) yields
[fa(x) = fOI = Lim 1£,(x) = fu(0)l < &

for all n > k. Hence d(f,, f) = sup,x |fu(x) — f(x)| < & for all n > k. This shows
that (B(X), d) is a complete metric space.
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Proof: Since {A,} has vanishing diameter and (., A, is nonempty, the inter-
section (-, A, must be some singleton {x}. Let & > 0 be given. Since f is
continuous, there is some & > 0 such that d(z, x) < é implies p(f(z), f(x)) < &.
Also there is some ng such that for all n > ny, if z € A, then d(z, x) < §. Thus
for n > ng, the image f(A,) is included in the ball of p-radius & around f(x), so
p-diam f(A,) < 2&. This shows that {f(A,)} has vanishing p-diameter—and also

that M2, f(An) = {f(x)}. i

Note that the hypothesis that (), A, is nonempty is necessary. For instance,
consider X = (0,1] and ¥ = R with their usual metrics, let A, = (0, %], and let
f(x) = sin % Then for each n, the image f(A,) = [—1, 1], which does not have
vanishing diameter.

3.3 Uniformly continuous functions

Some aspects of metric spaces are not topological, but depend on the particular
compatible metric. These properties include its uniformly continuous functions
and Cauchy sequences. A function f: (X,d) — (Y, p) between two metric spaces
is uniformly continuous if for each £ > 0 there exists some 6 > 0 (depending only
on &) such that d(x,y) < & implies p(f(x), f()) < &. Any uniformly continuous
function is obviously continuous. An important property of uniformly continuous
functions is that they map Cauchy sequences into Cauchy sequences. (The proof
of this is a simple exercise.)

A function f: (X,d) — (Y, p) between metric spaces is Lipschitz continuous
if there is some real number ¢ such that for every x and y in X,

p(f(x), f) < cd(x, ).

The number c is called a Lipschitz constant for f. Clearly every Lipschitz con-
tinuous function is uniformly continuous.

The set X x X has a natural metric p given by p((x, y), (1, v)) = d(x, u)+d(y, v).
The metric d can be viewed as a function from the metric space (X X X, p) to R.
Viewed this way, d is Lipschitz continuous with Lipschitz constant 1 (and hence
it is also a uniformly continuous function). This fact, which follows immediately
from Property (9) of Lemma 3.3, may be used throughout this book without any
specific reference.

An isometry between metric spaces (X, d) and (¥, p) is a one-to-one function
¢ mapping X into Y satisfying

d(x,y) = p(e(x), ¢())

for all x, y € X. If in addition ¢ is surjective, then (X, d) and (¥, p) are isometric. If
two metric spaces are isometric, then any property expressible in terms of metrics
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holds in one if and only if it holds in the other. Notice that isometries are uniformly
continuous, indeed Lipschitz continuous.

Given a metric space (X, d), denote by U,(X) or more simply, Uy, the collec-
tion of all bounded d-uniformly continuous real-valued functions on X. The set
U, is a function space (recall Definition 1.1) that includes the constant functions.

In general, two different equivalent metrics determine different classes of uni-
formly continuous functions. For example, x i is not uniformly continuous on
(0, 1) under the usual metric, but it is uniformly continuous under the equivalent
metric d defined by d(x, y) = H - H

The example just given is a particular instance of the following lemma on
creating new metric spaces out of old ones. The proof of the lemma is a straight-
forward application of the definitions and is left as an exercise.

3.9 Lemma Let ¢: (X,d) — Y be one-to-one and onto. Then ¢ induces a
metric p on Y by p(x,y) = d(¢”'(x),¢”'(y)). Furthermore, ¢: (X,d) = (Y.p) is
an isometry. The metric p is also known as d o ¢~'.

On the other hand, if ¢: Y — (X, d), then ¢ induces a semimetric p on Y by
p(x,y) = d(p(x), (). If ¢ is one-to-one, then it is an isometry onto its range.

The bounded uniformly continuous functions form a complete subspace of the
space of bounded continuous functions.

3.10 Lemma  If X is metrizable and p is a compatible metric on X, then the
vector space U,(X) of all bounded p-uniformly continuous real functions on X is
a closed subspace of Co(X). Thus U,(X) equipped with the uniform metric is a
complete metric space in its own right.

