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Prolegomenon
Category Theory for
the Aspiring Relational Biologist

We take the viewpoint that the study of natural systems is pre-
cisely the specification of the observables belonging to such a
system, and a characterization of the manner in which they are
linked. Indeed, for us observables are the fundamental units of
natural systems ...

— Robert Rosen (1985)
Anticipatory Systems: Philosophical, Mathematical,
and Methodological Foundations
2.1 The Concept of a Natural System

Category

Category theory asks of every type of Mathematical object:
“What are the morphisms?”; it suggests that these morphisms
should be described at the same time as the objects.

— Saunders Mac Lane (1997)
Category Theory for the Working Mathematician
§ L. Notes

Robert Rosen entered Nicolas Rashevsky’s Committee on Mathematical
Biology at the University of Chicago in the autumn of 1957. Engaged in his work
on relational biology, Rosen quickly discovered the (M,R)-systems, and developed
some of their extraordinary properties. A happy happenstance was when Rosen
connected this relational theory of biological systems to the algebraic theory of
categories (founded by Samuel Eilenberg and Saunders Mac Lane in 1945), thus
equipping himself with a ready-made mathematical tool. Indeed, Rosen’s first
published scientific paper was on his (M,R)-systems [Rosen 1958a], and his
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2 A. H. Louie: Intangible Life

second paper was on ‘The representation of biological systems from the standpoint
of the theory of categories’ [Rosen 1958b].

The confluence of ideas, as can be seen from the above quotes of Rosen and
Mac Lane, is that in describing systems, be it natural or formal, the material and
efficient causes must be characterized together. The pairs of causes are variously
manifested as

(a) objects and morphisms;

(b) states and observables;

(c) structure and function;

(d) material and functional entailments;

(e) sequential and hierarchical composites;

(f) metabolism and repair;

etc.

A category comprises of two collections: 1. objects, and ii. morphisms. One
may define a category in which the collection of morphisms is partitioned into
hom-sets:

0.1 Definition A (ML: A.1; RL: 6.7) A category C consists of
1. A collection of objects.

ii. For each pair of C-objects 4, B, a set
(1) C(4,B),

the hom-set of morphisms from A to B. [If f € C(4, B), one also writes
f:4— Band 4 . B. Often for simplicity, or when the category C need
not be emphasized, the hom-set C(4, B) may be denoted by H(4, B).]
iii. For any three objects 4, B, C, a mapping
(2) o:C(4,B) x C(B,C) — C(4,0C)
taking f : A — B and g : B — C to its composite gof : A — C.

iv. For each object A4, there exists a morphism

(3) 1, € C(4,4),

called the identity morphism on A.
These entities satisfy the following three axioms:

(cl) Uniqueness:
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(4) C(4,B)NC(C,D) = &

unless A = C and B = D. [Thus each morphism f : 4 — B uniquely deter-
mines its domain A = dom( f') and codomain B = cod(f): different hom-sets
are mutually exclusive.]

(¢2) Associativity: If f :4— B, g:B— C, h: C — D, so that both ho(gof)
and (hog)of are defined, then

(5) ho(gof)=(hog)of.

(¢3) Identity: For each object 4, the identity morphism on 4, 14 : 4 — A, has the
property that forany f: 4 — Band g : C — 4,

(6) \f‘OlA:‘f al‘ld lADg:g
[which leads demonstrably to the uniqueness of 1, in C(4,4)].
Alternatively, one may define a category in terms of arrows, equipping the
collection of morphisms with a pair of mappings that assign to each morphism a

domain and a codomain:

0.2 Definition B (RL: 6.8) A category C consists of
i'. A set OC of objects.

ii". A set AC of arrows (morphisms), equipped with two mappings dom and
cod:

dom: AC — OC
7 {

cod : AC —0OC’
iii. A (sequential) composition mapping

(S) o: AC Xoc AC — AC
(where the domain

(9) AC xoc AC = {(f,g) € AC x AC : dom(g) = cod(f)}
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is a proper subset of AC x AC, called the ‘product over OC’, and an ordered
pair (f,g) € AC xpc AC is called a ‘composable pair of morphisms’),
taking (f, g) to its composite g o f, such that

(10) dom(gof) =dom(f) and cod(gof) = cod(g).

iv’. A mapping

(11) id: 0C — AC

that sends a C-object A4 to the identity morphism id(A) = 1,4 on A, such that
(12) dom(1,) = cod(1,) = 4.
These entities satisfy the following two axioms:

(c2"y Associativity: If (f,g) € AC xoc AC and (g,h) € AC xpc AC, so that
both o (gof) and (hog) of are defined, then

(13) ho(gef)=(hog)of.
(¢3") Identity: For any f : A — B, g : C — A, one has
(14) foly=f, liog=g

The hom-set C(4, B) is the inverse image of the pair of C-objects 4, B under
the mapping dom x cod : AC — OC x OC:

C(4.B) = (dom x cod) "' ((4,B))
(15) = dom '(4)Ncod '(B)
={f € AC : dom(f) = 4, cod(f) =B} .

And the collection AC of morphisms is the disjoint union

(16) ac= |J cw.B).
4,Bc0C
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For other nuances [e.g., why there is no Axiom (c1')] of the interplay between
these two definitions of category and their consequences, see RL: 6.7—6.11.

0.3 Associativity Axioms (c2) and (c¢2') imply parentheses are unnecessary in
sequential compositions, and the composite in (5) and (13) may simply be denoted

(17) hogof:4—D.

