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Preface

This hook is aimed at senior undergraduates and graduate students in Engi-
neering, Science, Mathematics, and Computing. It expects familiarity with
caleulus, probability theory, and linear algebra as taught in a first- or second-
vear undergraduate course on mathematics for scientists and engineers.

Conventional courses on information theory cover not only the beauti-
ful theoretical ideas of Shannon, but also practical solutions to communica-
tion problems. This book goes further, bringing in Bayesian data modelling,
Monte Carlo methods, variational methods, clustering algorithms, and neuaral
networks.

Why unify information theory and machine learning? Because they are
two sides of the same coin. In the 1960s, a single field, cybernetics, was
populated by information theorists, computer scientists, and neuroscientisis,
all studying common problems. Information theory and machine learning still
belong together. Brains are the ultimate compression and communication
systems. And the state-of-the-art algorithms for both data compression and
error-correcting codes use the same tools as machine learning,

How to use this book

The essential dependencies between chapters are indicated in the figure on the
next page. An arrow from one chapter to another indicates that the second
chapter requires some of the first.

Within Parts [, I1, IV, and V of this book, chapters on advanced or optional
topics are towards the end. All chapters of Part III are optional on a first
reading, except perhaps for Chapter 16 (Message Passing).

The same system sometimes applies within a chapter: the final sections of-
ten deal with advanced topics that can be skipped on a first reading. For exam-
ple in two key chapters — Chapter 4 (The Source Coding Theorem) and Chap-
ter 10 (The Noisy-Channel Coding Theorem) — the first-time reader should
detour at section 4.5 and section 10.4 respectively.

Pages vii—x show a few ways to use this book, First, I give the roadmap for
a course that I teach in Cambridge: ‘Information theory, pattern recognition,
and neural networks’. The book is also intended as a textbook for traditional
courses in information theory., The second roadmap shows the chapters for an
introductory information theory course and the third for a course aimed at an
understanding of state-of-the-art error-correcting codes. The fourth roadmap
shows how to use the text in a conventional course on machine learning.
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Preface

About the exercises

You can understand a subject only by creating it for yourself. The exercises
play an essential role in this book. For guidance, each has a rating (similar to
that used by Knuth (1968)) from 1 to 5 to indicate its difficulty.

ﬁ In addition, exercises that are especially recommended are marked by a

marginal encouraging rat. Some exercises that require the use of a computer

are marked with a C.
Answers to many exercises are provided. Use

them wisely. Where a solu-

tion is provided, this is indicated by including its page number alongside the

difficulty rating.

Solutions to many of the other exercises will be supplied to instructors
using this book in their teaching: please email solutions@cambridge.org.

Summary of codes for exercises

ﬂ Especially recommended (2]
(2]

[ Recommended Eil
(1 Parts require a computer [4]

[p.42] Solution provided on page 42 (5]

Simple (one minute)
Medium (quarter hour)
Moderately hard

Hard

Research project

Internet resources

The website

http://www.inference.phy.cam.ac.uk/mackay/itila

contains several resources:

1. Software. Teaching software that I use in lectures, interactive software,
and research software, written in perl, ectave, tcl, C, and gnuplet.

Also some animations.

2. Corrections to the book. Thank you in advance for emailing these!

3. This book. The book is provided in postscript, pdf, and djvu formats

for on-sereen viewing. The same copyright restrictions apply as to a

normal book.

About this edition

This is the third printing of the first edition.

In the second printing, the

design of the book was altered slightly. Page-numbering generally remains
unchanged, except in chapters 1, 6, and 28, where a few paragraphs, figures,
and equations have moved around. All equation, section, and exercise numbers
are unchanged. In the third printing, chapter 8 has been renamed ‘Dependent
Random Variables', instead of ‘Correlated’, which was sloppy.

¥
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About Chapter 1

In the first chapter, you will need to be familiar with the binomial distribution,
And to solve the exercises in the text — which I urge you to do — you will need
to know Stirling’s approximation for the factorial function, x! ~ +" ¢, and
be able to apply it to (f] These topics are reviewed below.

= o

The binomial distribution

Example 1.1. A bent coin has probability f of coming up heads. The coin is
tossed N times. What is the probability distribution of the number of
heads, r? What are the mean and variance of »7

Solution. The number of heads has a binomial distribution.

N
peif. = (V) rra-p¥n (1.1)
The mean, £[r], and variance, var[r|, of this distribution are defined by
N
Er =) _P(r|f . N)r (1.2)
r=[)

*%‘“
=
]

£ |(r - £y’ (13)
N
ErY — &)’ =Y P(r| £ NP = (€. (14)

r=0

Rather than evaluating the sums over r in (1.2) and (1.4) directly, it is easiest
to obtain the mean and variance by noting that r is the sum of N independent
random variables, namely, the number of heads in the first toss (which is either
zero or one), the number of heads in the second toss, and so forth. In general,

Elz + v
var[z + y]

Elz] +Ey] for any random variables @ and y;
var[z] + var[y] if x and y are independent.

(1.5)

]

So the mean of r is the sum of the means of those random variables, and the
variance of r is the sum of their variances. The mean number of heads in a
single toss is f % 1+ (1 — f) x 0 = f, and the variance of the number of heads
in a single toss is

[.fx12+(1—f}xﬂz]—f2=f—f2=f“—f}.- (1.6)
so the mean and variance of r are:

Erl=Nf and var[r|=Nf1-f). O (L7

Unfamiliar notation?
See Appendix A, p.598.

91733458780

r

Figure 1.1. The binomial
distribution P(r| f=0.3. N =10).
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Approzimating x| and [T)

Let’s derive Stirling’s approximation by an unconventional route. We start
from the Poisson distribution with mean X,

P(r|l}=c“‘\i—r ref{0.1.2,.. ) (1.8)

For large A, this distribution is well approximated — at least in the vicinity of
r = A - by a Gaussian distribution with mean A and variance A:

r ---j:!2
e_A—A— ~ — e = . (1.9)
r! V2T
Let's plug r = A into this formula.
A 1
=X
— o~ 1.10
X TV (1.10)
= A = Me Ao (1.11)
This is Stirling's approximation for the factorial function.
! = 2¥e ™ V2rr & Ihnz!~rhhr-—z+ %In 27, (1.12)

We have derived not only the leading order behaviour, ! =~ =" ¢, but also,
at no cost, the next-order correction term +27rx. We now apply Stirling’s
approximation to In (:’}I

Ny N N N
ll.'l(r) =lllm == {-"lr—r}lnnrrr'f‘?hl?.
Since all the terms in this equation are logarithms, this result can be rewritten
in any base. We will denote natural logarithms (log,) by ‘In’, and logarithms
to base 2 (logy) by ‘log’.
If we introduce the binary entropy function,

(1.13)

- 1 1
Hy(x) = :r]ug; +(1—ix)log m, (1.14)
then we can rewrite the approximation (1.13) as
N .
log (r) = NHa(r{N}, {1.15)
or, equivalently,
(f) = N H2r/N) (1.16)

If we need a more accurate approximation, we can include terms of the next
order from Stirling's approximation (1.12):

log (f) ~ NHy(r/N) - Llog [Qﬂ'N i H .

N (1.17)

About Chapter 1

iz
an 4

o8 o

0.08 4

0.04 o

el |
il

' Hhh.....

B 5 W0 1% W 2
r

Figure 1.2. The Poisson
distribution P(r|X=15).

o log,

Recall that log, x = og, 2"
dlog,= 1 1
Note that 9r o2z
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Figure 1.3. The binary entropy
function,



Introduction to Information Theory

The fundamental problem of is that of reproducing at one point ei-
ther exactly or approximately a message selected at another point.
{Claude Shannon, 1948)

In the first half of this book we study how to measure information content; we
learn how to compress data; and we learn how to communicate perfectly over
imperfect communication channels,

We start by getting a feeling for this last problem.

1.1 How can we achieve perfect communication over an imperfect,
noisy communication channel?

Some examples of noisy communication channels are:

e an analogue telephone line, over which two modems communicate digital
information;

e the radio communication link from Galileo, the Jupiter-orbiting space-
craft, to earth;

s reproducing cells, in which the daughter cells’ DNA contains information
from the parent cells;

e a disk drive.

The last example shows that communication doesn't have to involve informa-
tion going from one place to another. When we write a file on a disk drive,
we'll read it off in the same location - but at a later fime.

These channels are noisy. A telephone line suffers from cross-talk with
other lines; the hardware in the line distorts and adds noise to the transmitted
signal. The deep space network that listens to Galileo’s puny transmitter
receives background radiation from terrestrial and cosmic sources. DNA is
subject to mutations and damage, A disk drive, which writes a binary digit
(a one or zero, also known as a bit) by aligning a patch of magnetic material
in one of two orientations, may later fail to read out the stored binary digit:
the patch of material might spontaneously flip magnetization, or a glitch of
background noise might cause the reading circuit to report the wrong value
for the binary digit, or the writing head might not induce the magnetization
in the first place because of interference from neighbouring bits.

In all these eases, if we transmit data, e.g., a string of bits, over the channel,
there is some probability that the received message will not be identical to the

3

modem = pl,une - modem
lipsie

Galileo = fadio g

daughiter
cell
parent
eell
daughter
eell

computer _ disk __ computer
emory drive foemory



I Introduetion to Information Theory

) T Algorithm 1.9, .\.hljlmz'il}'-\'n1 ©
Received sequence v Likelihood ratio H Decoded sequence 8 decoding algorithm for Ry, Also
- shown are the likelihood ratios

000 g -4 0 (1.23), assuming the channel is a

001 " ! 0 1|inzu-_\' .-ym|m-rri<- channel:

010 5 0 v={1-f}/Ff.

100 o~ 0

101 = 1

110 ! 1

011 = 1

111 3 1

At the risk of explaining the obvious, let's prove this resnlt. The optimal
decoding decision {optimal in the sense of having the smallest probability of
being wrong) is to Hod which value of s is most probable, given r. Consider
the decoding of a single bit s, which was encoded as €{s) and gave rise to three
received bits r = ryrorg. By Bayes' theorem, the posterior probability of s is

Plryrery| s)P(s)

Pi{s|ryrors) = 118
(8]rirers) P{ryrara) (1.15)
We can spell out the posterior probability of the two alternatives thus:
Pirirary|s=1]Pls=1)
Pls=1]rirarg) o =t 2 (1.19)
(s firets Piryrars)
) Plrirar; | s=0)Ps=0
Pla=0lrrary) = 212 3 | Fis=0) (1.20)

.I!qu| F':J":;]
This posterior probabality is determined by two factors: the prior probability
P&}, and the data-dependent term P{rororg | 5), which is called the likelihood
of 5. The normalizing constant P{ryravs ) needn’t be computed when finding the
optimal decoding decision, which is to guess s=0if P(s=0|r}) > P(s=1r),
and &= 1 otherwise,

To find P{s=0[r) and P{s=1|r}), we must make an assumption about the
prior probabilities of the two hypotheses s =0 and s =1, and we must make an
assumpt jom about the ]Jl'n':;l.hilil}' of r given s, We assume that the prior ]Jl'::l:—
ahilities are equal: Pls=0} = Pls=1) = (0L5; then maximizing the posterior
probability P(s|r) is equivalent to maximizing the likelihood Pir| s). And we
assume that the channel is a hinar.\' synunetric channel with noise level f < {15,
=0 that the likelihood is

N
P(r|s) = Prit(s)) = [ Plraltals)), (1.21)

=l
where W = 3 is the number of transmitted bits in the block we are considering,

H."d
3 (I=f) if ry=1t, A
.FU'H ru_l — { ! if " & f“_ ll-.)_JJ

7

Thus the likelihood ratio for the two hypotheses is

P(r|s=1) 17 Plr.|ta(1)),
Pir[s=0) 14 Plrata{0))’

(1.23)
Flrgliglll) /
Pl 1, 00)] (1—-F

(1§} - . - -
¥ = W-L is greater than 1, since _J" < (I.%, so the winning lJl\']::H.JLl]l.‘ﬁl..‘i is the
one with the most ‘votes’, each vote counting for a factor of 5 in the likelihood
ratio.

each factor if ry = 1 and if v, = 0. The ratio

eqquals L ,r”




1.2: Error-correcting codes for the binary symmetrie channel

Thus the majority-vote decoder shown in algorithm 1.9 is the optimal decoder
if we assume that the channel is a binary symmetric channel and that the two
possible source messages 0 and 1 have equal prior probability.

We now apply the majority vote decoder to the received vector of figure 1.8.
The first three received bits are all 0, so we decode this triplet as a 0. In the
second triplet of figure 1.8, there are two 0s and one 1, so we decode this triplet
as a 0 - which in this case corrects the error. Not all errors are corrected,
however. If we are unlucky and two errors fall in a single block, as in the fifth
triplet of figure 1.8, then the decoding rule gets the wrong answer, as shown
in figure 1.10.

-] 0 0 1 0 1 1 0

t 000 000 111 000 111 111 00O

n 000 001 000 000 101 QOO0 QOO

r 000 001 111 000 010 111 000
Ly~ S - Sy - By

s 0 0 1 0 0 1 0

corrected errors +
undetected errors -

Exercise 1.2.1% P16l Show that the error probability is reduced by the use of
Ry by computing the error probability of this code for a binary symmetric
channel with noise level f.

The error probability is dominated by the probability that two bits in
a block of three are flipped, which scales as f2. In the case of the binary
symmetric channel with f = 0.1, the Ry code has a probability of error, after
decoding, of p, = 0.03 per bit. Figure 1.11 shows the resuli of transmiiting a
binary image over a binary symmetric channel using the repetition code.

CHANNEL r

f=10%

REDUNDAN
GLASS.

DECODER

] ENCODER t

REDUNDAN
GLASS,

—_—

=
&
=
&

=L
&

Figure 1.10. Decoding the received
vector from ﬁgll!'l' 1.5,

The exercise’s rating, e.g. 2]
indieates its diffienlty: <1
exercises are the easiest, Exercises
that are accompanied by a
marginal rat are especially
recommended. If a =olution or
partial solution is provided. the
page is indicated after the
difficulty rating: for example, this
exercise’s solution is on page 16,

Figure 1.11. Transmitting 10000
source bits over a binary
symmetric channel with f = 10%
using a repetition code and the
majority vote decoding algorithm.
The probability of decoded bit
error has fallen to about 3%; the
rate has fallen to 173,
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Figure 1.12. Error probability pm,
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The repetition code Ry has therefore reduced the probability of error, as
desired.  Yet we have lost something: our mfe of information transfer has
fallen by a factor of three. So if we use a repetition code to communicate data
over a telephone line, it will reduce the error frequency, but it will also reduce
our communication rate. We will have to pay three times as much for each
phone call. Similarly, we would need three of the original noisy gigabyte disk
drives in order to create a one-gigabyte disk drive with p, = 0.03,

Can we push the error probability lower, to the values required for a sell-
able disk drive — 107'%? We could achieve lower error probabilities by using
repetition codes with more repetitions.

W Exercise 1.3.1% P-18] (34} Show that the probability of error of Ry, the repe-
tition code with N repetitions, is

N

m= Y (M)ra-pv. (120

n={N41)/2

for odd N.

(b) Assuming f = 0.1, which of the terms in this sum is the biggest?
How much bigger is it than the second-higgest term?

(¢) Use Stirling's approximation (p.2) to approximate the {‘:} in the
largest term. and find, approximately, the probability of error of
the repetition code with N repetitions.

(d) Assuming f = 0.1, find how many repetitions are required to get
the probability of error down to 1071, [Answer: about 60.]

So to build a single gigabyte disk drive with the required reliability from noisy
gigabyte drives with f = 0.1, we would need sizty of the noisy disk drives.
The tradeoff between error probability and rate for repetition codes is shown
in figure 1.12.

Black codes — the (7,4) Hamming code

We would like to communicate with tiny probability of error and at a substan-
tial rate. Can we improve on repetition codes? What if we add redundancy to
blocks of data instead of encoding one bit at a time? We now study a simple
block code.



1.2: Error-correcting codes for the binary symmetric channel

A block code is a rule for converting a sequence of source bits s, of length
K, say, into a transmitted sequence t of length N bits. To add redundancy,
we make N greater than K. In a linear block code, the extra N — K bits are
linear functions of the original K bits; these extra biis are called parityv-check
bits. An example of a linear block code is the (7,4) Hamming code, which
transmits N = T bits for every K = 4 source bits.

A 1
N ey
S

The encoding operation for the code is shown pictorially in figure 1.13. We
arrange the seven transmitted bits in three intersecting circles. The first four
transmitted bits, £)faf5t4, are set equal to the four source bits, 559835y, The
parity-check bits t5tgf- are set so that the parity within each circle is even:
the first parity-check bit is the parity of the first three source bits (that is, it
is 0 if the sum of those bits is even, and 1 if the sum is odd): the second is
the parity of the last three; and the third parity bit is the parity of source bits
one, three and four.

As an example, figure 1.13b shows the transmitted codeword for the case
s = 1000. Table 1.14 shows the codewords generated by each of the 29 =
sixteen settings of the four source bits. These codewords have the special
property that any pair differ from each other in at least three bits.

