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Introduction

Without calculus, we wouldnt have cell phones, computers, or mi-
crowave ovens. We wouldn’t have radio. Or television. Or ultrasound
for expectant mothers, or GPS for lost travelers. We wouldn’t have
split the atom, unraveled the human genome, or put astronauts on
the moon. We might not even have the Declaration of Independence.

It’s a curiosity of history that the world was changed forever by
an arcane branch of mathematics. How could it be that a theory
originally about shapes ultimately reshaped civilization?

The essence of the answer lies in a quip that the physicist Rich-
ard Feynman made to the novelist Herman Wouk when they were
discussing the Manhattan Project. Wouk was doing research for a big
novel he hoped to write about World War 11, and he went to Caltech
to interview physicists who had worked on the bomb, one of whom
was Feynman. After the interview, as they were parting, Feynman
asked Wouk if he knew calculus. No, Wouk admitted, he didn’t. “You
had better learn it,” said Feynman. “It’s the language God talks.”

For reasons nobody understands, the universe is deeply math-
ematical. Maybe God made it that way. Or maybe it’s the only way a
universe with us in it could be, because nonmathematical universes
can't harbor life intelligent enough to ask the question. In any case,
it's a mysterious and marvelous fact that our universe obeys laws
of nature that always turn out to be expressible in the language of
calculus as sentences called differential equations. Such equations
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describe the difference between something right now and the same
thing an instant later or between something right here and the same
thing infinitesimally close by. The details differ depending on what
part of nature we're talking about, but the structure of the laws is
always the same. To put this awesome assertion another way, there
seems to be something like a code to the universe, an operating sys-
tem that animates everything from moment to moment and place to
place. Calculus taps into this order and expresses it.

Isaac Newton was the first to glimpse this secret of the universe.
He found that the orbits of the planets, the rhythm of the tides,
and the trajectories of cannonballs could all be described, explained,
and predicted by a small set of differential equations. Today we call
them Newton’s laws of motion and gravity. Ever since Newton, we
have found that the same pattern holds whenever we uncover a new
part of the universe. From the old elements of earth, air, fire, and
water to the latest in electrons, quarks, black holes, and superstrings,
every inanimate thing in the universe bends to the rule of differen-
tial equations. I bet this is what Feynman meant when he said that
calculus is the language God talks. If anything deserves to be called
the secret of the universe, calculus is it.

By inadvertently discovering this strange language, first in a
corner of geometry and later in the code of the universe, then by
learning to speak it fluently and decipher its idioms and nuances,
and finally by harnessing its forecasting powers, humans have used
calculus to remake the world.

That’s the central argument of this book.

If it’s right, it means the answer to the ultimate question of life,
the universe, and everything is not 42, with apologies to fans of
Douglas Adams and The Hitchhikers Guide to the Galaxy. But Deep
Thought was on the right track: the secret of the universe is indeed
mathemarical.

Calculus for Everyone

Feynman’s quip about God’s language raises many profound ques-
tions. What is calculus? How did humans figure out that God speaks
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it (or, if you prefer, that the universe runs on it)? What are differ-
ential equations and what have they done for the world, not just in
Newton’s time but in our own? Finally, how can any of these stories
and ideas be conveyed enjoyably and intelligibly to readers of good-
will like Herman Wouk, a very thoughtful, curious, knowledgeable
person with little background in advanced math?

In a coda to the story of his encounter with Feynman, Wouk
wrote that he didn’t get around to even trying to learn calculus
for fourteen years. His big novel ballooned into two big novels
— Winds of War and War and Remembrance, each about a thousand
pages. Once those were finally done, he tried to teach himself by
reading books with titles like Caleulus Made Easy—but no luck
there. He poked around in a few textbooks, hoping, as he put it,
“to come across one that might help a mathematical ignoramus
like me, who had spent his college years in the humanities—i.e.,
literature and philosophy—in an adolescent quest for the meaning
of existence, little knowing that calculus, which I had heard of as a
difficult bore leading nowhere, was the language God talks.” After
the textbooks proved impenetrable, he hired an Israeli math tutor,
hoping to pick up a little calculus and improve his spoken Hebrew
on the side, but both hopes ran aground. Finally, in desperation,
he audited a high-school calculus class, but he fell too far behind
and had to give up after a couple of months. The kids clapped for
him on his way out. He said it was like sympathy applause for a
pitiful showbiz act.

I've written Infinite Powers in an attempt to make the greatest
ideas and stories of calculus accessible to everyone. It shouldn’t be
necessary to endure what Herman Wouk did to learn about this
landmark in human history. Calculus is one of humankind’s most
inspiring collective achievements. It isnt necessary to learn how to
do calculus to appreciate it, just as it isn’t necessary to learn how to
prepare fine cuisine to enjoy eating it. I'm going to try to explain
everything we'll need with the help of pictures, metaphors, and an-
ecdotes. I'll also walk us through some of the finest equations and
proofs ever created, because how could we visit a gallery without
seeing its masterpieces? As for Herman Wouk, he is 103 years old as
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of this writing. I don't know if he’s learned calculus yet, but if not,
this one’s for you, Mr. Wouk.

The World According to Calculus

As should be obvious by now, I'll be giving an applied mathemati-
cian’s take on the story and significance of calculus. A historian of
mathematics would tell it differently. So would a pure mathemati-
cian. What fascinates me as an applied mathematician is the push
and pull between the real world around us and the ideal world in our
heads. Phenomena out there guide the mathematical questions we
ask; conversely, the math we imagine sometimes foreshadows what
actually happens out there in reality. When it does, the effect is un-
canny.

To be an applied mathematician is to be outward-looking and
intellectually promiscuous. To those in my field, math is not a pris-
tine, hermetically sealed world of theorems and proofs echoing back
on themselves. We embrace all kinds of subjects: philosophy, poli-
tics, science, history, medicine, all of it. That’s the story I want to tell
— the world according to calculus.

This is a much broader view of calculus than usual. It encom-
passes the many cousins and spinofs of calculus, both within math-
ematics and in the adjacent disciplines. Since this big-tent view is
unconventional, I want to make sure it doesn’t cause any confusion.
For example, when I said earlier that without calculus we wouldn’t
have computers and cell phones and so on, I certainly didn’t mean
to suggest that calculus produced all these wonders by itself. Far
from it. Science and technology were essential partners—and argu-
ably the stars of the show. My point is merely that calculus has also
played a crucial role, albeit often a supporting one, in giving us the
world we know today.

Take the story of wireless communication. It began with the dis-
covery of the laws of electricity and magnetism by scientists like Mi-
chael Faraday and André-Marie Ampére. Without their observations

and tinkering, the crucial facts about magnets, electrical currents,
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and their invisible force fields would have remained unknown, and
the possibility of wireless communication would never have been
realized. So, obviously, experimental physics was indispensable here.

But so was calculus. In the 1860s, a Scottish mathematical phys-
icist named James Clerk Maxwell recast the experimental laws of
electricity and magnetism into a symbolic form that could be fed
into the maw of calculus. After some churning, the maw disgorged
an equation that didn’t make sense. Apparently something was miss-
ing in the physics. Maxwell suspected that Ampére’s law was the
culprit. He tried patching it up by including a new term in his equa-
tion—a hypothetical current that would resolve the contradiction
—and then let calculus churn again. This time it spat out a sensible
result, a simple, elegant wave equation much like the equation that
describes the spread of ripples on a pond. Except Maxwell’s result
was predicting a new kind of wave, with electric and magnetic fields
dancing together in a pas de deux. A changing electric field would
generate a changing magnetic field, which in turn would regenerate
the electric field, and so on, each field bootstrapping the other for-
ward, propagating together as a wave of traveling energy. And when
Maxwell calculated the speed of this wave, he found —in what must
have been one of the greatest Aha! moments in history— that it
moved at the speed of light. So he used calculus not only to predict
the existence of electromagnetic waves but also to solve an age-old
mystery: What was the nature of lighe? Light, he realized, was an
electromagnetic wave.