The equivalence is illustrated in the commutative diagram

(18)

. pag ]1°g°f

X“

D

&

which is a graphical representation that the four paths

A e p

AL g "% p

hogof
A g.fD

A—L .p % .c—".p

(19)

trace the same morphism in C(4, D).

0.4 Categorical Examples

Example i. Note that the only morphisms that are required to exist are the
identities on the objects. When there are no objects, there are no identity mor-
phisms. So trivially there is the empty category ¢, with no objects and no mor-
phisms. The next trivial category C contains exactly one object 4 and the single
identity morphism 1,4, i.e., OC = {4} and AC = C(4,4) ={14}.

Example ii. The correspondence 4 < 1 is a bijection between OC and the
subset of identity morphisms in AC. The simplest nonempty category is one in
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which every morphism is an identity, where C(4,B) = (7 when 4 # B, and
C(4,4) = {1,4}. Such a category C is called discrete. Every set X is the set of
objects of a discrete category C, with OC =X and AC={1,:x € X }.

Example iii. A monoid is an algebraic structure with an associative binary
operation and an identity element. For any category C and any C-object X, the
hom-set C(X,X) is a monoid (with the binary operation the composition of
C-morphisms, and the identity 1y). Indeed, a monoid M is a category C with one
object, such that OC = {M } and AC = M.

Example iv. A preorder < is a reflexive and transitive relation on a set X
(< CX xX; cf. ML:1.10). A preordered set (X, <) may be considered as a
category, in which the objects are elements of X, and a hom-set C(x,y) for
x,y € X has either a single element or is empty, according to whether x <y or not.
The identity 1, € C(x,x) is reflexivity x <x, and the composition o : C(x,y) x
C(v,z) — C(x,z) is transitivity that x <y and y <z imply x <z. In sum, OC = X
and AIC = <. A preordered set is a category C in which the mapping dom x cod :
AC — OC x OC (f +— (dom( f), cod(f)) as in Definition 0.2ii" above) is injec-
tive. This implies that each hom-set C(x,y) contains at most one morphism; a
category with this property is called thin. Thus categories with larger hom-sets
may be considered to ‘generalize’ preorders: each morphism defines a distinct
preorder relation.

Preorders include partial orders (preorders with the additional antisymmetry
axiom that x <y and y <x imply x = y; cf. ML: 1.20) and total (or linear) orders
(partial orders such that, for all x,y € X, either x <y or y <x; cf. ML: 1.32). For a
partially ordered set (poset) considered as a category C, the antisymmetry means
that if both C(x,y) and C(y,x) are nonempty then x = y; a category with this
property is called skeletal. For a totally ordered set (tosef) considered as a category
C, the total order means that for all x,y € X, either C(x,y) or C(y,x) is nonempty
(but if both are nonempty then x = y).

Example v. The category Set has its collection of objects the set of all sets
(in a suitably naive universe of small sets), and its morphisms are mappings from
one small set to another. Let me explain en passant the phrase ‘a suitably naive
universe of small sets’. One assumes the existence of a suitable universe U of sets,
and then describe a set as a small set if it is a member of U. ‘Suitable’ simply
means U has to be big enough for one’s purpose, so that the set-theoretic con-
structions, used in contexts that occur naturally in mathematics, will exist, but U is
not too big as to give rise to paradoxical contradictions. This is set theory from the
“naive” point of view, and is the common approach of most mathematicians
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(other than, of course, those in mathematical logic and the foundations of math-
ematics). In other words, one (aspiring relational biologist included) acknowledges
these paradoxes, and moves on.

In a category C, the C-objects are not necessary sets and the C-morphisms are
not necessary mappings. But the category Set involves itself in an essential way in
every category. This is because OC and AC themselves are (for most purposes)
sets. Composition and identities are defined by mappings (from a set to a set;
Definitions 0.2 iii" & iv'). Above all, for each pair of C-objects 4 and B, the
hom-set of C-morphisms C(4, B) is a set.

Example vi. The category Mon has its collection of objects the set of all
monoids, and its morphisms are monoid homomorphisms from one monoid to
another (that preserve the structure of the associative binary operation and the
identity). The category Pos has as its collection of objects the set of all posets, and
its morphisms are order-preserving (isotone) maps from one poset to another
(cf. ML: 1.23).

Note the difference between the ‘single-object-as-a-category’ and the ‘cate-
gory of all objects-with-structure and structure-preserving morphisms’ considered
in the examples above. Contrast a single-set-as-a-category (i.c. a discrete category)
with the category Set of all sets and mappings. Likewise, contrast a
single-monoid-as-a-category (i.e., a single-object category) with Mon, and a
skeletal category with Pos.

0.5 Isomorphism (ML: A.5) A morphism f : A — B is an isomorphism if there
exists an inverse morphism g : B — A suchthatgof = 1, and f o g = 1p. If such
an inverse morphism exists, it is unique, and is denoted by /'

An isomorphism with the same object 4 as domain and codomain is an
automorphism on A. If there exists an isomorphism from A to B then A4 is iso-
morphic to B, and this relation is denoted by

(20) A=B.

Isomorphic objects are considered abstractly (and often identified as) the same,
and most constructions of category theory are ‘unique up to isomorphism’ (in the
sense that two similarly constructed objects are isomorphic, if not necessarily
identical). The isomorphism relation =< is an equivalence relation on the collection
OC of objects in a category. So instead of “A is isomorphic to B” one may simply
say “A and B are isomorphic” by symmetry.

