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Chapter 1
Evolution of Modern Computational
Intelligence

1.1 Introduction

A conventional computational intelligence book introduction starts, many a times,
with a history of Artificial Intelligence (AI) and what has been done up to date.
This book introduction will try to start with what can be envisaged as future Com-
puter Intelligence.

It is important to have a common definition of Al. Although it might be possi-
ble to find many (somehow similar) definitions for artificial intelligence, probably
the most appropriate one can be the one stating: creating machines which solve
problems in a way which, done by humans, require intelligence.

A question arises, which can be the interactive question open in any Al course:
do we have artificial intelligence? The answer is not a simple one. There are at
least two ways of seeing things.

If we look around at the existing intelligent machines, we can tell (just to enu-
merate a few examples) that we have machines, which can interpret handwriting
better than humans, we have machines which take decision better than humans do,
we have machines which make calculation millions of times faster than humans,
we have machines that interpret data, huge amount of data, much faster and accu-
rate than humans, machines which understand language and interpret and tran-
script it at least at the same level as humans and examples can continue. All these
are just natural nowadays, but were hard to believe two decades ago.

On the other hand, if we look at the existing machines from a human level in-
telligence point of view, it is hard to admit that we have a human level intelligent
machine. Intelligence, on its own, has a broad interpretation sense. If we look at a
very intelligent man (usually Einstein is given as reference for an intelligent man)
and we look at a person from a remote place, with less or no contact with the civi-
lized world, we see a huge difference (in terms of intelligence) between the two.
But if we look at the same person from the remote mountain and at a cockroach,
we think that difference between Einstein and our mountain man is nothing com-
pared to difference between mountain man and cockroach. From the evolution of
human habilis (first human-like ancestors) 2 million years ago, to homo sapiens
100 000 years ago, to agricultural revolution 10 000 years ago and then to the
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2 1 Evolution of Modern Computational Intelligence

industrial revolution, the human intelligence undergoes significant improvements.
But nowadays scientists clearly state that, in a natural way, no improvement can
be further performed to the human intelligence; thus, the need of an artificial,
more powerful intelligence.

Human level intelligence has not yet been reached if we measure this achieve-
ment as passing the Turing test. Turing test - proposed by Alan Turing, a British
mathematician — also known as “imitation game” is a simulation in which a judge
attempts to distinguish which of two agents, in two separate rooms, is a human and
which a computer imitating human from their responses in a wide-ranging conver-
sation of any topic. As a note to the Turing test, there is an annual competition
known as Leobner Prize, which awards the best instantiation of the Turing Test.

Nick Bostrom (Future of Humanity Institute, Oxford University) noted that for
achieving artificial intelligence, three things are required: hardware, software, and
input/output mechanisms. The input/output mechanisms refer to the technology
required by a machine to interact with its environment. This is already available in
the form of cameras and sensors. We already see robots performing several human
like tasks, etc. Thus, this is the simplest required part.

For hardware, we really need to have human level speed and high memory ma-
chines. In terms of memory, things are promising. For speed, we still have to
wait. Human brain processing power ranges between 100 million MIPS to 100
billion MIPS. (1 MIPS = 1 Million Instructions Per Second). Fastest supercom-
puter today (as of 2010) is Jaguar, built by the Cray Company and housed at the
Oak Ridge National Laboratory in Tennessee; it has a top speed of 1.75 petaflops
per second. This means we don’t have yet human level computer power even at
the range of supercomputers.

The other remaining problem is software. Once we get human intelligence level
machines, software will be required. In doing so, one has to understand how hu-
man brain works. This is part of the current research these days and at least two
main directions follow from there: computational neuroscience and molecular
nanotechnologies. Neuroscience is concerned with how the individual components
of the human brain work. Research up to date reports good computational models
of primary visual cortex. But simulating the whole brain requires enormous com-
puting power. Molecular nanotechnologies work at nanoscale level which is 1 to
100 nanometers — from 1/1,000,000 to 1/10,000 of the thickness of an American
dime. Many of the key structures of human nervous systems exist at nanoscale.
The major challenge is to use nanomachines to disassemble a frozen or a vitrified
human brain.

In parallel with getting the artificial intelligence or human level artificial intel-
ligence, small steps have been performed in terms of algorithms and methodolo-
gies, which can be applied to solve simple or more challenging real-world prob-
lems. Much of the current research focuses on the principles, theoretical aspects,
and design methodology of algorithms gleaned from nature. Examples are artifi-
cial neural networks inspired by mammalian neural systems, evolutionary compu-
tation inspired by natural selection in biology, simulated annealing inspired by
thermodynamics principles and swarm intelligence inspired by collective behavior
of insects or micro-organisms etc. interacting locally with their environment



1.2 Roots of Artificial Intelligence 3

causing coherent functional global patterns to emerge. These techniques have
found their way in solving real world problems in science, business, technology
and commerce. Computational intelligence is a well-established paradigm, where
new theories with a sound biological understanding have been evolving. The cur-
rent experimental systems have many of the characteristics of biological com-
puters (brains in other words) and are beginning to be built to perform a variety of
tasks that are difficult or impossible to do with conventional computers.

Although most of the Al related publications consider the birth of Al 15 years
after the development of the first electronic computer (in 1941) and 7 years after
the development of the invention of the first stored program computer (in 1949),
evidences of artificial intelligence can be traced back in ancient Egypt and Greece.
Most of Al scientists consider that the Dartmouth summer research project, organ-
ized in 1956 by John McCarthy (regarded as father of AI) at Dartmouth College in
Hanover, New Hampshire, where the “artificial intelligence term has been coined”
was the actual start of the Al as a science.