Maxwell’s prediction of electromagnetic waves prompted an ex-
periment by Heinrich Hertz in 1887 that proved their existence. A
decade later, Nikola Tesla built the first radio communication sys-
tem, and five years after that, Guglielmo Marconi transmitted the
first wireless messages across the Atlantic. Soon came television, cell
phones, and all the rest.

Clearly, calculus could not have done this alone. But equally
clearly, none of it would have happened without calculus. Or, per-
haps more accurately, it might have happened, but only much later,
if ac all.
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Calculus Is More than a Language

The story of Maxwell illustrates a theme we'll be seeing again and
again. It’s often said that mathematics is the language of science.
There’s a great deal of truth to that. In the case of electromagnetic
waves, it was a key first step for Maxwell to translate the laws that
had been discovered experimentally into equations phrased in the
language of calculus.

But the language analogy is incomplete. Calculus, like other
forms of mathematics, is much more than a language; it’s also an
incredibly powerful system of reasoning. It lets us transform one
equation into another by performing various symbolic operations
on them, operations subject to certain rules. Those rules are deeply
rooted in logic, so even though it might seem like we're just shuffling
symbols around, we're actually constructing long chains of logical
inference. The symbol shuffling is useful shorthand, a convenient
way to build arguments too intricate to hold in our heads.

If we're lucky and skillful enough—if we transform the equa-
tions in just the right way—we can get them to reveal their hidden
implications. To a mathematician, the process feels almost palpable.
It’s as if we're manipulating the equations, massaging them, trying to
relax them enough so that they’ll spill their secrets. We want them to
open up and talk to us.

Creativity is required, because it often isn’t clear which manip-
ulations to perform. In Maxwell’s case, there were countless ways
to transform his equations, all of which would have been logically
acceptable but only some of which would have been scientifically
revealing. Given that he didn’t even know what he was searching
for, he might easily have gotten nothing out of his equations but
incoherent mumblings (or the symbolic equivalent thereof). Fortu-
nately, however, they did have a secret to reveal. With just the right
prodding, they gave up the wave equation.

At that point the linguistic function of calculus took over again.
When Maxwell translated his abstract symbols back into reality, they
predicted that electricity and magnetism could propagate together
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as a wave of invisible energy moving at the speed of light. In a matter
of decades, this revelation would change the world.

Unreasonably Effective

It’s eerie that calculus can mimic nature so well, given how differ-
ent the two domains are. Calculus is an imaginary realm of symbols
and logic; nature is an actual realm of forces and phenomena. Yet
somehow, if the translation from reality into symbols is done art-
fully enough, the logic of calculus can use one real-world truth to
generate another. Truth in, truth out. Start with something that is
empirically true and symbolically formulated (as Maxwell did with
the laws of electricity and magnetism), apply the right logical ma-
nipulations, and out comes another empirical truth, possibly a new
one, a fact about the universe that nobody knew before (like the
existence of electromagnetic waves). In this way, calculus lets us peer
into the future and predict the unknown. That’s what makes it such
a powerful tool for science and technology.

But why should the universe respect the workings of any kind
of logic, let alone the kind of logic that we puny humans can mus-
ter? This is what Einstein marveled at when he wrote, “The eternal
mystery of the world is its comprehensibility.” And it’s what Eugene
Wigner meant in his essay “On the Unreasonable Effectiveness of
Mathematics in the Natural Sciences” when he wrote, “The miracle
of the appropriateness of the language of mathematics for the for-
mulation of the laws of physics is a wonderful gift which we neither
understand nor deserve.”

This sense of awe goes way back in the history of mathematics.
According to legend, Pythagoras felt it around 550 BCE when he
and his disciples discovered that music was governed by the ratios of
whole numbers. For instance, imagine plucking a guitar string. As
the string vibrates, it emits a certain note. Now put your finger on
a fret exactly halfway up the string and pluck it again. The vibrat-
ing part of the string is now half as long as it used to be—a ratio of
1 to 2—and it sounds precisely an octave higher than the original



Xiv INFINITE POWERS

note (the musical distance from one do to the next in the do-re-mi-
fa-sol-la-ti-do scale). If instead the vibrating string is %5 of its original
length, the note it makes goes up by a fifth (the interval from 4o to
sol; think of the first two notes of the Stars Wars theme). And if the
vibrating part is % as long as it was before, the note goes up by a
fourth (the interval between the first two notes of “Here Comes the
Bride”). The ancient Greek musicians knew about the melodic con-
cepts of octaves, fourths, and fifths and considered them beautiful.
This unexpected link between music (the harmony of this world)
and numbers (the harmony of an imagined world) led the Pythago-
reans to the mystical belief that 2// is number. They are said to have
believed that even the planets in their orbits made music, the music
of the spheres.

Ever since then, many of history’s greatest mathematicians and
scientists have come down with cases of Pythagorean fever. The as-
tronomer Johannes Kepler had it bad. So did the physicist Paul Di-
rac. As we'll see, it drove them to seck, and to dream, and to long for
the harmonies of the universe. In the end it pushed them to make
their own discoveries that changed the world.

The Infinity Principle

To help you understand where we're headed, let me say a few words
about what calculus is, what it wants (metaphorically speaking), and
what distinguishes it from the rest of mathematics. Fortunately, a
single big, beautiful idea runs through the subject from beginning
to end. Once we become aware of this idea, the structure of calculus
falls into place as variations on a unifying theme.

Alas, most calculus courses bury the theme under an avalanche
of formulas, procedures, and computational tricks. Come to think
of it, I've never seen it spelled out anywhere even though it’s part of
calculus culture and every expert knows it implicitly. Let’s call it the
Infinity Principle. It will guide us on our journey just as it guided
the development of calculus itself, conceptually as well as histori-
cally. I'm tempted to state it right now, but at this point it would
sound like mumbo jumbo. It will be easier to appreciate if we inch
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our way up to it by asking what calculus wants . . . and how it gets
what it wants.

In a nutshell, calculus wants to make hard problems simpler. It
is utterly obsessed with simplicity. That might come as a surprise to
you, given that calculus has a reputation for being complicated. And
there’s no denying that some of its leading textbooks exceed a thou-
sand pages and weigh as much as bricks. But let’s not be judgmen-
tal. Calculus can't help how it looks. Its bulkiness is unavoidable. It
looks complicated because it’s trying to tackle complicated prob-
lems. In fact, it has tackled and solved some of the most difficult and
important problems our species has ever faced.

Calculus succeeds by breaking complicated problems down into
simpler parts. That strategy, of course, is not unique to calculus. All
good problem-solvers know that hard problems become easier when
theyre split into chunks. The truly radical and distinctive move of
calculus is that it takes this divide-and-conquer strategy to its utmost
extreme— all the way out to infinity. Instead of cutting a big prob-
lem into a handful of bite-size pieces, it keeps cutting and cutting
relentlessly until the problem has been chopped and pulverized into
its tiniest conceivable parts, leaving infinitely many of them. Once
that’s done, it solves the original problem for all the tiny parts, which
is usually a much easier task than solving the initial giant problem.
The remaining challenge at that point is to put all the tiny answers
back together again. That tends to be a much harder step, but at
least it’s not as difficult as the original problem was.