In the category Set (of sets and single-valued mappings), isomorphism is
the concept of equipotence (RL: 0.5, et seq. on cardinality); two sets are Set-
isomorphic precisely when there exists a bijection between them.
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0.6 Subcategory (ML: A.7) Given categories C and D, one says that C is a
subcategory of D if each C-object is a D-object, each C-morphism is a
D-morphism, and compositions of morphisms are the same in the two categories.
Thus OC C OD, and for any two C-objects 4 and B, C(4, B) C D(4, B) (whence a
Sortiori AC C AD).

More formally, a subcategory C of a category D is given by

i. a subset X C OD of D-objects, and

ii. a subset ® C AD of D-morphisms,

such that
(s1) for every 4 € X, the identity morphism 1 , € @;
(s2) for every morphism /" : A — B in ®, both the domain A and the codomain B
are in X; and
(s3) for every pair of morphisms f and g in @, the composite gof is in @
whenever it is defined.

These conditions ensure that C is a category in its own right: the collection of
C-objects is OC = X, the collection of C-morphisms is AC = @, and the identities
and composition are as in D.

If C(4,B) = D(A4, B) holds for all C-objects 4 and B, C is a full subcategory
of D. A full subcategory is one that includes a// D-morphisms between objects of
C. For any collection X' C OD of D-objects, there is a unique full subcategory C of
D with X = OC.

Functor

functor (noun): from Latin functus, past participle of the verb
fungi “to perform” (not the same as the fungi meaning yeasts and
molds). The Indo-European root is bheug- “to enjoy”. ... [-or “a
male person or thing that does the indicated action”.] A functor
is a mapping from one category into another that is compatible
with it; the Latin word means literally “performer”.

— Steven Schwartzman (1994)
The Words of Mathematics: An Etvmological
Dictionary of Mathematical Terms Used in English

A functor is a morphism of categories, a mapping from one category to
another that preserves the structures and processes therein. A category is defined
by the roles of its four cast members: objects, morphisms, composition, identities.
A functor, in its performance, must therefore suitably relate these four roles.
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0.7 Definition A (ML: A.10) Let C and D be categories. A (covariant) functor F
from C to D, F:C—D, consists of a pair of mappings
(F:0C — 0D, F:AC — AD) on the categorical ‘components’ of objects and
morphisms, called respectively the object mapping and the arrow mapping, that
assigns

1. to each C-object 4 a D-object F A4,

(21) F:A—FA,

and

ii. to each C-morphism f : 4 — B a D-morphism Ff : FA — FB

(22) F:|f:4— B|—|[Ff:FA— FB].

The object mapping £ : OC — OD and the arrow mapping F : AC — AD are
related in such a way that
(f1) if g o f is defined in C, then Fg o Ff is defined in D, with

(23) F(gof)=FgolFf;

and
(/2) for each C-object 4,

(24) Fli=1p4

Category theory is a formal image of the modelling process itself. It is, indeed,
the general theory of modelling relations, and not just some specific way of
making models of one thing in another. It thus generates mathematical counter-
parts of epistemologies, entirely within the formal realm. One may think of the
functor F : C — D as providing, for the category C, a model F(C) in another
category D, of all the C-objects and C-morphisms.

The object mapping F : OC — OD maps material causes in C to material
causes in D; the arrow mapping F : AC — AD maps efficient causes in C to
efficient causes in D. The pairwise functorial connection thus extends to the var-
ious manifestations; whence F : OC — OD maps structures to structures, material
entailment to material entailment, and F : AC — AD maps functions to functions,
repair to repair, etc.

0.8 Injection and Surjection The functor ¥ : C — D is injective on objects if
the object mapping F : OC — OD is injective, and is surjective on objects if
F:0C — OD is surjective. Similarly, F': C — D is injective (respectively,
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surjective) on arrows (or on morphisms) if the arrow mapping F : AC — AD is
injective (respectively, surjective).

In set theory, equality of sets is formulated as the Axiom of Extension (ML :
0.2): Two sets are equal if and only if they have the same elements. (Hence, a
priori, two elements of a set are either equal or not.) The object mapping F :
OC — OD is surjective if, by definition, for each D-object X there exists a
C-object 4 such that X = F4. When the requirement of D-object-equality is
relaxed to D-isomorphism, one generalizes the property of surjectivity on objects:
a functor F : C — D is essentially surjective on objects if for each D-object X
there exists a C-object 4 such that X = F4. And of course, if a functor is surjective
on objects then it is essentially surjective on objects. ‘Essential injectivity on
objects’, on the other hand, has finer nuances, and its various degrees shall, indeed,
be important contributing characteristics towards invertibility.

Property (f2), that a functor 7 : C — D maps an identity morphism in C to an
identity morphism in D, implies that the arrow mapping £ : AC — AD entails the
object mapping F : OC — OD. This is because, when the arrow mapping F :
AC — AD takes the value Fl,=1y eD(X,X) at the C-morphism
14 € C(4,4), with the correspondence X « 1y one may uniquely define the
object mapping F : OC — OD to take the value F 4 = X at the C-object A.

A functor, just like a category, may alternatively be defined in terms of arrows
(without the redundant postulate i’ for the object mapping):

0.9 Definition B A (covariant) functor F from category C to category D,
F:C—D,is

ii’. a mapping F : AC — AD of arrows that sends /' € AC to Ff € AD,
(25) FifFf,
carrying

(f1") each composable pair of C-morphisms (f,g) € AC xoc AC to a compos-
able pair of D-morphisms (Ff,Fg) € AD xop AD, with

(26) F(gof)=FgoFf;
and
(f2") each identity morphism in AC to an identity morphism in AD.

