Yves Bertot
" Pierre Castéran

11 I lllllIIIIIll. EEF S |11

W o LU FET sl | | LT e | | | | 1198
IR (11111 11 L 1l [| | L1111 .
I S SERERE LR 11 ek e
0 R |11 S — ____ RN

Interactive Theorem Proving
and Program Development

Coq'Art: The Calculus of Inductive Constructions

@ Springer

Yves Bertot - Pierre Castéran

Interactive
Theorem Proving
and Program
Development

Coq'Art: The Calculus
of Inductive Constructions

Foreword by
Gérard Huet and
Christine Paulin-Mohring

4)) Springer

Authors

Dr. Yves Bertot Dr. Pierre Castéran

Inria Sophia Antipolis LaBRI and Inria Futurs
2004 route des lucioles LabRI

06902 Sophia Antipolis Cedex Université Bordeaux I
France 351 Cours de la Liberation
Yves.Bertot@sophia.inria.fr 33405 Talence Cedex

www-sop.inria.fr/lemme/Yves.Bertot ~ France
Casteran@labri.fr
www.labri.fr/Perso/~casteran

Series Editors

Prof. Dr. Wilfried Brauer

Institut fiir Informatik der TUM
Boltzmannstr. 3, 85748 Garching, Germany
Brauer@informatik.tu-muenchen.de

Prof. Dr. Grzegorz Rozenberg

Leiden Institute of Advanced Computer Science
University of Leiden

Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
rozenber@liacs.nl

Prof. Dr. Arto Salomaa

Turku Centre for Computer Science
Lemminkiisenkatu 14 A, 20520 Turku, Finland
asalomaa®@utu.fi

Library of Congress Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Bibliographic information published by Die Deutsche Bibliothek

Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

ACM Computing Classification (1998): D.2.4, E3.1, F4.1,1.2.3

ISBN 978-3-642-05880-6 ISBN 978-3-662-07964-5 (eBook)

DOI 10.1007/978-3-662-07964-5

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this
publication or parts thereof is permitted only under the provisions of the German Copyright Law of
September 9, 1965, in its current version, and permission for use must always be obtained from
Springer-Verlag Berlin Heidelberg GmbH.

Violations are liable for prosecution under the German Copyright Law.

springeronline.com

© Springer-Verlag Berlin Heidelberg 2004

Originally published by Springer-Verlag Berlin Heidelberg New York in 2004

Softcover reprint of the hardcover 1st edition 2004

The use of general descriptive names, trademarks, etc. in this publication does not imply, even in the

absence of a specific statement, that such names are exempt from the relevant protective laws and
therefore free for general use.

Cover Design: KiinkelLopka, Heidelberg
Typesetting: Camera-ready by the authors
Printed on acid-free paper 45/3141/Tr-543210

Contents

1.1 Expressions, Types, and Functions......................... 2
1.2 Propositions and Proofso .. 3
1.3 Propositionsand Types 4
1.4 Specifications and Certified Programs 5
1.5 A Sorting Examplettt 5
1.5.2 The Relation “to have the same elements” 6
1.5.3 A Specification for a Sorting Program................ 7
1.5.4 An Auxiliary Function 7
1.5.5 The Main Sorting Function 8

1.6 Learning COgttt ettt et 9
1.7 Contents of This Bookuuuuiiiiniiiinianannan.. 9
1.8 Lexical Conventionseeouououenenuneenennenns 11
2 Typesand Expressions, 13
2.1 FIrst SEePS .ottt e 13
2.1.1 Terms, Expressions, Types...........iuiiiiinininn. 14
2.1.2 Interpretation SCOPESu.'iei i 14
2.1.3 Type Checkingttt ininnnnnannan 15

S N 1

2.2.1 Simple Types .ottt et e e 17
2.2.2 Identifiers, Environments, Contexts 18
2.2.3 Expressions and Their Types 20
2.2.4 Free and Bound Variables; a-conversion 27
2.3.1 _Global Declarations and Definitions. 29
2.3.2 Sections and Local Variablesccoooiuiiu... 30

2.4 COmMPUBIIE . ottt e ettt e ettt 33
2.4.1 Substitutioneoueeaiiii ... 34

242 Reduction Rules 34

XVIII Contents

2.4.3 Reduction Sequences.iiuuitenneennnnnns 36
2.4.4 Convertibility 37

2.5 Types, Sorts, and Universes.uuouueuereanenn... 37
2.5.1 The Set SOrt\ttt e et 37
2.5.2 UnNIVEISES . . o oottt ettt e et e e ettt e teeeas 38
2.5.3 Definitions and Declarations of Specifications 39

2.6 Realizing Specifications 41

3 Propositionsand Proofs o0, 43

3.1 Minimal Propositional Logico, 45
3.1.1 The World of Propositions and Proofs 45
312 Goalsand Tacticscoiuiniiiiinunneno... 46
3.1.3 A First Goal-directed Proof......................... 47

3.2 Relating Typing Rules and Tactics........o i, 51
3.2.1 Proposition Building Rules 51

2. 1 Tactics,

3.3 Structure of an Interactive Proof 56
3.3.1 Activating the Goal Handling System 57
3.3.2 Current Stage of an Interactive Proof 57
333 Undoing. 57
3.34 Regular End ofa Proof 58

3.4 Proof Irrelevanceoooouiuiinenanunenaennnn. 58
3.4.1 Theorem Versus Definitioncouuuuun.on.. 59
3.4.2 Are Tactics Helpful for Building Programs?........... 59

3.5 Sections and Proofs 60

3.6 Composing Tactics 61
3.6.1 Tacticals e 61
3.6.2 Maintenance ISSU€s 65

3.7 On Completeness for Propositional Logic 67
3.7.1 A Complete Set of Tactics 67
3.7.2 Unprovable Propositionsccciiiiiuann.. 68