(a) (b)

8 t 8 t 8 t 8 |3

0000 0000000 0100 0100110 1000 1000101 1100 1100011
0001 0001011 0101 0101101 1001 1001110 1101 1101000
0010 0010111 0110 0110001 1010 1010010 1110 1110100
0011 0011100 0111 0111010 1011 1011001 1111 1111111

Because the Hamming code is a linear code, it can be written compactly in
terms of matrices as follows. The transmitted codeword t is obtained from the
source sequence s by a linear operation,

t=0G"s, (1.25)

where G is the generator matrix of the code,

i 0 0 0

0100

0O 0 1 0
G'=|00 0 1|, (1.26)

1110

o0 1 1 1

1t 011

and the encoding operation (1.25) uses modulo-2 arithmetic (1+1=0,0+1 =
1, ete.).

In the encoding operation (1.25) I have assumed that 8 and t are column vectors,
If instead they are row vectors, then this equation is replaced by

t =sG, (1.27)

Figure 1.13. Pictorial
representation of encoding for the
(7.4) Hamming code.

Table 1.14. The sixteen codewords
{t} of the (7.4) Hamming code.
Any pair of codewords differ from
each other in at least three hits,
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where

G= (1.28)

Lo = = ]
== =]

e
s e O

1
0
1
1

= =T = I
(=]

0

I find it easier to relate to the right-multiplication (1.25) than the left-multiplica-
tion (1.27). Many coding theory texts use the left-multiplying conventions
(1.27-1.28), however,

The rows of the generator matrix (1.28) can be viewed as defining four basis
vectors lying in a seven-dimensional binary space. The sixteen codewords are
obtained by making all possible linear combinations of these vectors.

Decoding the (7,4) Hamming code

When we invent a more complex encoder s — t, the task of decoding the
received vector r becomes less straightforward. Remember that any of the
bits may have been flipped, including the parity bits.

If we assume that the channel is a binary symmetric channel and that all
source vectors are equiprobable, then the optimal decoder identifies the source
vector 8 whose encoding t(s) differs from the received vector r in the fewest
bits. [Refer to the likelihood function (1.23) to see why this is so.] We could
solve the decoding problem by measuring how far r is from each of the sixteen
codewords in table 1.14, then picking the closest. Is there a more efficient way
of finding the most probable source vector?

Syndrome decoding for the Hamming code

For the (7,4) Hamming code there is a pictorial solution to the decoding
problem, hased on the encoding picture, figure 1.13.

As a first example, let’s assume the transmission was t = 1000101 and the
noise flips the second bit, so the received vector is r = 1000101 & 0100000 =
1100101, We write the received vector into the three circles as shown in
figure 1.15a, and look at each of the three circles to see whether its parity
is even. The circles whose parity is not even are shown by dashed lines in
figure 1.15b. The decoding task is to find the smallest set of Hipped bits that
can account for these violations of the parity rules. [The pattern of violations
of the parity checks is called the syndrome, and can be written as a binary
vector — for example, in figure 1.15b, the syndrome is 2 = (1,1,0), because
the first two circles are ‘unhappy’ (parity 1) and the third circle is ‘happy’
(parity 0).]

To solve the decoding task, we ask the question: can we find a unigue bit
that lies inside all the ‘unhappy’ circles and eutside all the ‘happy’ circles? If
s0, the flipping of that bit would account for the observed syndrome. In the
case shown in figure 1.15b, the bit ro lies inside the two unhappy circles and
ontside the happy circle; no other single hit has this property, so rp is the only
single bit capable of explaining the syndrome.

Let’s work through a couple more examples. Figure 1.15¢ shows what
happens if one of the parity bits, {5, is flipped by the noise. Just one of the
checks is violated. Only ry lies inside this unhappy cirele and outside the other
two happy circles, so r5 is identified as the only single bit capable of explaining
the syndrome.

If the central bit ry is received Hipped, Hgure 1.15d shows that all three
checks are violated; only ry lies inside all three circles, so rq is identified as
the suspect bit,
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There is a decoding error if the four decoded bits &, 83, 83, §; do not all
match the source bits 1, s2, 83, 54. The probability of block error py is the
probability that one or more of the decoded bits in one block fail to match the
corresponding source bits,

pa = P(8 #s). (1.33)

The probability of bit error py, is the average probability that a decoded bit
fails to match the corresponding source bit,

K
=g Y PGk # ). (1.34)
k=1

In the case of the Hamming code, a decoding error will oceur whenever
the noise has flipped more than one bit in a block of seven. The probability
of block error is thus the probability that two or more bits are flipped in a
block. This probability scales as O( f?), as did the probability of error for the
repetition code R3z. But notice that the Hamming code communicates at a
greater rate, i = 4/T.

Figure 1.17 shows a binary image transmitted over a binary svmmetric
channel using the (7,4) Hamming code. About 7% of the decoded bits are
in error. Notice that the errors are correlated: often two or three successive
decoded bits are flipped.

@Ex&rcise 1.5.17] This exercise and the next three refer to the (7.4) Hamming
code. Decode the received strings:

(a) r =1101011
(b) r = 0110110
{c) r=0100111

}r=1111111.

(d
ﬁ&emim 612 p.17] (a) Calculate the probability of block error pp of the
(7,4) Hamming code as a function of the noise level f and show
that to leading order it goes as 21f2.

(b} 9] Show that to leading order the probability of bit error p, goes
as 0f2,

Exercise 1.7.1% P19 Find some noise vectors that give the all-zero syndrome
(that is, noise vectors that leave all the parity checks unviolated). How
many such noise vectors are there?

b Exercise 1.8.12] T asserted above that a block decoding error will result when-
ever two or more bits are flipped in a single block. Show that this is
indeed so. [In principle, there might be error patterns that, after de-
coding, led only to the corruption of the parity bits, with no source bits
incorrectly decoded.)

Summary of codes’ performances

Figure 1.18 shows the performance of repetition codes and the Hamming code.
It also shows the performance of a family of linear block codes that are gen-
eralizations of Hamming codes, called BCH codes,

This figure shows that we can, using linear block codes, achieve better
performance than repetition codes; but the asymptotic situation still looks

grim.
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Figure 1.18. Error probability p,
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Exercise 19,4 P19 Design an error-correcting code and a decoding algorithm
for it, estimate its probability of error, and add it to figure 1.18. [Don’t
worry if vou find it diffieult to make a code better than the Hamming
code, or if you find it difficult to find a good decoder for your code; that’s
the point of this exercise.]

1% Exercise 1.10.1% p20] 5 (7.4) Hamming code can correct any ene error; might
i there be a (14, 8) code that can correct any two errors?

Optional extra: Does the answer to this question depend on whether the
code is linear or nonlinear?

Exercise 1.11. 14! P-21] Design an error-correcting code, other than a repetition
code, that can correct any fwo errors in a block of size N.

» 1.3 What performance can the best codes achieve?

There seems to be a trade-off between the decoded bit-error probability m,
(which we would like to reduce) and the rate i (which we would like to keep
large). How can this trade-off be characterized? What points in the (R, p,)
plane are achievable? This question was addressed by Claude Shannon in his
pioneering paper of 1948, in which he both created the field of information
theory and solved most of its fundamental problems.

At that time there was a widespread belief that the boundary between
achievable and nonachievable points in the (R, p,) plane was a curve passing
through the origin (K, py,) = (0,0); if this were so, then, in order to achieve
a vanishingly small ervor probability py,, one would have to reduce the rate
correspondingly close to zero, ‘No pain, no gain.’

However, Shannon proved the remarkable result that the boundary be- *
tween achievable and nonachievable points meets the R axis at a non-zero
value i = (', as shown in figure 1.19. For any channel, there exist codes that
make it possible to communicate with arbitrarily small probability of error p,
at non-zero rates. The first half of this book (Parts 1-1I1) will be devoted to
understanding this remarkable result, which is called the noisy-channel coding
theorem.

Ezxample: f=10.1

The maximum rate at which communication is possible with arbitrarily small
i, s called the capacity of the channel. The formula for the capacity of a
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Figure 1.19. Shannon's

o ui: ] f”f"?/_lﬁa noisy-channel coding theorem.
4 AN The solid curve shows the
4 & Shannon limit on achievable
.08 < 1805 - :4" values of (K. p,) for the binary
o 1k * symmetric channel with f = 0.1.
0.06 - 18 Rates up to B = " are achicvable
13 . with arbitrarily small py,. The
0.04 - 10 :E:' points show the p(.lrﬁ:rnm‘uro of
rieabla | not achisvet some textbook codes. as in
1 figure 1.18.
002 e The equation defining the
Shannon limit (the solid curve) is
0 1e-15 sty ' ; - h=C/(1 - Ha(pr,}). where C and
0 0 o0z o4 S0 o8 1 Hy are defined in equation (1.35).
Rate
binary symmetrie channel with noise level f is
1 1
Clf)=1-Hy(f)=1- flﬂgz}+{1—fllﬁgzm g (1.35)

the channel we were discussing earlier with noise level f = 0.1 has capacity
= 0.53. Let us consider what this means in terms of noisy disk drives. The
repetition code R3 could communicate over this channel with py = 0L03 at a
rate R = 1/3. Thus we know how to build a single gigabyte disk drive with
Py = 0.03 from three noisy gigabyte disk drives. We also know how to make a
single gigabyte disk drive with p, = 107" from sixty noisy one-gigabyte drives
(exercise 1.3, p.8). And now Shannon passes by, notices us juggling with disk
drives and codes and says:

‘What performance are you trying to achieve? 1077 You don't
need sizty disk drives — you can get that performance with just
two disk drives (sinee 1/2 is less than 0.53). And if vou want
b = 107 or 1072 or anything, vou can get there with two disk
drives too!

[Strictly, the above statements might not be quite right, since, as we shall see,
Shannon proved his noisy-channel coding theorem by studying sequences of
block codes with ever-increasing blocklengths, and the required blocklength
might be bigger than a gigabyte (the size of our disk drive), in which case,
Shannon might say “well, vou ean’t do it with those tiny disk drives, but if you
had two noisy terabyte drives, vou could make a single high-quality terabyte
drive from them’.|

1.4 Summary
The (7.4) Hamming Code

By including three parity-check bits in a block of 7 bits it is possible to detect
and correct any single bit error in each block.
Shannon’s noisy-channel coding theorem

Infermation can be communicated over a noisy channel at a non-zero rate with
arbitrarily small error probability.
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Information theory addresses both the lmitations and the possibilities of
communication. The neisy-channel eoding theorem, which we will prove in
Chapter 10, asserts both that reliable communieation at any rate beyond the
capacity is impossible, and that reliable communication at all rates up to
capacity is possible.

The next few chapters lay the foundations for this resuli by discussing
how to measure information content and the intimately related topic of data
COMIPression,

1.5 Further exercises

Exercise 1.12.12 2] consider the repetition code Hg. One way of viewing
this code is as a concatenation of Ry with Ra. We first encode the
sonurce stream with Ry, then encode the resulting output with Hy. We
could eall this code *R3’. This idea motivates an alternative decoding
algorithin, in which we decode the bits three at a time using the decoder
for Ry: then decode the decoded bits from that first decoder using the
decoder for Ry,

Evalnate the probability of error for this decoder and compare it with
the probability of error for the optimal decoder for Hs.

Do the concatenated encoder and decoder for B2 have advantages over
those for Ry?

1.6 Solutions

Solution to exercise 1.2 (p.7).  An ervor is made by Rs if two or more bits are
fipped in 8 block of three. So the error probahility of Ry is a sum of two
terms: the probability that all three hits are flipped, f*; and the probability
that exactly two hits are flipped, U-J“ I H these expressions are not
obwvious, see example L1 {p.1): the expressions are Plr=31 f.N=1) and

Plr=2|f.N=3)]
po=pu =321 = 1+ fF=35-2f" (1.36)

This probahility is dominated for small f by the term 3%
See exercise 2.38 (p.39) for further discussion of this problem.

Solution to exercise 1.3 {p.8). The probability of error for the repetition code
Ry is dominated by the probability that [N/2] bits are flipped, which goes
[fl._)]' ol '\] as=

(r.{-\.ﬂ)-f"""“:”[l — fyN-bR, (1.37)

- N . . . " .
The term [h}' can be approvimated using the binary entropy function:

1 NH RN - (NN N N N N Hal K /N a0
—— gNHAKIN) o [V ) « oNHAKINY o [V ) o oNHlK/N) 1 3R
N+1 K K

where this approximation introduces an error of order v N — as shown in
equation {1.17}. So

o =pi = 2V(f(1 = YN = (af(1 - Y2 (1.39)

- - -I . T & LR Ay 15 .
Setting this equal to the required value of 1077 we find N = _Jh'u“;J,—”If = (i,

This answer is a little out because the approximation we used overestimated
'[h') and we did not distinguish between [N/2] and N/2.

Notation: |-'\_-.’ denotes the
smallest integer greater than or
equal o N2,




1.6: Solutions

A slightly more careful answer ﬂ?hurt. of explicit computation) goes as follows.
Taking the approximation for () to the next order, we find:

N N~ 1 -
A — 1.40
(N.-’?) V27N/4 \1.40)

This approximation can be proved from an accurate version of Stirling’s ap-
proximation (1.12), or by considering the binomial distribution with p = 1/2
and noting

v Ny 3 N
_ ¥ -N . g=-N[* et a-N{
g (K)z ~3 (N,.FE) F_Fzme ~2 (Nf?) VIze, (1.41)

where & = +/N/4, from which equation {1.40) follows. The distinetion between

[N/2] and N/2 is not important in this term since {‘;] has & maximum at
K =N/2

Then the probability of error (for odd N) is to leading order

O (A Tias (Y Ll (1.42)

2N e [IF(1 = NN e (1 = NN 12(1.43)

Va2 T J/rN]
The equation gy, = 107 can be written
log 107" 4+ Jog E'f’m
log4f(1 - f)

12

(N=1)/2=

(1.44)

which may be solved for N iteratively, the first iteration starting from N, = 68:

- -15+ 1.7 -
(My-1)j2e =20 =299 = Np~609 {1.45)
This answer is found to be stable, so N = 61 is the blocklength at which
P 10715,

Selution to exercise 1.6 (p.13).

(a)

(b)

The probability of block error of the Hamming code is a sum of six terms
~ the probabilities that 2, 3, 4, 5, 6, or T errors oceur in one block.

7

=) C_) fra=ne. (1.46)

2

To leading order, this goes as
7
PR =~ (2)1%21;? (1.47)

The probability of bit error of the Hamming code is smaller than the
probahility of block error hecause a block error rarely corrupts all bits in
the decoded block. The leading-order behaviour is found by considering
the outcome in the most probable case where the noise vector has weight
two. The decoder will erroneously flip a third bit, so that the modified
received vector (of length 7) differs in three bits from the transmitted
vector. That means, if we average over all seven bits, the probability that
a randomly chosen bit is flipped is 3/7 times the block error probability,
to leading order. Now, what we really care about is the probability that

17
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— and there are edges only between nodes in different classes. The graph and
the code’s parityv-check matrix (1.30) are simply related to each other: each
parity-check node corresponds to a row of H and each bit node corresponds to
a column of H; for every 1 in H, there is an edge between the corresponding
pair of nodes,

Having noticed this connection between linear codes and graphs, one way
to invent linear codes is simply to think of a bipartite graph. For example,
a pretty bipartite graph can be obtained from a dodecahedron by calling the
vertices of the dodecahedron the parity-check nodes, and putting a transmitted
bit on each edge in the dodecahedron.  This construction defines a parity-
check matrix in which every column has weight 2 and every row has weight 3.
[The weight of a binary vector is the number of 1s it contains.|

This code has N = 30 bits, and it appears to have Mypparen = 20 parity-
check constraints. Actually, there are only M = 19 independent constraints;
the 20th constraint is redundant (that is, if 19 constraints are satisfied, then
the 20th is antomatically satisfied): so the nmumber of source bits is K =
N — M = 11. The code is a (30, 11) code.

It is hard to find a decoding algorithm for this code, but we can estimate
its probability of error by finding its lowest weight codewords. If we flip all
the bits surrounding one face of the original dodecahedron, then all the parity
checks will be satisfied; so the code has 12 codewords of weight 5, one for each
face. Since the lowest-weight codewords have weight 5, we sav that the code
has distance d = 5; the (7,4) Hamming code had distance 3 and could correct
all single bit-flip errors. A code with distance 5 can correct all donble bit-flip
errors, but there are some triple bit-flip errors that it cannot correct. So the
error probahility of this code, assuming a hinary svmmetric channel, will be
dominated, at least for low noise levels f. by a term of order f*, perhaps
something like

ol Y o 27
u(a)f‘tl—ﬂ2 :

Of course, there is no obligation to make codes whose graphs can be rep-
resented on a plane, as this one can; the best linear codes, which have simple
graphical descriptions, have graphs that are more tangled, as illustrated by
the tiny (16,4) code of figure 1,22,

Furthermore, there is no reason for sticking to linear codes; indeed some
nonlinear codes — codes whose codewords cannot be defined by a linear equa-
tion like Ht = 0 — have very good properties. Bui the encoding and decoding
of a nonlinear code are even trickier tasks.