Often, for the sake of clarity, however, one explicitly specifies the action of a
functor on both objects and arrows.
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0.10 Functorial Representation A functor /" : C — D may be succinctly repre-
sented in

(27) F:{AHFA (4 €0C)

[f:A—B]—|Ff:FA—FB] (f€AC)’

the two lines denoting respectively the object mapping F : OC — OD and the
arrow mapping F : AC — AD.

As denoted in (27), the general representation does not, of course, provide
additional information about F. Its use lies in the specific forms that the final
causes F 4 and Ff : FA — F B would take for specific functors under study. Then
representation (27) provides a concise summary of the actions of the functor F.

0.11 Contravariant Functor Besides the covariant functors there is a dual kind
of functors that reverses the direction of the processes and the order of composi-

tion. A contravariant functor F from C to D assigns
1. to each C-object 4 a D-object F A,

(28) F:4—FA,

and
ii °P. to each C-morphism f : 4 — B a D-morphism Ff : FB — F A

(29) F:|f:A—B|—|Ff:FB— FA|,

such that
(f1°P) if g o f is defined in C, then Ff o Fg is defined in D, and

(30) Flgof)=FfoFg.

and
(f2) for cach C-object A4,

(31) Fly=1p4
Its succinct representation is

(32) F:{Al—»FA (4€e0C)

[f:4—B]—[Ff:FB—FA] (feAC)’
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0.12 Hom-Functors (ML: A.13) For any category C and a C-object A4, the
covariant hom-functor h* = C(A,+) from C to Set assigns to each C-object Y the
set h1Y =C(4,Y), and to a C-morphism k:Y — ¥’ the mapping h'k :
C(4,Y) — C(4,Y") defined by

(33) Wik :f—kof for f:4—Y;

i.e. via the diagram

(34)

Note the action of 4“4k may be described as ‘composition with k-on-the-left’.
Dually, for a category C and a C-object B, the contravariant hom-functor

hg = C(-,B) assigns to each C-object X the set hpX = C(X,B), and to a

C-morphism g : X — X’ the mapping /g : C(X’,B) — C(X,B) defined by

(35) hgg(f)=fog for f:X — B

1.e. via the diagram

X > X'

Note the action of / zg may be described as ‘composition with g-on-the-right’.
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0.13 The Category Cat (ML: A.15) The idea of category applied to categories
and functors themselves yields the category Cat, with objects all categories (i.e.
all small categories in a suitably naive universe) and morphisms all functors
between them.

Functors can be composed—given functors /' : C — D and G: D — E, the
maps A— G(FA) and f+— G(Ff) on C-objects 4 and C-morphisms [ define a
functor Go F: C — E. This composition is associative, since it is associative
componentwise on objects and morphisms. For each category C there is an identity
functor I¢ : C — C, defined in the natural way as the identity map component-
wise, sending each C-object to itself and each C-morphism to itself.

An isomorphism F : C — D of categories is a functor that is a bijection both
on objects and on morphisms. This is equivalent to the existence of an ‘inverse
functor’ F~!': D — C.

0.14 Faithful and Full Functors (ML: A.16) For each pair of C-objects 4 and
B, the functor F : C — D assigns to each C-morphism /" € C(4, B) a D-morphism
Ff € D(FA,FB), and so defines a (single-valued) mapping

(37) Fup:C(4,B) — D(FA,FB)

with F45(f) = Ff. The functor may alternatively be considered as the collection
of these doubly-indexed mappings:

(38) F={F4z:4,Be0OC}.

The functor F is faithful when each F 45 is injective, and full when each F, 5 is
surjective.

Faithfulness and fullness are functorial conditions on the arrow mapping
F :AC — AD, and each by itself does not impose limitations on the object
mapping F : OC — OD. So a faithful functor need not be injective on objects: two
C-objects may map to the same D-object. Likewise, a full functor need not be
surjective on objects: there may be D-objects not of the form FA for some
4 € 0C.

Injectivity on arrows is a stronger condition than faithfulness: if ¥ : C — D is
injective on arrows then it is faithful. But the converse implication is not true: a
faithful functor need not be injective on arrows. The collection of C-hom-sets
{C(4,B) : 4,B € OC} forms a partition of AC (cf. (16) above), and faithfulness
only requires that the restriction of the arrow mapping to each block C(4, B),
Fap=F|cyp: Cl4,B) — D(FA,FB), be injective, whereas injectivity on



14 A. H. Louie: Intangible Life

arrows requires /' : AC — AD to be injective on the whole domain AC. A functor
F : C — D that is faithful may still map two C-morphisms with different domains
or codomains, (therefore belonging to different C-hom-sets) to the same
D-morphism. Injectivity on arrows also implies injectivity on objects. This is
because, if ¥ : C — D is injective on arrows, then in particular, for A4, B € ©C and
A # B, F must map the distinct 1 4,15 € AC to distinct | 4,1 pz € AD, whence
FA4+#FRBin OD.

Similarly, surjectivity on arrows implies surjectivity on objects: if #: C — D
is surjective on arrows, for each X € QD there is an /' € AC that gets mapped by
F:AC —AD to ly € D(X,X)C AD, thence both dom(f),cod(f)c OC
(which need not coincide) are mapped by F : OC — ©OD to X. Further, if a functor
is surjective on arrows then it is full, hence contrapositively a functor that is not
full cannot be surjective on arrows, Conversely, a full functor 7 : C — D need not
be surjective on arrows: D-morphisms between D-objects that are not of the form
F A for some A € OC cannot come from C-morphisms.