1.2 Roots of Artificial Intelligence

Logic is considered as being one of the main roots of AL Al has been heavily in-
fluenced by logical ideas. Most members of the Al community would agree that
logic has an important role to play in at least some central areas of Al research,
and an influential minority considers logic to be the most important factor in de-
veloping strategic, fundamental advances. It started as long ago as in 5t century
B.C. when Aristotle invented syllogistic logic, the first formal deductive reasoning
system. The advances continued with small steps, with famous inventions of this
millennium, examples like printing using movable type in the 15" century, inven-
tion of clocks as measuring machines in the 15" — 16" century, extension of this
mechanism for the creation of other moving objects in the 16" century and so on.
Pascal has invented the first mechanical digital calculating machine in 1642. This
machine was an adding machine only, but later, in 1671, the German mathemati-
cian - philosopher Leibniz designed an improvement of the adding machine such
as to incorporate multiplication and division. The machine — known as Step Reck-
oner — was built in 1973, The 19" century brings the ingenious project of the first
computing machine. Looking for a method, which can overcome the high error
rate in the calculation of mathematical tables, English mathematician Charles
Babbage wished to find a way by which they could be calculated mechanically,
removing human sources of error. He began to build Difference Engine, a me-
chanical device that can perform simple mathematical calculations in 1820 and
then the Analytical Engine, which was designed to carry out more complicated
calculations. Both devices finally remain just as prototype computing machines.
Babbage’s work has been later continued by Ada Augusta Lovelace, which re-
mains as the world’s first programmer. Babbage’s Difference Engine was the first
successful automatic calculator.

Another important contribution of 19" century is George Boole’s logic theory,
also known as Boolean logic or Boolean algebra. Even thought not much appreci-
ated at the time it has been proposed, later after the publication of Boole’s ideas,
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an American logician Charles Sanders Peirce spent more than 20 years modifying
and expanding them, realizing the potential for use in electronic circuitry and
eventually designing a fundamental electrical logic circuit. Pierce never actually
built his theoretical logic circuit, being himself more of a logician than an electri-
cian, but he did introduce Boolean algebra into his university logic philosophy
courses.

It was later when one of his students — Claude Shannon, one of the organizers
of the Dartmouth conference and one of the pioneers of Al, a Nobel Prize winner
among others — made full use of all these ideas.

Gottlob Frege, a German mathematician, essentially reconceived the discipline
of logic by constructing a formal system, which in effect, constituted the first
predicate calculus (1893-1903). Frege's logic calculus system consisted of a lan-
guage and an apparatus for proving statements. Predicate calculus system con-
sisted of a set of logical axioms (statements considered to be truths of logic) and a
set of rules of inference that lay out the conditions under which certain statements
of the language may be correctly inferred from others.

The 20" century brings the most significant contributions to the Al field. If the
first half of the century is not that remarkable, starting with the second half results
will come in an impressive rhythm. Bertrand Russell, the British logician who
pointed out some of the contradictions of Frege’s logic during their correspon-
dence and who refined the predicate calculus, revolutionizes formal logic with his
three-volume work he co-authored with Alfred North Whitehead, Principia

Mathematica (1910, 1912, 1913). The mathematical logician Emil Post had his
important contributions to computer science in the beginning of the 20" century.
In his later work during the early 1920s, Post developed his notion of production
systems, developed a unification algorithm, and anticipated the later findings of
Godel, Church, and Turing. Post developed a programming language without
thinking of a machine on which it could be implemented. Another important logi-
cian of the 20" century is Kurt Godel, who proved the incompleteness of axioms
for arithmetic, as well as the relative consistency of the axiom of choice and con-
tinuum hypothesis with the other axioms of set theory.

One of the most significant figures in the development of mathematical logic is
Alonzo Church, A Princeton professor and Alan’s Turing’s supervisor. His book —
Introduction to Mathematical Logic — published in 1944 comprises some of his
earlier remarkable results. The Church-Turing Thesis, a controversial work, came
to solve one of the important problems for logicians formulated in the 1930s
by David Hilbert: Entscheidungsproblem. The problem asks if there was a me-
chanical procedure for separating mathematical truths from mathematical false-
hoods. Probably the most controversial figure among the mathematicians of the
20™ century, the British mathematician Alan Turing is well known as the founder
of some fundamental principles, which are required to prove the evidence of arti-
ficial intelligence. The famous Turing test remains until today the biggest chal-
lenge for the existence of artificial intelligence. His famous work Computing Ma-
chinery and Intelligence has been published in 1950, soon after the development
of the first electronic digital computer and the first stored computer program.
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Built in 1943-1945 at the Moore School of the University of Pennsylvania for
the War effort by John Mauchly and J. Presper Eckert, the Electronic Numerical
Integrator And Computer (ENIAC) was the first general-purpose electronic digital
computer. It was 150 feet wide with 20 banks of flashing lights, Even thought it
was meant to help in the WWII, ENIAC has not been delivered to the Army until
just after the end of the war.

The ENIAC was not a stored-program computer; it is described by David Alan
Grier as a collection of electronic adding machines and other arithmetic units,
which were originally controlled by a web of large electrical cables. ED-
VAC (Electronic Discrete Variable Automatic Computer) was  the  earli-
est electronic computer. Unlike its predecessor the ENIAC, it was binary rather
than decimal, and was a stored program machine.

The paper by Warren McCulloch, a neuroscientist, and Walter Pitts, a logician,
“A logical calculus of the ideas immanent in nervous activity” published in 1943 is
regarded as the start point of two fields of research: the theory of finite-state ma-
chines as a model of computation and the field of artificial neural networks.
McCulloch and Pitts tried to understand how the brain could produce highly com-
plex patterns by using many basic cells that are connected together. They gave a
highly simplified model of a brain cell — a neuron — in their paper. The McCulloch
and Pitts model of a neuron has made an important contribution to the develop-
ment of artificial neural networks. But their neuron model had limitations. Addi-
tional features were added, which allowed the neuron to learn and one of the next
major development in neural networks was the concept of a perceptron, which was
introduced by Frank Rosenblatt in 1958. Another paper published in the same
1943 — “Behavior, Purpose and Teleology” — by Arturo Rosenblueth, Norbert
Wiener and Julian Bigelow set the bases for the new science of Cybernetics.