The next theorem asserts that every uniformly continuous partial function can
be uniquely extended to a uniformly continuous function on the closure of its
domain simply by taking limits. The range space is assumed to be complete.

3.11 Lemma (Uniformly continuous extensions) Letr A be a nonempty subset
of (X,d), and let ¢: (A,d) — (Y, p) be uniformly continuous. Assume that (Y, p) is
complete. Then ¢ has a unique uniformly continuous extension § to the closure A
of A. Moreover, the extension ¢: A—>VYis given by

$(x) = lim (x,)

for any {x,} C A satisfying x, — x.
In particular, if Y = R, then ||¢|lc = ||@]lco-

'In the terminology of Section 9.5, U,(X) is a closed Riesz subspace of Cy(X), and is also an
AM-space with unit the constant function one.
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Proof: Let x € A and pick a sequence {x,} in A converging to x. Since {x,}
converges, it is d-Cauchy. Since ¢ is uniformly continuous, {¢(x,)} is p-Cauchy.
Since Y is p-complete, there is some y € Y such that ¢(x,) — y.

This y is independent of the particular sequence {x,}. To see this, let {z,} be an-
other sequence in A converging to x. Interlace the terms of {z,} and {x,} to form the
sequence {z1, x1,22, X2, . ..} converging to x. Then {¢(z1), ¢(x1), ¢(z2), p(x2), ...} is
again p-Cauchy and since {¢(x,)} is a subsequence, the limit is again y. The latter
implies that ¢(z,) — y. Thus, setting ¢(x) = y is well defined.

To see that ¢ is uniformly continuous on A, let £ > 0 be given and pick § > 0 so0
that if x,y € A and d(x,y) < 6, then p(¢(x), ¢(y)) < &. Now suppose x,y € A and
d(x,y) < é. Pick sequences {x,} and {y,} in A converging to x and y respectively.
From |d(xy, yy) — d(x, y)| € d(x,, X) + d(yn, ¥), wWe see that d(x,, y,) — d(x,¥), so
eventually d(x,,y,) < 6. Thus p(¢(x,), ¢(v»)) < £ eventually, so

P(@(), @) = lim p(e(xn), p(yn) < &
The uniqueness of the extension is obvious. |

It is interesting to note that with an appropriate change of the metric of the
domain of a continuous function between metric spaces the function becomes
Lipschitz continuous.

3.12 Lemma If f: (X,d) — (Y,p) is a continuous function between metric
spaces, then there exists an equivalent metric dy on X such that f: (X,dy) — (Y,p)
is Lipschitz (and hence uniformly) continuous.

More generally, if F is a countable family of continuous functions from (X, d)
to (Y, p), then there exists an equivalent metric d, on X and an equivalent metric
p1 on Y such that for each f € F the function f: (X,d2) — (Y,py) is Lipschitz
(and hence uniformly) continuous.

Proof: The metric d, is defined by d,(x,y) = d(x,y) + p(f(x), f(¥)). The reader
should verify that d, is indeed a metric on X such that d,(x,,x) — 0 holds in
X if and only if d(x,,x) — 0. This shows that the metric d; is equivalent to d.
Now notice that the inequality p(f(x), f(¥)) < d)(x, y) guarantees that the function
f:(X,dy) — (Y, p) is Lipschitz continuous.

The general case can be established in a similar manner. To see this, consider
a countable set F = {fi, f>,...} of continuous functions from (X, d) to (¥, p). Next,

introduce the equivalent metric p; on Y by pi(u,v) = 1:(91:'{')'
define the functiond,: X X X — R by

Subsequently,

dr(xy) =d(xy) + Y, 3010 i)
n=1

and note that d> is a metric on X that is equivalent to d. In addition, for each n
we have the inequality p;(f,(x), fo(y)) < 2"d>(x, y). This shows that each function
fn: (X,d2) = (Y, py) is Lipschitz continuous. [ |
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3.4 Semicontinuous functions on metric spaces

On metric spaces, upper and lower semicontinuous functions are pointwise limits
of monotone sequences of Lipschitz continuous functions.

