| Lynette Drevin
Marianthi Theocharidou
\/ (Eds.)

~ Information Security
Education

Education in Proactive Information Security

12th IFIP WG 11.8 World Conference, WISE 12
Lisbon, Portugal, June 25-27, 2019, Proceedings

@ Springer

Lynette Drevin - Marianthi Theocharidou (Eds.)

Information Security
Education
Education in Proactive Information Security

12th IFIP WG 11.8 World Conference, WISE 12
Lisbon, Portugal, June 25-27, 2019
Proceedings

@ Springer

Editors

Lynette Drevin (: Marianthi Theocharidou
North-West University European Commission
Potchefstroom, South Africa Joint Research Center

Ispra, Italy

ISSN 1868-4238 ISSN 1868-422X (electronic)
IFIP Advances in Information and Communication Technology
ISBN 978-3-030-23450-8 ISBN 978-3-030-23451-5 (eBook)

https://doi.org/10.1007/978-3-030-23451-5

© IFIP International Federation for Information Processing 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Contents

Innovation in Curricula

An Educational Intervention for Teaching Secure Coding Practices

Vuyolwethu Mdunyelwa, Lynn Futcher, and Johan van Niekerk

Learning Principles and the Secure Programming Clinic.

Matt Bishop, Melissa Dark, Lynn Futcher, Johan Van Niekerk,
Ida Ngambeki, Somdutta Bose, and Minghua Zhu

Introducing Research into the Undergraduate Curriculum in Cybersecurity . . .

Dimitrios Damopoulos and Susanne Wetzel

Training

A Short-Cycle Framework Approach to Integrating Psychometric

Feedback and Data Analytics to Rapid Cyber Defense.

Erik L. Moore, Steven P. Fulton, Roberta A. Mancuso,
Tristen K. Amador, and Daniel M. Likarish

Identifying Security Requirements Body of Knowledge for the Security

Systems: ENCINCEE » = sapes s 55 & SuEe 5 05 55 SEEIE 595 5 5 S99 0 5 5 5 6 35809 8 8

Suné von Solms and Annlizé Marnewick

Andragogy as a Scientific Basis for Training Professionals

in Information Security e

Alexander Tolstoy and Natalia Miloslavskaya

Applications and Cryptography

Light Cryptography

Pascal Lafourcade, Takaaki Mizuki, Atsuki Nagao,
and Kazumasa Shinagawa

Natalia Miloslavskaya and Alexander Tolstoy

Identifying Information Security Risks in a Social Network Using

Self-organiSing Maps: s s s 2 0o LSRR ES RIS AR RS Y 0 F 5 8 pavig § 5

Rudi Serfontein, Hennie Kruger, and Lynette Drevin

16

30

45

59

72

89

X Contents

Organisational Aspects

Lessons Learned from an Organizational Information Security
Awareness CampaiZilot v i e e
Juan-Marc Scrimgeour and Jacques Ophoff

A Comprehensive Framework for Understanding Security Culture
INAOTZANIZALIONS! = 7 5 5 wwews 5 5 5 5 & wwEES @ 5 3 B & GEER F 5 @R AT 8§ 9 8 SIS §
Alaa Tolah, Steven M. Furnell, and Maria Papadaki

Using Gamification to Improve Information Security Behavior:
A Password Strength Experiment
Jacques Ophoff and Frauke Dietz

ATHNOE INAEE - o o o i G o i 5 s b i 5 55 6 b s 5 5 5 5 & Bemihs 5 5 & & Soliumtingi &

Innovation in Curricula

An Educational Intervention for Teaching
Secure Coding Practices

Vuyolwethu Mdunyelwa!®) @, Lynn Futcher'®, and Johan van Niekerk2(

! Nelson Mandela University, Port Elizabeth, South Africa

{vuyolwethu.mdunyelwa,lynn.futcher, johan.vanniekerk}@mandela.ac.za

2 Noroff University College, Kristiansand, Norway
johan.vanniekerk@noroff.no

Abstract. Cybersecurity vulnerabilities are typically addressed through
the implementation of various cybersecurity controls. These controls can
be operational, technical or physical in nature. The focus of this paper
is on technical controls with a specific focus on securing web applica-
tions. The secure coding practices used in this research are based on
OWASP. An initial investigation found that there was a general lack of
adherence to these secure coding practices by third year software develop-
ment students doing their capstone project at a South African University.
This research therefore focused on addressing this problem by develop-
ing an educational intervention to teach secure coding practices, specifi-
cally focusing on the data access layer of web applications developed in
the NET environment. Pre-tests and post-tests were conducted in order
to determine the effectiveness of the intervention. Results indicated an
increase in both knowledge and behaviour regarding the identified secure
coding practices after exposure to the intervention.

Keywords: Educational intervention - Secure coding practices -
OWASP - Web application security

1 Introduction

®

Check for
updates

With the recent increase in cyber-related attacks, cybersecurity is becoming
a key area of concern for many organisations. Web applications often handle
very sensitive data, used for carrying out critical tasks such as banking, online
shopping and online tax filing [9]. These applications are trusted by billions of
users for performing such daily activities. However, 75% of all attacks on the
internet are executed through the application layer of the OSI model [6], and

more than 76% of web applications have vulnerabilities [2].

The financial assistance of the National Research Foundation (NRF) towards this
research is hereby acknowledged. Opinions expressed and conclusions arrived at, are

those of the authors, and are not necessarily to be attributed to the NRF.

© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

L. Drevin and M. Theocharidou (Eds.): WISE 2019, IFIP AICT 557, pp. 3-15, 2019.
https://doi.org/10.1007/978-3-030-23451-5_1

4 V. Mdunyelwa et al.

Handling risks related to the security of web applications is a major challenge
for many organizations. Not surprisingly, Web applications have recently received
attention from academia and industry to initiate some defence mechanisms to
protect them from security threats [9]. Many of these Web applications have
common vulnerabilities which can be easily corrected [18] through introducing
secure coding practices.

The secure coding practices used in this research are based on OWASP. An
initial investigation found that there was a general lack of adherence to these
secure coding practices by third year software development students doing their
capstone project at a South African University. This research therefore focused
on addressing this problem by developing an educational intervention to teach
secure coding practices, specifically focusing on the data access layer of web
applications developed in the .NET environment.

The following section highlights the related literature, while Sect. 3 provides
the research design. Section4 presents the educational intervention including
both the knowledge and behavioural components. This is followed by Sect.5
which provides the results of the verification of the educational intervention
before concluding in Sect. 6.

2 Related Literature

More than 90,000 vulnerabilities have been recorded in the Symantec compre-
hensive vulnerability database over the past two decades, from 24,560 vendors
representing over 78,900 products. On average, over 340,000 web attacks were
blocked from web applications per day in 2014 [2]. Although this improved to
229,000 in 2016 [2], it still remains a serious concern since most attacks are no
longer on the networks, but more on the software applications that run on the
application layer. If 76% of web applications contain known vulnerabilities, it
means that 24% of the scanned web applications do not contain known vulnera-
bilities. Therefore, it is possible for web applications to avoid known vulnerabil-
ities. Those web applications without known vulnerabilities probably adhere to
some form of best practice for secure software development. This is true as some
researchers suggest that applying such practices and methodologies can improve
security in software application [1,7].

There are various organisations and institutions responsible for developing
standards and best practices. These include the National Institute of Standards
and Technology (NIST), the International Organizations for Standardization
(ISO) and the International Electro-Technical Commission (IEC), the Microsoft
Developer Network (MSDN) and the Open Web Application Project (OWASP)
which provides best practices for improving security in web applications.

The best practices provided by these organisations were evaluated and
OWASP was considered the most relevant for identifying fundamental secure
coding practices to be taught to software developers. OWASP is known by many
organisations for its Top 10 Vulnerability List (Table1) that it publishes and
updates periodically [4,6,11]. This list focusses on identifying the most serious

An Educational Intervention for Teaching Secure Coding Practices 5

Table 1. OWASP top 10 vulnerability list 2017 [15].

Vulnerability Description

SQL injection Injection flaws occur when untrusted data is sent to an
interpreter as part of a command or query

Broken authentication | This relates to authentication and session management that
are often implemented incorrectly. It allows attacks to
compromise information, and session tokens or exploit other
implementation flaws

Sensitive data Many web applications and Application Programming

exposure Interfaces (APIs) do not properly protect data allowing
attackers to steal or modify data

XML external entities | External entities can be used to disclose files using the file
Uniform Resource Identifiers (URIs) handler, internal file
shares, internal port scanning, remote code execution, and
denial of service attacks

Broken access control |Restrictions on what authenticated users are allowed to do
are often not properly enforced, allowing attackers to exploit
flaws to access unauthorized functionality, or data, such as
other users’ accounts or change access rights

Secure This is mostly a result of insecure default configurations,
misconfiguration incomplete or ad hoc configurations
Cross-site scripting Also know as XSS, it allows attackers to execute scripts in

the victim’s browser which can hijack user sessions, deface
web sites, or redirect users to malicious sites

Insecure Insecure deserialisation leads to remote code execution,
deserialisation deserialisation flaws can also be used to perform tasks such
as injection attacks, and privilege escalation attacks
Using components Components including libraries, frameworks and other
with known software modules, run with the same privileges as the
vulnerabilities application. If a vulnerable component is exploited, such
attacks can facilitate serious data loss or server take over
Insufficient logging This allows attacks to further attack systems, maintain
and monitoring persistence, pivot to more systems, and temper, extract, or

destroy data

web application security vulnerabilities for many organisations [16]. The Top
10 list changes according to which vulnerability is most dominant at any given
time.

The risk posed by each of these vulnerabilities can be reduced by more than
one type of control. For the data access layer within NET, OWASP recommends
specific secure coding practices. Table 2 presents the nine secure coding practices
(SP1 to SP9) for data access based on OWASP and used in this study. These
relate to some of the vulnerabilities shown in Table 1. As an example, parame-
terised SQL commands (SP1), or the use of stored procedures (SP6), can block
SQL injections. Therefore more than one control can reduce a vulnerability.

The secure coding practices shown in Table 2 are referred to using the codes
SP1 to SP9 throughout this paper. If one of them is not properly handled, it

6 V. Mdunyelwa et al.

Table 2. Secure coding practices. Adapted from [16].

SP | Secure coding practices

SP1 | Use parameterised SQL commands for all data access, without exception

SP2 | Do not use SQL command with a string made up of a concatenated SQL
strings

SP3 | Properly validate input fields

SP4 | Apply the principle of least privilege when setting up the database of
your choice

SP5 | When using SQL server, prefer integrated authentication over SQL
authentication

SP6 | Using stored procedures is the most effective way to counter the SQL
injection vulnerability

SP7 | Encrypt connection strings

SP8 | Connection strings should be based in a configuration file

SP9 | Encrypt sensitive data using acceptable encryption algorithms

can be easy for an attacker to access and modify information that is in the
database. For example, if the connection string is found in other parts of the
application code and not locked in the configuration file, it can be easy for an
attacker to access the information using the same connection string to connect
to the database. Or, if the expected values in an input field are not whitelisted
in a system with concatenated SQL strings, attackers can use characters to
manipulate the SQL string in the database and the information would be at
risk.