The problem solving has been a central challenge for computer scientists and
for the Al community too. Al scientists came with their own problems and with
their own methods of solving them. George Polya, a Hungarian born American
mathematician, suggests in his very famous book — How fo solve it — four main
steps to approach a problem: understand the problem, devise a plan, carry on with
the plan and look back. Problem solving remains a central idea of Al and a How to
solve it modern version using heuristics has been published in 2004 by Zbigniew
Michalewicz and David Fogel.

A few important scientific results preceded the Dartmouth Conference. Among
them are the following: Norbert Wiener’s results in cybernetics (he is among the
first scientists who coined the term cybernetics) and also in the feedback theory as
if all intelligent behavior is the results of feedback mechanisms. This discovery
had a huge influence on the initial development of Al. The logic theorist devel-
oped between 1955-1956 by Allen Newell (researcher incomputer sci-
ence and cognitive psychology at Carnegie Mellon University), J. Clifford Shaw
(a system programmer who is considered the father of the JOSS language) and
Herbert Simon (originally a political scientist who also won the Nobel Prize in
economics in 1978 and has been awarded the Turing Award along with Allen
Newel in 1975 for their basic contributions to artificial intelligence and the psy-
chology of human cognition) is considered as being the first Al program. The
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theorem proving can be reduced to search. The problem is represented as a tree
model and the program will attempt to find a proof by searching the tree and by
selecting the branch that will result in the correct proof. The program succeeded in
proving thirty-eight of the first fifty-two theorems presented there, but much more
importantly, the program found a proof for one theorem which was more elegant
than the one provided by Russell and Whitehead (in Principia Mathematica). The
impact of The Logic Theorist had in the development of Al made it a stepping-
stone in the evolution of the Al field.

Although the enthusiasm of organizing the school at Dartmouth College was
really huge and the expectations were great, as McCarthy he noted in the 1955
announcement of the conference:

“We propose that a 2 month, 10 man study of artificial intelligence be carried out
during the summer of 1956 at Dartmouth College in Hanover, New Hampshire.
The study is to proceed on the basis of the conjecture that every aspect of learning
or any other feature of intelligence can in principle be so precisely described that
a machine can be made to simulate it. An attempt will be made to find how to
make machines use language, form abstractions and concepts, solve kinds of
problems now reserved for humans, and improve themselves. We think that a sig-
nificant advance can be made in one or more of these problems if a carefully se-
lected group of scientists work on it together for a summer.”

the results of the meeting were not really spectacular. The conference was organ-
ized by John McCarthy and formally proposed by John McCarthy, Marvin Min-
sky, Nathaniel Rochester and Claude Shannon with the scope of bringing together
American scientists working on artificial intelligence. There were a total of 10
participants at the Dartmouth Summer Research Conference on Artificial Intelli-
gence. John McCarthy (who was teaching at Dartmouth at that time and after
moved to Stanford University; also won Turing Award in 1971), Marvin Minsky
(who also won the Turing award in 1969), Trenchard More (from Princeton), Ray
Solomonoff (the inventor of algorithmic probability and an originator of the
branch of artificial intelligence based on machine learning, prediction and prob-
ability), Oliver Selfridge (graduate student of Norbert Wiener's at MIT, (but did
not write up his doctoral research and never earned a Ph.D.) and a supervisor
of Marvin Minsky), Claude Shannon (known for his contributions in information
theory and cryptography during the World War II while he was at Bell Labs;
among other contributions he made a chess playing computer program and made a
fortune by applying game theory in Las Vegas games and in stock market), Na-
thaniel Rochester (who designed the IBM 701 the first general purpose, mass pro-
duced computer and wrote the first symbolic assembler), Arthur Samuel (who
developed the alpha-beta tree idea and proposed a Checkers-playing program (on
IBM's first commercial computer, the IBM 701) that appears to be the world's first
self-learning program; 1962 his program beat a state champion), Herbert Simon
and Allen Newell.
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1.3 Modern Artificial Intelligence

The Dartmouth Conference opened the era of new and most significant advances
in the Al field. Advances continued in a much faster rhythm than before. Technol-
ogy was also advancing and this gave more room to more difficult and ambitious
projects. Al research centers began forming at MIT and Carnegie Mellon Univer-
sity. The challenges were to create systems that could efficiently solve problems
by limiting the search such as The Logic Theorist, and making systems that could
learn by themselves. Newel, Shaw and Simon, the authors of The Logic Theorist,
wanted programs that solved problems in the same ways as humans do. They de-
veloped the General Problem Solver (GPS) in 1957, which is basically
a computer program intended to work as a universal problem solver machine.
Any formalized symbolic problem can be solved, in principle, by GPS, for in-
stance theorems proof, geometric problems and chess playing.

Using a means-end-analysis approach, GPS would divide the overall goal into
sub-goals and attempt to solve each of those. The program was implemented in the
low-level IPL programming language. While GPS solved simple problems such as
the Towers of Hanoi that could be sufficiently formalized, it could not solve any
real-world problems because search was easily lost in the combinatorial explo-
sion of intermediate states.

McCulloch and Pitts’ neuron was further developed in 1957 by Frank Rosen-
blatt at the Cornell Aeronautical Laboratory. Rosenblatt’s perceptron was able to
recognize patterns of similarity between new data and data it has already seen in a
feed-forward model that demonstrated a primitive type of learning or trainability.
His work was highly influential in the development of later multi-layered neural
networks. Soon after the development of the perceptron, many research groups in
the United States were studying perceptrons. Essentially the perceptron is a
McCulloch and Pitts neuron where the inputs are first passed through some "pre-
processors,” which are called association units. These association units detect the
presence of certain specific features in the inputs. In fact, as the name suggests, a
perceptron was intended to be a pattern recognition device, and the association
units correspond to feature or pattern detectors.