Thus, calculus proceeds in two phases: cutting and rebuilding.
In mathematical terms, the cutting process always involves infinitely
fine subtraction, which is used to quantify the differences between
the parts. Accordingly, this half of the subject is called differential
calculus. The reassembly process always involves infinite addition,
which integrates the parts back into the original whole. This half of
the subject is called inregral calculus.

This strategy can be used on anything that we can imagine slicing
endlessly. Such infinitely divisible things are called continua and are
said to be continuous, from the Latin roots con (together with) and
tenere (hold), meaning uninterrupted or holding together. Think of
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the rim of a perfect circle, a steel girder in a suspension bridge, a
bowl of soup cooling off on the kitchen table, the parabolic trajec-
tory of a javelin in flight, or the length of time you have been alive.
A shape, an object, a liquid, a motion, a time interval —all of them
are grist for the calculus mill. They’re all continuous, or nearly so.

Notice the act of creative fantasy here. Soup and steel are not re-
ally continuous. At the scale of everyday life, they appear to be, but
at the scale of atoms or superstrings, they're not. Calculus ignores
the inconvenience posed by atoms and other uncuttable entities, not
because they don’t exist but because its useful to pretend that they
don’t. As we'll see, calculus has a penchant for useful fictions.

More generally, the kinds of entities modeled as continua by cal-
culus include almost anything one can think of. Calculus has been
used to describe how a ball rolls continuously down a ramp, how
a sunbeam travels continuously through water, how the continu-
ous flow of air around a wing keeps a hummingbird or an airplane
aloft, and how the concentration of HIV virus particles in a patient’s
bloodstream plummets continuously in the days after he or she
starts combination-drug therapy. In every case the strategy remains
the same: split a complicated but continuous problem into infinitely
many simpler pieces, then solve them separately and put them back
together.

Now we're finally ready to state the big idea.

The Infinity Principle

To shed light on any continuous shape, object, motion,
process, or phenomenon—no matter how wild and com-
plicated it may appear—reimagine it as an infinite series
of simpler parts, analyze those, and then add the results
back together to make sense of the original whole.

The Golem of Infinity

The rub in all of this is the need to cope with infinity. That’s easier
said than done. Although the carefully controlled use of infinity
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is the secret to calculus and the source of its enormous predictive
power, it is also calculus’s biggest headache. Like Frankenstein’s
monster or the golem in Jewish folklore, infinity tends to slip out of
its master’s control. As in any tale of hubris, the monster inevitably
turns on its maker.

The creators of calculus were aware of the danger but still found
infinity irresistible. Sure, occasionally it ran amok, leaving paradox,
confusion, and philosophical havoc in its wake. Yet after each of
these episodes, mathematicians always managed to subdue the mon-
ster, rationalize its behavior, and put it back to work. In the end,
everything always turned out fine. Calculus gave the right answers,
even when its creators couldn’t explain why. The desire to harness
infinity and exploit its power is a narrative thread that runs through
the whole twenty-five-hundred-year story of calculus.

All this talk of desire and confusion might seem out of place,
given that mathematics is usually portrayed as exact and impecca-
bly rational. It is rational, but not always initially. Creation is intui-
tive; reason comes later. In the story of calculus, more than in other
parts of mathematics, logic has always lagged behind intuition. This
makes the subject feel especially human and approachable, and its
geniuses more like the rest of us.

Curves, Motion, and Change

The Infinity Principle organizes the story of calculus around a meth-
odological theme. But calculus is as much about mysteries as it is
about methodology. Three mysteries above all have spurred its de-
velopment: the mystery of curves, the mystery of motion, and the
mystery of change.

The fruitfulness of these mysteries has been a testament to the
value of pure curiosity. Puzzles about curves, motion, and change
might seem unimportant at first glance, maybe even hopelessly eso-
teric. But because they touch on such rich conceprual issues and be-
cause mathematics is so deeply woven into the fabric of the universe,
the solution to these mysteries has had far-reaching impacts on the
course of civilization and on our everyday lives. As we'll see in the
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chapters ahead, we reap the benefits of these investigations whenever
we listen to music on our phones, breeze through the line at the su-
permarket thanks to a laser checkout scanner, or find our way home
with a GPS gadget.

It all started with the mystery of curves. Here I'm using the term
curves in a very loose sense to mean any sort of curved line, curved
surface, or curved solid — think of a rubber band, a wedding ring,
a floating bubble, the contours of a vase, or a solid tube of salami.
To keep things as simple as possible, the early geometers typically
concentrated on abstract, idealized versions of curved shapes and
ignored thickness, roughness, and texture. The surface of a math-
ematical sphere, for instance, was imagined to be an infinitesimally
thin, smooth, perfectly round membrane with none of the thick-
ness, bumpiness, or hairiness of a coconut shell. Even under these
idealized assumptions, curved shapes posed baffling conceptual dif-
ficulties because they weren’t made of straight pieces. Triangles and
squares were easy. So were cubes. They were composed of straight
lines and flat pieces of planes joined together at a small number of
corners. It wasn't hard to figure out their perimeters or surface areas
or volumes. Geometers all over the world—in ancient Babylon and
Egypt, China and India, Greece and Japan—knew how to solve
problems like these. But round things were brutal. No one could
figure out how much surface area a sphere had or how much volume
it could hold. Even finding the circumference and area of a circle
was an insurmountable problem in the old days. There was no way
to get started. There were no straight pieces to latch onto. Anything
that was curved was inscrutable.

So this is how calculus began. It grew out of geometers’ curios-
ity and frustration with roundness. Circles and spheres and other
curved shapes were the Himalayas of their era. It wasnt that they
posed important practical issues, at least not at first. It was simply
a matter of the human spirit’s thirst for adventure. Like explorers
climbing Mount Everest, geometers wanted to solve curves because
they were there.

The breakthrough came from insisting that curves were actually
made of straight pieces. It wasnt true, but one could pretend that
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it was. The only hitch was that those pieces would then have to be
infinitesimally small and infinitely numerous. Through this fantastic
conception, integral calculus was born. This was the earliest use of
the Infinity Principle. The story of how it developed will occupy us
for several chapters, but its essence is already there, in embryonic
form, in a simple, intuitive insight: If we zoom in closely enough
on a circle (or anything else that is curved and smooth), the por-
tion of it under the microscope begins to look straight and flat. So
in principle, at least, it should be possible to calculate whatever we
want about a curved shape by adding up all the straight little pieces.
Figuring out exactly how to do this— no easy feat— took the efforts
of the world’s greatest mathematicians over many centuries. Collec-
tively, however, and sometimes through bitter rivalries, they eventu-
ally began to make headway on the riddle of curves. Spinoffs today,
as we'll see in chapter 2, include the math needed to draw realistic-
looking hair, clothing, and faces of characters in computer-animated
movies and the calculations required for doctors to perform facial
surgery on a virtual patient before they operate on the real one.

The quest to solve the mystery of curves reached a fever pitch
when it became clear that curves were much more than geometric
diversions. They were a key to unlocking the secrets of nature. They
arose naturally in the parabolic arc of a ball in flight, in the elliptical
orbit of Mars as it moved around the sun, and in the convex shape
of a lens that could bend and focus light where it was needed, as
was required for the burgeoning development of microscopes and
telescopes in late Renaissance Europe.