Solution to exercise 1.10 (p.14).  First let’s assume we are making a linear
code and decoding it with syndrome decoding. If there are N transmitied
hits, then the number of possible error patterns of weight up to two is

(2)-(1)+(5) (50

For N = 14, that’s 91 + 14 + 1 = 106 patterns. Now, every distinguishable
error pattern must give rise to a distinet syndrome; and the syndrome is a
list of A bits, so the maximum possible number of syndromes is 2%, For a
(14.8) code, Af = 6, so there are at most 2° = 64 syndromes. The number of
possible error patterns of weight up to two, 106, is bigger than the number of
syndromes, G4, so we can immediately rule out the possibility that there is a
(14,8) code that is 2-error-correcting.

Introduction to Information Theory

Figure 1.21. The graph defining
the (30,11} dodecahedron code.
The circles are the 30 transmitted
bits and the triangles are the 20
parity checks. One parity check is
redundant.

Figure 1.22. Graph of a rate-1/1
low-density paritv-check code
{Gallager code) with blocklength
N = 16, and M = 12 parityv-check
constraints. Each white circle
represents a transmitted bit. Each
bit participates in j = 3
constraints, represented by [£
squares. The edges between nodes
were placed at random. (See
Chapter 47 for more. )




1.6: Solutions

The same counting argument works fine for nonlinear codes too. When
the decoder receives r = t + n, his aim is to deduce both t and n from r. If
it is the case that the sender can select any transmission t from a code of size
Si. and the channel can select any noise vector from a set of size Sy, and those
two selections can be recovered from the received bit string v, which is one of
at most 2 possible strings, then it must be the case that

S¢S, < 2V, (1.57)

So, for a (N, K) two-error-correcting code, whether linear or nonlinear,

HEORG S

Solution to exercise 1.11 (p.14). There are various strategies for making codes
that can correct multiple errors, and [ strongly recommend vou think out one
or two of them for yourself.

If your approach uses a linear code, e.g., one with a collection of M parity
checks, it is helpful to bear in mind the counting argument given in the previous
exercise, in order to anticipate how many parity checks, M, you might need.

Examples of codes that can correct any two errors are the (30, 11) dodec-
ahedron code in the previous solution, and the (15,6) pentagonful code to be
introduced on p.221. Further simple ideas for making codes that can correct
multiple errors from codes that can correct only one error are discussed in
section 13.7.

Solution to exercise 1.12 (p.16). The probability of error of R2 is, to leading
order,

Pu(RE) = 3[pu(Ry))” = 3(3F%)% 40 = 27f -, (159)
whereas the probability of error of Ry is dominated by the probability of five

flips,
Pu(Ra) = (2

The R§ decoding procedure is therefore suboptimal, since there are noise vec-
tors of weight four that cause it to make a decoding error.

It has the advantage, however, of requiring smaller computational re-
sources: only memorization of three bits, and counting up to three, rather
than counting up to nine.

This simple code illustrates an important econcept. Conecatenated codes
are widely used in practice because concatenation allows large codes to be
implemented using simple encoding and decoding hardware. Some of the best
known practical codes are concatenated codes.
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Probability, Entropy, and Inference

This chapter, and its sibling, Chapter 8, devote some time to notation. Just
as the White Kunight distinguished between the song, the name of the song,
and what the name of the song was called (Carroll, 1998), we will sometimes
need to be careful to distinguish between a random variable, the value of the

. i o N
random variable, and the proposition that asserts that the random variable -
has a particular value. In any particular chapter, however, [ will use the most l) : E:::;L; a
simple and friendly notation possible, at the risk of upsetting pure-minded o ” [}-“.3(;.1 :
readers. For example, if something s ‘true with probability 17, T will usually 4 d 00285 4
simply say that it is “true’, 5 & (L0913 a
G £  0.0173 f
2.1 Probabilities and ensembles i g D013 g
& h 0.0313 h
" ie s bri e A TP ; : e . 9 i 0.0599 i
An ensemble X is a triple (&, Ax.Pyx), where the outcome r is the value
] ’ it ot . o 0§ 0.0006 3
of a random variable, which takes on one of a set of possible values, e X
Ax = {ay,az,..., fiyenns ag }, having probabilities Py = {pi.p2... ., pr} 12 1 [I:!I.‘j.‘i;’:r 1
with P(x=a;) = pi, piz0and 3, 4, Plr=a;) = 1. 13 = 00235 n
14 =n 00596 n
The name A is mnemonic for ‘alphabet’. One example of an ensemble is a 15 o (L0689 o
letter that is randomly selected from an English document. This ensemble is 16 p 00192 P
shown in figure 2.1, There are twenty-seven possible letters: a-z, and a space 17 g 0.0008 9
character *=". 18 r 0.0508 r
19 s (LOSGT 5
Abbreviations. Briefer notation will sometimes be used.  For example, 0 =« “""f'j]t' E
Plx=un;) may be written as Pla;) or P(x) EE u
’ ! : ' o 22 v 00069 v
Probability of a subset. If T is a subset of Ay then: 2 v 00118 ¥
24 % 00073 x
. 2 y 00164 Y
PiT)= PlzeT) = Plr=a;). 2.1
(7) = PleeT) Z (z=ai) @D 9% 2 o007z
= 27 0.1928
For example, if we define V' to be vowels from figure 2.1, V =
{a,e,i,0,u}, then Figure 2.1. Probability
distribution over the 27 outcomes
P(V) = 0,06 + 0,09 + 0.06 + 0.07 4+ 0.03 = 0.31. (2.2)  for a randomly selected letter in

an English language document
(estimated from The Frequently
Asked Questions Manual for
Linur). The picture shows the
We call P(r.y) the joint probability of x and y. probabilities by the areas of white
Hl.l.ill'{'.‘i.

A joint ensemble XY is an ensemble in which each outcome is an ordered
pair o,y with € Ax = {ay,...,ar} and y € Ay = {by,..., bil.

Commas are optional when writing ordered pairs, so ry < r,y.

N.B. In a joint ensemble XY the two variables are not necessarily inde-
pendent.
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2.2: The meaning of probability

I said that we often define an ensemble in terms of a collection of condi-
tional probabilities. The following example illustrates this idea.

Example 2.3. Jo has a test for a nasty disease. We denote Jo's state of health
by the variable a and the test result by b.

a=1 Jo has the disease
a=10 Jo does not have the disease.

(2.12)

The result of the test is either ‘positive’ (b = 1) or ‘negative’ (b = 0);
the test is 95% reliable: in 95% of cases of people who really have the
disease, a positive result is returned, and in 95% of cases of people who
do not have the disease, a negative result is obtained. The final piece of
background information is that 1% of people of Jo's age and background
have the disease.

OK - Jo has the test, and the result is positive. What is the probability
that Jo has the disease?

Solution. We write down all the provided probabilities. The test reliability
specifies the conditional probability of b given a:

Pb=1la=1) =095 P(b=1|a=0) = 0.05

P(b=0]a=1) = 005 P(b=0]a=0) = 0.95; L2t
and the disease prevalence tells us about the marginal probability of a:
Pla=1) =001 P(a=0) = 0.99. (2.14)

From the marginal P(a) and the conditional probability P(b| a) we can dedues
the joint probability Pla,b) = P(a)P(b|a) and any other probabilities we are
interested in. For example, by the sum rule, the marginal probability of b=1
— the probability of getting a positive result - is

P(b=1) = P(b=1|a=1)Pa=1) + P(b=1]a=0)P(a=0).  (2.15)

Jo has received a positive result b=1 and is interested in how plausible it is
that she has the disease (i.e., that a=1). The man in the street might be
duped by the statement ‘the test is 95% reliable, so Jo's positive result implies
that there is a 95% chance that Jo has the disease’, but this is incorrect. The
correct solution to an inference problem is found using Bayes' theorem.

Pb=1|a=1)Pla=1)

0.95 x 0.01
T 0.95 % 0.01 + 0.05 x 0.99 (2.17)
= 0.16. (2.18)

So in spite of the positive result, the probability that Jo has the disease is only
16%. 0

2.2 The meaning of probability

Probabilities can be used in two ways.

Probabilities can describe frequencies of outcomes in random experiments,
but giving noncircular definitions of the terms “frequency’ and ‘random’ is a
challenge — what does it mean to say that the frequency of a tossed coin’s

25



26 2 — Probability, Entropy, and Inference

Box 2.4. The Cox axioms.

MNotation. Let ‘the degree of belief in proposition &' be denoted by B(x). The If a set of beliefs satisfy these
negation of » (NoT-x) is written F. The degree of belief in a condi- axioms then they can be mapped
tional proposition, ‘r, assuming proposition y to be true’, is represented onto probabilities satisfying
by Biz|y). P{raLse) = 0, P(TRUE) = 1,

) i ) . 0 < P{zx) <1, and the rules of

Axiom 1. !3--gn1zs uf‘ belief can be ordered; |_I' .B{IJ is :g;rcatnr than B(y), and probability:

B(y) is ‘greater’ than B(z), then Blx) is ‘greater’ than 8(z). P(z) = 1 - P(z),
[Consequence: heliefs can be mapped onto real numbers,] and

Plx,y) = Plz|y)Plu).

Axiom 2. The degree of belief in a proposition 2 and its negation T are related,
There is a function f such that

Bl(z) = f|B(T)).

Axiom 3. The degree of belief in a conjunction of propositions x, y (x ANDy) is
related to the degree of belief in the conditional proposition x|y and the
degree of belief in the proposition y. There is a function g such that

Bz, y) = g[Blx|y) Bly) -

coming up heads is 1/27 If we say that this frequency is the average fraction of
heads in long sequences, we have to define ‘average’; and it i hard to define
‘average” without using a word synonymous to probability! [ will not attempt
to cut this philosophical knot.

Probabilities can also be used, more generally, to describe degrees of be-
lief in propositions that do not involve random variables — for example ‘the
probability that Mr. S, was the murderer of Mrs, 8., given the evidence’ (he
either was or wasn’t, and it’s the jury’s job to assess how probable it is that he
was); ‘the probability that Thomas Jefferson had a child by one of his slaves’;
‘the probability that Shakespeare’s plays were written by Francis Bacon'; or,
to pick a modern-day example, ‘the probability that a particular signature on
a particular cheque is genuine’.

The man in the street is happy to use probabilities in both these ways, but
some books on probability restrict probabilities to refer only to frequencies of
outcomes in repeatable random experiments.

Nevertheless, degrees of belief can be mapped onto probabilities if they sat-
isfy simple consistency rules known as the Cox axioms (Cox, 1946) (figure 2.4).
Thus probabilities can be used to deseribe assumptions, and to describe in-
ferences given those assumptions. The rules of probability ensure that if two
people make the same assumptions and receive the same data then they will
draw identical conclusions. This more general nse of probability to guantify
beliefs is known as the Bayvesian viewpoint. It is also known as the subjective
interpretation of probability, since the probabilities depend on assumptions.
Advocates of a Bayesian approach to data modelling and pattern recognition
do not view this subjectivity as a defect, since in their view,

you cannot do inference without making assumptions.

In this book it will from time to time be taken for granted that a Bayesian
approach makes sense, but the reader is warned that this is not vet a globally
held view — the field of statistics was dominated for most of the 20th century
by non-Bayesian methods in which probabilities are allowed to describe only
random variables. The big difference between the two approaches is that



2.2: The meaning of probability

I said that we often define an ensemble in terms of a collection of condi-
tional probabilities. The following example illustrates this idea.

Example 2.3. Jo has a test for a nasty disease. We denote Jo's state of health
by the variable a and the test result by b.

a=1 Jo has the disease (2.12)
a=10  Jodoes not have the disease. ’
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have the disease.

OK — Jo has the test, and the result is positive. What is the probability
that Jo has the disease?

Solution.  We write down all the provided probabilities. The test reliability
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the joint probability Pla,b) = Pla)P(h| a) and any other probabilities we are

interested in. For example, by the sum rale, the marginal probability of b=1
the probability of getting a positive result - is

P(b=1) = P(b=1|a=1}P(a=1) + P(b=1]a=0)P(a=0). (2.15)

Jo has received a positive result h=1 and is interested in how plausible it is
that she has the disease {i.e., that a=1). The man in the sireet might be
duped by the statement ‘the test is 95% reliable, so Jo's positive result implies
that there is a 95% chance that Jo has the disease’, but this is incorrect. The
correct solution to an inference problem is found using Baves™ theorem.

Plb=1|a=1)Pla=1)

Pla=1llb=1) = 216

le=1b=1) = B Ta=DP@=0+ Po=1]a=0)Pla=0) %
0.95 = 0.01 )

095 = 0.01 + 0.05 % 0.99 e )]

= (L16. (2.18)

So in spite of the positive result, the probability that Jo has the disease is only
16%.. a

2.2 The meaning of probability

Probabilities can be used in two ways.

Probabilities can deseribe frequencies of outcomes in random experiments,
but giving noncircular definitions of the terms ‘frequency” and ‘random’ is a
challenge — what does it mean to say that the frequency of a tossed coin's
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Box 2.4. The Cox axioms.

Notation. Let ‘the degree of belief in proposition ' be denoted by B(x). The If a set of beliefs satisfy these
negation of r (NOT-x) is written T. The degree of belief in a condi- axioms then they can be mapped
tional proposition, ‘r, assuming proposition y to be true'. is represented onto probabilities satisfying
by Bix|y). P(FALSE) = 0, P(TRUE) = 1,

0 < P(x) < 1, and the rules of
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B(y) is ‘greater’ than B(z), then B(x) is ‘greater’ than B(z). P(z) =1 - P(F)
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Blx,y) = g[B(x|y), Bly)|.

coming up heads is /27 If we say that this frequency is the average fraction of
heads in long sequences, we have to define ‘average’; and it is hard to define
‘average’ without using a word synonymous to probability! I will not attempt
to cut this philosophical knot.

Probabilities can also be used, more generally, to describe degrees of be-
lief in propositions that do not involve random variables — for example ‘the
probability that Mr. 8. was the murderer of Mrs. 5., given the evidence’ (he
either was or wasn't, and it’s the jury’s job to assess how probable it is that he
was); ‘the probability that Thomas Jefferson had a child by one of his slaves™;
‘the probability that Shakespeare'’s plays were written by Francis Bacon'; or,
to pick a modern-day example, ‘the probability that a particular signature on
a particular cheque is genuine’,

The man in the street is happy to use probabilities in both these ways, but
some hooks on probability restrict probabilities to refer only to frequencies of
outeomes in repeatable random experiments.

Nevertheless, degrees of belief can be mapped onto probabilities if they sat-
isfy simple consistency rules known as the Cox axioms (Cox, 1946) (figure 2.4).
Thus probabilities can be used to deseribe assumptions, and to describe in-
ferences given those assumptions. The rules of probability ensure that if two
people make the same assumptions and receive the same data then they will
draw identical conclusions. This more general use of probability to quantify
beliefs is known as the Bayesian viewpoint. It is also known as the subjective
interpretation of probability, since the probabilities depend on assumptions.
Advocates of a Bayesian approach to data modelling and pattern recognition
do not view this subjectivity as a defect, since in their view,
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held view — the field of statistics was dominated for most of the 20th century
by non-Bayesian methods in which probabilities are allowed to deseribe only
random variables, The big difference between the two approaches is that




2.3: Forward probabilities and inverse probabilities
Bayesians also use probabilities to describe inferences.

2.3 Forward probabilities and inverse probabilities

Probability calenlations often fall into one of two categories: forward prob-
ability and inverse probability. Here is an example of a forward probability
problem:

Exercise 2.4.1% P40 A urn contains K balls, of which B are black and W =
K — B are white. Fred draws a ball at random from the urn and replaces
it, N times.

(a) What is the probahility distribution of the number of times a black
ball is drawn, ng?
(b) What is the expectation of n5? What is the variance of ng? What

is the standard deviation of ng? Give numerical answers for the
cases N = 5 and N = 400, when B =2 and K = 10.

Forward probability problems involve a generative model that describes a pro-
cess that is assumed to give rise to some data; the task is to compute the
probability distribution or expectation of some quantity that depends on the
data. Here is another example of a forward probability problem:

Exercise 2.5.1% P49 Ap urn contains K balls, of which B are black and W =
K — B are white. We define the fraction fz = B/K. Fred draws N
times from the urn, exactly as in exercise 2.4, obtaining ng blacks, and
computes the quantity

, — (n— faN)?

Nfe(l - fB)

What is the expectation of 2?7 In the case N = 5 and fg = 1/5, what
is the probability distribution of =7 What is the probability that = < 17
[Hint: compare z with the quantities computed in the previous exercise. |

(2.19)

Like forward probability problems, inverse probability problems involve a
generative model of a process, but instead of computing the probability distri-
bution of some quantity preduced by the process, we compute the conditional
probability of one or more of the unobserved variables in the process, given
the observed variables. This invariably requires the use of Bayes' theorem.