3.8 Some More TactiCs . ..vvureeet et ee et ieeeannnnn 68
3.8.1 The cut and assert Tacticsccuu.... 68
3.8.2 An Introduction to Automatic Tacties 70

3.9 A New Kind of Abstractionccoiiiiinininnnnnnnn T1.

4 Dependent Products, or Pandora’s Box 73

4.1 InPraiseof Dependence.............ouuiiiiriiininunnnnnn 74
4.1.1 Extending the Scope of Arrows...................... 74
4.1.2 OnBinding....... ... i 78
413 A New Construct., 79

4.2 Typing Rules and Dependent Products 81
4.2.1 The Application Typing Rule 81
4.2.2 The Abstraction Typing Rule 84

4.23 Typelnference........ iiinnann... 86

Contents XIX

4.2.5 Dependent Products and the Convertibility Order 90
4.3 * Expressive Power of the Dependent Product............... 91
4.3.1 Formation Rule for Products. 91
4.3.2 Dependent Types.ottt e, 92
4.3.3 Polymorphism it 94
4.3.4 Equality in the Cog System 98
4.3.5 Higher-Order Types oiiiu.... 99
Everyday Logic i 105
5.1 Practical Aspects of Dependent Products 105
5.1.1 exact and assumption................., 105
5.1.3 The apply Tactic, 108
514 TheunfoldTactic115
5.2 Logical Connectivesttt 116
5.2.1 Introduction and Elimination Rules............... ... 116
5.2.2 Using Contradictionscuiiniuan.. 118
5.2.3 Negation . ..ottt e e e 119
5.2.4 Conjunction and Disjunction........................ 121
5.2.5 About the repeat Tactical 123
5.2.6 Existential Quantification 123
5.3 Equality and Rewriting 000, 124
5.3.1 Proving Equalities 124
5.3.2 Using Equality: Rewriting Tactics 125
533 *ThepatternTactic............. ..o .. 127
5.3.4 * Conditional Rewriting 128
5.3.5 Searching Theorems for Rewriting 129
5.3.6 Other Tactics on Equality 129
5.4 Tactic Summary Table ittt 130
5.5 *** Impredicative Definitions., 130
551 Warning it e 130
5.5.2 Trueand False 130
5.5.3 Leibniz Equality 131
5.5.4 Some Other Connectives and Quantifiers 133
5.5.5 A Guideline for Impredicative Definitions............. 135
Inductive Data Types.ouiiniiii i, 137
6.1 Types Without Recursion 137
6.1.1 Enumerated Typesuuunineettiiiinanaannnn 137
6.1.2 Simple Reasoning and Computing 139
6.1.3 TheelimTactic..................... . 141
6.1.4 Pattern Matching 142
6.1.5 Record Typest iin i, 145

6.1.6 Records with Variants 146

XX

Contents
6.2 Case-Based Reasoning imuniennnnn. 148
6.2.1 Thecase Tactic...........ooouunninmiieanann... 148
6.2.2 Contradictory Equalities 151
6.2.3 Injective Constructors.cooueuiuiunon... 153
6.2.4 Inductive Types and Equality 156
6.2.5 * Guidelines for the case Tactic..................... 156
6.3 Recursive Types . ..ottt it it in e 160
6.3.1 Natural Numbers as an Inductive Type 161
6.3.2 Proof by Induction on Natural Numbers.............. 162
6.3.3 Recursive Programmingccoiuiuiinann... 164
.3.4 Variations in the Form of Constr IS
6.3.5 ** Types with Functional Fields..................... 170
6.3.6__Proofs on Recursive Functions 172
6.3.7 Anonymous Recursive Functions (fix) 174
6.4 Polymorphic Typesot 175
6.4.1 Polymorphic Listscooviiiiiiiiiin ... 175
6.4.2 The option Type ...ttt et iiennnn 177
6.4.3 The Typeof Pairs, 179
6.4.4 The Type of Disjoint Sums, 180
6.5 * Dependent Inductive Types ii i, 180
6.5.1 First-Order Data as Parameters 180
6.5.2 Variably Dependent Inductive Types................. 181
6.6 * Empty Types. ..ottt e e 184
6.6.1 Non-dependent Empty Types 184
6.6.2 Dependence and Empty Types 185
Tactics and Automation, 187
7.1 Tactics for Inductive Types 187
7.1.1 Case-by-Case Analysis and Recursion 187
7.1.2 Conversions 188
7.2 Tactics auto and eauto e 190
7.2.1 Tactic Database Handling: Hint 191
i,2,2 * lllg: eaubQ Ia&:li!: s 8 s s 8 3 8 8 8 & 3 s s 8 s s s s 3 & s s s s & s s s s s 2 s 194
7.3 Automatic Tactics for Rewriting....... 194
7.3.1 The autorewrite Tactic 194
7.3.2 Thesubst Tactico o, 195
7.4 Numerical Tacticsot ieas 196
7.41 Thering Tactic.t . 196
7.4.2 The omega Tacticttt ninnny 198
7.4.3 The field Tacticoininiiiiiinennn, 199
7.4.4 The fourier Tactic, 200
7.5 Other Decision Procedures.couuiiuiiiunnon... 200
7.6 ** The Tactic Definition Language......................... 201
7.6.1 Argumentsin Tactics, 202

7.6.2 Pattern Matching 203

Contents XXI

7.6.3 Using Reduction in Defined Tactics 210

8 Inductive Predicates 211
8.1 Inductive Propertiesttt 211
811 AFewExamples 211
8.1.2 Inductive Predicates and Logic Programming 213
8.1.3 Advice for Inductive Definitions 214
8.1.4 The Example of Sorted Lists........................ 215