These vulnerabilities cannot be prevented by programmers unless they know
the types of flaws that exist in their code [1,3]. Similarly, they cannot implement
these security controls unless they are taught how they work [8]. Once software
developers have been taught about secure coding practices, it is more likely
that they will have the requisite knowledge [5]. However, there has to be some
form of compliance instrument to monitor their adherence, since it is known that
people with the requisite knowledge do not always behave accordingly. Therefore,
an educational intervention that focuses on both knowledge and behaviour was
developed and provided to software development students to improve the security
of their web applications.

3 Research Design

This research was conducted in the School of Information and Communication
Technology at a comprehensive institution in South Africa, offering both degrees
and vocational qualifications. In this case, the sample was drawn from students
registered for their third year in the National Diploma: Software Development.
In South Africa, there are no locally recognised curricular guidelines for comput-
ing. Many universities therefore rely on the recommendations provided in global

An Educational Intervention for Teaching Secure Coding Practices i

computing curricular publications. The Association of Computing Machinery
(ACM) Information Technology curricular guidelines have been used to model
IT qualifications. The I'T2008 and the more recent IT2017 curricular guidelines
require students in computing and engineering disciplines to engage in a cap-
stone project during their final year of study [12,13]. Since the diploma is a
three year qualification, students are required to complete a capstone project in
their third year of study. These capstone projects take place over a full year of
study. According to the ACM IT curricular guidelines, capstone projects should
typically adhere to the following [12,13]:

— Project groups of 3 to 5 students;

— Based on a real-world problem;

— Must be integrative;

— Students should have completed most of the curriculum before attempting
the project.

Students registered for the diploma are introduced to programming and busi-
ness application systems development. Therefore, most of their capstone projects
focus on developing applications for solving real world problems using business
applications. When students choose the capstone projects, many of them focus on
web, mobile or gaming applications, while a few develop desktop applications.
Although students are taught specifically to develop software in a Windows
environment using the .NET framework, students may develop their capstone
projects in the programming language of their choice. Most project students
choose web applications in the .NET development environment as this is where
their skills lie.

This research focused on two aspects relating to secure coding practices,
namely knowledge and behavioural compliance of the students and involved four
main phases:

— Phase 1 was the first phase for this research which started off by analysing
students’ behaviour relating to secure coding practices. This was done by
conducting a code review on previously completed third year capstone
projects, which were developed in the .NET environment. The results for
this behavioural analysis indicated low levels of compliance to the identified
secure coding practices.

— Phase 2 addressed the knowledge assessment phase for this research, which
assessed students’ knowledge relating to secure coding practices. This was
achieved using a questionnaire, which served as a pre-test for this study.
Results from the pre-test indicated that students lacked knowledge relating
to secure coding practices. Therefore, students lacked in both the knowledge
and behavioural aspects.

— Phase 3 comprised of an educational intervention for addressing both the
knowledge and behavioural aspects, which students lacked in Phase 1 and
2. In terms of the knowledge aspect, students were provided with online
lessons relating to secure coding practices to work through; in terms of the
behavioural aspect, students were given a checklist to check their application
code against the listed secure coding practices.

8 V. Mdunyelwa et al.

— Phase 4 involved the verification of the educational intervention for this
research. The first part of this phase was the knowledge verification (Phase
4A), and the second part was the behavioural verification (Phase 4B).

The results for Phase 1 and 2 were published in the 2017 Human Aspects
in Information Security and Assurance (HAISA) conference [14]. The focus of
this paper is therefore on Phases 3 and 4. The following section describes the
educational intervention (Phase 3), while Phase 4 (A and B) are discussed in
Sect. 5.

4 Educational Intervention

The educational intervention was split into two parts, where the first part focused
on the knowledge, and the second part focused on the behaviour of students
relating to secure coding practices. Owing to the lack of knowledge on the part
of the students, the researcher realised the need to create a knowledge component
that could assist students in acquiring the requisite knowledge regarding secure
coding practices. The need to address behavioural compliance was also realised
since it is known that having knowledge does not necessarily ensure that people
would behave accordingly [17]. Both the knowledge and behavioural components
of this research were designed using the identified secure coding practices in
Table 2.

4.1 Knowledge Component

The knowledge component for this research took the form of a blended learn-
ing course, called the Web Application Security Course, that students worked
through to improve their knowledge regarding secure coding practices.

Design of the Knowledge Component. The knowledge component for this
research included online lessons that the researcher designed using the identified
secure coding practices. For each of the secure coding practices, their impor-
tance and the security implications if they were ignored were explained. The
online learning platform that was used to design the lessons was the Moodle
Learning Management System that runs on the university’s website. Moodle is
a learning management system used by educators to create effective blended
learning material for students in various higher educational institutions. Moodle
has been adopted by many institutions for its cost effectiveness, its ability to
expand with increased student populations, and its ability to meet the needs of
institutions, students and educators [10]. Figure 1 provides an overview of the
process followed by the students when completing the online lessons on Moodle.

The lessons took the form of interactive Microsoft PowerPoint slides, which
were converted to videos, for students to work through. Each secure coding prac-
tice was addressed in a single lesson. After completing each lesson, the students
were required to take a quiz, which allowed them to reflect on the content of the

An Educational Intervention for Teaching Secure Coding Practices 9

Lesson 1 SP1
\

Lesson 1

l,_l:
Lesson 8
SP1 spg | ||
Next T
g S ——
2 \é’ Lesson 5
g & sps |
s b —
Lesson 2 SP2

Quiz t{/]

= e | L@SSON 2 2

SR =

Fig. 1. Lesson content process flow.

lesson. The quiz had four questions assigned to each lesson. The students had to
answer only one randomly generated quiz question before continuing to the next
lesson. If the student selected the incorrect answer, they were required to work
through the lesson again, and if they selected an incorrect answer once again, a
different question would be randomly generated. Alternatively, if they selected
the correct answer, they were allowed to continue to the next lesson.