Example 2.6. There are eleven urns labelled by « € {0,1,2,...,10}, each con-
taining ten balls. Urn u contains u black balls and 10 — u white balls.
Fred selects an urn u at random and draws N times with replacement
from that urn, obtaining ng blacks and N — ng whites. Fred's friend,
Bill, looks on. If after N = 10 draws ng = 3 blacks have been drawn,
what is the probability that the urn Fred is using is urn », from Bill's
point of view? (Bill doesn't know the value of u.)

Solution. The joint probability distribution of the random variables u and ng

can be written
Plu.ng|N) = Ping|u, N)P(u). (2.20)

From the joint probability of u and ng, we can obtain the conditional
distribution of u given npg:

P(u,ng | N
Plulng,N) = Ser) (221)
Ping|u, N)P(u) (2.22)

P(ng|N)

27



28 2 — Probability, Entropy, and Inference

Figure 2.5. Joint probability of «

0 and ng for Bill and Fred's urn
1 problem, after N = 10 draws,
2
3
4
5
=]
T
8
9
10
0123456788910 5
The marginal probability of u is Plu) = lj for all w. You wrote down the
probability of ng given u and N, Plng|u. N}, when you solved exercise 2.4 o3
(p.27). [You are doing the highly recommended exercises, aren’t you?] If we 0.5
define f, = u/10 then :: {
0.1
. N N a0s
Plng|u, N) = il — fu y¥—na (2.23) o
ng — ;
0123456783970
What about the denominator, P{ng|N)? This is the marginal probability of ¢
ng, which we can obtain using the sum rule: u  Plulng=3,N)
o 0
Ping|N) = L." (u,ng|N) —ZP[NJP (g |w, NY). (2.24) 1 0.063
2 0.22
A o . . . 0.2¢
So the conditional probability of « given ng is : ‘: 2;:
- . I
: . Plu)Ping|u, N . -
Plulng, N) = L"} (2.25) G 0,047
Plng|N) 7T 00099
1 I N v B DU000sG
—_— il B N—ng, 2.26 .
P(np | N)11 (ii‘; )_,I" ( fu) ( ) I‘:] :;.lJlJlH]“FIh

This conditional distribution can be found by normalizing column 2 of

figure 2.5 and is shown in figure 2.6. The normalizing constant, the marginal ~ Figure 2.6. Conditional
probability of ng, is Plng=3|N=10) = 0.083. The posterior probability |:"_'”I”l':;'1"-'" of u given ng =3 and
(2.26) is correct for all u, including the end-points u=0 and u=10, where °~

fu =0 and f, = | respectively. The posterior probability that w=10 given

ng =234 is equal to zero, because if Fred were drawing from urn 0 it would be

impossible for any black balls to be drawn., The posterior probability that

=10 is also zero, becanse there are no white balls in that wrn. The other

hypotheses u=1, u=2, ... u="19 all have non-zero posterior probability. O

Terminology of tnverse probability

[n inverse probability problems it is convenient to give names to the proba-
bilities appearing in Bayes’ theorem. In equation (2.25), we ecall the marginal
probability Plu) the prior probability of w, and P(ng | u, N') is called the like-
lihood of w. It is important to note that the terms likelihood and probability
are not synonyms. The quantity P(ng|u, N) is a funetion of both ng and
u. For fixed u, Plng|u, N) defines a probability over ng. For fixed ng,
Ping|u, N) defines the likelihood of u.



2.3: Forward probabilities and inverse probabilities

Never say ‘the likelihood of the data’. Always say ‘the likelihood
of the parameters’. The likelihood function is not a probability

distribution.

(If you want to mention the data that a likelihood function is associated with,
vou may say ‘the likelihood of the parameters given the data’.)

The conditional probability P(u|ng, N) is called the posterior probahility
of u given ng. The normalizing constant P(ng | N') has no u-dependence so its
value is not important if we simply wish to evaluate the relative probabilities
of the alternative hypotheses u. However, in most data-modelling problems
of any complexity, this quantity becomes important, and it is given various
names: P(ng|N) is known as the evidence or the marginal likelihood.

If @ denotes the unknown parameters, [ denotes the data, and H denotes
the overall hvpothesis space, the general equation:

P(D[8. H)P(@|H)
P(D|H)

P(@| D H) = (2.27)

is written:
likelihood = prior

posterior = (2.28)

evidence

Inverse probability and prediction

Example 2.6 (continued). Assuming again that Bill has observed ng = 3 blacks
in N = 10 draws, let Fred draw another ball from the same urn. What
is the probability that the next drawn ball is a black? [You should make
use of the posterior probabilities in figure 2.6.]

Solution. By the sum rule,

P(bally;y is black |ng, N) = 3 P(ballyy; is black |u,np. N)P(u|np. N).
W

(2.29)
Since the balls are drawn with replacement from the chosen urn, the proha-
bility P(ballyy is black |u,ng, N) is just f, = u/10, whatever ng and N are.
So

P(bally,y is black |ng, N) = 3 fuP(u|ng, N). (2.30)

Using the values of Pu|ng, N) given in figure 2.6 we obtain

P(ballyy; is black |np=3,N=10)=0.333. 0O  (2.31)

Comment. Notice the difference between this prediction obtained using prob-
ability theory, and the widespread practice in statistics of making predictions
by first selecting the most plausible hypothesis (which here would be that the
urn is urn # = 3) and then making the predictions assuming that hypothesis
to be true (which would give a probability of 0.3 that the next ball is black).
The correct prediction is the one that takes into account the uncertainty by
manginalizing over the possible values of the hypothesis u. Marginalization
here leads to slightly more moderate, less extreme predictions.
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What do von notice about your solutions? Does each answer depend on the i i hip:)

AETS 4.1
0128 6.3

detailed contents of each urn? :
The details of the other possible outcomes and their probabilities are ir- 2
relevant.  All that matters is the probability of the outcome that actually 3
4

D

a
b

c 0263 5.2

happened (here, that the ball drawn was black) given the different hypothe- d L0285 5.1
ses. We need only to know the likelifiood, i.e., how the probability of the data X e 0913 4.5
that happened varies with the hypothesis. This simple rule about inference is 6 f ‘:1';: F’:

IR PP, T g 0133 6
known as the likelihood prineiple. § b .d by
T 9 i 0599 41
The likelihood principle: given a generative model for data d given 0§ 0006 107
parameters @, P(d| @), and having observed a particular outcome 11 k0084 .0
dy, all inferences and predictions should depend only on the function 121 0335 4.9
P(d, | 8). 13 m 0235 54
14 =n 050G 1.1
15 o OG89 3.9
In spite of the simplicity of this principle, many classical statistical methods 15 p 0102 5.7
violate it. 17 q 0008 10.3
15 r 0508 4.8
2.4 Definition of entropy and related functions s DL
' 20 9t 070G 3.8
. . . : 21w 0334 4.9
The Shannon information content of an outcome r is defined to be 99 v 0069 79
1 23 w0119 6.4
h(z) =logy 5y (2:34) 2 x 0073 71
25y 0164 5.9
It is measured in bits. [The word *bit’ is also used to denote a variable 26 =z 0007 104
whaose value is 0 or 1; I hope context will always make clear which of the ar - 1928 24

two meanings is intended. |

1
I, — 4.1
z pi logs P

i

In the next few chapters, we will establish that the Shannon information
content. h{a;) is indeed a natural measure of the information content
of the event = a;. At that point, we will shorten the name of this  Taple 2.9, Shannon information
guantity to “the information content’. contents of the outcomes a-z.

The fourth column in table 2.9 shows the Shannon information content
of the 27 possible outeomes when a random character is picked from
an English document, The outcome r = z has a Shannon information
content of 10.4 bits, and & = e has an information content of 3.5 bits.

The entropy of an ensemble X is defined to be the average Shannon in-
f{)l‘llh"ﬂ i(]ll content l}r an onteorne:

. . 1 o e
H(X)= Z Pl log Py’ (2.35)
.!'EA\'
with the convention for P(r) = 0 that Oxlogl/0=0, since

limg_.g+ #log 1/6 = (.

Like the information content, entropy is measured in bits.

When it is convenient, we may also write H(X) as H(p), where p is
the vector (pr,pa..... pr). Another name for the entropy of X is the
uncertainty of X

Example 2.12. The entropy of a randomly selected letter in an English docu-
ment is about 4.11 bits, assuming its probability is as given in table 2.9,
We obtain this number by averaging log 1/p; (shown in the fourth col-
umn ) under the probability distribution p; (shown in the third column).



2.5: Decompaosability of the entropy

We now note some properties of the entropy funetion.
e H(X) = 0 with equality iff p; = 1 for one i. ['iff" means ‘if and only if".|
* Entropy is maximized if p is uniform:

H(X) < log(|Ax|) with equality iff p; = 1/|Ax| for all i.  (2.36)

Notation: the vertical bars ‘| - |" have two meanings. If Ay is a set, Ay|
denotes the number of elements in Ay; if = is a number, then |x| is the
absolute value of x.

The redundancy measures the fractional difference between H{X) and its max-
imum possible value, log(|.Ax|).

The redundancy of X is:
H(X)
" loglAx|"
We won't make use of ‘redundancy” in this book, so [ have not assigned
a symbol to it.

(2.37)

The joint entropy of X,V is:

1
H(X.Y)= 3 Plz.y)log 5—. (2.38)
rycAx Ay P(I1y}
Entropy is additive for independent random variables:
H(X.Y) = H(X)+ H(Y) iff P(z,y)= P(x)P(y). (2.39)

Our definitions for information content so far apply only to diserete probability
distributions over finite sets Ay. The definitions can be extended to infinite
sets, though the entropy may then be infinite. The case of a probability
density over a continunous set is addressed in section 11.3. Further important
definitions and exercises to do with entropy will come along in section 8.1,

2.5 Decomposability of the entropy

The entropy function satisfies a recursive property that can be very useful
when computing entropies. For convenience, we'll stretch our notation so that
we can write H{X') as H(p), where p is the probability vector associated with
the ensemble X.

Let’s illustrate the property by an example first. Imagine that a random
variable x € {0, 1, 2} is created by first flipping a fair coin to determine whether
x = 0; then, if z is not 0, flipping a fair coin a second time to determine whether
x is 1 or 2. The probability distribution of = is

1.
2‘

What is the entropy of X7 We can either compute it by brute force:

P(z=0) = =: P(z=1) = %;. Plr=2) = i (2.40)

H(X)=12log2+ Valog 4+ Yalogd = 1.5 {2.41)
or we can use the following decompaosition, in which the value of = is revealed

gradually. Imagine first learning whether = =0, and then, if = is not 0, learning
which non-zero value is the case. The revelation of whether =0 or not entails

i3
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revealing a binary variable whose probability distribution is {1/2, l/2}. This
revelation has an entropy H({1/2,1/2) = 1log2 + §log2 = Ihit. If & is not 0,
we learn the value of the second coin flip. This too is a binary variable whose
probability distribution is {1/2, 12}, and whose entropy is 1bit. We only get
to experience the second revelation half the time, however, so the entropy can
be written:

H(X) = H(Y2,Y2) + Ya H(1/2,/2). (2.42)

Generalizing, the observation we are making about the entropy of any
probability distribution p = {py, pa. ..., pr} is that

”{P]=H[.ﬂ|~1—m]+{l—m]lﬂ( e ) (2.43)
I-p1 1-m 1—pm

When it's written as a formula, this property looks regrettably ugly: nev-
ertheless it is a simple property and one that yvou should make use of.
Generalizing further, the entropy has the property for any m that

Hip) = H[(pr+pa+t-+pm)(Pmsr + pmea + -+ pr)]

m Pm
+ + -+ H pravy
{m Prm) ((Pi 4 pm) (m +“‘+I3m})

P+l or )
Pm+1+"'+pf). ’ ‘{P"I+|+h‘+pf}
(2.44)

F(Prpt + e m}ff((

Example 2.13. A source produces a character = from the alphabet 4 =
{0.1.....9.a.b,...,2}; with probability /3, = is a numeral (0,...,9):
with probability /3, = is a vowel (a, e, i,0,u); and with probability 1/3
it's one of the 21 consonants. All numerals are equiprobable, and the
same goes for vowels and consonants. Estimate the entropy of X,

Solution. log3 + X(log 10+ log 5+ log 21) = log 3 + 1 log 1050 = log 30 bits. O

2.6 Gibbs’ inequality

The *ei’ in Leibler is pronounced

The relative entropy or Kullback—Leibler divergence between — two the snme as in heist.

probability distributions P{x) and Q(x) that are defined over the same
alphabet Ay is
P(z)

Dxe(PIIQ) = 3 _ P(z)log 7. (2.45)

The relative entropy satisfies Gibhs” inequality
DkL(P|IQ) =0 (2.46)

with equality only if 2 = ). Note that in general the relative entropy
is not symmetric under interchange of the distributions P and J: in
general Dy (P)|Q) # Dgo(Q[|P), so Dgp. although it is sometimes
called the ‘KL distance’, is not strictly a distance. The relative entropy
is important in pattern recognition and neural networks, as well as in
information theory.

Gibhs' inequality is probably the most important inequality in this book. Tt,
and many other inequalities, can be proved using the concept of convexity.



2.7: Jensen's inequality for eonvex functions

P> 2.7 Jensen's inequality for convex functions

The words ‘convex —" and ‘concave —' may be pronounced ‘convex-smile’ and
‘concave-frown’. This terminology has useful redundancy: while one may forget
which way up ‘convex’ and ‘concave’ are, it is harder to confuse a smile with a
frown.

Convex — functions. A function f(x) is convex — over (a,b) if every chord
of the function lies above the function, as shown in figure 2.10; that is,

for all @y, 20 € (a,b) and 0 < XA < 1,
Ja + (1 - A)zz) € Af(a) + (1= A)f(x2). (2.47)

A function f is strictly convex — if, for all x,. 22 € (a.b), the equality
holds only for A =0and A= 1.

Similar definitions apply to concave — and strictly concave — functions.

Some strictly convex — functions are
e 22 & and e 7 for all r;

e log(l/x) and xlog x for x = 0.

Jensen’s inequality. If f is a convex — function and z is a random variable
then:

E[flx)] = fiElx]), (2.48)
where £ denotes expectation. If f is strictly convex — and & [f(z)] =
f(E[z]), then the random variable & is a constant.

Jensen's inequality can also be rewritten for a concave — function, with
the direction of the inequality reversed.

A physical version of Jensen's inequality runs as follows,

If a collection of masses p; are placed on a convex — curve f(x)
at locations (xy, f(x;)), then the centre of gravity of those masses,
which is at (£[x].£[f(x)]), lies above the curve.

If this fails to convinee you, then feel free to do the following exercise.
Exercise 2.14.12’ P-4l prove Jensen's inequality.

Example 2.15. Three squares have average area A = 100m*. The average of
the lengths of their sides is [ = 10m. What can be said about the size
of the largest of the three squares? [Use Jensen’s inequality.|

Solution. Let x be the length of the side of a square, and let the probability
of & be 1/3,1/3,1/3 over the three lengths [, I, 3. Then the information that
we have is that & [z] = 10 and & [f(x)] = 100, where f(x) = z? is the function
mapping lengths to areas. This is a strictly convex — function. We notice
that the equality £ [f(x)] = f(€[z]) holds, therefore = is a constant, and the
three lengths must all be equal. The area of the largest square is 100m?, O
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Af(z1) + (1 — A) flra)

I 1 Ex
o= Ary + (1 — A)rz

Figure 2.10. Definition of
convexity.

Figure 2.11. Convex — functions.

Centre of gravity
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Converity and coneavity also relate to marimization

If f(x] is concave — and there exists a point at which

‘;]‘—;i = 0 for all K, (2.49)
then f(x) has its maximum value at that point.

The converse does not hold: if a concave ~ f(x) is maximized at some x
it is not necessarily true that the gradient ¥ f(x) is equal to zero there. For
example, f(xr) = —|r| is maximized at & = 0 where its derivative is undefined;
and f(p) = log(p), for a probability p € (0,1), is maximized on the boundary
of the range, at p = 1, where the gradient df(p)/dp = 1.

> 2.8 Exercises

Sums of random variables

{ Exercise 2.16.1% P-41] (a) Two ordinary dice with faces labelled 1,...,6 are
thrown. What is the probability distribution of the sum of the val-
wes? What is the probability distribution of the absolute difference
between the values?

(b) One hundred ordinary dice are thrown. What, roughly, is the prob-  This exercise is intended to help
ahility distribution of the sum of the values? Sketch the probability ~ vou think about the central-limit

distribution and estimate its mean and standard deviation. ﬂ'jﬂ"f'-“l(-i which 5{"}’5 that ilfl
. . . independent random variables
{c) How can two cubical dice be labelled using the numbers £,,%a,...,zy have means p, and

10,1,2,3,4,5,6} so that when the two dice are thrown the sum  fipite variances a2 then, in the
has a uniform probability distribution over the integers 1-127 limit of large N, the sum Y~ =,
(d) Is there any way that one hundred dice could be labelled with inte- has & distribution that tends to a

- AP T : . . gt i distribmti
gers such that the probability distribution of the sum is uniform? o eI ki
with mean ¥~ ji, and variance

PO

Inference problems

ﬂ Exercise 2.17.1% P-41] Ifg=1—pand a =Inp/q, show that

1

= Tresia) (2.50)

P
Sketch this function and find its relationship to the hyperbaolic tangent

. Mo — U
function tanh(u) = 57—

It will be useful to be fluent in base-2 logarithms also. If b = logs p/q,
what is b as a function of p?