8.2 Inductive Properties and Logical Connectives 217
8.2.1 Representing Truth 218
8.2.2 Representing Contradiction 218
8.2.3 Representing Conjunction 219
8.2.4 Representing Disjunction oiiiniii... 219
8.2.5 Representing Existential Quantification 219
8.2.6 Representing Equality 220
8.2.7 *** Heterogeneous Equality......................... 220
8.2.8 An Exotic Induction Principle?...................... 225

8.3 Reasoning about Inductive Properties 226
8.3.1 Structured introS...........oo.iiuiiiuiinaiiinin... 226
8.3.2 The constructor Tacticscoouvuuinunin.an. 227
8.3.4 *Inductiononleoouuiuiinmeannuinaninin. 229

8.4 * Inductive Relations and Functions 233
8.4.1 Representing the Factorial Function 234
8.4.2 ** Representing the Semantics of a Language 239
8.4.3 ** Proving Semantic Properties 240

8.5 * Elaborate Behaviorofelimcovuiiununin.... 244
8.5.1 Instantiating the Argument......................... 244
8.5.2 INVETSION « ottt i 246

9 * Functions and Their Specifications 251
9.1 Inductive Types for Specifications 252
9.1.1 The “Subset” Type ... it 252
9.1.2 Nested Subset Types.t 254
9.1.3 Certified Disjoint Sum, 254
9.1.4 Hybrid Disjoint Sum, 256

9.2 Strong Specificationsttt e 256
9.2.1 Well-specified Functionsc0iiuauuun. .. 257
9.2.2 Building Functions as Proofs........................ 257
9.2.3 Preconditions for Partial Functions 258
9.2.4 ** Proving Preconditions 259
9.2.5 ** Reinforcing Specificationscccuvnn.. 260
9.2.6 *** Minimal Specification Strengthening.............. 261
9.2.7 TherefineTacticoouviriiiiniiinio. .. 265

9.3

Variations on Structural Recursion 267

XXII Contents

9.3.1 Structural Recursion with Multiple Steps............. 267
9.3.2 Simplifyingthe Step 271
9.3.3 Recursive Functions with Several Arguments.......... 271

9.4 * Binary Division......... i 276
9.4.1 Weakly Specified Division 276
9.4.2 Well-specified Binary Division....................... 281

10 * Extraction and Imperative Programming 285
10.1 Extracting Toward Functional Languages 285
10.1.1 The Extraction Command 286
10.1.2 The Extraction Mechanism 287
10.1.3 Prop, Set, and Extraction 295

10.2 Describing Imperative Programs........................... 297
10.2.1 The Why Toolco oo 297
10.2.2 *** The Inner Workingsof Why 300

11 *ACase Study 309
11.1 Binary Search Trees i, 309
11.1.1 The Data Structure................. 309
11.1.2 A Naive Approach to Deciding Occurrence 311
11.1.3 Describing Search Trees 311

11.2 Specifying Programs i 313
11.2.1 Finding an Occurrence coveeiiinaenn .. 313
11.2.2 Inserting a Number 313
11.2.3 ** Removing a Number 314

11.3 Auxiliary Lemmas o 315
11.4 Realizing Specifications 315
11.4.1 Realizing the Occurrence Test....................... 315
11.4.2 Insertion i 318
11.4.3 Removing Elements.o .. 322

11.5 Possible Improvementsc.iuiiii i, 323
11.6 Another Example.o 324
12 * The Module Systemt .. 325
12.1 SIgnaturesottt e 326
122 Moduleso 328
12.2.1 BuildingaModule............. 328
12.2.2 An Example: Keys 329
12.2.3 Parametric Modules (Functors) 332

12.3 A Theory of Decidable Order Relations 335
12.3.1 Enriching a Theory with a Functor 335
12.3.2 Lexicographic Order as a Functor 337

12.4 A Dictionary Module, 339
12.4.1 Enriched Implementations 340

12.4.2 Constructing a Dictionary with a Functor 340

Contents XXIII

12.4.3 A Trivial Implementation........................... 340
12.4.4 An Efficient Implementation 342
12.5 ConcluSion ittt e e 345
** Infinite Objects and Proofs 347
13.1 Co-inductive Typesttt 347
13.1.1 The CoInductive Command........................ 4
13.1.2 Specific Features of Co-inductive Types 348
13.1.3 Infinite Lists (Streams)............................. 348
13.1.4 Lazy Lists . ..ottt 349
13.1.5 Lazy Binary Trees, 349
13.2 Techniques for Co-inductive Types.t irinnnn.. 350
13.2.1 Building Finite Objectsc0iiinuuuinnn... 350
13.2.2 Pattern Matching 0 uiiuiuniinannn. 350
13.3 Building Infinite Objectscuuuiii e s 351
13.3.1 A Failed Attempt i, 352
13.3.2 The CoFixpoint Command..........cooviuiiuunn... 352
13.3.3 A Few Co-recursive Functions. 354
13.3.4 Badly Formed Definitions 356
13.4 Unfolding Techniquescviiniiiiiiniinnn. 357
13.4.1 Systematic Decompositionccouuiin ... 358
13.4.2 Applying the Decomposition Lemma 358
13.4.3 Simplifying a Call to a Co-recursive Function 359
13.5 Inductive Predicates over Co-inductive Types 361
13.6 Co-inductive Predicates 362
13.6.1 A Predicate for Infinite Sequences 363
13.6.2 Building Infinite Proofs 363
13.6.3 Guard Condition Violati 265
13.6.4 Elimination Techniques 366
13.7 Bisimilarity e 368
13.7.1 The bisimilar Predicate . . 368
13.7.2 Using Bisimilarity i, 370
13.8 The Park Principle 371
13,9 LT .ot e 372
13.10A Case Study: Transition Systems 375
13.10.1Automata and Traces nnnnnn.. 375
13.11ConcluSionoiu e e e e 376
** Foundations of Inductive Types 377
14.1 Formation Rules 377
14.1.1 The Inductive Typettt iiiiiiinannns 377
14.1.2 The Constructors.ooueeninennon..379
14.1.3 Building the Induction Principle. 382
14.1.4 Typing Recursors.o, 385