A Drief overview of each secure coding practice (SP1 to SP9) as listed in
Table 2, within the knowledge component follows:

— SP1 (Using Parameterised SQL commands): The content for this secure cod-
ing practice firstly provides the background relating to parameterised SQL
commands in order to equip students with the necessary information relating
to this secure coding practice. The remainder of the lesson shows the students
how parameterised SQL commands can be implemented in their code, and
why it is necessary to use them.

~ SP2 (Concatenated SQL strings): Content for this secure coding practice
begins by introducing what is meant by concatenated SQL strings. The lesson
proceeds by showing how programmers make use of concatenated SQL strings
and the negative implications of using them. This lesson also provides a way
in which to avoid using concatenated SQL strings, which is by means of
parameterised SQL commands.

10 V. Mdunyelwa et al.

— SP3 (Input validation): The content for this secure coding practice begins
by discussing validation in general. It also highlights the various types of
validation, such as blacklisting and whitelisting, and why they are important.
The content also provides suggestions on what to use when dealing with
validation, for example, ASP .NET Regular Expressions to tell input fields
which values to accept.

— SP4 (Principle of Least Privilege): This secure coding practice content
explains what the Principle of Least Privilege is and why it is important when
developing web applications. This content also provides a scenario where the
use of this secure coding practice is shown and how it can be implemented.

— SP5 (Authentication): The content of this secure coding practice was
addressed by means of a video adapted from YouTube. The video was embed-
ded in the slides and distributed as a single lesson to the students to listen
to and to watch.

— SP6 (Using Stored Procedures): The content for this secure coding practice
focusses on how stored procedures are used and why they are important,
providing examples on how they should be implemented in a web application.

— SP7 + SP8 (Connection strings): These two secure coding practices both deal
with connection strings, and have been addressed collectively in the same
lesson. The content first provides detail about the importance of connection
strings, and how they should be handled when developing web applications,
providing detail on how to implement both the secure coding practices.

— SP9 (Encryption): For this secure coding practice, an analogy is used to
explain the concept of encryption to the students. The lesson further explains
the analogy to clarify the concepts for the students. Since OWASP provides
recommendations relating to acceptable encryption algorithms, the content
for this lesson also emphasises the use of the encryption algorithms recom-
mended by OWASP when developing web applications.

All the lessons were followed by a quiz question to check students’ understanding
of the content contained in the lesson they had worked on. The results for the
short content quizzes were not recorded, since answers were simply used to ensure
that students do not move to the next lesson without understanding the content
in the previous lesson.

Administering the Knowledge Component. The Web Application Secu-
rity lessons were prepared by the researcher and distributed to the students on
Moodle. The students were permitted to work through the lessons as often as
they wanted. During a lecture, the researcher explained the process that the
students needed to follow when completing the online content. Most students
worked through the content in the computer laboratories at the university as
soon as it was made active and available to them. A total of 120 students com-
pleted the online lessons. The students had to work through all the lessons,
since they were required to take a quiz which served as a Post-test (Phase 4A)
for which marks were recorded.

An Educational Intervention for Teaching Secure Coding Practices 11

4.2 Behavioural Compliance Monitoring Instrument

Although it is possible for a student to have the requisite knowledge and not
perform accordingly when developing their web applications, it is most unlikely
for them to behave accordingly when they do not have the requisite knowledge.
Therefore, it was deemed necessary to firstly educate the students on secure
coding practices and then to monitor their adherence to these practices. This
section provides details on how the behaviour of students was monitored when
developing their web applications as part of their third year capstone projects.

Design of Behavioural Compliance Instrument. The behavioural com-
pliance instrument took the form of a checklist as seen in Table3. The code
review checklist for this research was adapted from the secure coding practices
in Table 2 and was provided to the students electronically via Moodle.

Table 3. Code review checklist.

SP | Questions
SP1 | Do they make use of parameterised SQL commands for all data access?
Yes/No (Number of Instances)

SP2 | Do they make use of concatenated strings in the queries? Yes (Number of
Instances)/No

SP3 | Are all input fields validated? Input Properly Validated/Input not Properly
Validated/No Validation

SP4 | Do they make use of the Principle of Least Privilege when setting up their
databases? Yes/No

SP5 | Do they use integrated authentication or do they use SQL
authentication? Integrated Authentication/SQL Authentication

SPGI Do they use stored procedures for their queries? Yes/No/Inconsistent Use
of Stored Procedures and Queries

SP7 | Do they encrypt their connection strings? Yes/No
SP8 | Does the connection string only appear once in the web.config file?
Yes/No

SP9 | Is all the sensitive data being encrypted using the OWASP recommended
methods? Encrypted Using Acceptable Method/No Encryption/Encrypted
Not using Acceptable Method

Conducting the Behavioural Compliance Instrument. During a lecture
the researcher explained to the students how they should go about using the
checklist to review their capstone projects. They were required to check all web
forms accessing the data access layer against the secure coding practices for
SP1 to SP9 using the checklist provided in Table 3. Having worked through
the knowledge component, as discussed in Sect. 4.1, the students should have

12 V. Mdunyelwa et al.

acquired the requisite knowledge relating to the secure coding practices that
should be implemented in their web applications.

Since most students worked in groups when developing their web applica-
tions, they were also required to conduct a peer code review on each other’s web
forms using the checklist provided. The peer code review helped the students
to double check whether they had really adhered to the secure coding practices
as indicated in their own code reviews. Feedback from the students was posi-
tive and most students found the checklist helpful for their code and to ensure
compliance to the secure coding practices.