Even if F: C — D is both faithful and full, whence each mapping F 5 :
C(4,B) — D(FA,FB) is bijective, the collection {F,5:A4,B€ OC} of Set-
isomorphisms is still not sufficient to ensure that F is an isomorphism in the
category Cat. As explicated above, the range F(C) is not necessarily isomorphic
to either C or D. A faithful and full functor is, however, necessarily injective on
objects up to isomorphism. When F : C — D is a faithful and full functor, one may
readily verify, using the definition of isomorphism and the premise that all map-
ping F45:C(4,B) — D(FA,FB) are then bijections, that F4 >~ FB implies
A = B. This defines one version of ‘essentially injective on objects’.

0.15 Inclusion Functor (ML: A.12(v)) If C is a subcategory of D, there is a
functor that takes objects and morphisms to themselves; i.e., both the object
mapping and the arrow mapping are the corresponding inclusion maps. This is the
inclusion functor (of C in D), denoted i : C — D.

The inclusion functor i : C — D is injective on objects, injective on arrows,
and faithful. It is full if and only if C is a full subcategory of D.

0.16 Concrete Category and Forgetful Functor A concrete category C is a
category equipped with a faithful functor F : C — Set. The faithfulness of F
allows the (one-to-one) identification of a C-morphism /€ AC with the mapping
F[ € RASet. A concrete category may be described as a category C in which each
C-object A comes equipped with an ‘underlying set’ FA4, each C-morphism
S €C(4,B) is an actual mapping Ff :FA — FB, and the composition of
C-morphisms is a composition of mappings. Stated otherwise, the faithful functor
F :C — Set allows the consideration of C-objects as sets with additional
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structure, and of C-morphisms as structure-preserving mappings. The functor
F : C — Set then, in essence, ‘forgets’ the additional structure of the objects and
hence the structure-preserving aspect of the mappings; it is therefore called the
Jforgetful functor.

Many important categories have interpretations as concrete categories; for
example, the category Grp of groups and homomorphisms, the category Vet of
vector spaces and linear transformations, and the category Top of topological
spaces and continuous mappings (ML: A.6).

The requirement for a concrete category C is that the functor 7 : C — Set be
faithful, but not necessarily injective on arrows. This means that F must take
different morphisms in C(4, B) to different mappings in Set(F 4, F B), but it may
take different C-objects to the same set, since injectivity on objects is not a
requirement (say 4,B € OC, 4 # B, but the sets F 4 = F B). If this occurs, it will
also take corresponding C-morphisms in C(4, ¥) and C(B, Y), for example, to the
same mapping in Set(FA,FY) = Set(FB,FY).

0.17 Membership and Element-Tracing In a concrete category C, one may
speak of ‘membership” @ € A for a C-object 4 € OC, and ‘clement chase’ f :
a— b = f(a) associated with a C-morphism f : 4 — B where f € AC. (For the
element-trace notation f :a+—f(a) see ML: 1.5 and RL: 1.7; T shall also
re-introduce it in /L: Chapter 2.)

When F : C — D is a functor between concrete categories, the object map-
ping F': OC — OD at 4 € OC, F : A+ F A, hierarchically entails the element
mapping F4 : A — F A. The action of the arrow mapping F : AC — 8D, taking
f:A—B to Ff:FA— FB, may then be represented in the commutative
diagram

| — o
__________ F, ..
C D

which declares the equality of two sequential compositions

(40) Fgof =FfoF,:4— FB.
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The compositional equality entails, for a € 4 and the traces of the paths

aw f(a)— Fg(f(a))
(41) {aHFA(a)'_’Ef(FA(a))’

elemental equality of the final causes, resulting in
(42) Fp(f(a)) = Ff(F4(a)) € FB.

The corresponding element-trace diagram is

Ry R(f()

) e =Ff(F,(a))
@3) ¥, v
L > F,(a)

....é..-‘ A -....[.). ...........

In terms of the solid-headed and hollow-headed arrows of a relational dia-
gram in graph-theoretic form (ML: 5.4-5.11; RL: E.6 & 3.1; and, in anticipation,
IL: 2.2), the confluence of two sequential compositions (40) is represented thus:

N Fy(f(a))
\ =Ff(F,(a))
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Natural Transformation

. “category” has been defined in order to be able to define
“functor” and “functor” has been defined in order to be able to
define “natural transformation”.

— Saunders Mac Lane (1997)
Category Theory for the Working Mathematician
§ 1.4

A natural transformation is a morphism of functors (ML: A.17). This is the
vehicle with which one functor models another.

0.18 Definition Suppose

F

_
G

(45) C D

are two functors between the same two categories. A natural transformation T
from F to G, notated

(46) 1: F — G,

i. assigns to each C-object 4 a D-morphism 74 € D(F A, GA),

such that,
(¢t1) for each C-morphism f € C(4,B), the D-morphisms Gf € D(GA,GB),
14 € D(FA,GA), 13 € D(FB,GB), and Ff € D(F A, FB) commute:

(47) Gfoty=1tp0fFf.

Graphically, this is the commutative diagram

FB I » GB

Gfi

(48) |7 !
FA » GA

7 4 is called the component of t at A.
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Note the antitone decrease in the numbers of requirements as one ascends the
hierarchy: a category (Definition 0.1) has four assignments and three properties
(c1)=(c3); a functor (Definition 0.7) has two assignments and two properties (f1)—
(/2); a natural transformation has one assignment i and one property (¢1).

A natural transformation t : /' — G may be considered to be determined by
the collection of components

(49) {14 €ED(FA,GA): A € OC}.

74 € D(FA,GA) is said to be natural in A, in the sense that when the C-object 4 is
treated as a variable, the D-morphism 7,4 € D(FA4,GA) is ‘defined in the same
way for each A’. This is the standard terminology (“informal parlance™) of a more
proper “z(.) : F(+) — G(+) is natural in its variable”.