> Exercise 2.18.1% P42 [t ¢ and y he dependent random variables with = a
binary variable taking values in Ay = {0,1}. Use Bayes' theorem to
show that the log posterior probability ratio for @ given y is

Plx=1|y) . Plylr=1) Plx=1)

log B0y ~ B Fyz=0) % Fa=0)

- Exercise 2.19.[2’ p-42] Let @, dy and dz be random variables such that o, and
dy are conditionally independent given a binary variable r. Use Bayes'
theorem to show that the posterior probahility ratio for @ given {d;} is

Plx=1|{d}) _ Pldi|z=1) P(ds|z=1) Pz =1)
P(z=0{d})  P(d|x=0) P(dz|x=0) Pz =0)'

(2.52)



2.9: Further exercises 30

(e) Now think back before the clock struck. What is the mean number
of rolls, going back in time, until the most recent six?

(d) What is the mean number of rolls from the six before the clock
struck to the next six?

(e) Is your answer to (d) different from your answer to (a)? Explain.

Another version of this exercise refers to Fred waiting for a bus at a
bus-stop in Poissonville where buses arrive independently at random (a
Poisson process), with, on average, one bus every six minutes, What is
the average wait for a bus, after Fred arrives at the stop? [6 minutes.] So
what is the time between the two buses, the one that Fred just missed,
and the one that he catches? [12 minutes.] Explain the apparent para-
dox. Note the contrast with the situation in Clockville, where the buses
are spaced exactly 6 minutes apart. There, as vou can confirm, the mean
wait at a bus-stop is 3 minutes, and the time between the missed bus
and the next one is 6 minutes.

Conditional probability

> Exercise 2.36.2] You meet Fred. Fred tells vou he has two brothers, Alf and
Bob.

What is the probability that Fred is older than Boh?

Fred tells you that he is older than Alf. Now, what is the probability
that Fred is older than Bob? {That is, what is the conditional probability
that F' > B given that F > A7)

= Exercise 2.3?.[2] The inhabitants of an island tell the truth one third of the
time. They lie with probability 2/3.

On an occasion, after one of them made a statement, you ask another
‘was that statement true?’ and he says “yes'.

What is the probability that the statement was indeed true?

b Exercise 2.38.[% p-40] Compare two ways of computing the probability of error
of the repetition code Ra, assuming a binary symmetric channel (vou
did this once for exercise 1.2 (p.7)) and confirm that they give the same
ANSWET,

Binomial distribution method. Add the prohability that all three
bits are flipped to the probability that exactly two bits are flipped.

Sum rule method. Using the sum rule, compute the marginal prob-
ability that r takes on each of the eight possible values, P(r).
[P(r) = 3, P(s)P(r|s).] Then compute the posterior probabil-
ity of s for each of the eight values of r. [In fact, by symmetry,
only two example cases r = (000) and r = (001) need be consid-
ered.] Notice that some of the inferred bits are better determined  Equation (1.18) gives the
than others. From the posterior probability P(s|r) you can read  posterior probability of the input
out the case-by-case error probability, the probability that the more 4 given the received vector r.
probable hypothesis is not correct, Plerror|r). Find the average
error probability using the sum rule,

Plerror) = Z Pir)P(error |r). (2.55)
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& Exercise 2.39.[9C P46l e frequency py, of the nth most frequent word in
English is roughly approximated by

O fornel,... 12367
~ i U

Pn = { 0 n>12367. (2.56)
[This remarkable 1/n law is known as Zipf's law, and applies to the word

frequencies of many languages (Zipf, 1949).] If we assume that English
is generated by picking words at random according to this distribution,
what is the entropy of English {per word)? [This caleulation can be found
in ‘Prediction and entropy of printed English’, C.E. Shannon, Bell Sysi.
Tech, J. 30, pp.50-64 (1950), but, inexplicably, the great man made
numerical errors in it.]

> 2.10 Solutions

Solution to exercise 2.2 (p.24). No, they are not independent. If they were
then all the conditional distributions P(y | ) would be identical functions of
. regardless of x (cf. figure 2.3).

Solution to exercise 2.4 (p.27). We define the fraction f = B/K.
{a) The number of black balls has a binomial distribution.

N
ng

Ping|fa, N)= ( ) B - fg)¥—ns, (2.57)

(b) The mean and variance of this distribution are:
Elnp] = Nfp (2.58)

var[ng] = Nfu(l - fg). (2.59)
These results were derived in example 1.1 (p.1). The standard deviation
of ng is v/varlng] = /N fg(1 - fg).

When B/K =1/5 and N = 5, the expectation and variance of ng are 1
and 4/5. The standard deviation is 0,89,

When B/K = 1/5 and N = 400, the expectation and variance of ng are
80 and 64. The standard deviation is &

Solution to exercise 2.5 (p.27). The numerator of the quantity

. _ (na—fBN)?
Nfp(l1- fg)

can be recognized as (ng — E[ng]}l?; the denominator is equal to the variance
of ng (2.59), which is by definition the expectation of the numerator. So the
expectation of 2 is 1. [A random variable like z, which measures the deviation
of data from the expected value, is sometimes called y? (chi-squared).]

In the case N = 5 and fg = 1/5, Nfg is 1, and var[ng] is 4/5. The
numerator has five possible values, only one of which is smaller than 1: (ng —
fBN)? = 0 has probability P(ng=1) = 0.4006; so the probability that = < 1
is 0.4006.



2.10: Solutions

Solution to exercise 2.14 (p.35). We wish to prove, given the property

Sz + (1= A)wz) < Af(x1) + (1 = A)f (),

that, if 3 p; =1 and p; = 0,

Zp..r(z.) 2/ (Z p.:,) . (2.61)

=1

(2.60)

We proceed by recursion, working from the right-hand side. (This proof does
not handle cases where some p; = () such details are left to the pedantic
reader.) At the first line we use the definition of convexity (2.60) with A =

+ = pq; at the second line, A = —P—
|—1

|=1p'
I I
f (ZP{I-') =f (Pli*l + EP:‘I:')
i=1 i=2

I I I
< pflo)+ [Zm] [f (Z”“"" / Zm)] (2.62)
)
1 1 i I _3:}‘ i Pi
< mtei+ (3o [P s (Snm /3] |
and so forth. o

Solution to exercise 2.16 (p.36).

(a) For the outcomes {2 3 4, 5 ﬁ 7 8 9 10,11, 12}, the probabilities are P =
2 3 4 5

{EB" 3&‘&&'36"3&1‘36"36 3-6‘16"!5

(b} The value of one die has mean 3.5 and variance 35/12. So the sum of
one hundred has mean 350 and variance 3500/12 = 202, and by the
central-limit theorem the probability distribution is roughly Gaussian
(but confined to the integers), with this mean and variance.

(¢} In order to obtain a sum that has a uniform distribution we have to start
from random variables some of which have a spiky distribution with the
probability mass concentrated at the extremes. The unique solution is
to have one ordinary die and one with faces 6, 6, 6, 0, 0, 0.

(d) Yes, a uniform distribution can be created in several ways, for example
by labelling the rth die with the mumbers {0,1,2,3,4,5} = 6",

Solution to exercise 2.17 (p.36).

a=mZ = L_g (2.63)
q q
and g =1 — p gives
1% = % (2.64)
e 1
= = 2.
r e+ 1 1+exp(—a) (265)
The hyperbolic tangent is
tanh{s) = == (2.66)

41

To think about: does this uniform
distribution contradict the
central-limit theorem?
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sy

1 1 f1—e™"
= —_— = = +1
f(a) 1+exp(—a) 2 ( l4+en )
1 {.u_."z . E.—u,."z

1
= sl\=r —= = =t y . 2.67
5 (:-"“ peT + 1) 2[r anh(a/2) + 1) (2.67)

In the case b = log, p/q, we can repeat steps (2.63-2.65), replacing e hy 2,

to obtain
1

P= 1y (2.68)
Solution to exercise 2.18 (p.36).
1y = Pllz)Plz) .
Plz=1|y) _ Ply|lz=1)Plzx=1)
P(z=0|y) =~ Ply|z=0) P(x=0) (2.70)
Pla=1ly) _  Plyle=1) P(z=1)
= log Pz=0|y) log Ply|z=0) +log Plz=0)" (2.71)

Solution to exercise 2.19 (p.36). The conditional independence of o and dy
given r means

P(z.dy.ds) = P(z)P(d, | ) P{dy | ). (2.72)

This gives a separation of the posterior probability ratio into a series of factors,
one for each data point, times the prior probability ratio.

Pa=1|{di}) _ P{di}|z=1)Pa=1) @18
Plx=0|{d;}) P({d;} | z=0) P(z=0) '
_ Pldy|x=1) P(dy|z=1) Plz=1) @18
P(d; | £=0) P(dy |x=0) P(x=0)’ '

Life in high-dimensional spaces

Solution to exercise 2.20 (p.37). The volume of a hypersphere of radius r in
N dimensions is in fact

N
ﬂ"\"' : N

Vir, J'\r] = mf' P [‘275]

but vou don’t need to know this. For this question all that we need is the
r-dependence, V(r, N) o« +". So the fractional volume in (r — e, r) is

N —(r - ey N o
T=1—(1—;) . (2.76)

The fractional volumes in the shells for the required cases are:

N 2 10 1000

ef/r=001 002 0096 099996
efr=05 075 0999 12100

Notice that no matter how small ¢ is, for large enough N essentially all the
probability mass is in the surface shell of thickness e.




2.10: Solutions

Solution to exercise 2.21 (p.37). pa=01, pp=02, p.=07. fla)=10,
f(b)=>5, and f(c)=10/T.

Ef(z)) =01 x10+02 x5+0.7 x 10/7 = 3. (2.77)
For each =, f(z) = 1/P(x), so
E[1/P(z)] = E[f(z)] = 3. (2.78)
Solution to exercise 2.22 (p.37). For general X,
EN/P@)] = Y Pa)N/Plx)= 3 1=|Ax| (2.79)
redy reAx

Solution to exercise 2.23 (p.37). pa=0.1, ;=02 p.=0.7. gla)=0, g(b) =1,
and gle)=10.

£ lglx)] = pyp = 0.2. (2.80)

Solution to exercise 2.24 (p.37).
P(P(z)€[0.15,0.5]) = p, = 0.2. (2.81)
P (‘]Dg ‘t;(;} > u.na) = Pa +pe = 08, (2.82)

Solution to exercise 2.25 {p.37). This type of question can be approached in
two ways: either by differentiating the function to be maximized, finding the
maximum, and proving it is a global maximum; this strategy is somewhat
risky since it is possible for the maximum of a function to be at the boundary
of the space, at a place where the derivative is not zero. Alternatively, a
carefully chosen inequality can establish the answer. The second method is
much neater.

Proof by differentiation (not the recommended method).  Since it is slightly
easier to differentiate In 1/p than log, 1/p, we temporarily define H(X) to be
measured using natural logarithms, thus scaling it down by a factor of log, e.

H(X) = Z_p.—]n% (2.83)
aHX) 1
T = - (2.84)

we maximize subject to the constraint %, p; = 1 which can be enforced with

a Lagrange multiplier:

Glp) = H{X}+J\(Z:p.-—l) (2.85)
% = mi-u.\. (2.86)
At a maximum,
mt_14A = 0 (2.87)
Pi
St = 1-2 (2.88)
Pi

s0 all the p; are equal. That this extremum is indeed a maximum is established

by finding the curvature:
9*G(p) _

1
= ——dij, (2.89)
piIp; P
which is negative definite. o

43



46

(d)

(e)

2 — Probability, Entropy, and Inference

The mean number of rolls from the six before the clock struck to the six
after the clock struck is the sum of the answers to (b) and (c), less one,
that is, eleven.

Rather than explaining the difference between (a) and (d), let me give
Imagine that the buses in Poissonville arrive indepen-
dently at random (a Poisson process), with, on average, one bus every
six minutes. Imagine that passengers turn up at bus-stops at a uniform
rate, and are scooped up by the bus without delay, so the interval be-
tween two buses remains constant. Buses that follow gaps bigger than
six minutes become overcrowded. The passengers’ representative com-
plains that two-thirds of all passengers found themselves on overcrowded
buses. The bus operator claims, ‘no, no - only one third of our buses
are overcrowded’. Can both these claims be true?

another hint.

Solution to exercise 2.38 (p.39).

Binomial distribution method. From the solution to exercise 1.2, pp =

3721 - £y +

Sum rule method. The marginal probabilities of the eight values of r are

Solution to exercise 2.39 (p.40).

illustrated by:

P(r=000) = l/2(1 — f)* + V23, (2.108)
P(r=001) = Y2f(1 - f)2 + Yaf2(1 - f)y=Yef(1 - f).  (2.109)
The posterior probabilities are represented by
1 | 000) = f?
P{S—ill‘-—@':m)am [2]"]]
and -
PtS:lir:um}:f(l—f}z—}—_f?[l—f}:f' (2.111)
The probabilities of error in these representative cases are thus
—000) = r
Pfermr[r—l}ﬂl]] = m {2.112)
and
Plerror |[r=001) = f. (2.113)

Notice that while the average probability of error of Ry is about 32, the
probability (given r) that any particular bit is wrong is either about f3

or f.

The average error probability, using the sum rule, is

Z P(r)P{error|r)

Plerror) =

f3
2[42(1 — £)* + Y23 0=

O=/P+ /8 +6[Y2f(1 - NS

S0
Plerror) = f*4+37%1 = f).

The entropy is 9.7 bits per word.

0.15

0.1 4

0.05 +

0
o 5 10 15 20
Figure 2.13. The probability
distribution of the number of rolls
1 from one 6 to the next (falling
solid line),

r—1
P(ri=r)= (g) %-

and the probability distribution
{dashed line) of the number of
rolls from the 6 before 1pm to the
next ﬁ: Tiots

Plrug=1) =r (%)H (é)z

The probability P{r, = 6) is
about 1/3; the probability
Plrws > 6) is about 2/3. The
mean of # is 6, and the mean of
reoe is 110

The first two terms are for the
cases r= 000 and 111; the
remaining 6 are for the other
outcomes, which share the same
probability of oceurring and
identical error probability, f.




About Chapter 3

If you are eager to get on to information theory, data compression, and noisy
channels, you can skip to Chapter 4. Data compression and data modelling
are intimately connected, however, so vou'll probably want to come back to
this chapter by the time you get to Chapter 6. Before reading Chapter 3, it
might be good to look at the following exercises.

& Exercise 3.1.[2' p-59] A die is selected at random from two twenty-faced dice
on which the symbols 1-10 are written with nonuniform frequency as

follows.
Symbol 1 2 3 4 5 6 7 8 9 10
Number of facesof die A 6 4 3 2 1 1 1 1 1 0
Number of facesof die B 3 3 2 2 2 2 2 2 1 1

The randomly chosen die is rolled 7 times, with the following outcomes:
53,0, 3,84, 7.
What is the probability that the die is die A?

> Exercise 3.2.1% P Assume that there is a third twenty-faced die, die C, on
which the symbols 1-20 are written once each. As above, one of the
three dice is selected at random and rolled 7 times, giving the ontcomes:
3.5,4,8,3,9, 7.
What is the probability that the die is (a) die A, (b) die B, {¢) die C?

Exercise 3.3.[3' p-48] Inferring a decay constant
Unstable particles are emitted from a source and decay at a distance
z, a real number that has an exponential probability distribution with
characteristic length A. Decay events can only be observed if they occur
in a window extending from z = lem to 2 = 20cm. N decays are
observed at locations {ry,....zx}. What is A?

l*t-iﬂt-* L .

- X -

& Exercise 3.4.[% P-%] Forensic evidence

Two people have left traces of their own blood at the scene of a crime. A
suspect, Oliver, is tested and found to have type ‘0" blood. The blood
groups of the two traces are found to be of type ‘0" (a common type
in the local population, having frequency 60%) and of type ‘AB’ (a rare
type, with frequency 1%). Do these data (type ‘O’ and ‘AB’ blood were
found at scene) give evidence in favour of the proposition that Oliver
was one of the two people present at the crime?

47



More about Inference

It is not a controversial statement that Bayes' theorem provides the correct
language for describing the inference of a message communicated over a noisy
channel, as we used it in Chapter 1 (p.6). But strangely, when it comes to
other inference problems, the use of Bayves’ theorem is not so widespread.