In 1958, John McCarthy showed how, given a handful of simple operators and
a notation for functions, someone can build a whole programming language. He
called this language LISP, for "List Processing," because one of his key ideas was
to use a simple data structure called a list for both code and data. LISP is the sec-
ond-oldest high-level programming languagein widespread wuse today;
only Fortran is older. LISP was heavy on computer power and it became more
useful in 1970s with the existing technology.

In the late 50's and early 60's Margaret Masterman and colleagues from Cam-
bridge design semantic nets for machine translation. A semantic net is a graph,
which represents semantic relations among concepts. Silvio Ceccato also devel-
oped in 1961 correlational nets, which were based on 56 different relations, in-
cluding subtype, instance, part-whole, case relations, kinship relations, and various
kinds of attributes. He used the correlations as patterns for guiding a parser and
resolving syntactic ambiguities. Masterman and her team developed a list of 100
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primitive concept types, such as Folk, Stuff, Thing, Do, and Be. In terms of those
primitives, her group defined a conceptual dictionary of 15,000 entries. She organ-
ized the concept types into a lattice, which permits inheritance from multiple
supertypes.

The first industrial robot was installed at General Motors in 1961. It has been
developed at Unimation Inc., the first robotic company founded in 1956 by Joseph
F. Engelberger (a physicist, engineer and entrepreneur who is referred to as the
"Father of Robotics”). Over the next two decades, the Japanese took the lead by
investing heavily in robots to replace people performing certain tasks.

In 1963, John Alan Robinson, philosopher, mathematician and computer scien-
tist invented resolution, a single inference method for first order logic. Resolution
is a refutation method operating on clauses containing function symbols, univer-
sally quantified variables and constants. The essence of the resolution method is
that it searches for local evidence of unsatisfiability in the form of a pair of
clauses, one containing a literal and the other its complement (negation). Resolu-
tion and unification have since been incorporated in many automated theorem-
proving systems and are the basis for the inference mechanisms used in logic
programming and the programming language Prolog.

In 1963, DARPA (Defense Advanced Research Project Agency) and MIT
signed a 2.2 million dollar grant to be used in researching artificial intelligence (to
ensure that the US will stay ahead of the Soviet Union in technological advance-
ments).

In 1966, Joseph Weizenbaum form MIT described in Communications of the
ACM, ELIZA, one of the first programs that attempted to communicate in natural
language. In only about 200 lines of computer code, Eliza models the behavior of
a psychiatrist (the Rogerian therapist). ELIZA has almost no intelligence; it uses
tricks like string substitution and canned responses based on keywords. The illu-
sion of intelligence works best, however, if you limit your conversation to talking
about yourself and your life.

Some of the more well-known AI projects that followed the General Problem
Solver in the late 60’s included: STUDENT, by Daniel G. Bobrow, which could
solve algebra word problems and reportedly did well on high school mach tests,
ANALOGY, by Thomas G. Evans (written as part of his PhD work at MIT),
which solved 1Q-test geometric analogy problems, Bert Raphael’s MIT disserta-
tion on the SIT program that demonstrates the power of logical representation of
knowledge for question-answering systems and Terry Winograd's SHRDLU,
which demonstrated the ability of computers to understand English sentences in a
restricted world of children’s blocks (such as a limited number of geometric
shapes).

Another advancement in the 1970's was the advent of the expert system. Expert
systems predict the probability of a solution under set conditions. Due to the large
storage capacity of computers at the time, expert systems had the potential to in-
terpret statistics, to formulate rules. The applications for real practical problems
were extensive, and over the course of ten years, expert systems had been intro-
duced to forecast the stock market, medicine and pharmacy, aiding doctors with
the ability to diagnose disease, and instruct miners to promising mineral locations.
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This was made possible because of the systems ability to store conditional rules,
and storage of information.

One of the earliest expert systems was DENDRAL, developed at Stanford Uni-
versity, DENDRAL was designed to analyze mass spectra. DENDRAL did con-
tain rules and consists of two sub-programs, Heuristic Dendral and Meta-Dendral
and its developers believed that it can compete and experienced chemist (was
marketed commercially in the United States). The program was used both in in-
dustry and academia. MYCIN, another expert system developed at Stanford Uni-
versity too has been used to diagnose blood infections and recommend treatments,
given lab data about tests on cultures taken from the patient. Although never put to
practical use, MYCIN showed to the world the possibility of replacement of a
medical professional by an expert system. PROSPECTOR has been developed by
NASA. It takes geological information about rock formations, chemical content,
etc, and advises on whether there were likely to be exploitable mineral deposits
nearby. Popular accounts of Al say that Prospector (in 1978-ish) discovered a
hundred-million-dollar deposit of molybdenum.

These are only some of the first expert systems. Many more have been pro-
posed, including applications in all major domains such as medicine, agriculture,
engineering, etc. Rule-based systems are a relatively simple model that can be
adapted to any number of problems. A general form of expert systems is an expert
system shell. An expert system shell is actually an expert system whose knowl-
edge is removed. Thus, the user can just add its own knowledge in the form of
rules and provide information to solve the problem. Expert system shells are
commercial versions of the expert systems.

The programming language PROLOG was born of a project aimed not at pro-
ducing a programming language but at processing natural languages; in this case,
French. The project gave rise to a preliminary version of PROLOG at the end of
1971 and a more definitive version at the end of 1972 at Marseille by Alain Col-
merauer and Philippe Roussel. The name Prolog stands for Progammation en
Logique in French and was coined by Philippe Roussel. It can be said that Prolog
was the result of a combination between natural language processing and auto-
mated theorem-proving.