5 Effectiveness of the Educational Intervention

Once students had completed the educational intervention, it was necessary to
determine its effectiveness. The knowledge component of the educational inter-
vention was responsible for providing students with knowledge regarding secure
coding practices. Having completed the online course, the students were expected
to implement the learnt secure coding practices in their capstone projects, show-
ing behavioural compliance.

The verification of the knowledge component was achieved through an online
quiz distributed to the students through the Moodle site as discussed in Sect. 5.1.
Verification of the behavioural compliance component took the form of a code
review by the researcher on the students’ capstone projects as discussed in
Sect. 5.2.

5.1 Knowledge Verification

The setup for the post-test questionnaire was such that students were only
allowed to work through the post-test after they had completed the lessons
in the knowledge component of the educational intervention, referred to as the
Web Application Security Course. The 113 students who completed the post-
test were only allowed to work through the post-test once. The results for the
post-test questionnaire were automatically recorded on the Moodle site, where
the researcher was able to export the data to an Excel spreadsheet for analysis.
A comparison of the knowledge pre- and post-test is shown in Table 4.

Table 4. Knowledge assessment and verification results (Pre-test vs Post-test).

Phases SP1 SP2 |SP3 |SP4 SP5 |SP6 |SP7 |SP8 SP9
Phase 2 | 74% | 36% |30% |58% 26% |39% |20% 3% |1%

Phase 4A 1 95% | 95% |89% |91% 91% 77% |93% | 88% |83%
Variance 21% 59% |59% | 33% |65% 38% | 73% 85% 82%

An Educational Intervention for Teaching Secure Coding Practices 13

Table 4 shows the results for Phase 2, Knowledge Assessment (pre-test), and
Phase 4A, Knowledge Verification (post-test). There was a substantial improve-
ment in the students’ knowledge as indicated in the second row, Phase 4A. Stu-
dents’ knowledge has improved in all of the secure coding practices (SP1 to SP9),
as seen in the variances. SP2, SP3, SP5 and SP7 showed reasonable improve-
ments, while SP8 and SP9 showed the highest improvements with variances
above 80%. As mentioned previously, knowledge acquisition does not guaran-
tee a change in behaviour. In order to monitor the adherence of the students to
these secure coding practices when developing their web applications behavioural
compliance monitoring was required.

5.2 Behavioural Verification

The behavioural verification instrument used was the same checklist used in
Phases 1 and 3 as shown in Table 3. The checklist was used by the researcher to
conduct a code review on the third year capstone projects.

The code review was conducted by the researcher before the final submission
of the software development projects. The researcher first informed the students
about the code review process scheduled to take place during a session in the
computer laboratory. Students filled in their group names and were required
to be in the computer laboratory in order for their projects to be reviewed.
The code review was conducted during the students’ practical sessions. For each
of the capstone projects, the researcher reviewed five web forms per project,
which connected to the database and were related to the capstone projects’
main functionality. 17 groups were present for the code review, and they were
all reviewed successfully, in the presence of the students who belonged to the
group being reviewed. Table5 shows the results from the behavioural analysis
for the students before and after exposure to the educational intervention.

Table 5. Behavioural verification results (Phase 1 and 4B).

Phases |SP1 |SP2 |SP3 |SP4 |SP5 |SP6 (SP7 |SP8 |SP9
Phase 1 |86% |84% |77% |60% |N/A |38% |N/A |68% |31%
Phase 4B | 96% |96% |100% 91% |N/A |96% |N/A |100% | 100%
Variance | 10% 12% |23% |31% |N/A 58% N/A |32% 69%

As can be seen from the results in Table5, there was an improvement in
students’ adherence to secure coding practices after the educational interven-
tion, with most capstone project groups having adhered to all the secure coding
practices. Although SP5 and SP7 were recommended by OWASP, they were not
required by the capstone projects from which the sample for this research was
drawn. All averages per secure coding practice were between 90% and 100%,
with SP3, SP8, and SP9 showing 100% compliance. SP6 and SP9 showed the

14 V. Mdunyelwa et al.

largest improvements of 58%(SP6) and 69%(SP9) respectively, while SP3, SP4
and SP8 showed good improvements of between 20% and 35%.

6 Conclusion

The results of this study indicate that students’ adherence to secure coding
practices can be positively impacted through a formal educational intervention.
However, it is important that such an intervention addresses both the knowl-
edge and behaviour of students since having the requisite knowledge does not
ensure compliance. It is for this reason that a behavioural compliance moni-
toring instrument formed part of the study. This is a step towards educating
students in secure application development which is essential in addressing the
many security vulnerabilities existing in Web applications today.

Limitations of this study do exist. Firstly, this study addressed only the iden-
tified secure coding practices which were determined from OWASP. Secondly,
the identified secure coding practices only focused on the data access layer of
Web applications developed in the .NET environment. Future research could
investigate similar interventions within various other application development
contexts.

7 Ethical Considerations

This research project adhered to all ethical requirements of the Nelson Mandela
University and obtained ethics approval from the university research committee
(REF H15-ENG-ITE-009).