3.13 Theorem Let f: (X,d) — R be bounded below. Then f is lower semicon-
tinuous if and only if it is the pointwise limit of an increasing sequence of Lipschitz
continuous functions.

Similarly, if g: (X,d) — R is bounded above, then g is upper semicontinu-
ous if and only if it is the pointwise limit of a decreasing sequence of Lipschitz
continuous functions.

Proof: We give a constructive proof of the first part. The second part follows
from the first applied to — f. Let f: X — R be lower semicontinuous and bounded
from below. For each n, define f,,: X — R by

fo(x) = inf{f(y) + nd(x,y) : y € X}.
Clearly, f,(x) < fn1(x) < f(x) for each x. Moreover, observe that
'.ﬁ!(x) - ﬁT(Z)F < nd(xv Z)v

which shows that each f; is Lipschitz continuous.
Let f,(x) T h(x) < f(x) for each x. Now fix x and let £ > 0. For each n pick
some y, € X with

SOn) < fyn) + nd(x,y,) < fulx) +&. (%)

If f(u) > M > —oo for all u € X, then it follows from () that

L) +e-fOn) _ f)+e-M

< d(x,y,) €
0 <d(x,yn) p "

for each n, and this shows that y, — x. Using the lower semicontinuity of f and
the inequality f(y,) < f,(x) + &, we see that

S(x) < liminf f(y,) < im[f,(x) + €] = h(x) + &

for each £ > 0. So f(x) < h(x), and hence f(x) = h(x) = lim,_c f(x).
The converse follows immediately from Lemma 2.41. |

3.14 Corollary  Let (X, d) be a metric space, and let F be a closed subset of X.
Then there is a sequence | f,} of Lipschitz continuous functions taking values in
[0, 1] satisfying fu(x) | xF(x) for all x € X.
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Proof: Clearly Ng(A) N4(A). For the reverse inclusion, let y € Ng(A). Then
there is some x € A (so d(x,A) = 0) satisfying d(x,y) < &. By equation (%) in the
proof of Theorem 3.16, we have d(y, A) < &, or in other words y € Ng(A). [ |

3.19 Corollary  In a metrizable space, every closed set is a G5, and every open
setisan F .

Proof: Let F be a closed subset of (X,d), and put G, = {x € X : d(x, F) < 1/n}.
Since the distance function is continuous, G, is open, and clearly F = 7, G,.
Thus F is a Gs. Since the complement of an open set is closed, de Morgan’s laws
imply that every open set is an F,,. |

We can now show that a metric space is perfectly normal.

3.20 Lemma  If (X,d) is a metric space and A and B are disjoint nonempty
closed sets, then the continuous function f: X — [0, 1], defined by

d(x,A)

& = v de B

satisfies f~1(0) = A and f~'(1) = B.
Moreover, if inf{d(x,y) : x € Aandy € B} > 0, then the function f is Lipschitz
continuous, and hence d-uniformly continuous.

Proof: The first assertion is obvious. For the second, assume that there exists
some ¢ > 0 such that d(x,y) > é for all x € A and all y € B. Then, for any z € X,
ac€ A,andb e B, 6 <d(a,b) <d(az)+d(zb),sod(z,A) +d(z B) =6 >0 for
each z € X. Now use the inequalities

N d(x,A) _doLA)
FO - fON = | T de® ~ o) + do.B)
_ ld(y,A) + d(y, B)ld(x,A) — [d(x,A) + d(x, B)]d(y, A)|
- [d(x, A) + d(x, B))[d(y, A) + d(y, B))
_ ld(x,A) —d(y,A)ld(x, B) + [d(y, B) — d(x, B)]d(x, A)|
- [d(x, A) + d(x, B)][d(y, A) + d(y. B)]
[d(x, B) + d(x, A)ld(x, y) < dxy)
T [d(x,A) + d(x, B)[d(y,A) +d(y,B)] &
to see that f is indeed Lipschitz continuous. |

3.21 Corollary  Every metrizable space is perfectly normal.
Using distance functions we can establish the following useful result.