It was in 1964 when the new theory of fuzzy logic, a different kind of logic, has
been proposed by Lotfi Zadeh at University of California (Berkeley). The concept
was not much used at that time in the United States, but in the 70’s the Japanese
started using fuzzy ideas incorporated in electronic devices. The fuzzy mecha-
nisms were first developed for years in Japan before the rest of the world started
using them. It took a long time until fuzzy logic got accepted even though it fas-
cinated some people right from the beginning. Besides engineers, philosophers,
psychologists, and sociologists soon became interested in applying fuzzy logic
into their sciences. In the year 1987, the first subway system was built which
worked with a fuzzy logic-based automatic train operation control system in
Japan. It was a big success and resulted in a fuzzy boom. Universities as well as
industries got interested in developing the new ideas. Today, almost every intelli-
gent machine has fuzzy logic technology inside it.
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Neural networks remained for years only at the stage of a single neuron (per-
ceptron) since their discoveries in the 60’s. Due to lack of machine power required
for their computational tasks, neural network research didn’t progress much until
in the mid 80’s.

In the early 1980's, researchers showed renewed interest in neural networks.
Recent work includes Boltzmann machines, Hopfield nets, competitive learning
models, multilayer networks, and adaptive resonance theory models. With the
backpropagation learning algorithm (and later on with other learning algorithms)
neural networks became widely used. Neural networks are adequately used for
data classification and modeling through a learning process.

Another important milestone in the field of Al is the development of Evolu-
tionary Computation. Under the name evolutionary computation, four major
domains are covered: genetic and evolutionary algorithms, evolution strategies,
evolutionary programming and genetic programming. Although some work in this
field can be traced back to the late 1950’s, the field remained relatively unknown
to the broader scientific community for almost three decades. This was largely due
to the lack of available powerful computer platforms at that time. The fundamen-
tal work of John Holland, Ingo Rechenberg, Hans-Paul Schwefel, Laurence Fogel
and John Koza represents the base of the evolutionary computation, as we know it
today. Holland introduced genetic algorithms, probably the most studied and fur-
ther developed branch of evolutionary computation, with remarkable application
in optimization and search problems. Ingo Rechenberg and Hans-Paul Schwefel
contributed to the development of evolution strategies. Fogel proposed evolution-
ary programming and Koza is known for his contributions to the genetic pro-
gramming methods. All these methods have been (and still continue to be) further
developed and improved, with hundreds of thousands of publications related to
this subject.

Swarm intelligence is a method, which allows decentralized, self-organized
systems with relative simple single software agents to solve complex problems
and tasks together, which neither agent could do alone. Examples include ants
(from which the Ant Colony Optimization system has derived), which leave
pheromone trails for others to follow, and go as far as swarm-robots being able to
symbiotically share computing resources, birds and fish (from which the Particle
Swarm Optimization algorithm developed), bacteria (which gave birth to Bacterial
foraging optimization algorithm), Multi-Agent Systems are systems of similar,
possibly specialized entities, which are able to collectively solve problems and so
on. Swarm robotics is a comparative young field of science, focusing on the de-
velopment of limited single robots which are able to perform direct and indirect
communication with each other and to create dynamic horizontal systems with a
collective behavior.

Apart from all these, some progress has been registered in computer games
playing. For checkers game, there exist Chinook. After 40-year-reign of human
world champion Marion Tinsley, Chinook defeated it in 1994. Chinook used a
pre-computed end game database defining perfect play for all positions involving
8 or fewer pieces on the board, a total of 444 billion positions. For Chess game,
there exists Deep Blue. Deep Blue defeated human world champion Garry
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Kasparov in a six-game match in 1997. Deep Blue searches 200 million positions
per second, uses very sophisticated evaluation, and undisclosed methods for ex-
tending some lines of search up to 40 ply. In Othello game, human champions
refuse to compete against computers, who are too good. Various kind of robots
have been developed in the last century (and many continue to be developed to-
day) to help and replace human work in hard and improper conditions.

1.4 Metamodern Al

In the new millennium, the trends in Al remain almost the same but more coura-
geous, with more enthusiasm and by far with more advanced technologies. Apart
from the new developments in terms of concepts and methods, ensembles of exist-
ing paradigms and hybrid intelligent approaches play an important role. Interdis-
ciplinary approaches towards problem solving are another key idea. But involving
experts from multiple domains such as engineering, biology, computer science and
cognitive sciences, the progress is much faster. For example, there is a specific
interdisciplinary trend, NBIC, which stands for Nano-Bio-Info-Cogno, whose
ideas and research plans sound very promising. Universal Artificial Intelligence,
idea proposed by Juergen Schmidhuber, comes with universal reinforcement
learners and decision makers.

A more general Idea is that of Singularity, a concept originally coined by Ver-
nor Vinge and sustained by Ray Kurzweil and other researchers of the Singularity
Institute for Artificial Intelligence. The Singularity is the technological creation of
smarter-than-human intelligence and it is most likely to happen next the machine
will reach human level artificial intelligence.

The book offers a gentle introduction to modern computational intelligence
field starting with the first and most simple ways to approach problem solving
(some standard search techniques) and then continues with other methods in a
chronological order of their development. The contents of this book would be
beneficial for various disciplines and is structured for a larger audience, from
medical doctors, researchers / scientists / students / academicians and engineers
from the industry.



Chapter 2
Problem Solving by Search

2.1 Introduction

An important aspect of intelligence is goal-based problem solving. Several prob-
lems can be formulated as finding a sequence of actions that lead to a desirable
goal. Each action changes the sfate and the aim is to find the sequence of actions
and states that lead from the initial state to a final (goal) state.

Searching through a state space involves the following:

- a set of states;

- operators;

- a start or initial state;

- a test to check for goal state.