References

1. Bishop, M., Dai, J., Dark, M., Ngambeki, I., Nico, P., Zhu, M.: Evaluating secure
programming knowledge. In: Bishop, M., Futcher, L., Miloslavskaya, N., Theochari-
dou, M. (eds.) WISE 2017. TAICT, vol. 503, pp. 51-62. Springer, Cham (2017).
https://doi.org/10.1007 /978-3-319-58553-6_5

2. Chandrasekar, K., Cleary, G., Cox, O., Gorman, B.O.: Internet security threat
report. Technical report, Symantec, April 2017. https://www.symantec.com/
security-center /threat-report

3. Chi, H., Jones, E.L., Brown, J.: Teaching secure coding practices to STEM stu-
dents. In: Proceedings of the 2013 on InfoSecCD 2013 Information Security Cur-
riculum Development Conference - InfoSecCD 2013, pp. 42-48 (2013). https://
doi.org/10.1145/2528908.2528911. http://dl.acm.org/citation.cfm?doid=2528908.
2528911

4. Chung, S., et al.: What approaches work best for teaching secure coding practices?
In: 2014 HUIC Education & STEM Conference (2014)

5. Conklin, A., White, G.: A graduate level assessment course: a model for safe vulner-
ability assessments. In: Proceedings of the 9th Colloquium for Information Systems
Security Education (2005)

10.

11.

12.

13.

14.

16.

17.

18.

An Educational Intervention for Teaching Secure Coding Practices 15

Customs Solutions Group: A CISO’s guide to application security. Technical
report, Customs Solutions Group (2012). http://h30528. www3.hp.com/Security/
CISOGuideToApplicationSecurity.pdf

Dark, M., Ngambeki, I., Bishop, M., Belcher, S.: Teach the hands, train the mind ...
a secure programming clinic! In: Proceeding of the 19th Colloquium for Information
System Security Education (2015)

Dark, M., Stuart, L., Ngambeki, 1., Bishop, M.: Effect of the secure programming
clinic on learners’ secure programming practices. J. Colloquium Inf. Syst. Secur.
Educ. 4, 18-18 (2016)

Deepa, G., Thilagam, P.S.: Securing web applications from injection and logic
vulnerabilities: approaches and challenges. Inf. Softw. Technol. 74, 160-180 (2016).
https://doi.org/10.1016/j.infsof.2016.02.005

Florian, T.P., Zimmerman, J.P.: Understanding by design, moodle, and blended
learning: a secondary school case study. MERLOT J. Online Learn. Teach. 11(1),
120-128 (2015)

Li, X., Xue, Y.: A survey on server-side approaches to securing web applications.
ACM Comput. Surv. (CSUR) 46(4), 54 (2014)

Lunt, B., Sabin, M., Hala, A., Impagliazzo, J., Zhang, M.: Information technology
curricula 2017. Technical report, Association for Computing Machinery (ACM).
IEEE Computer Society (2017)

Lunt, B.M., Ekstrom, J.J., Lawson, E.: Curriculum guidelines for undergraduate
degree programs in information technology. Technical report, Association for Com-
puting Machinery (ACM). IEEE Computer Society (2008)

Mdunyelwa, V.S., Niekerk, J.F.V., Futcher, L.A.: Secure coding practices in the
software development capstone projects. In: Proceedings of the Eleventh Interna-
tional Symposium on Human Aspects of Information Security & Assurance, HAISA
2017, Adelaide, Australia, 28-30 November 2017, pp. 282-291 (2017). http://www.
cscan.org/openaccess/?paperid=353

. OWASP: OWASP Top 10 (2017). https://www.owasp.org/index.php/Top_10-

2017 _Top-10

OWASP: The OWASP Foundation (2017). https://www.owasp.org/index.php/
Main_Page

Vroom, C., Von Solms, R.: Towards information security behavioural compliance.
Comput. Secur. 23(3), 191-198 (2004)

Zhu, J., Xie, J., Lipford, H.R., Chu, B.: Supporting secure programming in web
applications through interactive static analysis. J. Adv. Res. 5(4), 449-462 (2014).
https://doi.org/10.1016/j.jare.2013.11.006

t‘)

Check for
updates

Learning Principles and the Secure
Programming Clinic

Matt Bishop'®)®, Melissa Dark?, Lynn Futcher®®, Johan Van Niekerk®1®,
Ida Ngambeki?, Somdutta Bose!, and Minghua Zhu!

L University of California at Davis, Davis, CA, USA
{mabishop, sombose,mhzhu}@ucdavis.edu
2 Purdue University, West Lafayette, IN, USA
{dark, ingambek }@purdue. edu
3 Center for Research in Information and Cyber Security,
Nelson Mandela University, Port Elizabeth, South Africa
{lynn.futcher, johan.vanniekerk}@mandela.ac.za
4 Noroff University College, Oslo, Norway
johan.vanniekerk@noroff.no

Abstract. Several academic institutions have run a clinic on robust
and secure programming. Fach time a clinic was run, it was associated
with a specific class. Using pre- and post-class evaluation instruments,
it is clear that the effect of the secure programming clinic on students’
understanding of secure programming was generally positive. However,
in some instances the clinic was underutilized, and in other cases it could
not be run at other institutions. The goal of this paper is to examine the
structure of the clinic in light of five basic learning principles, and provide
information about when a clinic will not improve students’ understand-
ing, and when it will. We validate this by examining an instance of the
secure programming clinic, and show how the learning principles explain
the improvement in student grades, or lack thereof. From this, we draw
conclusions about ways to make the clinic more effective, and when it
will not be effective.

Keywords: Secure programming clinic - Learning principles -
Robust programming

1 Introduction

The problem of nonsecure code is widely recognized as a major source of secu-
rity problems. Indeed, of the vulnerabilities in the U.S. National Vulnerability
Database in the last 5 years, over 19,000 are identified as injection and buffer
overflow vulnerabilities, exemplars of poor programming practices [14]. Some,
such as Heartbleed, have impacts throughout the Internet [7]. Industries, gov-
ernment, and many other organizations want programmers who can write secure,

robust code. The problem is how to teach this material.

© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

L. Drevin and M. Theocharidou (Eds.): WISE 2019, IFIP AICT 557, pp. 16-29, 2019.
https://doi.org/10.1007/978-3-030-23451-5_2

Learning Principles and the Secure Programming Clinic 19

3. The clinicians can act as assistant instructors, helping the students develop
threat models for how an attacker might use their program to violate desired
security properties. As “security” is defined in terms of requirements, the
threat model is critical to knowing the types of security problems that might
arise. On the other hand, robustness issues are independent of threats, in the
sense that they are common to all threats.

The functions of the clinic can be extended beyond simply reviewing pro-
grams. It can also provide information to help the students fix the problems.
This typically requires collecting examples of poor programming and how to fix,
or (better) avoid, them. It can also provide remote assistance, where the clini-
cians are not at the institutions. There is a salutary effect for this. If some of the
clinicians are volunteers who work in the software industry or for government
agencies, their presence and activities will convey the importance that future
employers place in high-quality code. This provides incentives for students to
learn the material.

The clinic can also be shared among universities. One implementation of
the clinic provides a common shared appointment calendar, so students from
any of the academic institutions could sign up for appointments even when
the local clinicians were not available. The clinicians from the institutions co-
ordinated their times so that one was always available during the day. Were this
to be extended internationally, clinicians would probably be available for most
of the evening and night (when many students of computer science and related
disciplines develop their programs).

The above discussion provides insight into the specific secure programming
clinic format of concern to this paper. However, for the sake of comprehensive-
ness, the next section will briefly highlight other such approaches, and challenges,
relating to the teaching of secure programming.

4 Teaching Secure Programming

Secure programming is about writing secure code. The focus of many program-
ming courses, however, is to write code that works with a lack of focus on writing
code securely. A developer’s unintentional ignorance of known vulnerabilities and
insecure coding practices can generate insecure software. Besides the potential
financial loss, the successful exploitation of insecure software can impact the con-
fidentiality, integrity and availability (CIA) of critical information. Undetected
exploitation can also lead to the embedding of malicious software within an orga-
nization, giving the malicious attacker the ability and potential to attack any
time [18]. Secure programming should therefore include the basic principles of
robust coding to guard against unexpected inputs and events [15].

The challenges of teaching and integrating secure programming into com-
puting curricula have been around for many years, and some of these challenges
which are still evident today [13]. These include:

20 M. Bishop et al.

— Lack of faculty buy-in

— Competition with other topics for inclusion into the curriculum

— Computing curricula already full

— Failure of students to grasp other important programming concepts
— Lack of secure programming expertise of faculty members

Much research has been conducted to address some of these challenges. A
recent study [21] investigates a Java proof-of-concept plug-in for Eclipse, ESIDE
(Educational Security in the IDE), that provides vulnerability warnings and
secure programming education in the IDE while students write code. It works
bv scanning a selected project for code patterns that match predefined heuristic
rules of security vulnerabilities. In this way, secure programming knowledge can
be introduced early and reinforced throughout a students’ education. Generally,
ESIDE was found to increase students’ awareness and knowledge of secure pro-
gramming. However, almost no students actually modified their code to mitigate
the detected vulnerabilities as they were most concerned with completing func-
tionality and did not want to impact that functionality with additional security-
oriented code. In addition, carefully timing the introduction of concepts and
skills as well as incentivising such learning is important [21].

ESIDE was compared to the Secure Programming Clinic by running each
approach with two separate groups of students, one group assigned to ESIDE
and the other to the clinic [21]. Each group of students were asked to report
on how likely they would use the recommended changes in their code during
the session. The likelihood results for the Secure Programming Clinic were sig-
nificantly better than for ESIDE. However, the clearest difference between the
clinic and ESIDE were the number of specific vulnerabilities covered. Where
ESIDE marked on average 42 lines of code per participant, the technical assis-
tants running the clinic pointed out approximately two specific lines of code per
participant.

One response to the need to teach students to program more securely was
to introduce a serious game for teaching secure coding practices and principles
to novice programmers [1]. Initial findings showed the game to be usable and
engaging, with the majority of students being able to make clear correlations
between the game levels and corresponding security concepts. Similarly, con-
structing secure coding duels [24] in Code Hunt, a high-impact serious gaming
platform released by Microsoft Research, was proposed to instill gaming aspects
into the education and training of secure coding. Secure coding duels proposed
in this work are coding duels that are carefully designed to train players’ secure
coding skills, such as sufficient input validation and access control. Using serious
games for teaching secure coding could alleviate some of the challenges faced by
faculty members in this regard.

Furthermore, scorecards and checklists provide a consistent means of eval-
uation and assessment [22]. They describe the use of security checklists and
scorecards which provide a quantifiable list of security criteria to aid in writing
secure code and further reinforce security principles. Checklists distributed to
students included:

Learning Principles and the Secure Programming Clinic 21

~ Sample code of errors to look for;

— Examples of correct ways of writing code; and

— Security mantras including a list of principles that form the basis for the
checklist, for example: “All Input is Evil!”

Regardless of the approach used to teach secure programming, such
approaches should take into account recognized learning principles, as discussed
in Sect. 5, to ensure that learning takes place.

5 Learning Principles

Systematic studies of human behaviour, including studies of how people learn, is
a relatively new field of scientific enquiry [17]. However, despite the youth of this
field, many studies have already been dedicated to investigating how learning
takes place. During such studies, researchers strive to identify recurring patterns
in the data and to make generalizations based on these patterns. Such gener-
alizations lead to the formulation of learning principles and learning theories.
Learning principles identify the factors that influences learning. For example,
the principle that a behaviour which is rewarded in some way is more likely to
re-occur in future than one which is not followed by a reward. A learning theory
on the other hand aims to provide an explanation of the underlying mechanisms
that are involved in learning. Thus, whilst a learning principle presents what
factors are important, a learning theory would explain why those factors are
important [17].