14.1.5 Induction Principles for Predicates 392

XXIV Contents

14.1.6 The Scheme Commandouiuiriine,. ... 394

14.2 *** Pattern Matching and Recursion on Proofs 394
14.2.1 Restrictions on Pattern Matching.................... 395
14.2.2 Relaxing the Restrictions 396
14.2.3 Recursionuuiuninniiiieiin e, 398

14.3 Mutually Inductive Typesooviiiiiiiiinnin... 400
14.3.1 Treesand Forests............. ..., 400
14.3.2 Proofs by Mutual Induction 402
14.3.3 *** Treesand Tree Lists............................ 404

15 * General Recursion 407
15.1 Bounded Recursionuouuiuiuennuen., .. 408
15.2 ** Well-founded Recursive Functions 411
15.2.1 Well-founded Relations............................. 411
15.2.2 Accessibility Proofs 411
15.2.3 Assembling Well-founded Relations 413
15.2.4 Well-founded Recursion 414
15.2.5 The Recursor well_founded_induction 414
15.2.6 Well-founded Euclidean Division 415
15.2.7 Nested Recursion, .. 419

15.3 ** General Recursion by Iteration 420
15.3.1 The Functional Related to a Recursive Function....... 421
15.3.2 Termination Proof 421
15.3.3 Building the Actual Function 424
15.3.4 Proving the Fixpoint Equation 424
15.3.5 Using the Fixpoint Equation........................ 426
15.3.6 Discussion 427

15.4 *** Recursion on an Ad Hoc Predicate 427
15.4.1 Defining an Ad Hoc Predicate....................... 428
15.4.2 Inversion Theoremscovouuiinininon. ... 428
15.4.3 Defining the Function 429
15.4.4 Proving Properties of the Function 430

16 * Proof by Reflection 433
16.1 General Presentation..............ouiiuiiniiuiuainenonn... 433
16.2 Direct Computation Proofs 435
16.3 ** Proof by Algebraic Computation........................ 438
16.3.1 Proofs Modulo Associativity 438
16.3.2 Making the Type and the Operator More Generic 442
16.3.3 *** Commutativity: Sorting Variables................ 445

16.4 Conclusioncoiiiinini ..., 447
Appendix. ... 449
Insertion SOrtt e 449

Contents XXV

References...............ooiuiiiniiniuiiiiiaeaaaanannn.. 453
Index 459
Coqg and Its Libraries.ttt 460
Examples from the Book 464

1

A Brief Overview

Cog [37] is a proof assistant with which students, researchers, or engineers
can express specifications and develop programs that fulfill these specifica-
tions. This tool is well adapted to develop programs for which absolute trust
is required: for example, in telecommunication, transportation, energy, bank-
ing, etc. In these domains the need for programs that rigorously conform to
specifications justifies the effort required to verify these programs formally.
We shall see in this book how a proof assistant like Cog can make this work
easier.

The Coq system is not only interesting to develop safe programs. It is also
a system with which mathematicians can develop proofs in a very expressive
logic, often called higher-order logic. These proofs are built in an interactive
manner with the aid of automatic search tools when possible. The application
domains are very numerous, for instance logic, automata theory, computa-
tional linguistics and algorithmics (see [1]).

This system can also be used as a logical framework to give the axioms of
new logics and to develop proofs in these logics. For instance, it can be used
to implement reasoning systems for modal logics, temporal logics, resource-
oriented logics, or reasoning systems on imperative programs.

The Coq system belongs to a large family of computer-based tools whose
purpose is to help in proving theorems, namely Automath [34], Ngthm [17, 18],
Mizar (83], LCF' [48], Nuprl [25], Isabelle [73], Lego [60], HOL [47], PVS [68],
and ACL2 [55], which are other renowned members of this family. A remark-
able characteristic of Cog is the possibility to generate certified programs from
the proofs and, more recently, certified modules.

In this introductory chapter, we want to present informally the main fea-
tures of Cog. Rigorous definitions and precise notation are given in later chap-
ters and we only use notation taken from usual mathematical practice or from
programming languages.

2 1 A Brief Overview

1.1 Expressions, Types, and Functions

The specification language of Cogq, also called Gallina, makes it possible to
represent the usual types and programs of programming languages.

Expressions in this language are formed with constants and identifiers,
following a few construction rules. Every expression has a type; the type for
an identifier is usually given by a declaration and the rules that make it
possible to form combined expressions come with typing rules that express
the links between the type of the parts and the type of the whole expression.

For instance, let us consider the type Z of integers, corresponding to the
set Z. The constant —6 has this type and if one declares a variable z with type
Z, the expression —6z also has type Z. On the other hand, the constant true
has type bool and the expression “true x —6” is not a well-formed expression.

We can find a large variety of types in the Gallina language: besides Z and
bool, we make intensive use of the type nat of natural numbers, considered
as the smallest type containing the constant 0 and the values obtained when
calling the successor function. Type operators also make it possible to con-
struct the type A x B of pairs of values (a,b) where a has type A and b has
type B, the type “list A” of lists where all elements have type A and the
type A— B of functions mapping any argument of type A to a result of type
B.

For instance, the functional that maps any function f from nat to Z and
any natural number n to the value /=7 f(i) can be defined in Gallina and
has type (nat—Z) —nat—Z.

We must emphasize that we consider the notion of function from a com-
puter science point of view: functions are effective computing processes (in
other words, algorithms) mapping values of type A to values of type B; this
point of view differs from the point of view of set theory, where functions are
particular subsets of the cartesian product A x B.