And so began the second great obsession: a fascination with
the mysteries of motion on Earth and in the solar system. Through
observation and ingenious experiments, scientists discovered tanta-
lizing numerical patterns in the simplest moving things. They mea-
sured the swinging of a pendulum, clocked the accelerating descent
of a ball rolling down a ramp, and charted the stately procession
of planets across the sky. The patterns they found enraptured them
—indeed, Johannes Kepler fell into a state of self-described “sa-
cred frenzy” when he found his laws of planetary motion— because
those patterns seemed to be signs of God’s handiwork. From a more
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secular perspective, the patterns reinforced the claim that nature was
deeply mathematical, just as the Pythagoreans had maintained. The
only catch was that nobody could explain the marvelous new pat-
terns, at least not with the existing forms of math. Arithmetic and
geometry were not up to the task, even in the hands of the greatest
mathematicians.

The trouble was that the motions weren’t steady. A ball rolling
down a ramp kept changing its speed, and a planet revolving around
the sun kept changing its direction of travel. Worse yet, the planets
moved faster when they got close to the sun and slowed down as
they receded from it. There was no known way to deal with motion
that kept changing in ever-changing ways. Earlier mathematicians
had worked out the mathematics of the most trivial kind of motion,
namely, motion at a constant speed where distance equals rate times
time. But when speed changed and kept on changing continuously,
all bets were off. Motion was proving to be as much of a conceptual
Mount Everest as curves were.

As we'll see in the middle chapters of this book, the next great
advances in calculus grew out of the quest to solve the mystery of
motion. The Infinity Principle came to the rescue, just as it had for
curves. This time the act of wishful fantasy was to pretend that mo-
tion at a changing speed was made up of infinitely many, infinitesi-
mally brief motions at a constant speed. To visualize what this would
mean, imagine being in a car with a jerky driver at the wheel. As
you anxiously watch the speedometer, it moves up and down with
every jerk. But over a millisecond, even the jerkiest driver can’'t make
the speedometer needle move by much. And over an interval much
shorter than that—an infinitesimal time interval — the needle won't
move at all. Nobody can tap the gas pedal that fast.

These ideas coalesced in the younger half of calculus, differential
calculus. It was precisely what was needed to work with the infinites-
imally small changes of time and distance that arose in the study of
ever-changing motion as well as with the infinitesimal straight pieces
of curves that arose in analytic geometry, the newfangled study of
curves defined by algebraic equations that was all the rage in the first
half of the 1600s. Yes, at one time, algebra was a craze, as we'll see.
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Its popularity was a boon for all fields of mathematics, including
geometry, but it also created an unruly jungle of new curves to ex-
plore. Thus, the mysteries of curves and motion collided. They were
now both at the center stage of calculus in the mid-1600s, banging
into each other, creating mathematical mayhem and confusion. Out
of the tumult, differential calculus began to flower, but not without
controversy. Some mathematicians were criticized for playing fast
and loose with infinity. Others derided algebra as a scab of symbols.
With all the bickering, progress was fitful and slow.

And then a child was born on Christmas Day. This young mes-
siah of calculus was an unlikely hero. Born premature and father-
less and abandoned by his mother at age three, he was a lonesome
boy with dark thoughts who grew into a secretive, suspicious young
man. Yet Isaac Newton would make a mark on the world like no one
before or since.

First, he solved the holy grail of calculus: he discovered how to
put the pieces of a curve back together again —and how to do it eas-
ily, quickly, and systematically. By combining the symbols of algebra
with the power of infinity, he found a way to represent any curve
as a sum of infinitely many simpler curves described by powers of a

3 x4 and so on. With these ingredients alone, he

variable x, like x2, x
could cook up any curve he wanted by putting in a pinch of x and a
dash of x? and a heaping tablespoon of x?. It was like a master recipe
and a universal spice rack, butcher shop, and vegetable garden, all
rolled into one. With it he could solve any problem about shapes or
motions that had ever been considered.

Then he cracked the code of the universe. Newton discovered
that motion of any kind always unfolds one infinitesimal step at
a time, steered from moment to moment by mathematical laws
written in the language of calculus. With just a handful of differ-
ential equations (his laws of motion and gravity), he could explain
everything from the arc of a cannonball to the orbits of the plan-
ets. His astonishing “system of the world” unified heaven and earth,
launched the Enlightenment, and changed Western culture. Its im-
pact on the philosophers and poets of Europe was immense. He even
influenced Thomas Jefferson and the writing of the Declaration of
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Independence, as we'll see. In our own time, Newton’s ideas under-
pinned the space program by providing the mathematics necessary
for trajectory design, the work done at NASA by African-American
mathematician Katherine Johnson and her colleagues (the heroines
of the book and hit movie Hidden Figures).

With the mysteries of curves and motion now settled, calculus
moved on to its third lifelong obsession: the mystery of change. It’s a
cliché, but it’s true all the same— nothing is constant but change. It’s
rainy one day and sunny the next. The stock market rises and falls.
Emboldened by the Newtonian paradigm, the later practitioners of
calculus asked: Are there laws of change similar to Newton’s laws of
motion? Are there laws for population growth, the spread of epi-
demics, and the flow of blood in an artery? Can calculus be used to
describe how electrical signals propagate along nerves or to predict
the flow of traffic on a highway?

By pursuing this ambitious agenda, always in cooperation with
other parts of science and technology, calculus has helped make the
world modern. Using observation and experiment, scientists worked
out the laws of change and then used calculus to solve them and
make predictions. For example, in 1917 Albert Einstein applied cal-
culus to a simple model of atomic transitions to predict a remarkable
effect called stimulated emission (which is what the 5 and ¢ stand
for in laser, an acronym for light amplification by stimulated emission
of radiation). He theorized that under certain circumstances, light
passing through matter could stimulate the production of more
light at the same wavelength and moving in the same direction, cre-
ating a cascade of light through a kind of chain reaction that would
result in an intense, coherent beam. A few decades later, the predic-
tion proved to be accurate. The first working lasers were built in the
early 1960s. Since then, they have been used in everything from
compact-disc players and laser-guided weaponry to supermarket
bar-code scanners and medical lasers.

The laws of change in medicine are not as well understood as
those in physics. Yet even when applied to rudimentary models, cal-
culus has been able to make lifesaving contributions. For example, in
chapter 8 we'll see how a differential-equation model developed by
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an immunologist and an AIDS researcher played a part in shaping
the modern three-drug combination therapy for patients infected
with HIV. The insights provided by the model overturned the pre-
vailing view that the virus was lying dormant in the body; in fact, it
was in a raging battle with the immune system every minute of every
day. With the new understanding that calculus helped provide, HIV
infection has been transformed from a near-certain death sentence
to a manageable chronic disease—at least for those with access to
combination-drug therapy.

Admittedly, some aspects of our ever-changing world lie beyond
the approximations and wishful thinking inherent in the Infinity
Principle. In the subatomic realm, for example, physicists can no
longer think of an electron as a classical particle following a smooth
path in the same way that a planet or a cannonball does. According to
quantum mechanics, trajectories become jittery, blurry, and poorly
defined at the microscopic scale, so we need to describe the behavior
of electrons as probability waves instead of Newtonian trajectories.
As soon as we do that, however, calculus returns triumphantly. It
governs the evolution of probability waves through something called
the Schrodinger equation.

I¢’s incredible but true: Even in the subatomic realm where New-
tonian physics breaks down, Newtonian calculus still works. In fact,
it works spectacularly well. As we'll see in the pages ahead, it has
teamed up with quantum mechanics to predict the remarkable ef-
fects that underlie medical imaging, from MRI and CT scans to the
more exotic positron emission tomography.