A well-defined problem can be described by[1][2][3]:

e J[nitial state;

e QOperator or successor function - for any state x returns s(x), the set of
states reachable from x with one action;

e State space - all states reachable from initial state by any sequence of
actions;

®  Path - sequence through state space;

e Path cost - function that assigns a cost to a path. Cost of a path is the sum
of costs of individual actions along the path;

e Goal test - test to determine if at goal state.

2.2 What Is Search?

Search is the systematic examination of states to find a path from the start state to
the goal state.

The search space consists of the set of possible states, together
with operators defining their connectivity.

The solution provided by a search algorithm is a path from the initial state to a
state that satisfies the goal test[4][6][71[8I[9]1[11]1[12][18][20].

C. Grosan and A. Abraham: Intelligent Systems, ISRL 17, pp. 13
springerlink.com © Springer-Verlag Berlin Heidelberg 2011
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In real life situations search algorithms are usually employed when there is lack
of knowledge and the problems cannot be solved in a better way.
Search techniques fall into three groups:

e methods which find any start - goal path;
e methods which find the best path;
e search methods in the face of adversaries.

The hardship in problem solving is to decide the states and the operator or succes-
sor function. Figures 1-3 illustrate some examples depicting the different model-
ing aspects of the search process.

Example 1: 8-puzzle
In the 8-puzzle example depicted in Figure 2.1 we have[10][26][33]:

States: location of blank and location of the 8 tiles

Operator (successor): blank moves left, right, up and down

Goal: match the state given by the Goal state

Path Cost: each step has the cost 1; total cost is considered as being the length of
path.

L) 6 4 1 = 3
2 8 1 —IL:;::: 4 5 6
7 5 7 8

State Goal

Fig. 2.1 8-puzzle example.

Example 2: N - Queens
The N-Queens problem requires arranging N queens on an N x N (chess) board
such as the queens do not attack each other. This problem may be defined as:

States: 0 to N queens arranged on the chess board
Operator (successor): place a queen on an empty square
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Goal: match a state with N queens on the chess board and no attacks among them
(an example of a 5-queen goal state is given in Figure 2.2).
Path Cost: 0.

Fig. 2.2 N-queen (N=5) problem example.

Example 3 - Missionaries and Cannibals Problem

The problem can be stated as follows: three missionaries and three cannibals are
on the left bank of a river. They have to cross over to the right bank using a boat
that can only carry two at a time. The number of cannibals must never exceed the
number of missionaries on any of the banks. The problem is to find a way to get
all missionaries and cannibals to the other side, without leaving at any time and
place a group of missionaries outnumbered by the cannibals.
For this problem we define:
State: The state consists of:

e the number of missionaries on the left bank,
e the number of cannibals on the left bank,
e the side of the bank the boat is on.

Operator: A move is represented by the number of missionaries and the number of
cannibals taken in the boat at one time. Since the boat can carry no more than two
people at once, there are 5 possible combinations:

2 Missionaries, 0 Cannibals)
Missionary, 0 Cannibals)

o~

1

1 Missionary, 1 Cannibal)
0 Missionary, 1 Cannibal)
0 Missionary, 2 Cannibals)
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Goal: (0, 0, right)
Path cost. number of crossings.

2.3 Tree Based Search

The set of all paths within a state-space can be viewed as a graph of nodes, which
are connected by links. If all possible paths are traced out through the graph, and
the paths are terminated before they return to nodes already visited (cycles) on that
path, a search tree is obtained. Like graphs, trees have nodes, but they are linked
by branches. The start node is called the rootand nodes at the other ends are
leaves. Nodes have generations of descendents. The first generations are children.
They have a single parent node, and the list of nodes back to the root is
their ancestry. A node and its descendents form a subtree of the node's parent. If a
node's subtrees are unexplored or only partially explored, the node is open, other-
wise it is closed. If all nodes have the same number of children, this number is
the branching factor[27].

2.3.1 Terminology

*  Root node: represents the node the search starts from;

e [eafnode: a terminal node in the search tree having no children;

*  Ancestor/descendant: node A is an ancestor of node B if either A is B’s
parent or A is an ancestor of the parent of B. If A is an ancestor of B, B is
said to be a descendant of A;

®  Branching factor: the maximum number of children of a non-leaf node in
the search tree;

e Path: a path in the search tree represents complete path if it begins with
the start node and ends with a goal node. Otherwise it is a partial path.

A node in the tree may be viewed as a data structure containing the following
elements:

a state description;

a pointer to the parent of the node;

depth of the node;

the operator that generated this node;

cost of the path (sum of operator costs) obtained from the initial (start)
state,

It is advisable not to produce complete physical trees in memory, but rather ex-
plore as little of the virtual tree looking for root-goal paths [1][5].

State space is explored by generating successors of the already explored states.
Every state is evaluated in order to see whether this is the goal state. A disadvan-
tage of the tree search is that it can end up repeatedly visiting the same node. A
solution to this is to store all the visited nodes but this will require a lot of memory
resources. A more general approach is the graph search.
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The nodes that the algorithm has generated so far during the search process are
kept in a data structure called OPEN or fringe. Initially only the start node (the
initial state) is in OPEN.

The search starts with the root node. The algorithm picks a node from OPEN
for expanding and generates all the children of the node. Expanding a node from
OPEN results in a closed node. Some search algorithms keep track of the closed
nodes also in a data structure called CLOSED[29].

The search problem will return a solution or a path to a goal node. Finding a
path is important in problems like path finding, n-puzzle problems, traveling sa-
lesman problem and other such problems. There are also problems like the N-
queens and cryptarithmetic problem for which the path to the solution is not im-
portant. For such problems the search problem needs to return the goal state only.

An Example of search tree for the 8-puzzle problem is depicted in Figure 2.3.

3|64
2 1 \
P = 785 Jghe
) e © % s
— ¥ 5 Te—
,/r S—
& i
3 q 3)6|4 3|64 364
z|& 1' 281 ‘ 201 2]1
7|s]s 7 5 7|a]s 8 | 5

|(17m.b’

Fig. 2.3 Example of search tree for the 8-puzzle problem.