In Cog, computing a value is done by successive reductions of terms to
an irreducible form. A fundamental property of the Cog formalism is that
computation always terminates (a property known as strong normalization).
Classical results on computability show that a programming language that
makes it possible to describe all computable functions must contain functions
whose computations do not terminate. For this reason, there are computable
functions that can be described in Cog but for which the computation cannot
be performed by the reduction mechanism. In spite of this limitation, the
typing system of Cog is powerful enough to make it possible to describe a large
subclass of all computable functions. Imposing strong normalization does not
significantly reduce the expressive power.

1.2 Propositions and Proofs 3
1.2 Propositions and Proofs

The Cog system is not just another programming language. It actually makes
it possible to express assertions about the values being manipulated. These
values may range over mathematical objects or over programs.

Here are a few examples of assertions or propositions:

e 3<8,
e 8<3,
e “for all n > 2 the sequence of integers defined by
Uug=n
1 when u; =1
Uip1 = { ui/2 when u; is even

3u; + 1 otherwise

ultimately reaches the value 1,”
e “list concatenation is associative,”
e “the algorithm insertion_sort is a correct sorting method.”

Some of these assertions are true, others are false, and some are still
conjectures—the third assertion! is one such example. Nevertheless, all these
examples are well-formed propositions in the proper context.

To make sure a proposition P is true, a safe approach is to provide a proof.
If this proof is complete and readable it can be verified. These requirements
are seldom satisfied, even in the scientific literature. Inherent ambiguities in all
natural languages make it difficult to verify that a proof is correct. Also, the
complete proof of a theorem quickly becomes a huge text and many reasoning
steps are often removed to make the text more readable.

A possible solution to this problem is to define a formal language for proofs,
built along precise rules taken from proof theory. This makes it possible to
ensure that every proof can be verified step by step.

The size of complete proofs makes it necessary to mechanize their verifica-
tion. To trust such a mechanical verification process, it is enough to show that
the verification algorithm actually verifies that all formal rules are correctly
applied.

The size of complete proofs also makes it inpractical to write them man-
ually. In this sense, naming a tool like Cog a proof assistant becomes very
meaningful. Given a proposition that one wants to prove, the system pro-
poses tools to construct a proof. These tools, called tactics, make it easier
to construct the proof of a proposition, using elements taken from a context,
namely, declarations, definitions, axioms, hypotheses, lemmas, and theorems
that were already proven.

In many cases, tactics make it possible to construct proofs automatically,
but this cannot always be the case. Classical results on proof complexity and

! The sequence u; in this assertion is known as the “Syracuse sequence.”

4 1 A Brief Overview

computability show that it is impossible to design a general algorithm that
can build a proof for every true formula. For this reason, the Cog system is
an interactive system where the user is given the possibility to decompose
a difficult proof in a collection of lemmas, and to choose the tactic that is
adapted to a difficult case. There is a wide variety of available tactics and
expert users also have the possibility to add their own tactics (see Sect. 7.6).
The user can actually choose not to read proofs, relying on the existence
of automatic tools to construct them and a safe mechanism to verify them.

1.3 Propositions and Types

What is a good language to write proofs? Following a tradition that dates back
to the Automath project [34], one can write the proofs and programs in the
same formalism: typed A-caleulus. This formalism, invented by Church [24],
is one of the many formalisms that can be used to describe computable al-
gorithms and directly inspired the design of all programming languages in
the ML family. The Coq system uses a very expressive variation on typed
A-calculus, the Calculus of Inductive Constructions [28, 70].?

Chapter 3 of this book covers the relation between proofs and programs,
generally called the Curry-Howard isomorphism. The relation between a pro-
gram and its type is the same as the relation between a proof and the state-
ment it proves. Thus verifying a proof is done by a type verification algorithm.
Throughout this book, we shall see that the practice of Coq is made easier
thanks to the double knowledge mixing intuitions from functional program-
ming and from reasoning practice.

An important characteristic of the Calculus of Constructions is that every
type is also a term and also has a type. The type of a proposition is called
Prop. For instance, the proposition 3 < 7 is at the same time the type of all
proofs that 3 is smaller than 7 and a term of type Prop.

In the same spirit, a predicate makes it possible to build a parametric
proposition. For instance, the predicate “to be a prime number” enables us
to form propositions: “7 is a prime number,” “1024 is a prime number,” and
so on. This predicate can then be considered as a function, whose type is
nat—Prop (see Chap. 4). Other examples of predicates are the predicate “to
be a sorted list” with type (list Z) —Prop and the binary relation <, with
type Z—Z—Prop.

More complex predicates can be described in Cog because arguments may
themselves be predicates. For instance, the property of being a transitive
relation on Z is a predicate of type (Z—Z—Prop)—Prop. It is even possible
to consider a polymorphic notion of transitivity with the following type:

(A— A—Prop) —Prop for every data type A.

2 We sometimes say Calculus of Constructions for short.

1.5 A Sorting Example 5

1.4 Specifications and Certified Programs

The few examples we have already seen show that propositions can refer to
data and programs.

The Coq type system also makes it possible to consider the converse: the
type of a program can contain constraints expressed as propositions that must
be satisfied by the data. For instance, if n has type nat, the type “a prime
number that divides n” contains a computation-related part “a value of type
nat” and a logical part “this value is prime and divides n.”

This kind of type, called a dependent type because it depends on n, con-
tributes to a large extent to the expressive power of the Cog language. Other
examples of dependent types are data structures containing size constraints:
vectors of fixed length, trees of fixed height, and so on.

In the same spirit, the type of functions that map any n > 1 to a prime
divisor of n can be described in Cog (see Chap. 9). Functions of this type
all compute a prime divisor of the input as soon as the input satisfies the
constraint. These functions can be built with the interactive help of the Coq
system. It is called a certified program and contains both computing informa-
tion and a proof: that is, how to compute such a prime divisor and the reason
why the resulting number actually is a prime number dividing n.