Since a functor F : C — D gives a picture (or model) in D for any collection
of objects and morphisms of C, one may consider a natural transformation
7: F — G to be a translation (alternate description or model) of the picture F to
the picture G. For example, picture (18), the commutative diagram of C-morphism
associativity, has the following translation from F to G:

GB
NG

N G4
gO-G'jl'_:r'

s . \GhoGgeGf
gat,
<4

(50)
GD
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a digraph of D-morphisms in which all paths are commutative (i.e., any two
directed paths with the same initial and final vertices trace the same morphism).

0.19 Functor Category The functor category D€ has as objects all (covariant)
functors from C to D, and as morphisms natural transformations, and to have
composition and identities the ‘pointwise’ ones (ML: A.18).

0.20 Natural Isomorphism A natural transformation t:F — G is a natural
isomorphism, denoted

(51) 1: F =G,

if and only if for each C-object 4, 74 € D(FA4,GA) is an isomorphism in D.
Stated otherwise, a natural isomorphism is an isomorphism in the functor

category DE.

0.21 Category of Diagrams If C is a trivial category with only a single object
A4 and only the single morphism 1, in C(4,4) (Example 0.41), then the functor
category D is a discrete category (Example 0.4ii), consisting of the objects of D
together with their identity morphisms. That is, ©D® 2>~ ©OD and AD® =
{1x:X € OD} = OD.

Next, let C consist of a pair of objects 4, B, and suppose that the morphisms in
C consist only of 14, 1, and a single morphism f : 4 — B. Then given any other
category D, the functor category D may be regarded as consisting of all the
morphisms in D; i.c., OD® = AD.

A graphic interpretation is as follows: the category C may be regarded as
being specified by the simple diagram

(52) A—L g

(The identity morphisms correspond to self-loops (ML: 6.3) on the objects, and
may be omitted.) The functor category D consists of all copies of this diagram in
D; i.e., all diagrams of the form

£

(53) X—= vy,

where X = FA, Y = FB, g = Ff for some covariant functor ¥ : C — D. More
illustratively, when the category C is concrete and /' : A — B is a mapping, the
relational diagram in graph-theoretic form of (52) may be drawn as
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(54) f pe pb
with corresponding relational-diagrammatic representation

(55) g Fx 51/’

in D. Thus, if the category C is regarded as specifying the ‘pattern’ (54), the functor
category D€ consists of all copies of this pattern which may be formed in D.

More generally, any diagram of C-morphisms (i.e., a network) in a category
C can be regarded as specifying a subcategory C’ of C (with careful inclusion of
composites); then the functor category D (which is a subcategory of D®) may
again be regarded as the collection of copies of this diagram that may be formed
from the objects and morphisms of D. Hence the larger functor category D¢
contains copies of all C-diagrams, and is therefore also called the category of
diagrams over C.

0.22 Binary Operation Let R : Grp — Set be the forgetful functor (Definition
0.16) that sends a group G € OGrp to its underlying set RG € OSet and a ho-
momorphism ¢ € Grp(G, H) to the mapping R ¢ € Set(RG,RH). Let S : Grp —
Set be the “Cartesian square functor”, defined by

(56) S:{GHRGXRG (GEOGrp),
[p:G— H|]—[Rp:RG x RG — RH x RH] (¢ € AGrp)

where

(57) Rp(x,y) = (¢ x 9)(x,y) = (px,0y)  (x,y € G).

The binary operation g of a group G € OGrp is a mapping
(58) 76 : RG x RG — RG,
ie., 7¢ € Set(RG x RG,RG) = Set(SG, RG), defined by

(59) TG(xvy) =X-GgYy (xay € G)



Prolegomenon 23

0.24 Evaluation Map For sets X and Y, the set Set(X, Y) of all mappings from X
to Y is denoted Y¥. The evaluation mapping e : Y* x X — Y, defined, for f :
X — Y and x € X, by e(f,x) =f(x), may be interpreted as a natural transfor-
mation as follows. For a fixed X, the map Y — ¥* x X extends to a functor
F :Set — Set with, for g: ¥ — Z, Fg:Y¥ x X — Z¥ x X defined by Fg:
(f,x)—(gof,x) forf: X — Y and x € X. Then, for this fixed X, e : F — Iset is
a natural transformation from the functor F to the identity functor g, i.e., the
following square commutes for any mapping g : ¥ — Z:

ZixY —— i s 7

(70) Fg 8

Yixx Y

€y

This reduces to the equation g(ey(f,x)) = ez(g of,x), which says simply that

g(f (%)) = (gof)(x).

0.25 Dual Vector Spaces In the category Vet of vector spaces over a fixed field
K, evaluation takes the following form. Each element x € J* defines an evaluation
mapping x . V* — K by 2(f) = f(x) for every /' € V*.% is a linear functional on
V*, hence it is a member of }**, the second dual space of V. The mapping
oy : ¥V — V** defined by oy (x) = X is an isomorphism (of vector-spaces) when V'
is finite dimensional. It is called the natural isomorphism between V and V**.
(Note this linear-algebraic terminology is part of the inspiration for its
category-theoretic analogue.) For a linear transformation 7 : ¥ — W, one has
T** ooy = ay o T, ie., the diagram

1) 7 =

.

vV >
r’Il

commutes, which says precisely that o : Iyee — (+)™ is a natural transformation.
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0.26 Material and Functional Entailments A mapping of two variables ¢ :
X x Y — Z may be considered as a mapping ¢t : X — Z! of one variable (in X),
and the values of which are mappings with domain in the second variable (in Y)
and codomain in Z:

(72) [pt(x)](y) =t(x,y) for x€X and yeVY.