Learning principles do not change much over time, however, learning theories
have continually changed as understanding of human behaviour evolved [17]. Due
to the fact that learning principles are less changeable, and thus more ‘future
proof’ than learning theories, this research will seek to identify learning principles
that could be useful in the secure coding clinics, but will avoid subscribing to
any specific learning theory.

Educational literature provides many such learning principles. These princi-
ples have been identified, and their impact verified, in a variety of ways. One
such approach is the field of brain compatible education. This educational app-
roach stems from a combination of neuroscience and educational psychology and
was first made possible by advances in brain imaging during the 1990s [12].

Brain-compatible, or brain-based, learning is not a formalised education app-
roach or ‘recipe for teachers’, instead it provides a “set of principles and a base
of knowledge and skills upon which we can make better decisions about the
learning process” [9, p. xiii]. Brain research has shown that humans literally
grow new dendrites and neural connections every time they learn something.
Knowing which educational activities are the most effective in stimulating such
growth allows educational practitioners to create material that leverages the way
the brain naturally learns [10]. For the purpose of this research, it is not neces-
sary to understand how these natural learning processes work. One only needs
to understand that these principles were verified as being effective in promoting
real learning.

22 M. Bishop et al.

No single complete list of such principles exists. However, many principles
are presented and discussed in the literature [4,5,8,9,11,16,19,20]. The list pre-
sented in Table 1 contains a subset of principles from those used in literature.
The principles included in Table 1 were restricted to those the authors specifically
deemed most relevant to the context of the Secure Programming Clinic. Rele-
vant principles from literature were reworded and consolidated in cases where
there was significant overlap in meaning between those used in the literature and
the context for use in this study. Table 1 thus presents the authors’ adaption of
these principles. The following discussion briefly elaborates on each of the listed
principles:

— LP1 - According to [8,9,11] there is no long term retention without rehearsal.
The brain would prune new neural growth if it is not reinforced by being
used. It is vital to repeat lessons taught more than once, otherwise students
would be likely to forget these lessons. One should also allow enough time
for students to assimilate any new concepts. Several studies [4,8,11] explains
that the brain will reconsolidate new neural growth for several weeks after
learning using both conscious and unconscious (sleep) processes to decide how
to incorporate knowledge into existing neural structures.

— LP2 - If the new knowledge is too advanced for the target audience, learning
might be inhibited because the learners feel threatened instead of challenged
by the content [4,5,8,9]. Furthermore, new knowledge can only be assimi-
lated if it builds upon prior knowledge, since novel patterns can only form as
extensions of existing patterns [5,11,19,20].

— LP3 - The process of learning consists of the brain recognizing patterns [4,5,
8,9]. For these patterns to form the learners need to recognize and connect
patterns by themselves [5,9,11,19]. This process works best if the learners
experience these patterns in contexts that are relevant to themselves [5,9]
and their real-life experiences [11].

— LP4 - Humans naturally learn in social settings and through interaction with

others [4,8]. Collaboration with others enhances learning [11].
LP5 - Rehearsal will make learning permanent, however, this does not guaran-
tee the rehearsed learning is in fact correct. Practice should be accompanied
by feedback that is constant, consistent, and specific to ensure that practice
that is permanent is also correct [8,16]. The effect of feedback is also amplified
if it is immediate [5,9].

6 Mapping of Clinics to Selected Learning Principles

We begin by examining the instances of the secure programming clinic that have
been run, and how they reflect the learning principles. We then discuss how the
clinic might be improved by mapping the principles into various forms of the
clinic.

A Short-Cycle Framework Approach to Integrating Psychometric Feedback 49

scripts in near real time. This came to be known among the group as the Short-Cycle
Framework for psychometric coaching feedback.

The types of data gathered by the authors to enable the Short-Cycle Framework fall
into baseline data (MBTI and PTPS traits), established before exercise scenarios and
cyber defense incidents, and ongoing data (PTPS adaptive behaviors) that is gathered
with different frequencies throughout the event. This all could then be plotted on the
same timeline with traditional cybersecurity training metrics listed below and described
in detail in later sections.

e Personality Trait Assessments
— Myers-Briggs Type Indicator (MBTTI)
— Parker Team Player Survey (PTPS)
— Adaptive Behavior Scale
— 14-Ttem Resilience Scale
* Ongoing Data
— Personality State Assessments
Team Cohesion Assessment Scale
Observed PTPS
— Digital Observations through System and Event, Information Management
(SIEM) Network and Log Traffic Data from devices like Firewalls, Server Logs,
and Switch Flow Traffic
— Digital Service Scoring Engine - tracking business digital system state over time
of the defended services.
— Red Team Journaling - presents the active attack and often intentionality
— “CEOQO” Injects - provides the timelines of directives issued by a mock CEO

Psychometric state analysis like “Team Cohesion” during events makes ongoing
relationship dynamics and causal events of behavior clearer. This is why data were
aggregated into a single timeline. To meaningfully address this, the team is developing
a set of scripted feedback messages for particular psychometric states that can be
evaluated for efficacy as more event data are collected. More detailed explanations of

“CEQ" Injects E

Role Diversity trait PTPS
and PM Feedback Points

Team Cohesion Level

Firewall Attack Traffic

Sustained Services

Red Team, Tasks

Time »>

Fig. 1. Short-cycle framework, a simulated set of metrics across cyber defense and team
psychometric indicators set in parallel on a timeline to rapidly analyze cyber event causes in
relation to ongoing psychometric measurement of the team.