2.4 Graph Search

If the search space is not a tree, but a graph, the search tree may contain different
nodes corresponding to the same state. The state space can be considered a graph
G(V, E), where V is the set of nodes and E is a set of vertices, which are directed
from a node to another node. Each node contains information including:

- astate description;

- node’s parent;

- the operator that generated the node from that parent;
- other information.
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Each vertex corresponds to an instance of one of the operators. When the operator
is applied to the state associated with the arc's source node, then the resulting state
is the state associated with the vertex's destination node. Each vertex has a posi-
tive cost associated with it corresponding to the cost of the operator.

Each node has a set of successor nodes corresponding to all of the operators
that may be applied at the source node's state. Expanding a node means generating
all the successor nodes of it and add them and their associated vertices to the state-
space graph.

We have the following correspondence:

e [nitial state: One or more nodes are designated as start nodes.

e  State space — Initially, a starting node S is considered and V={S}. Then S
is expanded and its generated successors (nodes and vertices) are added
to V and E respectively. This process continues until a goal node is
found;

e Path - each node represents a partial solution path from the start node to
the given node. In general, from this node there are many possible paths
(and therefore solutions) that have this partial path as a prefix;

e Path cost: the sum of the vertices costs on the solution path;

®  Goal fest— test applied to a state to determine if its associated node is
a goal node and satisfies all goal conditions;

*  Solution: a sequence of operators that is associated with a parh in a state
space from a start node to a goal node.

Remarks
(i) Search process constructs a search tree, where root is the initial state
and all the leaf nodes are either nodes that have not yet been ex-
panded or nodes that have no successors.
(ii) Because of loops, search tree may be infinite even for small search

spaces.

The general search structure is given in Algorithm 2.1. Problem describes the start
state, operators, goal test and costs. Strafegy is what differentiates different search
algorithms; based on it, several search methods exist. The result of the algorithm
is either a valid solution or failure.

Algorithm 2.1

General_ search (problem, strategy)
Use initial state of the problem to initialize the
search tree
Loop
If there are no nodes to expand
Then return failure;
Based on strategy select a node for extension;
Apply goal test;
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Fig. 2.4 Example of states layers in breadth first search.

& @ @

Fig. 2.5 Example of states expansion using breadth first search.
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Hence, the conclusion is that the breadth first search algorithm cannot be effec-
tively used unless the search space is quite small. The advantage of the breadth
first search is that it finds the path of minimal length to the goal, but it has the dis-
advantage of requiring the generation and storage of a tree whose size is exponen-
tial to the depth of the shallowest goal node.

Example 1: Breadth First Search for 8-puzzle

A simple 8-puzzle example for which the goal state is reached in the third layer of
expanded states is presented in Figure 2.6. The goal state is the one in which the
blank is on the upper lest corner and the tails are arranged in ascending order.
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Fig. 2.6 Example of breadth first search for the 8-puzzle problem.

Example 2: Breadth First Search for Missionaries and Cannibals Problem

In order to simplify the explanations, the following notations are used: M for mis-
sionaries, C for cannibals and L and R representing the left or right side the boat is
in. A graphical illustration of the problem is given in Figure 2.7.

A state can be represented in the following form:

(Left (#M, #C), Boat, Right(#M, #C),

which represents the number of missionaries and cannibals on the left side, the
side the boat is, and the number of missionaries and cannibals on the right side
respectively. Since the number of missionaries and cannibals should always be 3
on both river banks, we can simplify the notation of the state: (#M, #C, L/R). So,
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le1|[c2| e3|
m: - : Right bank

Fig. 2.7 The missionaries and cannibals problem illustration.

the state represents how many people are on the left side of the river and whether
the boat is on the left or right side.
There are five possible actions from any state:

- one missionary moves to the right bank;

- two missionaries move to the right bank;

- one cannibal moves to the right bank;

- two cannibals move to the right bank;

- one cannibal and one missionary move to the right bank.

The two important things to note are that each action results in a boat movement
and there are at most five actions. Note that, starting from the initial state, 2 of the
5 actions violate the constraints of the problem (the cannibals outnumber the mis-
sionaries as in the case of the first two actions).

The search space for this problem consists on 32 states, which are represented
in Figure 2.8. The shadowed states correspond to situations in which the problems
constraints are violated.

| LEFT BANK | RIGHT BANK |

oMoCL [IMOCL | 2MOCL | 3MOCL JOMOCR |IMOCR | 2ZMOCR | 3BMOCR
oMicL |iM1ICL | 2MICL | 3SMICL g OMICR |IMICR [2MICR | 3M1CR

oMa2CL fiM2€L | 2M2CL | SM2CL g OM2CR |[IM2CR | 2ZM2CR | BM2CR

OM 3C L EEEESCHE e NS CRE 3M 3C L § OM 3C R [BUEIRSCEREIEI NS CIf 3M3CR|

Fig. 2.8 The State-space for the missionaries and cannibals problem.

An Example of a solution for this problem is presented in Figure 2.9. It is evi-
dent how the situation changes on both sides and also it may be also used to de-
duce what the boat will be carrying on both directions.
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Solution
Left bank | Boat |Right bank
3M 3C L OM OC
3M1C R OM 2C
3M 2C L. oM 1C
3M 0C R OM 3C
3M 1C L oM 2C
MM1C R 2M 2C
2M 2C L 1M 1C
OM 2C R 3M1C
OM 3C L 3M0C
oM 1C R 3M 2C
OM 2C L 3M1C
OM OC R 3M 3C

Fig. 2.9 A solution for the missionaries and cannibals problem.

2.6.2 Depth First Search

The depth first search algorithm is almost identical with the breadth first search
algorithm with the main difference in Step 2.2.4 where the children is placed in
the beginning of the queue compared to the end of the queue in the case of breadth
first search (see Algorithm 2.3).