Equality (72) describes ¢ as a bijection (i.e. an isomorphism in Set)

(73) @ :Set(X x Y,Z) = Set(X,Z")

that is natural in X, ¥, and Z. The isomorphism (73) may be written as

(74) Set(X x Y,Z) = Set(X,Set(Y. 7))
or
(75) HX x Y,Z)=H(X,H(Y.Z)).

The last bijection (75), connecting material entailment (metabolism) on the
left-hand side with functional entailment (repair) on the right-hand side, is of
particular importance in (M,R)-systems. It has wonderful consequences in rela-
tional biology, from ontogenesis (ML: 13.25) to therapeutics (RL: 14.9-14.10). It
also leads into the category-theoretic concept of adjunction, and will reappear
many times as we proceed in /L.



Part 1
Potestas
The Power Set Functor

|

Qui- a tu- um est regnum, et po-téstas, et glo-ri- a, in s@cu-la.

—Doxology of the Pater Noster
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Ascent

The power set functor is the most important functor in relational biology. It
plays an indispensable role in the category-theoretic formulation of closure to
efficient causation (RL: 9.3 & 9.4), the very characterization of life. It is (usually)
defined as the covariant functor P : Set — Set that assigns to a set X its power set
PX and assigns to a mapping f : X — Y the mapping Pf : PX — PY that sends
each subset 4 C X to its image (Pf)(4) =f(4) C Y, viz.

P {XHPX (X € OSet)
[f ix—=f(x)]—=[Pf : A= f(4)] (f € ASet)

The power set functor P is an essential tool in the analysis of impredicative
systems through the reconciliation of two alternate descriptions of an impredica-
tive system. Tersely, the entities ‘(X, /)’ and ‘(PX, Pf)” are alternate descriptions
on different ‘levels’ of the same system ‘X ’. The mapping / : X — ¥ maps on the
‘element level” (i.e. parts) while the mapping P/ : PX — PY maps on the ‘set
level” (i.e. whole). Thus the power set functor P efficiently ascends hierarchical
levels.

On our journey in relational biology, the power set functor P : Set — Set was
first introduced as an example in ML: A.12(ii) and explicated in more detail in RL:
1.18 et seq. | shall presently formulate it alternatively in the category Rel of sets
and relations.

I would like to share an anecdote. During the algebra session of my PhD
comprehensive examination (the other two sessions being analysis and mathe-
matical biology) in the spring of 1980, I was verily grilled by professors on
everything I knew about the subject. But my supervisor Robert Rosen asked me
exactly one question: “What are the actions of the power set functor?’

It may therefore be said that thence planted was the intangible seed of the
tangible manifestation of a model of the arbor scientiae that is this monograph /L.
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It is idle to talk always of the alternative of reason and faith.
Reason is itself a matter of faith. It is an act of faith to assert that
our thoughts have any relation to reality at all.

— G.K. Chesterton (1908)
Orthodoxy
Chapter III. “The Suicide of Thought”

Let me begin with a parody of a few passages from the Prologomenon of RL.
Expository divergence is, however, imminent ...

Sets

1.1 Subset and Superset If 4 and B are sets and if every element of 4 is an
element of B, then A is a subset of B, and B is a superset of A, denoted

(1) A CB (equivalently, B DA4).

Note that this symbolism of containment means either A = B (which means the
sets 4 and B have the same elements; Axiom of Extension, ML: 0.2) or A is a
proper subset of B (which means that B contains at least one element that is not in
A). Two sets A and B are equal if and only if A C B and B C 4 (ML: 0.4).

1.2 Inclusion Map  For A4 C B, the mapping i : 4 — B defined by i(a) = a for
all a € 4 is called the inclusion map (of A in B). If the sets involved need to be
emphasized, one may use the notation 7 4 5 for the inclusion map. The inclusion
map of 4 in A is called the identity map on A, denoted 14 (= i4c.4).
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(5) [AUB| = [4]| +[B| - |[4NB],

implies, in particular, the inequality |4 U B| < |4| + |B|, with [AUB| = |4| + |B| iff
[ANB| = || =0 (i.e., iff sets 4 and B are disjoint). The results generalize for
finite sets 4y,A45,...,4, to

|4y UA U - UA,| = [Ay| + [da| + - -+ + |4,
—A1NAs| — |41 NA;| — - = |[Ad,m1 N A,
+ A1 NAaNAz| + |41 NAx N As|
(6) + - 4 ‘A”_zﬂAn_l ﬂAn|

+ (=" A NAN - N4,

which may be succinctly written as

(7) L"JA,» :i(fl)kfl ( Z iy NA, O - ﬂA,-£|).

k=1 1 <ip<--<ip<n
Further,
disjoint.

N, A,-| < >0, |4i|, with equality iff the sets 4, 45, ..., 4, are pairwise

1.12 Power Set  If X is a set, the power set PX of X is the family of all subsets
of X.

The inclusion relation C is a partial order on the power set PX;i.e., (PX,C)
is a poset (ML: 1.22). The least element of (PX, C) is J, and the greatest element
of (PX,C) is X (ML: 1.28). Note that even when X = (7, (J € PX (indeed,
PX = {@}) so PX # . (PX, U, N) is a complete, complemented lattice (ML:
2.1, 2.12, 3.12). {PX, U, N ) is a Boolean algebra (ML: 3.19), called the power
set algebra of X. A field of sets is a subalgebra of a power set algebra. The power
set algebra is, indeed, the ‘universal’ Boolean algebra, in the sense that every
Boolean algebra is isomorphic to a field of sets (Stone Representation Theorem,
ML: 3.20).
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1.13 Characteristic Mapping A subset A of X may be identified with its
characteristic mapping, a mapping y , from X to 2 = {0, 1} defined by

[0 ifxga
®) “‘(x)_{l ifxed

When X is a finite set with n members, there are 2" different mappings y : X — 2,
because for each element x € X there are precisely two choices for the value y(x),
either 0 or 1. If one defines 4 = y~!(1) C X, then y = y,,.