It’s time for us to take a closer look at the language of the uni-
verse. Naturally, the place to start is at infinity.
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Infinity

THE BEGINNINGS OF mathematics were grounded in everyday
concerns. Shepherds needed to keep track of their flocks. Farmers
needed to weigh the grain reaped in the harvest. Tax collectors had
to decide how many cows or chickens each peasant owed the king,
Out of such practical demands came the invention of numbers. At
first they were tallied on fingers and toes. Later they were scratched
on animal bones. As their representation evolved from scratches to
symbols, numbers facilitated everything from taxation and trade to
accounting and census taking. We see evidence of all this in Meso-
potamian clay tablets written more than five thousand years ago:
row after row of entries recorded with the wedge-shaped symbols
called cuneiform.

Along with numbers, shapes mattered too. In ancient Egypt,
the measurement of lines and angles was of paramount importance.
Each year surveyors had to redraw the boundaries of farmers’ fields
after the summer flooding of the Nile washed the borderlines away.
That activity later gave its name to the study of shape in general:
geometry, from the Greek gé, “carth,” and mezrés, “measurer.”

At the start, geometry was hard-edged and sharp-cornered. Its
predilection for straight lines, planes, and angles reflected its utili-
tarian origins— triangles were useful as ramps, pyramids as monu-
ments and tombs, and rectangles as tabletops, altars, and plots of
land. Builders and carpenters used right angles for plumb lines. For
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sailors, architects, and priests, knowledge of straight-line geometry
was essential for surveying, navigating, keeping the calendar, pre-
dicting eclipses, and erecting temples and shrines.

Yet even when geometry was fixated on straightness, one curve
always stood out, the most perfect of all: the circle. We see circles
in tree rings, in the ripples on a pond, in the shape of the sun and
the moon. Circles surround us in nature. And as we gaze at circles,
they gaze back at us, literally. There they are in the eyes of our loved
ones, in the circular outlines of their pupils and irises. Circles span
the practical and the emotional, as wheels and wedding rings, and
they are mystical too. Their eternal return suggests the cycle of the
seasons, reincarnation, eternal life, and never-ending love. No won-
der circles have commanded attention for as long as humanity has
studied shapes.

Mathematically, circles embody change without change. A
point moving around the circumference of a circle changes direc-
tion without ever changing its distance from a center. It’s a minimal
form of change, a way to change and curve in the slightest way pos-
sible. And, of course, circles are symmetrical. If you rotate a circle
about its center, it looks unchanged. That rotational symmetry may
be why circles are so ubiquitous. Whenever some aspect of nature
doesn't care about direction, circles are bound to appear. Consider
what happens when a raindrop hits a puddle: tiny ripples expand
outward from the point of impact. Because they spread equally fast
in all directions and because they started at a single point, the ripples
have to be circles. Symmetry demands it.

Circles can also give birth to other curved shapes. If we imagine
skewering a circle on its diameter and spinning it around that axis
in three-dimensional space, the rotating circle makes a sphere, the
shape of a globe or a ball. When a circle is moved vertically into the
third dimension along a straight line at right angles to its plane, it
makes a cylinder, the shape of a can or a hatbox. If it shrinks at the
same time as it’s moving vertically, it makes a cone; if it expands as
it moves vertically, it makes a truncated cone (the shape of a lamp-

shade).
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Circles, spheres, cylinders, and cones fascinated the ecarly ge-
ometers, but they found them much harder to analyze than trian-
gles, rectangles, squares, cubes, and other rectilinear shapes made
of straight lines and flat planes. They wondered about the areas of
curved surfaces and the volumes of curved solids but had no clue
how to solve such problems. Roundness defeated them.

Infinity as a Bridge Builder

Calculus began as an outgrowth of geometry. Back around 250 BcE
in ancient Greece, it was a hot little mathematical startup devoted to
the mystery of curves. The ambitious plan of its devotees was to use
infinity to build a bridge between the curved and the straight. The
hope was that once that link was established, the methods and tech-
niques of straight-line geometry could be shuttled across the bridge
and brought to bear on the mystery of curves. With infinity’s help,
all the old problems could be solved. At least, that was the pitch.
At the time, that plan must have seemed pretty far-fetched. In-
finity had a dubious reputation. It was known for being scary, not
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useful. Worse yet, it was nebulous and bewildering. What was it
exactly? A number? A place? A concept?

Nevertheless, as we'll see soon and in the chapters to come,
infinity turned out to be a godsend. Given all the discoveries and
technologies that ultimately flowed from calculus, the idea of using
infinity to solve difficult geometry problems has to rank as one of
the best ideas anyone ever had.

Of course, none of that could have been foreseen in 250 BCE.
Still, infinity did put some impressive notches in its belt right away.
One of its first and finest was the solution of a long-standing enigma:
how to find the area of a circle.

A Pizza Proof

Before I go into the details, let me sketch the argument. The strat-
egy is to reimagine the circle as a pizza. Then we'll slice that pizza
into infinitely many pieces and magically rearrange them to make a
rectangle. That will give us the answer we're looking for, since mov-
ing slices around obviously doesn’t change their area from what they
were originally, and we know how to find the area of a rectangle: we
just multiply its width times its height. The result is a formula for
the area of a circle.

For the sake of this argument, the pizza needs to be an idealized
mathematical pizza, perfectly flat and round, with an infinitesimally
thin crust. Its circumference, abbreviated by the letter C, is the dis-
tance around the pizza, measured by tracing around the crust. Cir-
cumference isnt something that pizza lovers ordinarily care about,
but if we wanted to, we could measure C with a tape measure.

C‘.ﬁc\mv\fcrence o
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Another quantity of interest is the pizza’s radius, 7, defined as the
distance from its center to every point on its crust. In particular, 7
also measures how long the straight side of a slice is, assuming that
all the slices are equal and cut from the center out to the crust.

4

Suppose we start by dividing the pie into four quarters. Here’s
one way to rearrange them, but it doesn’t look too promising.

- 02

- ~ - ~
~ -

The new shape looks bulbous and strange with its scalloped top
and bottom. It’s certainly not a rectangle, so its area is not easy to
guess. We seem to be going backward. But as in any drama, the hero
needs to get into trouble before triumphing. The dramatic tension
is building.

While we're stuck here, though, we should notice two things, be-
cause they are going to hold true throughout the proof, and they will
ultimately give us the dimensions of the rectangle we're seeking. The
first observation is that half of the crust became the curvy top of the
new shape, and the other half became the bottom. So the curvy top
has a length equal to half the circumference, C/2, and so does the
bottom, as shown in the diagram. That length is eventually going to
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turn into the long side of the rectangle, as we'll see. The other thing to
notice is that the tilted straight sides of the bulbous shape are just the
sides of the original pizza slices, so they still have length . That length
is eventually going to turn into the short side of the rectangle.

The reason we aren’t seeing any signs of the desired rectangle
yet is that we haven’t cut enough slices. If we make eight slices and
rearrange them like so, our picture starts to look more nearly rect-
angular.

In fact, the pizza starts to look like a parallelogram. Not bad —at
least it’s almost rectilinear. And the scallops on the top and bottom
are a lot less bulbous than they were. They flattened out when we
used more slices. As before, they have curvy length C/2 on the top
and bottom and a slanted-side length 7.

To spruce up the picture even more, suppose we cut one of the
slanted end pieces in half lengthwise and shift that half to the other
side.

cr2
D S TR
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Now the shape looks very much like a rectangle. Admittedly, it’s still
not perfect because of the scalloped top and bottom caused by the
curvature of the crust, but at least we're making progress.