3.1 A first inference problem

When | was an undergraduate in Cambridge, 1 was privileged to receive su-
pervisions from Steve Gull. Sitting at his desk in a dishevelled office in St.
John's College, I asked him how one onght to answer an old Tripos question
[exercise 3.3):

Unstable particles are emitted from a source and decay at a
distance z, a real number that has an exponential probability dis-
tribution with characteristic length A. Decay events can only be

observed if they oceur in a window extending from = = lem to
= 20cm. N decays are observed at locations {x, ..., xn}. What
is AT
{ £ ok % % % * * &
X

I had scratched my head over this for some time. My education had provided
me with a couple of approaches to solving such inference problems: construect-
ing ‘estimators’ of the unknown parameters; or ‘fitting’ the model to the data,
or to a processed version of the data.

Since the mean of an unconstrained exponential distribution is A, it seemed

reasonable to examine the sample mean = = Y, /N and see if an estimator

A could be obtained from it. It was evident that the estimator A = ¥ — 1 would
be appropriate for A < 20cm, but not for cases where the truncation of the
distribution at the right-hand side is significant; with a little ingenuity and
the introduction of ad hoe bins, promising estimators for A = 20 cm could he
constructed. But there was no obvious estimator that would work under all
conditions.

Nor could 1 find a satisfactory approach based on fitting the density P(x | A)
to a histogram derived from the data. T was stuck.

What is the general solution to this problem and others like it? Is it
always necessary, when confronted by a new inference problem, to grope in the
dark for appropriate ‘estimators’ and worry about finding the ‘best’ estimator
(whatever that means)?
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3.1: A first inference problem

025 -
021 Pixlambda=10) -
0.15 %,

o1 - Y

10 12 14 16 18 20 T
i —
x=12] -

015 -

o1 -

0.05 -

1 0 w0 A

Steve wrote down the probability of one data point, given A:

P(z| ) ={ é P2 () Lere (3.1)
where a0
Z(\) = j; T ] (3.2)
This seemed obvious enough. Then he wrote Bayes’ theorem:
P(A|{z1,---,2x])) % (3.3)
ﬂ}fl;\'}?? exp (- X ea/A) PO). (3.4)

Suddenly, the straightforward distribution P({zy,....2x}|A), defining the
probability of the data given the hypothesis A, was being turned on its head
s0 as to define the probability of a hypothesis given the data. A simple figure
showed the probability of a single data point P{x | A) as a familiar function of z,
for different values of A (figure 3.1). Each eurve was an innocent exponential,
normalized to have area 1. Plotting the same function as a funetion of A for a
fixed value of x, something remarkable happens: a peak emerges (figure 3.2).
To help understand these two points of view of the one function, figure 3.3
shows a surface plot of Px|A) as a function of x and A,

For a dataset consisting of several points, e.g., the six points {z}Y_, =
{1.5,2,3,4,5,12}, the likelihood function P({x}|A) is the product of the N
functions of A, P(x, | A) (figure 3.4).

1.4a-06
1

NESEEE
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Figure 3.1. The probability
density P(x | A) as a function of z.

Figure 3.2. The probahility
density Pz | A) as a function of A,
for three different values of r.
When plotted this way round. the
function is known as the likelihood
of A, The marks indicate the
three values of A, A = 2,5, 10. that
were used in the preceding figure,

Figure 3.3. The probability
density Pla | A) as a funetion of &
and A Figures 3.1 and 3.2 are
vertical sections through this
surface.

Figure 3.4. The likelihood function
in the ease of a six-point dataset,
P({x} = {1.5,2,3,4.5,12} | A), as

a function of A.



Steve summarized Bayes' theorem as embodying the fact that

what vou know about A after the data arrive is what you knew

before [P(A)], and what the data told you [P({z}|A)].

Probabilities are used here to quantify degrees of belief. To nip possible
confusion in the bud, it must be emphasized that the hypothesis A that cor-
rectly describes the situation is not a stochasfic variable, and the fact that the
Bayesian uses a probability distribution P does not mean that he thinks of
the world as stochastically changing its nature between the states described
by the different hypotheses. He uses the notation of probabilities to represent
his beliefs about the mutually exclusive micro-hypotheses (here, values of A),
of which only one is actually true. That probabilities can denote degrees of
belief, given assumptions, seemed reasonable to me.

The posterior probability distribution (3.4) represents the unigue and com-
plete solution to the problem. There is no need to invent *estimators’; nor do
we need to invent criteria for comparing alternative estimators with each other.
Whereas orthodox statisticians offer twenty ways of solving a problem, and an-
other twenty different eriteria for deciding which of these solutions is the best,
Bayesian statistics only offers one answer to a well-posed problem.

Assumptions in inference

Our inference is conditional on our assumptions [for example, the prior P(A)].
Critics view such priors as a difficulty because they are ‘subjective’, but I don’t
see how it could be otherwise, How can one perform inference without making
assumptions? 1 believe that it is of great value that Bayesian methods force
one to make these tacit assumptions explicit.

First, once assumptions are made, the inferences are objective and unique,
reproducible with complete agreement by anyone who has the same informa-
tion and makes the same assumptions. For example, given the assumptions
listed above, H, and the data 2, everyvone will agree about the posterior prob-
ability of the decay length A:

P(D| A\ H)P(A|H)
P(D|H)

Second, when the assumptions are explicit, they are easier to criticize, and
easier to modify — indeed, we can quantify the sensitivity of our inferences to

P(A|DVH) = (3.9)

the details of the assumptions. For example, we can note from the likelihood
curves in figure 3.2 that in the case of a single data point at © = 5, the
likelihood function is less strongly peaked than in the case z = 3; the details
of the prior P(A) become increasingly important as the sample mean T gets
closer to the middle of the window, 10.5. In the case r = 12, the likelihood
function doesn’t have a peak at all — such data merely rule out small values
of A, and don’t give any information about the relative probabilities of large
values of A, So in this case, the details of the prior at the small-A end of things
are not important, but at the large-A end, the prior is important.

Third, when we are not sure which of various alternative assumptions is
the most appropriate for a problem, we can treat this question as another
inference task. Thus, given data 2, we can compare alternative assumptions
‘H using Bayes' theorem:

P(D|\H.PH|T)
P(D|I)

P(H|D,I) = (3.6)

3 — More about Inference

If you have any difficulty
understanding this chapter |
recommend ensuring you are
happy with exercises 3.1 and 3.2
(p.47) then noting their similarity
to exercise 3.3,




3.3: The bent coin and model comparison

Muodel comparisen as inference

In order to perform model comparison, we write down Bayes’ theorem again,
but this time with a different argument on the left-hand side. We wish to
know how probable H,; is given the data. By Bayes' theorem,

P{Blﬂ?‘fﬂp(ﬂl)l

P(H,|s.F) = Pis| F) (3.17)
Similarly, the posterior probability of Hy is
P(Ho s, F) = Pis| F,HnJP{'Hn)I (3.18)

P(s|F)

The normalizing constant in both cases is F(s | F), which is the total proba-
hility of getting the observed data. 1f H, and Hy are the only models under
consideration, this probability is given by the sum rule:

P(s|F) = P(s| F.H\)P(H,) + P(s| F. Ho) P(Hp). (3.19)

To evaluate the posterior probabilities of the hypotheses we need to assign
values to the prior probabilities P{H;) and P(Hy); in this case, we might
set these to 1/2 each. And we need to evaluate the data-dependent terms
P(s|F,H;) and P(s|F,Hp). We can give names to these quantities. The
quantity P(s|F,H;) is a measure of how much the data favour H;, and we
call it the evidence for model Hy. We already encountered this quantity in
equation (3.10) where it appeared as the normalizing constant of the first
inference we made — the inference of p, given the data.

How model comparison works: The evidence for a model is

usually the normalizing constant of an earlier Bayesian inference.

We evaluated the normalizing constant for model H, in (3.12). The evi-
dence for model Hy is very simple because this model has no parameters to
infer. Defining py to be 1/6, we have

P(s| F,Hg) = pf*(1 — po)™. {3.20)
Thus the posterior probability ratio of model H; to model Hy is
P(Hi|s, F) _ Pls|F H,)P(Hy)

P(Ho|s,F) —  P(s|F, Ho)P(Hp) (3.21)
o4l
T fn;,‘b:;- 1)!/1’?(1 - )™ (3.22)

Some values of this posterior probability ratio are illustrated in table 3.5. The
first five lines illustrate that some outcomes favour one model, and some favour
the other. No outcome is completely incompatible with either model. With
small amounts of data (six tosses, say) it is typically not the case that one of
the two models is overwhelmingly more probable than the other. But with
more data, the evidence against Hy given by any data set with the ratio Fy: Fy
differing from 1: 5 mounts up. You can’t predict in advance how much data
are needed to be pretty sure which theory is true. It depends what py is.

The simpler model, Hy, since it has no adjustable parameters, is able to
lose out by the biggest margin. The odds may be hundreds to one against it.
The more complex model can never lose out by a large marging there's no data
set that is actually unlikely given model H,.
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P(H,|s, F)
F  Data (F.. ) —/————
(Fa, Fo) P(Ho|s. F)
G (5,1) 2222
6 (3,3) 267
6 (2,4) 0.71 =1/14
6 (1,5) 0.356 =1/2.8
G (0, 6) 0.427 =1/2.3
20 (10,10) 96.5
20 (3,.17) 0.2 =1/5
20 (0,20) 1.83
Hy is true H, is true
pa=1/06 Pu =10.25 P =105
: ) 10001 g ) 100071 g L '1000/1
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Exercise 3.6.12] Show that after F tosses have taken place, the biggest value
that the log evidence ratio

P(s|F M)

Pls| F.Ho) (3.23)

can have scales linearly with F if H; is more probable, but the log
evidence in favour of Hp can grow at most as log F.

Exercise 3.7.1% »-60] Putting vour sampling theory hat on, assuming Fy has
not yet been measured, compute a plausible range that the log evidence
ratio might lie in, as a function of F and the true value of p,, and sketch
it as a function of F for pa = po = 1/6, pa = 0.25, and p, = 1/2. [Hint:
sketeh the log evidence as a function of the random variable F, and work
out the mean and standard deviation of Fy.]

Typical behaviour of the evidence

Figure 3.6 shows the log evidence ratio as a function of the number of tosses,
F, in a number of simulated experiments. In the left-hand experiments, Hy
was true. In the right-hand ones, H; was true, and the value of p, was either
0.25 or (0.5,

We will discuss model comparison more in a later chapter,
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Table 3.5. Outcome of model
comparison between models M,
and Hy for the ‘bent coin’. Model
Hy states that p, = 16, p» = 5/6.

Figure 3.6, Typical behaviour of
the evidence in favour of H, as
bent coin tosses accumulate under
three different conditions.
Horizontal axis is the number of
tosses, F. The vertical axis on the

. Pis]| F.Hy), g a
left is In PIFRY the right-hand

vertical axis shows the values of
Pla] F. M)

Pla| F.Ha}"
(See also figure 3.8, p.60.)



3.4: An example of legal evidence

3.4 An example of legal evidence

The following example illustrates that there is more to Bayesian inference than
the priors.

Two people have left traces of their own blood at the scene of a
crime. A suspect, Oliver, is tested and found to have type ‘0’
blood. The blood groups of the two traces are found to be of type
‘0’ (a common type in the loeal population, having frequency 60%)
and of type ‘AB’ (a rare type, with frequency 1%). Do these data
(type “O" and ‘AB’ blood were found at scene) give evidence in
favour of the proposition that Oliver was one of the two people
present at the crime?

A careless lawyer might claim that the fact that the suspect’s blood type was
found at the scene is positive evidence for the theory that he was present. But
this is not so.

Denote the proposition ‘the suspect and one unknown person were present’
by §. The alternative, S, states ‘two unknown people from the population were
present’. The prior in this problem is the prior probability ratio between the
propositions S and §. This quantity is important to the final verdict and
wold be based on all other available information in the case. Our task here is
just to evaluate the contribution made by the data D, that is, the likelihood
ratio, P(D| S8, H)/P(D| 8, H). Inmy view, a jury’s task should generally be to
multiply together carefully evaluated likelihood ratios from each independent
piece of admissible evidence with an equally carefully reasoned prior proba-
bility. [This view is shared by many statisticians but learned British appeal
judges recently disagreed and actually overturned the verdict of a trial because
the jurors had been taught to use Bayes’ theorem to handle complicated DNA
evidence,|

The probability of the data given S is the probability that one unknown
person drawn from the population has blood type AB:

P(D|S,H) = pa (3.24)

(since given S, we already know that one trace will be of type O). The prob-
ability of the data given 5 is the probability that two unknown people drawn
from the population have types O and AB:

P(D|5,H) = 2po pas. (3.25)

In these equations H denotes the assumptions that two people were present

and left blood there, and that the probability distribution of the blood groups

of unknown people in an explanation is the same as the population frequencies,
Dividing, we obtain the likelihood ratio:

PDISH) 1 1
P(D|S,H) 2po 2x06

=0.83. (3.26)

Thus the data in fact provide weak evidence against the supposition that
Oliver was present.

This result may be found surprising, so let us examine it from various
points of view, First consider the case of another suspect, Alberto, who has
type AB. Intuitively, the data do provide evidence in favour of the theory 57
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that this suspect was present, relative to the null hypothesis §. And indeed

the likelihood ratio in this case is:
PD|S'"H) 1
P(D|S,H) 2pas

=50, (3.27)

Now let us change the situation slightly: imagine that 99% of people are of
blood type O, and the rest are of tvpe AB. Only these two blood types exist
in the population. The data at the scene are the same as before. Consider
again how these data influence our beliefs about Oliver, a suspect of type
0, and Alberto, a suspect of type AB. Intuitively, we still believe that the
presence of the rare AB blood provides positive evidence that Alberto was
there. But does the fact that tyvpe O blood was detected at the scene favour
the hypothesis that Oliver was present? If this were the case, that would mean
that regardless of who the suspect is, the data make it more probable they were
present; everyone in the population would be under greater suspicion, which
would be absurd. The data may be compatible with any suspect of either
blood type being present, but if they provide evidence for some theories, they
must also provide evidence against other theories,

Here is another way of thinking about this: imagine that instead of two
people’s blood stains there are ten, and that in the entire local population
of one hundred, there are ninety type O suspects and ten type AB suspects.
Consider a particular type O suspect, Oliver: without any other information,
and before the blood test results come in, there is a one in 10 chance that he
was at the scene, since we know that 10 out of the 100 suspects were present.
We now get the results of blood tests, and find that mine of the ten stains are
of type AB, and one of the stains is of type O. Does this make it more likely
that Oliver was there? No, there is now only a one in ninety chance that he
was there, since we know that only one person present was of type O.

Maybe the intuition is aided finally by writing down the formulae for the
general ease where ng blood stains of individuals of type O are found, and
nap of type AR, a total of N individnals in all, and unknown people come
from a large population with fractions po, pap. (There may be other blood
types too.) The task is to evaluate the likelihood ratio for the two hypotheses:
5, *the type O suspect (Oliver) and N —1 unknown others left N stains’; and
S, ‘N unknowns left N stains’. The probability of the data under hypothesis
5 is just the probability of getting ng. nap individuals of the two types when
N individuals are drawn at random from the population:

P{ﬂ,u nap | S] = L]‘j“"}"""‘“. [3 25-}
' no!nap! O FAB '
In the case of hypothesis S, we need the disiribution of the N —1 other indi-
viduals:

N -1} no—
o T A St

Plna.nap | S) =
The likelihood ratio is:
Ping,nag |5} ng/N

= . 3.30
Plno,nap | 5) o (330)

This is an instructive result., The likelihood ratio, i.e. the contribution of
these data to the question of whether Oliver was present, depends simply on
a comparison of the frequency of his blood type in the observed data with the
background frequency in the population. There is no dependence on the counts
of the other types found at the scene, or their frequencies in the population,

3 — More about Inference



3.5: Exercises

If there are more type O stains than the average number expected under
hypothesis §, then the data give evidence in favour of the presence of Oliver.
Conversely, if there are fewer type O stains than the expected number under
&, then the data reduce the probability of the hypothesis that he was there,
In the special case no/N = po, the data contribute no evidence either way,
regardless of the fact that the data are compatible with the hypothesis S.

P> 3.5 Exercises

Exercise 3.8.% "% The three doors, normal rules.

On a game show, a contestant is told the rules as follows:

There are three doors, labelled 1, 2, 3. A single prize has
been hidden behind one of them. You get to select one door,
Initially your chosen door will net be opened. Instead, the
gameshow host will open one of the other two doors, and he
will do 50 in such a way as net to reveal the prize. For example,
if you first choose door 1, he will then open one of doors 2 and
3, and it is guaranteed that he will choose which one to open
s0 that the prize will not be revealed.

At this point, you will be given a fresh choice of door: you
can either stick with your first choice, or you can switch to the
other closed door. All the doors will then be opened and you
will receive whatever is behind your final choice of door,

Imagine that the contestant chooses door 1 first; then the gameshow host
opens door 3, revealing nothing behind the door, as promised. Should
the contestant (a) stick with door 1, or (b} switch to door 2, or (¢} does
it make no difference?

Exercise 3.9.[” p.61] The three doors, earthquake scenario.