1.14 Cardinality of the Power Set  Thus if | X'| = n, then |PX| = 2", and the
equality may be extended to all cardinal numbers #, finite and infinite. This gives
an alternate notation of the power set PX as 2%. One may succinctly write

9) [Px| = 2] = 21"l

This is consistent even if X = &, when |X| =0 and |[PX|=2" = 1. Cantor’s
Theorem (RL: 0.8) states that, for all sets X, |X|<2M].

The equivalent notation PX = 2% expressing the power set as a ‘power’ is, of
course, the origin of its name.

power (noun): from Old French poeir, from Vulgar Latin potere,
a variant of Classical Latin posse “to be able”. The
Indo-European root is poti- “powerful; lord”. If you are able to
do many things, you are powerful. A powerful person typically
has a large number of possessions (a word derived from posse)
and a large amount of money. In algebra, when even a relatively
small number like 2 is multiplied by itself a number of times the
result gets large very quickly; metaphorically speaking, the
result is powerful. ... If the term power is used precisely, it refers
to the result of multiplying a number by itself a certain number
of times. Consider 2° = 8, which says that the 3rd power of 2 is
8. The power is 8. In less precise usage, however, 3 is identified
as the power, when it is actually the exponent.

— Steven Schwartzman (1994)
The Words of Mathematics: An Etymological
Dictionary of Mathematical Terms Used in English
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1.15 Product  Given two sets X and Y, one denotes by X x Y the set of all
ordered pairs of the form (x,y) where x € X and y € Y. The set X x Y is called
the product (or Cartesian product) of the sets X and Y. If either X or ¥ is empty,
then X x ¥ = .

For all sets X and Y, the cardinality of the product set is the product of the
cardinalities of the components:

(10) X x ¥ = | X[|Y].

1.16 Projections  The mappings

(11) TiXXY =X and m:XxY —Y,

defined, forx € X and y € ¥, by

(12) m(x,y) =x and m(x,y) =y,

are the canonical projections (of the product X x Y onto its components; cf. ML:
A22).

For A C X, the set 7, '(4) of the inverse image of A is the subset of X x Y
containing all ordered pairs (x,y) that are sent by 7; into A:

(13) 7 (A) ={(x,») €EXx YV :m(xy) =x€Ad} =4 xY.
Similarly, for B C Y,
(14)  (B)={(x,y) €EX x Y :m(x,y) =y €B} =X x B.

The product set A x B C X x Y may be identified with the set 7' (4) N 75 ' (B) of
intersection of inverse images, since

(15) ' (A)Nny' (B) = (A x Y)N(X x B) =4 x B.

Relations

1.17 Definition A A relation R is an ordered triple (X, ¥, ") where X and Y are
sets and I is a subset of the Cartesian product X x Y. The sets X and Y are
respectively called the domain and codomain of the relation, and I' C X x Y is
called its graph.
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One may indicate the dependence of X, Y, and I' on R with the notations
X =dom(R), ¥ = cod(R), and I'(R).

According to the formal Definition 1.17, a relation uniquely determines its
domain and codomain, so two relations with identical graphs but different domains
or different codomains are considered different. [This is, indeed, the
category-theoretic requirement that a morphism uniquely entails its domain and
codomain; Definitions 0.1, 0.2, and cf. ML: A.1; RL: 6.7 et seq.] Consider the
simple example I" = {(2,A),(1,C),(2,B)}. The relations R, = ({1,2,3,4,5},
{A, B, C, D, E, F},TN), R, = (N, alphanumeric characters, I), R; =
(Z,Latin alphabet, '), and Ry = (R,{A, B, C}T') are all distinct.

A relation is often identified with its graph (hence the minor equivocation
R =T(R)), so one also has the (more common but less rigorous)

1.18 Definition B A relation is a set R of ordered pairs; i.e. R C X x Y for
some sets X and Y.

Equivalently, a relation R is an element of the power set P(X x Y), ie.,
R € P(X x Y). With domain X and codomain Y, the relation R is from X to Y. The
collection of all relations from X to Y is thus the power set P(X x Y), and, in view
of (9) and (10) above, the cardinality of this collection is

(16) |P(X x ¥)| = 2K = 2lxII"I,

If (x,y) € R (or more precisely (x,y) € I'(R)), then one may say that x is R-related
to y (or simply x is related to y when the involved relation R is understood).

There is a chirality inherent in (x,y) € R C X x Y. When X # Y, the asym-
metry between a relation from X to ¥ and a relation from ¥ to X are apparent. But
even when R C X x X (whence dom(R) = cod(R) =X and one says R is a
relation on X), (x,y) € R and (y,x) € R (for x,y € X) are independent statements.
(See ML: 1.9 et seq. for an exposition of the epistemological consequences of
relations on X.) To emphasize the chirality inherent in (x,y) € R, one may also say
that x is a left R-relative (left relative) of y, and that y is a right R-relative (right
relative) of x.

1.19 External and Internal Entailments Note that even in the formulation
1.18, a relation still has to uniquely determine its domain and codomain, although