3.22 Theorem Every metrizable space is paracompact.
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Nowlet j>i,x€ U;? andy e U!. Picku € S'} and v € §7 so that d(x, u) < 1/27+2
and d(y,v) < 1/2"*? and note that from (5) we get

2—1,‘ < d(u,v) < d(u,x) +d(x,y) + d(y,v) <d(x,y) + %

This implies:

Ifi# j,xeUjandy € U, thend(x,y) > 1/2"". (6)

Next, for each fixed n consider the family of closed sets {C"};c;. We claim that

for each x € X the open ball B = B__(x) intersects at most one of the sets {C} }ie;.

T
To see this, assume that for i # j we have y € BN (] and z € BN C’. Now a
glance at (6) yields

1

2n+1

a contradiction. This implies (how?) that for each n the set C,, = [ J;g; C}' is closed.
Finally, for each n and i € I define the sets:

<d(y,7) <d(y,®) +d(X,2) < —= + —— = —

n+2 Qn+2 n+l?

n-1
W!'=vu! and W/ =U'\|JCy ifn>1.
k=1
Clearly, each W' is an open set. We claim that the family of open sets {W}, henxs
is an open locally finite refinement cover of {V;},c;. We establish this claim by
steps.

Step I: {Wi"}(,,_,-,eNx, is a refinement of {V;}ics.
To see this, note that W' € U = N,,42(S7) C Nu(ST) € N(En(Vi) C Vi
Step II: {W!}nnenxs covers X, that is, X = |2, Uier W'

Fix x € X. From §! C C! and (4), we see that the family {C} nenx:
covers X. Put k = min{n € N : x € C} for some i}. Assume that x ¢ W,.‘. If
xECf‘ (e Uf‘, then k > 1 and x ¢ C, for each n < k. Hence x € W,.".

Step IIL: {W7}u.nenxs is locally finite.

Fix x € X. According to (4) there exists some n and iy € I such that x € § f; .
Now note that

B jan3(x) C Npia(S]) € Npu3(S7) = C, € C.

This implies B;/yn3(x) N W¥ = @ forallk > nand alli € I.

Next, fix 1 < k < n and assume that B, p.3(x) N U:‘ + @ for some i € I.
Then By pn3(x) N Uf‘ = @ for all j # i. To see this, assume that for i # j there
exist y € Bypws(x) N Uf and z € Byjpes(x) N U%. But then from (6) we get
1721 < d(y,z) < d(y,x) +d(x,z) < 1/2"*3, which is impossible. This shows
that By ,»-3(x) intersects at most n of the {Uf‘ :1<k<nandie€l. It follows
that Bj ,»3(x) intersects at most n of the sets Wf‘ . |
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3.6 Embeddings and completions

An isometric embedding of the metric space (X, d) in the metric space (¥, p) is
simply an isometry f: X - Y.

3.23 Embedding Lemma Every metric space can be isometrically embedded
in its space of bounded uniformly continuous real functions.

Proof: Let (X, d) be a metric space. Fix an arbitrary point a € X as a reference,
and for each x define the function 4, by

0:(y) = d(x,y) — d(a,y).
For the uniform continuity of 8, note that
0:(y) — 6:(2)| < ld(x, y) = d(x,2)| + |d(a,y) - d(a, 2)| < 2d(y, 2).

To see that 8, is bounded, use the inequality d(x,y) < d(x,a) + d(a,y) and the
definition of the function 6, to see that 6,(y) < d(x,a). Likewise the inequality
d(a,y) < d(a, x) +d(x,y) implies —0,(y) = d(a, y)—d(x,y) < d(x,a). Furthermore,
these inequalities hold exactly for y = a and y = x respectively. Consequently we
have ||6.ll = sup, |6:(y)| = d(x, a).

Next, observe that

[6:(y) = 6.(»)| = |d(x,y) —d(a,y) - [d(z,y) — d(a, y)]|
= |d(x,y) =d(z,y)| < d(x,2)

for all y € X. Also |0,(z) — 8.(z)| = d(x, z). Thus,

”91 - gz”oo = SUP ng(y) - 9:(y)| = d(x, Z)
yeX

for all x,z € X. That is, # is an isometry. | |

Note that for the special case when d is a bounded metric on X, the mapping
x + d(x,-) is an isometry from X into Cp(X).