An eztraction algorithm makes it possible to obtain an OCAML [23] pro-
gram that can be compiled and executed from a certified program. Such a
program, obtained mechanically from the proof that a specification can be
fulfilled, provides an optimal level of safety. The extraction algorithm works
by removing all logical arguments to keep only the description of the computa-
tion to perform. This makes the distinction between computational and logical
information important. This extraction algorithm is presented in Chaps. 10
and 11.

1.5 A Sorting Example

In this section, we informally present an example to illustrate the use of Cog in
the development of a certified program. The reader can download the complete
Coq source from the site of this book [10], but it is also given in the appendix at
the end of this book. We consider the type “list Z” of the lists of elements of
type Z. We (temporarily) use the following notation: the empty list is written
nil, the list containing 1, 5, and —36 is written 1::5::-36::nil, and the
result of adding n in front of the list { is written n :: [.

How can we specify a sorting program? Such a program is a function that
maps any list [of the type “list Z" to a list I’ where all elements are placed
in increasing order and where all the elements of [are present, also respecting
the number of times they occur. Such properties can be formalized with two
predicates whose definitions are described below.

6 1 A Brief Overview
1.5.1 Inductive Definitions

To define the predicate “to be a sorted list,” we can use the Prolog language
as inspiration. In Prolog, we can define a predicate with the help of clauses
that enumerate sufficient conditions for this predicate to be satisfied. In our
case, we consider three clauses:

1. the empty list is sorted,

2. every list with only one element is sorted,

3. if a list of the form n :: [is sorted and if p < n then the list p:: n 2 [is
sorted.

In other words, we consider the smallest subset X of “list Z” that con-
tains the empty list, all lists with only one element, and such that if the list
n::lisin X and p < n then p:: n:: 1 € X. This kind of definition is given as
an inductive definition for a predicate sorted using three constructing rules
(corresponding to the clauses in a Prolog program).

Inductive sorted:1ist Z—Prop:=

sorted0: sorted(nil)

sortedl: Vz : Z, sorted(z :: nil)

sorted2: Vzi,22 : Z, VI : list Z, 2z < 29 = sorted(zz 1) =
sorted(zy 22 2 1)

This kind of definition is studied in Chaps. 8 and 14.

Proving, for instance, that the list 3: :6: :9: :nil is sorted is easy thanks to
the construction rules. Reasoning about arbitrary sorted lists is also possible
thanks to associated lemmas that are automatically generated by the Cog sys-
tem. For instance, techniques known as inversion techniques (see Sect. 8.5.2)
make it possible to prove the following lemma:

sorted _inv: Vz: Z, VI :1list Z, sorted(n ::I) = sorted(l)

1.5.2 The Relation “to have the same elements”

It remains to define a binary relation expressing that a list [is a permuta-
tion of another list I’. A simple way is to define a function nb_occ of type
“Z—list Z—mat” which maps any number z and list [to the number of times
that z occurs in /. This function can simply be defined as a recursive function.
In a second step we can define the following binary relation on lists of elements
in Z:
l=10'=Vz:Z,nb_occ z l =nb_occ z I

This definition does not provide a way to determine whether two lists are
permutations of each other. Actually, trying to follow it naively would require
comparing the number of occurrences of z in [and I’ for all members of Z and

this set is infinite! Nevertheless, it is easy to prove that the relation = is an
equivalence relation and that it satisfies the following properties:

1.5 A Sorting Example 7

equiv_cons: Vz:Z, VI,I':1list Z, I=U'=z:l=2z =1
equiv_perm: VYn,p:Z, VI’ :1list Z, I=l'=nupul=punz=l

These lemmas will be used in the certification of a sorting program.

1.5.3 A Specification for a Sorting Program

All the elements are now available to specify a sorting function on lists of
integers. We have already seen that the Cog type system integrates complex
specifications, with which we can constrain the input and output data of
programs. The specification of a sorting algorithm is the type Z_sort of the
functions that map any list [: 1ist Z to a list [’ satisfying the proposition
sorted(IY AL =1

Building a certified sorting program is the same as building a term of type
Z_sort. In the next sections, we show how to build such a term.

1.5.4 An Auxiliary Function

For the sake of simplicity, we consider insertion sort. This algorithm relies
on an auxiliary function to insert an element in an already sorted list. This
function, named aux, has type “Z—1list Z—list Z.” We define aux n [in
the following manner, in a recursion where [varies:

if [is empty, then n :: nil,
e if | has the form p :: !’ then
-~ ifn<pthenn:p: U,
— if p < n, then p :: (aux n).

This definition uses a comparison between n and p. It is necessary to
understand that the possibility to compare two numbers is a property of Z:
the order < is decidable. In other words, it is possible to program a function
with two arguments n and p that returns a certain value when n < p and a
different value when n > p. In the Cog system, this property is represented
by a certified program given in the standard library and called Z_le_gt_dec
(see Sect. 9.1.3). Not every order is decidable. For instance, we can consider
the type nat—nat representing the functions from N to N and the following
relation:

f<gedieN, f) <g)A(VieN.j<i= f(j)=9())

This order relation is undecidable and it is impossible to design a comparison
program similar to Z_le_gt_dec for this order. A consequence of this is that
we cannot design a program to sort lists of functions.? The purpose of function
aux is described in the following two lemmas, which are easily proved by
induction on I:

3 This kind of problem is not inherent to Cog. When a programming language

provides comparison primitives for a type A it is only because comparison is
decidable in this type. The Cog system only underlines this situation.