Imagine that the game happens again and just as the gameshow host is
about to open one of the doors a violent earthquake rattles the building
and one of the three doors flies open. It happens to be door 3, and it
happens not to have the prize behind it. The contestant had initially
chosen door 1.

Repositioning his toupée, the host suggests, ‘OK, since you chose door
1 initially, door 3 is a valid door for me to open, according to the rules
of the game: I'll let door 3 stay open. Let’s carry on as if nothing
happened.”

Should the contestant stick with door 1, or switch to door 2, or does it
make no difference? Assume that the prize was placed randomly, that
the gameshow host does not know where it is, and that the door flew
open becanse its lateh was broken by the earthquake.

[A similar alternative scenario is a gameshow whose confused host for-
gets the rules, and where the prize is, and opens one of the unchosen
doors at random. He opens door 3, and the prize is not revealed. Should
the contestant choose what's behind door 1 or door 27 Does the opti-
mal decision for the contestant depend on the contestant’s beliefs about
whether the gameshow host is confused or not?)

b Exercise 3.10.1%] Another example in which the emphasis is not on priors. You
visit a family whose three children are all at the loeal school. You don’t
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(b) P(pa|s=bbb, F=3) x {1 — pa)*. The most probable value of p, (i.e.,
the value that maximizes the posterior probability density) is 0. The
mean value of py is 1/5.

See figure 3.7b.

My is true Hy is true

pa = 1/6 Pa = 0.25 o = 0.5
8 hooon 8 ooort § /- 100011
4 100/1 4 001 4/ ¢ 100A
3 101 a L _on 2/' 101
0 [P it i, 11N 0L, 1M = 11
e e —— T, |, 2 ’ -0 -2 110
4| oo 4 1100 4 1/100

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

Solution to exercise 3.7 (p.54). The curves in figure 3.8 were found by finding
the mean and standard deviation of F,, then setting F, to the mean + two
standard deviations to get a 95% plausible range for F,, and computing the
three corresponding values of the log evidence ratio.

Solution to exercise 3.8 (p.57). Let H; denote the hypothesis that the prize is
behind door i. We make the following assumptions: the three hypotheses H,
Ha and Hy are equiprobable a prierd, ie.,

P(H,) = P(H3) = P(H3) = ,—; (3.36)
The datum we receive, after choosing door 1, is one of D=3 and D=2 (mean-
ing door 3 or 2 is opened, respectively). We assume that these two possible
outcomes have the following probabilities. If the prize is behind door 1 then
the host has a free choice; in this ease we assume that the host selects at
random between D=2 and D=3, Otherwise the choice of the host is forced
and the probabilities are 0 and 1.

P(D=2|Hz)=0

P(D=2|H,) =2
P(D=3|Ha)=1

P(D=2|H3)=1
F(D=3|H)=V2

(3.37)

Now, using Bayes' theorem, we evaluate the posterior probabilities of the

hypotheses:
P(D=3|H;)P(Hi)

P(H;|D=3) = P(D=3) (3.38)
| P(Hy | D=3) = QU | P(H;| D=3)= §)0L3) | P(Hs | D=3)= F55} |
(3.39)

The denominator P([=3) is (1/2) because it is the normalizing constant for
this posterior distribution. So

| P(H,|D=3) = 13 | P(Hy|D=3) = 23 | P(H3|D=3) = 0|
(3.40)
So the contestant should switch to door 2 in order to have the biggest chance
of getting the prize.

Many people find this outcome surprising. There are two ways to make it
more intuitive, One is to play the game thirty times with a friend and keep
track of the frequency with which switching gets the prize. Alternatively, you
can perform a thought experiment in which the game is played with a million
doors. The rules are now that the contestant chooses one door, then the game
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Figure 3.8. Range of plansible
values of the log evidence in
favour of H; as a function of F.
The vertical axis on the left is
o :—J'ﬁ%} the right-hand
1i'y[£t ical a}xl*- shows the values of
m

The solid line shows the log
evidence if the random variable
F, takes on its mean value,

Fo = p. F. The dotted lines show
[:||.|||::I‘n:\:i||m1‘l‘]_\'}l the ].ng evidence
if F, is at its 2.5th or 97.5th
percentile.

(See also figure 3.6, p.54.)
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3.6: Solutions

show host opens 999,998 doors in such a way as not to reveal the prize, leaving
the contestant’s selected door and one other door closed. The contestant may
now stick or switch. Imagine the contestant confronted by a million doors,
of which doors 1 and 234,598 have not heen opened, door 1 having been the
contestant’s initial guess. Where do you think the prize is?

Salution to exercise 3.9 (p.57).  If door 3 is opened by an earthquake, the
inference comes out differently - even though visually the scene looks the
same. The nature of the data, and the probability of the data. are both
now different. The possible data outcomes are, firstly, that any number of
the doors might have opened. We could label the eight possible outcomes
d = (0,0,0),(0,0,1),(0,1,0), (1,0,0), (0, 1, 1), ..., (1,1, 1). Secondly, it might
be that the prize is visible after the earthquake has opened one or more doors.
So the data D consists of the value of d, and a statement of whether the prize
was revealed. It is hard to say what the probabilities of these outcomes are,
since they depend on our beliefs about the reliability of the door latches and
the properties of earthquakes, but it is possible to extract the desired posterior
probability without naming the values of P(d | H;) for each d. All that matters
are the relative values of the quantities P{D|H; ). P(D|Ha), P(D|H;), for
the value of D that actually occurred. [This is the likelihood prineiple, which
we met in section 2.3.] The value of D that actually oceurred is ‘d=(0.0,1),
and no prize visible’. First, it is clear that P({D|Hy) = 0, since the datum
that no prize is visible is incompatible with Hy. Now. assuming that the
contestant selected door 1, how does the probability P(D| M, ) compare with
P{D|H3)? Assuming that earthquakes are not sensitive to decisions of game
show contestants, these two quantities have to be equal, by symmetry. We
don't know how likely it is that door 3 falls off its hinges, but however likely
it is, it’s just as likely to do so whether the prize is behind door 1 or door 2.
So, if P(D|H,) and P(D|Hz) are equal, we obtain:

PLDIH )L PO Ha)(Ys PO M)
P(H,|D) = PEHUCA) | p(ry|D) = PEHWCH) | p(pgg D) = DEHICA)

=1y = 1fz =

(3.41)
The two possible hypotheses are now equally likely.

If we assume that the host knows where the prize is and might be acting
deceptively, then the answer might be further modified, because we have to
view the host’s words as part of the data.

Confused? It's well worth making sure yon understand these two gameshow
problems. Don't worry, I slipped up on the second problem, the first time [
met it.

There is a general rule which helps immensely when you have a confusing
probability problem:

Always write down the probability of everything,

(Steve Gull)

From this joint probability, any desired inference can be mechanically ob-
tained (figure 3.9).

Selution to exercise 3.11 (p.58). The statistic quoted by the lawyer indicates
the probability that a randomly selected wife-beater will also murder his wife.
The probahility that the husband was the murderer, given that the wife has
been murdered, is a completely different quantity.
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Figure 3.9. The probability of
everything, for the second
three-door problem, assuming an
earthquake has just occurred.
Here, p3 is the probability that
door 3 alone is opened by an
earthguake.
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To deduce the latter, we need to make further assumptions about the
probability that the wife is murdered by someone else. If she lives in a neigh-
bourhood with frequent random murders, then this probability is large and
the posterior probability that the husband did it (in the absence of other ev-
idence) may not be very large. But in more peaceful regions, it may well be
that the most likely person to have murdered you, if you are found murdered,
is one of your closest relatives.

Let's work out some illustrative numbers with the help of the statistics
on page 58. Let m=1 denote the proposition that a woman has been mur-
dered; =1, the proposition that the husband did it; and b=1, the propo-
sition that he beat her in the vear preceding the murder. The statement
‘someone else did it' is denoted by h=0. We need to define P(h|m=1),
Plblh=1,m=1), and P(b=1|h=0,m=1) in order to compute the pos-
terior probability P(h=1|b=1,m=1). From the statistics, we can read
out Plh=1|m=1) = 028, And if two million women out of 100 million
are beaten, then Plb=1|h=0,m=1) = 0.02. Finally., we need a value for
Pib|h=1,m=1): if a man murders his wife, how likely is it that this is the
first time he laid a finger on her? [ expect it's pretty unlikely; so maybe
Plb=1|h=1.,m=1) is 0.9 or larger,

By Bayes' theorem, then,

9% 28

Plh=1|b=1,m=1)= 0 x 28 1 .02 x ?2295%. (3.42)

One way to make obvious the sliminess of the lawyer on p.58 is to construct
arguments, with the same logical structure as his, that are clearly wrong.
For example, the lawyer could say ‘Not only was Mrs. 5 murdered, she was
murdered between 4.02pm and 4.03pm. Statistically, only one in a million
wife-beaters actually goes on to murder his wife between 4.02pm and 4.03pm.
So the wife-beating is not strong evidence at all. In fact, given the wife-beating
evidence alone, it's extremely unlikely that he would murder his wife in this
way — only a 1/1,000,000 chance.”

Solution to exercise 3.13 (p.58). There are two hypotheses. Hy: your number
is T40511: Hy: it is another number. The data, I3, are *when | dialed 740511,
I got a busy signal’. What is the probability of I, given each hypothesis? If
yvour number is 740511, then we expect a busy signal with certainty:

P(D|Hy) = 1.

Om the other hand, if H; is true, then the probability that the number dialled
returns a busy signal is smaller than 1, since various other outcomes were also
possible (a ringing tone, or a number-unobtainable signal, for example). The
value of this probability {0 |H,) will depend on the probability a that a
random phone number similar to your own phone number would be a valid
phone number, and on the probability # that you get a busy signal when you
dial a valid phone number.

[ estimate from the size of my phone book that Cambridge has about
75000 valid phone mumbers, all of length six digits. The probability that a
random six-digit number is valid is therefore about 75000/10% = 0.075. If
we exclude numbers beginning with 0, 1, and 9 from the random choice, the
probability o is about 7T5000/700000 = 0.1. If we assume that telephone
numbers are clustered then a misremembered number might be more likely
to be valid than a randomly chosen number; so the probability, o, that our
puessed number would be valid, assuming Hy is true, might be bigger than
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3.6: Solutions

0.1. Anyway, o must be somewhere between 0.1 and 1. We can carry forward
this uncertainty in the probability and see how much it matters at the end.

The probability 3 that you get a busy signal when you dial a valid phone
number is equal to the fraction of phones you think are in use or off-the-hook
when you make your tentative call. This fraction varies from town to town
and with the time of day. In Cambridge, during the day, I would guess that
about 1% of phones are in use. At dam, maybe 0.1%, or fewer.

The probability P{D|H;) is the product of a and 4, that is, about 0.1 x
0.01 = 1074, According to our estimates, there's about a one-in-a-thousand
chance of getting a busy signal when you dial a random number; or one-in-a-
hundred, if valid numbers are strongly clustered; or one-in-10%, if you dial in
the wee hours.

How do the data affect vour beliefs about your phone number? The pos-
terior probability ratio is the likelihood ratio times the prior probability ratio:

P(Ho| D) _ P(D|Hy) P(Ho)
P(H\|D)  P(D|Hy) P(Hy)

(3.43)

The likelihood ratio is about 100-to-1 or 1000-to-1, so the posterior probability
ratio is swung by a factor of 100 or 1000 in favour of Hy. If the prior probability
of Hg was 0.5 then the posterior probability is

P(Hy| D) = ﬁ ~ 0.99 or 0.999. (3.44)
PHo | D)

Solution to exercise 3.15 (p.59). We compare the models Hy - the coin is fair
- and H; - the coin is biased, with the prior on its bias set to the uniform
distribution P(p|H;) = 1.  [The use of a uniform prior seems reasonable
to me, since | know that some coins, such as American pennies, have severe
hiases when spun on edge; so the situations p = 0,01 or p = (L1 or p = 0L95
would not surprise me.|

When I mention Hy - the coin is fair — a pedant wonld say, ‘how absurd to even
consider that the coin is fair - any coin is surely biased to some extent’. And
of course I would agree. So will pedants kindly understand Hy as meaning ‘the
coin is fair to within one part in a thousand, ie., p € 0.5 £ 0,001,

The likelihood ratio is:

P(DIH,) _ “Ei*

P(DHy)  1/220

= (.48, (3.45)

Thus the data give scarcely any evidence either way; in fact they give weak
evidence (two to one) in favour of Hy!

‘No, no', objects the believer in bias, ‘vour silly uniform prior doesn’t
represent my prior beliefs about the bias of biased coins — I was expecting only
a small bias’. To be as generous as possible to the Hy, let’s see how well it
could fare if the prior were presciently set. Let us allow a prior of the form

P(plHy,a) = ﬁpﬂ_lil —p)* Y, where Z(a) = I'(a)?/T(2a)  (3.46)
(a Beta distribution, with the original uniform prior reproduced by setting
o = 1). By tweaking o, the likelihood ratio for H, over Hy,

P(D|Hy,a)  T(140+a) T(110+a) [(2a)2%50

P(D[Ha) T(Z50+2a)T(@)? (347)
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Figure 3.10. The probability
distribution of the number of
heads given the two hypotheses,
that the coin is fair, and that it is
biased, with the prior distribution
of the bias being uniform. The
outcome (D = 140 heads) gives
weak evidence in favour of Hy, the
hypothesis that the coin is fair.
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can be increased a little. It is shown for several values of o in figure 3.11.
Even the most favourable choice of a (o = 50) can yield a likelihood ratio of
only two to one in favour of M.

In conclusion, the data are not ‘very suspicious’. They can be construed
as giving at most two-to-one evidence in favour of one or other of the two
hypotheses.

Are these wimpy likelihood ratios the fault of over-restrictive priors? Is there
any way of producing a ‘very suspicious’ conclusion? The prior that is best-
matched to the data, in terms of likelihood, is the prior that sets p to f =
140/250 with probability one. Let’s call this model H,. The likelihood ratio is
P(DH.)/P(D|Hp) = 220 f110(1 — )10 = §.1. So the strongest evidence that
these data can possibly muster against the hypothesis that there is no bias is
six-to-one.

While we are noticing the absurdly misleading answers that “sampling the-
ory’ statistics produces, such as the p-value of 7% in the exercise we jusi solved,
let’s stick the boot in. If we make a tiny change to the data set, increasing
the number of heads in 250 vosses from 140 to 141, we find that the p-value
goes below the mystical value of 0.05 (the pvalue is 0.0497). The sampling
theory statistician would happily squeak ‘the probability of getting a result as
extreme as 141 heads is smaller than 0.05 — we thus reject the null hypothesis
at a significance level of 5%, The correct answer is shown for several values
of v in figure 3.12. The values worth highlighting from this table are, first,
the likelihood ratio when M, uses the standard uniform prior, which is 1:0.61
in favour of the null hypothesis Hy. Second, the most favourable choice of o,
from the point of view of Hy, can only vield a likelihood ratio of about 2.3:1
in favour of M.

Be warned! A p-value of 0.05 is often interpreted as implying that the odds
are stacked about twenty-to-one against the mull hypothesis. But the truth
in this case is that the evidence either slightly faveurs the null hypothesis, or
disfavours it by at most 2.3 to one, depending on the choice of prior.

The p-values and “significance levels' of classical statistics should be treated
with extreme caution. Shun them! Here ends the sermon.
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74 1.3
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403 1.3
1096 1.1

Figure 3.11. Likelihood ratio for
various choices of the prior
distribution’s hyperparameter o.
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Figure 3.12. Likelihood ratio for
various choices of the prior
distribution’s hyperparameter o,
when the data are D' = 141 heads
in 250 trials.




The Source Coding Theorem

> 4.1 How to measure the information content of a random variable?

In the next few chapters, we'll be talking about probability distributions and
random variables. Most of the time we can get by with sloppy notation,

but occasionally, we will need precise notation. Here is the notation that we
established in Chapter 2.