A complete metric space (Y, p) is the completion of the metric space (X, d) if
there exists an isometry ¢: (X,d) — (Y, p) satisfying m = Y. It is customary
to identify X with ¢(X) and consider X to be a dense subset of Y. The next result
justifies calling Y the completion of X rather than a completion of X.

3.24 Theorem Every metric space has a completion. It is unique up to isometry,
that is, any two completions are isometric.



3.7. Compactness and completeness 85

Proof: Since Cy(X) is a complete metric space in the metric induced by its norm,
Lemma 3.23 shows that a completion exists, namely 8(X).

To prove the uniqueness of the completion up to isometry, let both (¥1,p;)
and (Y, p2) be completions of (X, d) with isometries ¢;: (X,d) — (Y;,pi). Then
the function ¢ = ¢; 0 ;' : (¢2(X), p2) = (@1(X), p1) is an isometry and hence is
uniformly continuous. By Lemma 3.11, ¢ has a uniformly continuous extension
@ to the closure ¥> of ¢>(X). Routine arguments show that ¢: (Y2, 02) — (Y1,p01)
is a surjective isometry. That is, (Y2, p2) and (Y, p) are isometric. [ |

3.25 Theorem The completion of a separable metric space is separable.

Proof: Let Y be the completion of a metric space X and let ¢: X — Y be an
isometry such that @(X) = Y. If A is a countable dense subset of X, then (in view
of Theorem 2.27 (5)) the countable subset (A) of Y satisfies ¢(X) = ¢(A) C @(A),
50 Y = o(X) = ¢(A). | |

3.7 Compactness and completeness

A subset A of a metric space X is totally bounded if for each £ > 0 there exists a
finite subset {x,...,x,} C X that is e-dense in A, meaning that the collection of
e-balls B.(x;) covers A. Note that if a set is totally bounded, then so are its closure
and any subset. Any metric for which the space X is totally bounded is also called
a totally bounded metric.

Every compact metric space is obviously totally bounded. It is easy to see that
a totally bounded metric space is separable.

3.26 Lemma  Every totally bounded metric space is separable.

Proof: If (X, d) is totally bounded, then for each n pick a finite subset F, of X
such that X = [J,cr, B1/n(x), and then note that the set F = J;_, F, is countable
and dense. |

This implies that every compact metric space is separable, but that is not nec-
essarily true of nonmetrizable compact topological spaces. (Can you think of a
nonseparable compact topological space?) For the next result, recall that a topo-
logical space is sequentially compact if every sequence has a convergent subse-
quence.

3.27 Lemma Let (X,d) be a sequentially compact metric space, and let {V}ie;
be an open cover of X. Then there exists some § > 0, called the Lebesgue number
of the cover, such that for each x € X we have Bs(x) C V; for at least one i.



86 Chapter 3. Metrizable spaces

Proof: Assume by way of contradiction that no such ¢ exists. Then for each n
there exists some x, € X satisfying By/n(x,) N Vi # @ foreachi € I. If x is
the limit point of some subsequence of {x,}, then it is easy to see (how?) that
x € Nier V¥ = (Uier Vi)° = @, a contradiction. | |

The next two results sharpen the relationship between compactness and total
boundedness.

3.28 Theorem (Compactness of metric spaces) For a metric space the fol-
lowing are equivalent:

1. The space is compact.
2. The space is complete and totally bounded.

3. The space is sequentially compact. That is, every sequence has a convergent
subsequence.

Proof: Let (X, d) be a metric space.

(1) = (2) Since X = |J,cx Be(x), there exist xy,...,x; in X such that
X = Ule Bg(x;). That is, X is totally bounded. To see that X is also complete,
let {x,} be a Cauchy sequence in X, and let & > 0 be given. Pick ngy so that
d(xp, X,y) < € whenever n,m > ny. By Theorem 2.31, the sequence {x,} has a
limit point, say x. We claim that x, — x. Indeed, if we choose k > ny such that
d(x;, x) < g, then for each n > ng, we have

d(x,, x) < d(x,, x¢) + d(x, x) < €+ & = 2¢,

proving x, — x. That is, X is also complete.