Since making more pieces seems to be helping, let’s keep slicing.
With sixteen slices and the cosmetic sprucing-up of the end piece, as
we did before, we get this result:
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The more slices we take, the more we flatten out the scallops
produced by the crust. Our maneuvers are producing a sequence of
shapes that are magjically homing in on a certain rectangle. Because
the shapes keep getting closer and closer to that rectangle, we'll call
it the limiting rectangle.

-~

The point of all this is that we can easily find the area of this
limiting rectangle by multiplying its width by its height. All that re-
mains is to find that height and width in terms of the circle’s dimen-
sions. Well, since the slices are standing upright, the height is just
the radius 7 of the original circle. And the width is half the circum-
ference of the circle; that’s because half of the circumference (the
crust of the pizza) went into making the top of the rectangle and the
other half got used on the bottom, just as it did at every intermedi-
ate stage of working with the bulbous shapes. Thus the width is half
the circumference, C/2. Putting everything together, the area of
the limiting rectangle is given by its height times its width, namely,
A=rxCJ/2 =rC/2. And since moving the pizza slices around did
not change their area, this must also be the area of the original circle!

This result for the area of a circle, A = »C/2, was first proved
(using a similar but much more careful argument) by the ancient
Greek mathematician Archimedes (287-212 BCE) in his essay “Mea-
surement of a Circle.”

The most innovative aspect of the proof is the way infinity
came to the rescue. When we had only four slices, or eight, or
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sixteen, the best we could do was rearrange the pizza into an
imperfect scalloped shape. After an unpromising start, the more
slices we took, the more rectangular the shape became. But it was
only in the limit of infinitely many slices that it became truly rect-
angular. That’s the big idea behind calculus. Everything becomes
simpler at infinity.

Limits and the Riddle of the Wall

A limict is like an unattainable goal. You can get closer and closer to
it, but you can never get all the way there.

For example, in the pizza proof we were able to make the
scalloped shapes more and more nearly rectangular by cutting
enough slices and rearranging them. But we could never make
them genuinely rectangular. We could only approach that state
of perfection. Fortunately, in calculus, the unattainability of the
limit usually doesnt martter. We can often solve the problems
we're working on by fantasizing that we can actually reach the
limit and then seeing what that fantasy implies. In fact, many of
the greatest pioneers of the subject did precisely that and made
great discoveries by doing so. Logical, no. Imaginative, yes. Suc-
cessful, very.

A limit is a subtle concept but a central one in calculus. Its elu-
sive because it’s not a common idea in daily life. Perhaps the closest
analogy is the Riddle of the Wall. If you walk halfway to the wall,
and then you walk half the remaining distance, and then you walk
half of that, and on and on, will there ever be a step when you finally

get to the wall?
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The answer is clearly no, because the Riddle of the Wall stipu-
lates that at each step, you walk halfway to the wall, not all the way.
After you take ten steps or a million or any other number of steps,
there will always be a gap between you and the wall. But equally
clearly, you can get arbitrarily close to the wall. What this means is
that by taking enough steps, you can get to within a centimeter of
it, or a millimeter, or a nanometer, or any other tiny but nonzero
distance, but you can never get all the way there. Here, the wall
plays the role of the limit. It took about two thousand years for the
limit concept to be rigorously defined. Until then, the pioneers of
calculus got by just fine with intuition. So don’t worry if limits feel
hazy for now. We'll get to know them better by watching them in
action. From a modern perspective, they matter because they are the
bedrock on which all of calculus is built.

If the metaphor of the wall seems too bleak and inhuman (who
wants to approach a wall?), try this analogy: Anything that ap-
proaches a limit is like a hero engaged in an endless quest. It’s not an
exercise in total futility, like the hopeless task faced by Sisyphus, who
was condemned to roll a boulder up a hill only to see it roll back
down again over and over for eternity. Rather, when a mathematical
process advances toward a limit (like the scalloped shapes homing
in on the limiting rectangle), it’s as if a protagonist is striving for
something he knows is impossible but for which he still holds out
the hope of success, encouraged by the steady progress he’s making
while trying to reach an unreachable star.

The Parable of .333 ...

To reinforce the big ideas that everything becomes simpler at infin-
ity and that limits are like unattainable goals, consider the following
example from arithmetic. It’s the problem of converting a frac-
tion—for example, Y5—into an equivalent decimal (in this case,
Y5 =0.333...). I vividly remember when my eighth-grade math
teacher, Ms. Stanton, taught us how to do this. It was memorable
because she suddenly started talking about infinity.
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Until that moment, I'd never heard a grownup mention infinity.
My parents certainly had no use for it. It seemed like a secret that
only kids knew about. On the playground, it came up all the time in
taunts and one-upmanship.

“You're a jerk!”

“Yeah, well, you're a jerk times two!”

“And you're a jerk times infinicy!”

“And you're a jerk times infinity plus one!”
“That’s the same as infinity, you idiot!”

Those edifying sessions had convinced me that infinity did not
behave like an ordinary number. It didn't get bigger when you added
one to it. Even adding infinity to it didn't help. Its invincible proper-
ties made it great for finishing arguments in the schoolyard. Who-
ever deployed it first would win.

But no teacher had ever talked about infinity until Ms. Stanton
brought it up that day. Everyone in our class already knew about
finite decimals, the familiar kind used for amounts of money, like
$10.28, with its two digits after the decimal point. By comparison,
infinite decimals, which had infinitely many digits after the decimal
point, seemed strange at first but appeared natural as soon as we
started to discuss fractions.

We learned that the fraction %5 could be written as 0.333 . ..
where the dot-dot-dots meant that the threes repeated indefinitely.
That made sense to me, because when I tried to calculate ¥5 by do-
ing the long-division algorithm on it, I found myself stuck in an
endless loop: three doesn’t go into one, so pretend the one is a ten;
then three goes into ten three times, which leaves a remainder of
one; and now I'm back where I started, still trying to divide three
into one. There was no way out of the loop. That’s why the threes
kept repeating in 0.333 .. ..

The three dots at the end 0f 0.333 . . . have two interpretations.
The naive interpretation is that there are literally infinitely many 3s
packed side by side to the right of the decimal point. We can’t write
them all down, of course, since there are infinitely many of them,
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but by writing the three dots we signify that they are all there, at
least in our minds. 'l call this the completed infinity interpretation.
The advantage of this interpretation is that it seems easy and com-
monsensical, as long as we are willing not to think too hard about
what infinity means.

The more sophisticated interpretation is that 0.333 . .. repre-
sents a limit, just like the limiting rectangle does for the scalloped
shapes in the pizza proof or like the wall does for the hapless walker.
Except here, 0.333 . . . represents the limit of the successive decimals
we generate by doing long division on the fraction %. As the divi-
sion process continues for more and more steps, it generates more
and more 3s in the decimal expansion of ¥4. By grinding away, we
can produce an approximation as close to 5 as we like. If we're not
happy with 15 = 0.3, we can always go a step further to 5 = 0.33,
and so on. I'll call this the potential infinity interpretation. It’s “po-
tential” in the sense that the approximations can potentially go on
for as long as desired. There’s nothing to stop us from continuing for
a million or a billion or any other number of steps. The advantage
of this interpretation is that we never have to invoke woolly-headed
notions like infinity. We can stick to the finite.

For working with equations like %5 = 0.333 . . ., it doesn' really
matter which view we take. Theyre equally tenable and yield the
same mathematical results in any calculation we care to perform.
But there are other situations in mathematics where the completed
infinity interpretation can cause logical mayhem. This is what I
meant in the introduction when I raised the specter of the golem
of infinity. Sometimes it really does make a difference how we think
about the results of a process that approaches a limit. Pretending
that the process actually terminates and that it somehow reaches the
nirvana of infinity can occasionally get us into trouble.