The queue here may be replaced with a stack. Nodes are popped from the front
of the queue and new nodes are pushed to the front. The strategy always chooses
to expand one of the nodes that is at the deepest level on the search tree. It only
expands nodes on the queue that are at the shallower level if the search has
reached a dead-end at the deepest level[14][16][19][35].

A path is expanded as much as possible until it reaches a goal node or can be
expanded no more prior to expanding other paths.
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Algorithm 2.3. Depth first search

Step 1. Form a queue Q and set i1t to the initilial state
(for example, the Root).
Step 2. Until the Q is empty or the goal state is found
do:
Step 2.1 Determine if the first element in
the Q0 is the goal.
Step 2.2 If it is not
Step 2.2.1 Remove the first element
in Q.
Step 2.2.2 Apply the rule to generate
new state(s) (successor states).
Step 2.2.3 If the new state is the
goal state quit and return this state
Step 2.2.4 Otherwise add the new
state to the beginning of the gueue.
Step 3. If the goal is reached, success; else failure.

The difference between the way in which breadth first search and depth first
search expansion can be observed by comparing Figures 2.4 and 2.10. The search
performed by breadth first search in Figure 2.5 can be compared with the search
performed for the same data by depth first search in Figure 2.11.
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Fig. 2.10 Example of depth first search expansion.

Depth first search algorithm takes exponential time. If d is the maximum depth
of a node in the search space, the worst case algorithm’s time complexity is O(b%).
However the space taken is linear for the depth of the search tree and is given by
O(bd).

The time taken by the algorithm is related to the maximum depth of the search
tree. If the search tree has infinite depth, the algorithm may not terminate. This
can happen in situations where the search space is infinite or if the search space
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Fig. 2.14 Example of depth bounded search with /=2 — left (a) and /=4 —right (b).
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Fig. 2.15 Example of depth limited search for the 8 puzzle problem

2.6.5 Iterative Deepening Depth First Search

Iterative deepening dept bounded depth first search (also referred to as iterative
deepening search) consists of repeated depth bounded searches using successive
greater depth limits. The Algorithm first attempts a depth bounded search with a
depth bound (or limit) 0, then it tries a dept bounded search with a depth limit of
1, then of 2 and so on. Since the search strategy is based on depth bounded search
the implementation does not require anything new. The depth bounded searches
are repeated until a solution is found[15][28][34][37]1[38][39].

An example of iterative deepening search with limits from 0 to 3 is depicted in
Figures 2.15-2.18.

The iterative deepening search algorithm is simply described in Algorithm 2.4.
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Algorithm 2.4. Iterative deepening search

Returns a solution or failure;
Input problem;
1 =20
While no solution, do
Apply depth first search(problem, depth) from in-
itial state with cutoff 1
If matched the goal
Then stop and return solution,
Else increment depth limit I=1+1
End.

Limit (=0

® @

Fig. 2.15 lterative deepening search for limit /=0.

Limit =1

Fig. 2.16 Iterative deepening search for limit /=1.

The advantage of the iterative deepening search is that it requires linear memo-
ry and it guarantees for goal node of minimal depth. For large depth d, the ratio of
the number of nodes expanded by iterative deepening search compared to that of
depth first search or breadth first search is given by b/(b-1). This implies that for
higher values of the branching factor the overhead of repeated expanded states
will be smaller. For a branching factor of 10 and deep goals, there will be 11%
(10/9) more nodes expanded in iterative deepening search than the breadth first
search.

Iterative deepening search combines the advantage of completeness from
breadth first search with that of limited space and ability to find longer paths more
quickly of the depth first search. This algorithm is generally preferred for large
state spaces where the solution depth is unknown. There is a related technique
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called iterative broadening, which works by first constructing a search tree by
expanding only one child per node. This algorithm is useful when there are many
goal nodes.
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Fig. 2.18 Iterative deepening search for limit /=3.
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2.6.6 Branch and Bound (or Uniform Cost Search)

With the branch and bound search, the node with the minimum cost is always ex-
panded. Once a path to the goal is found, it is likely that this path is optimal. In
order to guarantee this, it is important to continue generating partial paths until
each of them has a cost greater than or equal to the path found to the goal. The
branch and bound algorithm is presented in Algorithm 2.5.

Algorithm 2.5. Branch and bound (uniform cost) search

Return a solution or failure

Q is a priority gueue sorted on the current cost from
the start to the goal
Step 1. Add the initial state (or root) to the queue.
Step 2. Until the goal is reached or the gqueue 1s empty
do
Step 2.1 Remove the first path from the queue;
Step 2.2. Create new paths by extending the first
path to all the neighbors of the terminal node.
Step 2.3. Remove all new paths with loops.
Step 2.4. Add the remaining new paths, 1f any, to
the queue.
Step 2.5. Sort the entire gueue such as the
least-cost paths are in front.
End

Given that every step will cost more than 0, and assuming a finite branching fac-
tor, there is a finite number of expansions required before the total path cost is
equal to the path cost of the goal state. Hence, the goal is reached within a finite
number of steps.

The proof of optimality for the branch and bound search can be done by con-
tradiction. If the solution found is not the optimal one, then there must be a goal
state with path cost smaller than the goal state which was found which is actually
impossible because branch and bound would have expanded that node first by
definition.

Example

Consider the graph given in Figure 2.19 with the initial node S and the goal node
G and the cost associated to each edge. Te problem is to find the shortest path (or
the path with the lowest cost) from S to G.

The way in which uniform cost search is applied to obtain the optimal solution
for this problem is presented in Figure 2.20 and described as follows.

Consider S as the initial state and S is expanded into A and C (Figure 2.20 (a)).

Since the path S — C has the lowest cost until now, C is the next expanded node.
C is expanded into B and D.
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