(2) = (3) Fixasequence {x,)}in X. Since X is totally bounded, there must
be infinitely many terms of the sequence in a closed ball of radius 1/2. (Why?)
This ball is totally bounded too, so it must also include a closed set of diameter
less than ?Ii that contains infinitely many terms of the sequence. By induction,
construct a decreasing sequence of closed sets with vanishing diameter, each of
which contains infinitely many terms of the sequence. Use this and the Cantor
Intersection Theorem 3.7 to construct a convergent subsequence.

(3) = (1) By Lemma 3.27, there is some & > 0 such that for each x € X
we have Bs(x) c V; for at least one i. We claim that there exist xj,...,x; € X
such that X = Uf.;l Bs(x;). To see this, assume by way of contradiction that this
is not the case. Fix y; € X. Since the claim is false, there exists some y; € X
such that d(y;,y2) > 6. Similarly, since X # Bs(y1) U Bs(y»), there exists some
¥3 € X such that d(y;,y3) > & and d(y,,y3) = 6. So by an inductive argument,
there exists a sequence {y,} in X satisfying d(y,, yn) > 6 for n # m. However,
any such sequence {y,} cannot have any convergent subsequence, contrary to our
hypothesis. Hence there exist x|, ..., x; € X such that X = Uf:l Bs(x)).
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The next three results deal with subsets of metric spaces that are completely
metrizable given their induced topologies.

3.33 Lemma  If the relative topology of a subset of a metric space is completely
metrizable, then the subset is a Gs.

« Proof: Let X be a subset of a metric space (Y, d) such that X admits a metric p
that is consistent with the relative topology on X and for which (X, p) is complete.

Heuristically, X is N, {y € ¥ : d(»,X) < 1/n}n{y € Y : p(y,X) < 1/n}. But
this makes no sense, since p(y, x) is not defined for y € ¥ \ X. So what we need is
a way to include points in ¥ that would be both d-close and p-close to X if p were
defined on Y. Recall that any open set U in X is the intersection of X with an open
subset V of Y. The idea is to consider open sets V where V N X is p-small. To this
end, for each n let

Y, = {y € Y : there is an open set V in Y with y € V and p-diam (X N V) < 1/n},

and put
G,={yeY:dy,X)<1/njN Y.

First, we claim that each G, is an open subset of Y. Indeed, if y € G,, then
pick the open subset V of ¥ with y € V and p-diam (X N V) < % and note that the
open neighborhood W = VNn{zeY :d(z,X) < %} of y in Y satisfies W c G,,. To
complete the proof, we shall show that X = (2, G,.

First let x belong to X and fix n. Then U = {y € X : p(y, x) < 1/3n} is an open
subset of X. So there exists an open subset V of Y with U = X N V. It follows that
x € V and p-diam (X N V) < 1/n, so x € G,.. Since n is arbitrary, X c ("2, G,.

For the reverse inclusion, let y € [,_; G,. Thend(y,X) = 0,s0y € X. In
particular, there exists a sequence {x,} in X such that x, — y. For each n pick an
open subset V, of ¥ with y € V, and p-diam(X N V,) < 1/n. Since X N V,, is an
open subset of X, it follows that for each n there exists some &, such that x,, € V,
for all m > k,. From p-diam(X NV,) < 1/n, we see that {x,} is a p-Cauchy
sequence, and since (X, p) is complete, {x,} is p-convergent to some z € X. It
follows that y = z € X, so X = (N2, Gy, as desired. i

For complete metric spaces the converse of Lemma 3.33 is also true.

3.34 Alexandroff’s Lemma Every Gs in a complete metric space is completely
metrizable.

Proof: Let (Y, d) be a complete metric space, and assume that X # Y is a G5. (The
case X = Y is trivial.) Then there exists a sequence {G,} of open sets satisfying
G, # Yforeachnand X = N2, G,. (We want G, # Y sothat G;, = Y \ G, is
nonempty, so 0 < d(x,G},) < oo for all x € X.) Next, define the metric p on X by

1 1
dx.G)  d.Golf

p(x,y) =d(x,y) + Z min{%,
n=1
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