The Parable of the Infinite Polygon

As a chastening example, suppose we put a certain number of dots
on a circle, space them evenly, and connect them to one another with
straight lines. With three dots, we get an equilateral triangle; with
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four, a square; with five, a pentagon; and so on, running through a
sequence of rectilinear shapes called regular polygons.

OO
0000

Notice that the more dots we use, the rounder the polygons
become and the closer they get to the circle. Meanwhile, their sides

get shorter and more numerous. As we move progressively further
through the sequence, the polygons approach the original circle as
a limit.

In this way, infinity is bridging two worlds again. This time it’s
taking us from the rectilinear to the round, from sharp-cornered
polygons to silky-smooth circles, whereas in the pizza proof, infinity
brought us from round to rectilinear as it transformed a circle into
a rectangle.

Of course, at any finite stage, a polygon is still just a polygon. It’s
not yet a circle and it never becomes one. It gets closer and closer to
being a circle, but it never truly gets there. We are dealing here with
potential infinity, not completed infinity. So everything is airtight
from the standpoint of logical rigor.

But what if we could go all the way to completed infinity? Would
the resulting infinite polygon with infinitesimally short sides actu-
ally be a circle? It’s tempting to think so, because then the polygon
would be smooth. All its corners would be sanded off. Everything
would become perfect and beautiful.
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The Allure and Peril of Infinity

There’s a general lesson here: Limits are often simpler than the ap-
proximations leading up to them. A circle is simpler and more grace-
ful than any of the thorny polygons that approach it. So too for
the pizza proof, where the limiting rectangle was simpler and more
elegant than the scalloped shapes, with their unsightly bulges and
cusps. And likewise for the fraction %5. It was simpler and more
handsome than any of the ungainly fractions creeping up on it, with
their big ugly numerators and denominators, like 310 and 3%100 and
33%1000. In all these cases, the limiting shape or number was simpler
and more symmetrical than its finite approximators.

This is the allure of infinity. Everything becomes better there.

With that lesson in mind, let’s return to the parable of the infi-
nite polygon. Should we take the plunge and say that a circle truly 7
a polygon with infinitely many infinitesimal sides? No. We mustn'
do that, mustn’t yield to that tempration. Doing so would be to
commit the sin of completed infinity. It would condemn us to logi-
cal hell.

To see why, suppose we entertain the thought, just for a mo-
ment, that a circle is indeed an infinite polygon with infinitesimal
sides. How long, exactly, are those sides? Zero length? It so, then
infinity times zero— the combined length of all those sides— must
equal the circumference of the circle. But now imagine a circle of
double the circumference. Infinity times zero would also have to
equal that larger circumference as well. So infinity times zero would
have to be both the circumference and double the circumference.
What nonsense! There simply is no consistent way to define infinity
times zero, and so there is no sensible way to regard a circle as an
infinite polygon.

Nevertheless, there is something so enticing about this intu-
ition. Like the biblical original sin, the original sin of calculus— the
temptation to treat a circle as an infinite polygon with infinitesi-
mally short sides—is very hard to resist, and for the same reason. It
tempts us with the prospect of forbidden knowledge, with insights
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unavailable by ordinary means. For thousands of years, geometers
struggled to figure out the circumference of a circle. If only a circle
could be replaced by a polygon made of many tiny straight sides, the
problem would be so much easier.

By listening to the hiss of this serpent—but holding back just
enough, by using potential infinity instead of the more tempting
completed infinity— mathematicians learned how to solve the cir-
cumference problem and other mysteries of curves. In the coming
chapters, we'll see how they did it. But first, we need to gain an even
deeper appreciation of just how dangerous completed infinity can
be. It’s a gateway sin to many others, including the sin our teachers
warned us about first.

The Sin of Dividing by Zero

All across the world, students are being taught that division by zero
is forbidden. They should feel shocked that such a taboo exists.
Numbers are supposed to be orderly and well behaved. Math class
is a place for logic and reasoning. And yet it’s possible to ask simple
things of numbers that just don’t work or make sense. Dividing by
zero is one of them.

The root of the problem is infinity. Dividing by zero summons
infinity in much the same way that a Ouija board supposedly sum-
mons spirits from another realm. I’s risky. Don't go there.

For those who can't resist and want to understand why infinity
lurks in the shadows, imagine dividing 6 by a number that’s small
and getting close to zero, but that isn’t quite zero, say something like
0.1. There’s nothing taboo about that. The answer to 6 divided by
0.1 is 60, a fairly sizable number. Divide 6 by an even smaller num-
ber, say 0.01, and the answer grows bigger; now it’s 600. If we dare
to divide 6 by a number much closer to zero, say 0.0000001, the
answer gets much bigger; instead of 60 or 600, now it’s 60,000,000.
The trend is clear. The smaller the divisor, the bigger the answer. In
the limit as the divisor approaches zero, the answer approaches in-
finity. That’s the real reason why we can’t divide by zero. The faint of
heart say the answer is undefined, but the truth is it’s infinite.
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All of this can be visualized as follows. Imagine dividing a 6-cen-
timeter line into pieces that are each 0.1 centimeter long. Those 60
pieces laid end to end make up the original.

H
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Likewise (but I won't attempt to sketch it), that same line can be
chopped into 600 pieces that are each 0.01 centimeter or 60,000,000
pieces that are each 0.0000001 centimeter.

If we keep going and take this chopping frenzy to the limit, we
are led to the bizarre conclusion that a 6-centimeter line is made up
of infinitely many pieces of length zero. Maybe that sounds plausible.
After all, the line is made up of infinitely many points, and each
point has zero length.

But what’s so philosophically unnerving is that the same argu-
ment applies to a line of #ny length. Indeed, there’s nothing special
about the number 6. We could just as well have claimed that a line of
length 3 centimeters, or 49.57, or 2,000,000,000 is made up of infi-
nitely many points of zero length. Evidently, multiplying zero by in-
finity can give us any and every conceivable result—G6 or 3 or 49.57
or 2,000,000,000. That’s horrifying, mathematically speaking.

The Sin of Completed Infinity

The transgression that dragged us into this mess was pretending that
we could actually reach the limit, that we could treat infinity like
an attainable number. Back in the fourth century Bce, the Greek
philosopher Aristotle warned that sinning with infinity in this way
could lead to all sorts of logical trouble. He railed against what he
called completed infinity and argued that only potential infinity
made sense.
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In the context of chopping a line into pieces, potential infin-
ity would mean that the line could be cut into more and more
pieces, as many as desired but still always a finite number and all of
nonzero length. That’s perfectly permissible and leads to no logical
difficulties.

What's verboten is to imagine going all the way to a completed
infinity of pieces of zero length. That, Aristotle felt, would lead to
nonsense—as it does here, in revealing that zero times infinity can
give any answer. And so he forbade the use of completed infinity in
mathematics and philosophy. His edict was upheld by mathemati-
cians for the next twenty-two hundred years.

Somewhere in the dark recesses of prehistory, somebody realized
that numbers never end. And with that thought, infinity was born.
It’s the numerical counterpart of something deep in our psyches,
in our nightmares of bottomless pits, and in our hopes for eternal
life. Infinity lies at the heart of so many of our dreams and fears
and unanswerable questions: How big is the universe? How long is
forever? How powerful is God? In every branch of human thought,
from religion and philosophy to science and mathematics, infinity
has befuddled the world’s finest minds for thousands of years. It has
been banished, outlawed, and shunned. It’s always been a dangerous
idea. During the Inquisition, the renegade monk Giordano Bruno
was burned alive at the stake for suggesting that God, in His infinite
power, created innumerable worlds.