8 1 A Brief Overview

aux_equiv: ¥l :1list Z, Vn:Z, aux n 1=n::|,
aux_sorted: Vl:1list Z, Vn:Z, sorted ! = sorted aux n [l

1.5.5 The Main Sorting Function

It remains to build a certified sorting program. The goal is to map any list [
to a list I/ that satisfies sorted I’ A I =1".
This program is defined using induction on the list [:

e If] is empty, then I’ = [] is the right value.
e Otherwise [has the form [=n = [;.
— The induction hypothesis on l; expresses that we can take a list [
satisfying “sorted 1§ A I, =1}
Now let I’ be the list aux n [}
— thanks to the lemma aux_sorted we know sorted !,
— thanks to the lemma aux_equiv and equiv_cons we know

l=nuh=nzlij=auxn lj =1

This construction of I’ from [, with its logical justifications, is developed
in a dialogue with the Cog sytem. The outcome is a term of type Z_sort, in
other words, a certified sorting program. Using the extraction algorithm on
this program, we obtain a functional program to sort lists of integers. Here is
the output of the Extraction command:*

let rec aux z0 = function
| Nil -> Coms (z0, Nil)
| Cons (a, 1?) ->
(match z_le_gt_dec z0 a with
| Left -> Cons (=20, (Cons (a, 1’)))
| Right -> Cons (a, (aux z0 1°)))

let rec sort = function
| Nil -> Nil
| Cons (a, tl) -> aux a (sort tl)

This capability to construct mechanically a program from the proof that a
specification can be satisfied is extremely important. Proofs of programs that
could be done on a blackboard or on paper would be incomplete (because they
are too long to write) and even if they were correct, the manual transcription
into a program would still be an occasion to insert errors.

4 This program uses a type with two constructors, Left and Right, that is isomor-
phic to the type of boolean values.

1.7 Contents of This Book 9
1.6 Learning Cogq

The Coq system is a computer tool. To communicate with this tool, it is
mandatory to obey the rules of a precise language containing a number of
commands and syntactic conventions. The language that is used to describe
terms, types, proofs, and programs is called Gallina and the command lan-
guage is called Vernacular. The precise definition of these languages is given
in the Cog reference manual [81].

Since Cog is an interactive tool, working with it is a dialogue that we
have tried to transcribe in this book. The majority of the examples we give
in this book are well-formed examples of using Cog. For pedagogical reasons,
some examples also exhibit erroneous or clumsy uses and guidelines to avoid
problems are also described.

The Coq development team also maintains a site that gathers all the con-
tributions of users® with many formal developments concerning a large variety
of application domains. We advise the reader to consult this repository regu-
larly. We also advise suscribing to the coq-club mailing list,® where general
questions about the evolution of the system appear, its logical formalism are
discussed, and new user contributions are announced.

As well as for training on the Cog tool, this book is also a practical intro-
duction to the theoretical framework of type theory and, more particularly,
the Calculus of Inductive Constructions that combines several of the recent
advances in logic from the point of view of A-calculus and typing. This research
field has its roots in the work of Russell and Whitehead, Peano, Church, Curry,
Prawitz, and Aczel; the curious reader is invited to consult the collection of
papers edited by J. van Heijenoort “From Frege to Godel” [84].

1.7 Contents of This Book

The Calculus of Constructions

Chapters 2 to 4 describe the Calculus of Constructions. Chapter 2 presents
the simply typed A-calculus and its relation with functional programming.
Important notions of terms, types, sorts, and reductions are presented in this
chapter, together with the syntax used in Cogq.

Chapter 3 introduces the logical aspects of Cog, mainly with the Curry—
Howard isomorphism; this introduction uses the restricted framework that
combines simply typed A-calculus and minimal propositional logic. This makes
it possible to introduce the notion of tactics, the tools that support interactive
proof development.

The full expressive power of the Calculus of Constructions, encompassing
polymorphism, dependent types, higher-order types, and so on, is studied

® http://coq.inria.fr/contribs-eng.html

6 cog-club@pauillac.inria.fr

2

Types and Expressions

One of the main uses of Cog is to certify and, more generally, to reason about
programs. We must show how the Gallina language represents these programs.
The formalism used in this chapter is a simply typed A-calculus [24], akin to a
purely functional programming language without polymorphism. This simple
formalism is introduced in a way that makes forthcoming extensions natural.
With these extensions we can not only reason logically, but also build com-
plex program specifications. To this end, classical notions like environments,
contexts, expressions and types will be introduced, but we shall also see more
complex notions like sorts and universes.

This chapter is also the occasion for first contact with the Cog system, so
that we can learn the syntax of a few commands, with which we can check
types and evaluate expressions.

The first examples of expressions that we present use types known by all
programmers: natural numbers, integers, boolean values. For now we only
need to know that the description of these types and their properties relies
on techniques introduced in Chap. 6. To provide the reader with simple and
familiar examples, we manipulate these types in this chapter as if they were
predefined. Finally, introducing the notion of sort will make it possible to
consider arbitrary types, a first step towards polymorphism.

2.1 First Steps

Our first contact with Cog is with the coq toplevel, using the command
coqtop. The user interacts with the system with the help of a language called
the Cog vernacular. Note that every command must terminate with a period.

The short set of commands that follows presents the command Require,
whose arguments are a flag (here Import) and the name of a module or a
library to load. Libraries contain definitions, theorems, and notation. In these
examples, libraries deal with natural number arithmetic, integer arithmetic,
and boolean values. Loading these libraries affects a component of Cogq called

14 2 Types and Expressions

the global environment (in short environment), a kind of table that keeps
track of declarations and definitions of constants.

machine prompt } coqtop
Welcome to Coq 8.0 (Oct 2003)
Require Import Arith.
Require Import ZArith.
Require Import Bool.

2.1.1 Terms, Expressions, Types

The notion of term covers a very general syntactic category in the Gallina
specification language and corresponds to the intuitive notion of a well-formed
expression. We come back to the rules that govern the formation of terms
later. In this chapter, we mainly consider two kinds of terms, expressions,
which correspond approximately to programs in a functional programming
language, and types, which make it possible to determine when terms are
well-formed and when they respect their specifications. Actually, the word
specification will sometimes be used to describe the type of a program.