An ensemble X is a triple (z, Ax,Px), where the outcome x is the value
of a random variable, which takes on one of a set of possible values,
Ay = {ay,az,...,a4,....a;}, having probabilities Py = {p1.po.....pr}
with P(z=a;) =pi, p; 2 0and 3, 4 Plr=a;)=1

How can we measure the information content of an outcome r = a; from such
an ensemble? In this chapter we examine the assertions

1. that the Shannon information contemnt,
h{r:a,]zlogzp-l—. (4.1)
i

is a sensible measure of the information content of the outcome r = a;,
and

2. that the entropy of the ensemble,

H(X) = zp, log, i. (4.2)
1
L)
is a sensible measure of the ensemble’s average information content.
w{ h(p) = |057£ p hip) Halp) " Hy(p) Figure 4.1. The Shannon
. P e /\ information content hip) = log, ;L
0.001 10.0 0.011 ass [ \ and the binary entropy function
001 66 0.081 / \ Ha(p) = Hip,1-p) =
0.1 33 047 os1 f . plogy L + (1 p)logy ;s as a
U'? 2.3 0.72 i \ function of p.
05 10 1.0 Y I
P 9 0z oa o8 oe L P

Figure 4.1 shows the Shannon information content of an outcome with prob-
ability p, as a function of p. The less probable an outcome is, the greater
its Shannon information content. Figure 4.1 also shows the binary entropy
function,

1 1
HQ(P}IZH(P-I-P)ZNDE:;+(1 -Pllﬂgzm‘ (4.3)

which is the entropy of the ensemble X whose alphabet and probability dis-
tribution are Ax = {a,b}, Px = {p.(1 - p}}.
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Information content of independent random variables

Why should log 1/p; have anything to do with the information content? Why
not some other function of p;7 We'll explore this question in detail shortly,
but first, notice a nice property of this particular function h{r) = log 1/plx).
Imagine learning the value of two independent random variables, = and y.
The definition of independence is that the probability distribution is separable

into a product:
Pl y) = Pla)Ply). (4.4}

Intuitively, we might want any measure of the ‘smount of information gained’
to have the property of additivify — that is, for independent random variables

x and y, the information gained when we learn = and y should equal the swn

of the information gained if r alone were learned and the information gained
if i alone were learned.
The Shannon information content of the outeome r, y is

1 1 1 1 .
Rix, y) = log = log = log + log 1.5
e v =los pr T B PG T B P@ Ry Y
s0 it does indeed satisfy
hir, ) = h{z) + h{y), if ¥ and y are independent. (4.6)

) v
(f'&%l Exercise 4.2 [1: P-86] ghow that. if + and g are independent, the entropy of the
<L onteome x, iy satisfies

HX,Y)=H{X)+ HY). (4.7)
In words, entropy is additive for independent variables,

We now explore these ideas with some examples; then, in section 4.4 and
in Chapters 5 and 6, we prove that the Shannon information content and the
entropy are related to the number of bits needed to describe the outcome of
an experiment,

The weighing problem: designing informative experiments

Hawve yon solved the weighing problem {exercise 4.1, p.66) yet? Are vou sure?
Notice that in three uses of the balance - which reads either ‘left heavier’,
‘right heavier’, or “halanced” — the number of conceivable onteomes is 3% = 27,
whereas the munber of possible states of the world is 24: the odd ball could
be any of twelve balls, and it could be heavy or light. So in principle, the
problem might be solvable in three weighings — but not in two, since 3% < 24,

If yvou know how vou ean determine the odd weight and whether it is
heavy ot light in three weighings, then vou may read on. If vou haven’t found
a strategy that alwayvs gets there in three weighings, I encourage yvou to think
about exercise 4.1 some more,

Why is vour strategy optimal? What is it abont your series of weighings
that allows useful information to be gained as quickly as possible? The answer
is that at each step of an optimal procedure, the three outeomes (‘left heavier’,
‘right heavier', and ‘balance’) are as close as possible to equiprobable.  An
optimal solution 15 shown in figure 4.2,

Suboptimal strategies, such as weighing balls 1-6 against 7-12 on the first
step, do not achieve all outeomes with equal probahility: these two sets of balls
can never balance, so the only possible outeomes are ‘left heavy’ and ‘right
heavy’. Such a binary outcome rules out only hall of the possible hypotheses,




4.1: How to measure the information content of a random variable?

- +
12 12 91011 01011 9
9 123 10
10~
11-
12 12+12- =

2

:
1+ 172%57 3 <
2
Wl

i:- 1:;5 3
- P N -

1* 5 345 s 1
o 6
3t 7"

4t 8 o 1
5+ T8 ;
6
-+ =
& 3
J . w1 |45
0| 2 , [67]
11+ weigh 3 weigh IE
12+| [1234 4- 126 —— 1 i

17| | 5678 5t 345 2
2 6* ]
3= T TF
4= 8t 7 ']
i e |[T]€
-
: ;
o - 9*10%1* || < fio]
10- 10+ ,
1- 11+ weigh @
-
<

Figure 4.2. An optimal solution to the weighing problem. At each step there are two boxes: the left
box shows which hypotheses are still possible; the right box shows the balls involved in the
next weighing. The 24 hypotheses are written 1%,...,127, with, e.g., 1 denoting that
1 is the odd ball and it is heavy. Weighings are written by listing the names of the balls
on the two pans, separated by a line; for example, in the first weighing, balls 1, 2, 3, and
4 are put on the left-hand side and 5, 6, 7, and 8 on the right. In each triplet of arrows
the upper arrow leads to the situation when the left side is heavier, the middle arrow to
the situation when the right side is heavier, and the lower arrow to the situation when the
outeome is balanced. The three points labelled = correspond to impossible onteomes.



70

so a strategy that uses such outcomes must sometimes take longer to find the
right answer,

The insight that the outcomes should be as near as possible to equiprobahle
makes it easier to search for an optimal strategy. The first weighing must
divide the 24 possible hypotheses into three groups of eight. Then the second
weighing must be chosen so that there is a 3:3:2 split of the hypotheses.

Thus we might conclude:

the ontrome of a random experiment is gnaranteed to be most in-

formative if the probability distribution over outcomes is uniform.

This conclusion agrees with the property of the entropy that you proved
when vou solved exercise 2.25 (p.37): the entropy of an ensemble X is biggest
if all the outcomes have equal probability p, =1/ Ax|.

(Guessing games

In the game of twenty questions, one player thinks of an object, and the
other plaver attempts to guess what the object is by asking questions that
have yes/no answers, for example, ‘is it alive?’, or ‘is it human?’ The aim
is to identify the object with as few questions as possible. What is the best
strategy for playing this game? For simplicity, imagine that we are playing
the rather dull version of twenty questions called ‘sixty-three’.

Example 4.3, The game ‘sixty-three’. What's the smallest number of ves/no
questions needed to identify an integer x between 0 and 637

Intuitively, the best questions suceessively divide the 64 possibilities into equal
sized sets. Six questions suffice. One reasonable strategy asks the following
questions:

Cis o = 327

Cis rmod 32 = 167
C s rmod 16 = 87
Disrmod® > 47
s rmodd > 27
Cisamod2 =17

SN B W e

[The notation xmod 32, pronounced ‘r modulo 32', denotes the remainder
when i is divided by 32; for example, 35 mod 32 = 3 and 32mod 32 = 0.)

The answers to these questions, if translated from {yes,no} to {1, 0}, give
the binary expansion of r, for example 35 = 100011, a

What are the Shannon information contents of the outcomes in this ex-
ample? If we assume that all values of r are equally likely, then the answers
to the questions are independent and each has Shannon information content
logy(1/0.5) = 1hit; the total Shannon information gained is always six bits.
Furthermore, the number x that we learn from these questions is a six-hit bi-
nary number. Our questioning strategy defines a way of encoding the random
variable x as a binary file.

So far, the Shannon information content makes sense: it measures the
length of a binary file that encodes x. However, we have not yet studied
ensembles where the outcomes have unequal probabilities. Does the Shannon
information content make sense there too?

4 — The Source Coding Theorem
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A o A [
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123466878
move # 1 2 32 48 49
question G3 Bl E5 F3 H3
outcoms r=n r=n r=n r=n r=y
63 62 32 16 1

Ple) 6 63 3 b 16
hiz) 0.0227 0.0230 0.0443 0.0874 4.0
Total info. 0.0227 0.0458 1.0 2.0 6.0

The game of submarine: how many bits can one bit convey?

In the game of battleships, each player hides a Heet of ships in a sea represented
by a square grid. On each turn, one plaver attempts to hit the other’s ships by
firing at one square in the opponent’s sea. The response to a selected square
such as ‘G’ is either ‘miss’, *hit’, or *hit and destroyed”.

In a horing version of battleships called submarine, each player hides just
one submarine in one square of an eight-hy-eight grid. Figure 4.3 shows a few
pictures of this game in progress: the circle represents the square that is being
fired at, and the xs show squares in which the outcome was a miss, r = n; the
submarine is hit (outcome x = y shown by the symbol 8) on the 49th attempt.

Each shot made by a player defines an ensemble. The two possible out-
comes are {y,n}, corresponding to a hit and a miss, and their probabili-
ties depend on the state of the board. At the beginning, P(y) = 1/64 and
P(n) = 63/64. At the second shot, if the first shot missed, P(y) = 1/63 and
P(n) = 62/63. At the third shot, if the first two shots missed, P{y) = 1/62
and P(n) = 61/62.

The Shannon information gained from an outeome x is hix) = log(1/P(x)).
If we are lucky, and hit the submarine on the first shot, then

h(x) = hgy(y) = logy 64 = 6 bits. (4.8)

Now, it might seem a little strange that one binary outcome can convey six
bits. But we have learnt the hiding place, which could have been any of 64
squares; so we have, by one lucky binary question, indeed learnt six bits.

What if the first shot misses? The Shannon information that we gain from
this outcome is

h(z) = h(y(n) = log, % = 0.0227 bits. (4.9)

Does this make sense? [t is not so obvious. Let's keep going. If our second
shot also misses, the Shannon information content of the second outcome is

hiz)(n) = logy % = (0.0230 bits. {4.10)

If we miss thirty-two times (firing at a new square each time), the total Shan-
non information gained is
G4 63 33
lﬂgzﬁ'l']ﬁgga'k"'ﬁ'lﬂggﬁ
= 0.0227 + 0.0230 + --- + 0.0430 = 1.0bits. (4.11)
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Figure 4.3, A game of submarine.
The submarine is hit on the 49th

attempt.
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length of each name would be log, [Ax| bits, if |.Ax| happened to be a power
of 2. We thus make the following definition.

The raw bit content of X is

Ho(X) = log; |Ax|. (4.15)

Hy(X) is a lower bound for the number of binary questions that are always
guaranteed to identify an outcome from the ensemble X, It is an additive
quantity: the raw bit content of an ordered pair =, y, having | A x||Ay | possible
outcomes, satisfies

Ho(X.Y) = Ho(X) + Ho(Y). (4.16)

This measure of information content does not include any probabilistic
element, and the encoding rule it corresponds to does not ‘compress” the source
data, it simply maps each outcome to a constant-length binary string,

Exercise 4.5.‘2' p-86] Could there be a compressor that maps an ontcome x to
a binary code e(x), and a decompressor that maps ¢ back to &, such
that every possible outcome is compressed into a binary code of length
shorter than Hy( X'} bits?

Even though a simple counting argument shows that it is impossible to make
a reversible compression program that reduces the size of all files, ama-
teur compression enthusiasts frequently announce that they have invented
a program that can do this - indeed that they can further compress com-
pressed files by putting them through their compressor several times. Stranger
vet, patents have been granted to these modern-day alchemists. See the
comp. compression frequently asked questions for further reading.!

There are only two ways in which a ‘compressor’ can actually compress
files:

1. A lossy compressor compresses some files, but maps some files to the
same encoding. We'll assume that the user requires perfect recovery of
the source file, so the ocenrrence of one of these confusable files leads
to a failure (though in applications such as image compression, lossy
compression is viewed as satisfactory). We'll denote by 4 the probability
that the source string is one of the confusable files, so a lossy compressor
has a probability 4 of failure. If § can be made very small then a lossy
compressor may be practically useful.

2. A lossless compressor maps all files to different encodings; if it shortens
some files, it necessarily makes others longer. We try to design the
compressor so that the probability that a file is lengthened is very small,
and the probability that it is shortened is large.

In this chapter we discuss a simple lossy compressor. In subsequent chapters
we discuss lossless compression methods.

4.3 Information content defined in terms of lossy compression

Whichever type of compressor we construct, we need somehow to take into
account the probabilities of the different outcomes. lmagine comparing the
information contents of two text files — one in which all 128 ASCII characters

'mttp://suneite. org.uk/public/usenet /nevs-faqe/comp. compression/
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are used with equal probability, and one in which the characters are used with
their frequencies in English text. Can we define a measure of information
content that distinguishes between these two files? Intuitively, the latter file
contains less information per character because it is more predictable.

One simple way to use our knowledge that some symbols have a smaller
probability is to imagine recoding the observations into a smaller alphabet
— thus losing the ability to encode some of the more improbable symbols -
and then measuring the raw bit content of the new alphabet. For example,
we might take a risk when compressing English text, guessing that the most
infrequent characters won't occur, and make a reduced ASCII code that omits
the characters { !, @ # % =, %, ", <, > /. \, _.{.}. [ 1, | }, thereby reducing
the size of the alphabet by seventeen. The larger the risk we are willing o
take, the smaller our final alphabet becomes,

We introduce a parameter & that describes the risk we are taking when d=0 & =1/16
using this compression method: 4 is the probahility that there will be no

) r c(x) z elr)
name for an outcome .
a 000 a 00
Example 4.6. Let b 001 b 01
Ax={ab,c,d e £ g h}
4 Pefiil3 1) (4.17) c 010 c 10
and  Px ={3: 4% 16 505 61 63 - d 011 4 11
The raw bit content of this ensemble is 3 bits, corresponding to 8 hinary e 100 e —
names. But notice that Pz € {a,b,c,d}) = 15/16. So if we are willing £ 101 f -
to run a risk of § = 1/16 of not having a name for r, then we can get g 110 g _
by with four names — half as many names as are needed if every = € Ay B 111 h —

has a name,

Table 4.5 shows binary names that could be given to the different out-  Table 4.5, Binary names for the
comes in the cases § = 0 and § = 1/16. When 6 = 00 we need 3 bits to  outcomes, for two failure
encode the outcome; when § = 1/16 we need only 2 bits, probabilities 4.

Let us now formalize this idea. To make a compression strategy with risk
4, we make the smallest possible subset S; such that the probability that x is
not in Sj is less than or equal to 6, i.e., P(x & S5) < 4. For each value of &
we can then define a new measure of information content — the log of the size
of this smallest subset S5. [In ensembles in which several elements have the
same probability, there may be several smallest subsets that contain different
elements, but all that matters is their sizes (which are equal), so we will not
dwell on this ambiguity.|
The smallest §-sufficient subset Sj is the smallest subset of Ay satisfying

P(z € S5) >1-4. (4.18)

The subset S5 can be constructed by ranking the elements of Ay in order of
decreasing probability and adding successive elements starting from the most
probable elements until the total probability is > (1—4).

We can make a data compression code by assigning a binary name to each
element of the smallest sufficient subset. This compression scheme motivates
the following measure of information content:

The essential bit content of X is:
Hs(X) = logs | S;). (4.19)

Note that Hg(X) is the special case of Hg{X) with § = 0 (if P(z) > 0 for all
x € Ax). [Caution: do not confuse Hg(X) and Hs(X) with the function Ha(p)
displayed in figure 4.1.]

Figure 4.6 shows Hs(X) for the ensemble of example 4.6 as a function of
d.
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Ertended ensembles

Is this compression method any more useful if we compress blocks of symbols
from a source?

We now turn to examples where the outeome x = (ry,ra,...,2x) is a
string of N independent identically distributed random variables from a single
ensemble X. We will denote by XV the ensemble (Xi1.X2,...,Xy). Remem-
ber that entropy is additive for independent variables (exercise 4.2 (p.68)), so
H(XN) = NH(X).

Example 4.7. Consider a string of N flips of a bent coin, x = (), x2,...,2x5),
where x, € {0,1}, with probabilities py=0.9, p; =0.1. The most prob-
able sirings x are those with most 0s. If #(x) is the number of 1s in x
then )

P(x) = py " (4.20)
To evaluate Hs{ X™) we must find the smallest sufficient subset S5, This
subset will contain all x with r{x) =0, 1,2, ..., up to some .. (d) — 1,
and some of the x with r(x) = rpax(6). Figures 4.7 and 4.8 show graphs
of Hs(X™) against § for the cases N = 4 and N = 10, The steps are the
values of 4 at which |S;| changes by 1, and the cusps where the slope of
the staircase changes are the points where ry,,, changes by 1.

Exercise 4.8.[2 P-86] ywyat are the mathematical shapes of the curves between
the cusps?

For the examples shown in figures 4.6-4.8, H3;(X"V) depends strongly on
the value of 4, so it might not seem a fundamental or useful definition of
information content. But we will consider what happens as N, the number
of independent variables in X, increases, We will find the remarkable result
that H,g{XNj becomes almost independent of § — and for all § it is very close
to NH(X), where H(X) is the entropy of one of the random variables,

Figure 4.9 illustrates this asymptotic tendency for the binary ensemble of
example 4.7. As N increases, ;}gHﬁI{X ™) becomes an increasingly flat function,
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Figure 4.6. (a) The outcomes of X
(from example 4.6 (p.75)), ranked
by their probability. (b) The
essential bit content Hg(X). The
labels on the graph show the
smallest sufficient set as a
function of 4, Note Hp(X) =13
bits and H, ;16(X) = 2 bits.
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Gatsby Computational Neuroscience Unit,
University College, London

*An utterly original book that shows the
connections between such disparate
fields as information theory and coding,
inference, and statistical physics.'

Dave Forney,
Muassachusetts Institute of Technology

‘An instant classic, covering everything
from Shannon's fundamental theorems
to the postmodern theory of LDPC codes.
You'll want two copies of this astonish-
ing book, one for the office and one for
the fireside at home.'

Bob McEliece,
California Institute of Technology
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