Zeno’s Paradoxes

About two millennia before the execution of Giordano Bruno, an-
other brave philosopher dared to contemplate infinity. Zeno of Elea
(c. 490-430 BCE) posed a series of paradoxes about space, time,
and motion in which infinity played a starring and perplexing role.
These conundrums anticipated ideas at the heart of calculus and are
still being debated today. Bertrand Russell called them immeasur-
ably subtle and profound.

We aren’t sure what Zeno was trying to prove with his paradoxes
because none of his writings have survived, if any existed to begin
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with. His arguments have come down to us through Plato and Aris-
totle, who summarized them mainly to demolish them. In their tell-
ing, Zeno was trying to prove that change is impossible. Our senses
tell us otherwise, but our senses deceive us. Change, according to
Zeno, is an illusion.

Three of Zeno’s paradoxes are particularly famous and strong.
The first of them, the Paradox of the Dichotomy, is similar to the
Riddle of the Wall but vastly more frustrating. It holds that you can
ever move because before you can take a single step, you need to take
a half a step. And before you can do that, you need to take a quarter
of a step, and so on. So not only can’t you get to the wall—you can’t
even start walking,

I’s a brilliant paradox. Who would have thought that taking a
step required completing infinitely many subtasks? Worse still, there
is no first task to complete. The first task cannot be taking half a
step because before that youd have to complete a quarter of a step,
and before that, an eighth of a step, and so on. If you thought you
had a lot to do before breakfast, imagine having to finish an infinite
number of tasks just to get to the kitchen.

Another paradox, called Achilles and the Tortoise, maintains
that a swift runner (Achilles) can never catch up to a slow runner
(a tortoise) if the slow runner has been given a head start in a race.

For by the time Achilles reaches the spot where the tortoise started,
the tortoise will have moved a little bit farther down the track. And
by the time Achilles reaches that new location, the tortoise will have
crept slightly farther ahead. Since we all believe that a fast runner can



18 INFINITE POWERS

overtake a slow runner, either our senses are deceiving us or there is
something wrong in the way that we reason about motion, space,
and time.

In these first two paradoxes, Zeno seemed to be arguing against
space and time being fundamentally continuous, meaning that they
can be divided endlessly. His clever rhetorical strategy (some say he
invented it) was proof by contradiction, known to lawyers and logi-
cians as reductio ad absurdum, reduction to an absurdity. In both
paradoxes, Zeno assumed the continuity of space and time and then
deduced a contradiction from that assumption; therefore, the as-
sumption of continuity must be false. Calculus is founded on that
very assumption and so has a lot at stake in this fight. It rebuts Zeno
by showing where his reasoning went wrong.

For example, here’s how calculus takes care of Achilles and the
tortoise. Suppose the tortoise starts 10 meters ahead of Achilles but
Achilles runs 10 times faster, say at a speed of 10 meters per second
compared to the tortoise’s 1 meter per second. Then it takes Achilles
1 second to make up the tortoise’s 10-meter head start. During that
time the tortoise will have moved 1 meter farther ahead. It takes
Achilles another 0.1 second to make up that difference, by which
time the tortoise will have moved another 0.1 meter ahead. Con-
tinuing this reasoning, we see that Achilles’s consecutive catch-up
times add up to the infinite series

1+0.1+0.01+0.001+---=1.111... seconds.

Rewritten as an equivalent fraction, this amount of time is equal to
196 seconds. That’s how long it takes Achilles to catch up to the tor-
toise and overtake him. And although Zeno was right that Achilles
has infinitely many tasks to complete, there’s nothing paradoxical
about that. As the math shows, he can do them all in a finite amount
of time.

This line of reasoning qualifies as a calculus argument. We just
summed an infinite series and calculated a limit, as we did earlier
when we discussed why 0.333 ... = ¥5. Whenever we work with
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infinite decimals, we are doing calculus (even though most people
would pooh-pooh it as middle-school arithmetic).

Incidentally, calculus isn’t the only way to solve this problem.
We could use algebra instead. To do so, we first need to figure out
where each runner is on the track at an arbitrary time # seconds af-
ter the race begins. Since Achilles runs at a speed of 10 meters per
second and since distance equals rate times time, his distance down
the track is 10z As for the tortoise, he had a head start of 10 meters
and he runs with a speed of 1 meter per second, so his distance down
the track is 10 + #. To ascertain the time when Achilles overtakes the
tortoise, we have to set those two expressions equal to one another,
because that’s the algebraic way of asking when Achilles and the tor-
toise are at the same place at the same time. The resulting equation is

10¢=10 + ¢

To solve this equation, subtract # from both sides. That gives 97 = 10.
Then divide both sides by 9. The result, # = 1% seconds, is the same
as we found with infinite decimals.

So from the perspective of calculus, there really is no paradox
about Achilles and the tortoise. If space and time are continuous,
everything works out nicely.

Zeno Goes Digital

In a third paradox, the Paradox of the Arrow, Zeno argued against
an alternative possibility— that space and time are fundamentally
discrete, meaning that they are composed of tiny indivisible units,
something like pixels of space and time. The paradox goes like this.
If space and time are discrete, an arrow in flight can never move,
because at each instant (a pixel of time) the arrow is at some definite
place (a specific set of pixels in space). Hence, at any given instant,
the arrow is not moving. It is also not moving between instants be-
cause, by assumption, there is no time between instants. Therefore,
at no time is the arrow ever moving.
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To my mind, this is the most subtle and interesting of the para-
doxes. Philosophers are still debating its status, but it seems to me
that Zeno got it two-thirds right. In a world where space and time
are discrete, an arrow in flight would behave as Zeno said. It would
strangely materialize at one place after another as time clicks forward
in discrete steps. And he was also right that our senses tell us that the
real world is not like that, at least not as we ordinarily perceive it.

But Zeno was wrong that motion would be impossible in such
a world. We all know this from our experience of watching mov-
ies and videos on our digital devices. Our cell phones and DVRs
and computer screens chop everything into discrete pixels, and yert,
contrary to Zeno's assertion, motion can take place perfectly well
in these discretized landscapes. As long as everything is diced fine
enough, we can't tell the difference between a smooth motion and its
digital representation. If we were to watch a high-resolution video of
an arrow in flight, we'd actually be seeing a pixelated arrow material-
izing in one discrete frame after another. But because of our percep-
tual limitations, it would look like a smooth trajectory. Sometimes
our senses really do deceive us.

Of course, if the chopping is too blocky, we can tell the differ-
ence between the continuous and the discrete, and we often find
it bothersome. Consider how an old-fashioned analog clock differs
from a modern-day digital/mechanical monstrosity. On the analog
clock, the second hand sweeps around in a beautifully uniform mo-
tion. It depicts time as flowing. Whereas on the digital clock, the
second hand jerks forward in discrete steps, thwack, thwack, thwack.
It depicts time as jumping.

Infinity can build a bridge between these two very different
conceptions of time. Imagine a digital clock that advances through
trillions of little clicks per second instead of one loud thwack. We
would no longer be able to tell the difference between that kind of
digital clock and a true analog clock. Likewise with movies and vid-
eos; as long as the frames flash by fast enough, say at thirty frames a
second, they give the impression of seamless flow. And if there were
infinitely many frames per second, the flow truly would be seamless.

Consider how music is recorded and played back. My younger