2.1.2 Interpretation Scopes

Mathematics and computer science rely a lot on conventional notations, often
with infix operators. To simplify the input of expressions, the Cog system
provides a notion of interpretation scopes (in short scopes), which define how
notations are interpreted. Interpretation scopes usually indicate the function
that is usually attached to a given notation. For instance, the infix notation
with a star * can be used both in arithmetic to denote multiplication and in
type languages to denote the cartesian product.

The current terminology is that scopes may be opened and several scopes
may be opened at a time. Each scope gives the interpretation for a set of no-
tations. When a given notation has several interpretations, the most recently
opened scope takes precedence, so that the collection of opened scopes may
be viewed as a stack. The command to open the scope s is “Open Scope s.”
The way to know which interpretations are valid for a notation is to use the
Locate command. Here is an example:

Open Scope Z_scope.

Locate "_ * _".

" *y" := prod T y : type_ scope

"r * y" := Ring_ normalize. Pmult z y : ring_ scope

"y * y" := Pmult z y : positive_ scope

"g * y" := mult z y : nat_scope

"g *y" = Zmult Ty : Z_scope (default interpretation)

2.1 First Steps 15

This dialogue shows that, by default, the notation “x * y” will be understood
as the application of the function Zmult (the multiplication of integers), as
provided by the scope Z_scope.

More information about a scope s is obtained with the command

Print Scope s.
For instance, we can discover all the notations defined by this scope:

Print Scope Z_scope.

Scope Z_ scope

Delimiting key is Z

Bound to class Z

".x" := Zopp x

g ¥y = Zmult zy

"r + y" := Zplus z y

Mg - y" := Zminus T y

"t /y" = Zdiv Ty

g < y" = Zltzy

"v <y < 2" := and (Zlt z y)(Zlt y z)
"t <y <=2z":=and (Zit z y)(Zle y z)
"t <c=y":=Zlezxy

"t <=y < z":= and (Zle x y)(Zlt y z)

"t <=y <=2":=and (Zle z y)(Zle y z)
>y":=Zgtzy

>=y":=Zgery

2= y" := Zcompare T y

~y" ;= Zpower z y

x ‘'mod’ y" := Zmod z y

=

H:

H=

H’:

1

oF

!

The delimiting key associated with a scope is useful to limit a scope to an
expression inside a larger expression. The convention is to write the expression
first, surrounded by parentheses if it is non-atomic, followed by the character
%, then followed by the key. With delimiting keys, we can use several notation
conventions in a single command, for instance when this expression contains
both integers and real numbers.

2.1.3 Type Checking

We can use the command “Check t” to decide whether a term ¢ is well-formed
and what is its type. This type-checking is done with respect to an envi-
ronment, determined by the declarations and definitions that were executed
earlier. When the term is not well-formed, an appropriate error message is
displayed.

16 2 Types and Expressions
Natural Numbers

The type of natural numbers is called nat, zero is actually described by the
identifier O (the capital O letter, not the digit), and there is a function S
that takes as argument a natural number and returns its successor. Thanks
to notational conventions provided in the scope nat_scope, natural numbers
can also be written in decimal form when this scope has precedence over the
others. In practice, the natural number n is written n¥%nat outside the scope
nat_scope and n inside this scope.

Check 33%nat.
33%nat : nat

Check OY%nat.

0%nat : nat
Check 0.
0%nat : nat

Open Scope nat_scope.

Check 33.
33 : nat

Check O.
0 : nat

Integers

The type Z is associated with integers: the Z set that is commonly used in
mathematics and closely related to the type int in many programming lan-
guages. The library ZArith provides the scope Z_scope, so that we can write
integer numbers by giving their decimal representation. As with natural num-
bers, integers are written with the suffix %Z when the most recently opened
scope would give another interpretation and without the suffix when the most
recently opened scope is Z_scope. At the beginning of the following session,
the most recently opened scope is nat_scope.

Check 33%Z.
33%Z : Z

Check (-12)%Z.
(-12)%Z : 2

Open Scope Z_scope.

2.2 The Rules of the Game 17

Check (-12).
-12 . Z

Check (33%nat).
33%nat : nat

In Cog’s type system, there is no type inclusion: a natural number is not an
integer and converting one number into the other is only done with the help
of explicit conversion functions.!

Boolean Values

The type bool contains two constants associated with truth values:

Check true.
true : bool

Check false.
false : bool

2.2 The Rules of the Game

In this section, we present the rules to construct well-formed terms in a sub-
set of Gallina that corresponds to the simply typed A-calculus. These rules
together give the syntax of terms (types and expressions) and the constraints
that make it possible to determine whether an expression respects the type
discipline. We also introduce the notions of variables, constants, declarations,
and definitions.

2.2.1 Simple Types

A simple framework to start our study of Cog is provided by the simply typed
A-calculus without polymorphism, a model of programming languages with
reduced expressive power. Types have two forms:

1. Atomic types, made of single identifiers, like nat, Z, and bool.
2. Types of the form? (A—B), where A and B are themselves types. For
now, we call these types arrow types. Arrow types represent types of

! Nevertheless, Cog provides the user with a system of implicit coercions. Refer to
the reference manual.

2 Note the first use of a convention that we use often in this book: terms or com-
mands, respecting the syntax of the Cog input language, but where variables
in italics represent arbitrary expressions; these variables are often called “meta-
variables” in the computer science literature, to distinguish them from the vari-
ables of the language being described. Here A— B denotes the infinity of Cog
types where A and B could be replaced by other types.

20 2 Types and Expressions

context contain declarations for disjoint sets of identifiers. The Coq system
enforces these constraints by giving different internal names to global and local
variables and by producing an error message when global or local declarations
are repeated for the same identifier.

Notation

The notations introduced here do not deal directly with Gallina, but they
are needed to describe some of the well-formedness rules and Cog’s behavior.
Our notation is simplified; for a precise and complete formalization, readers
should refer to the description of the Calculus of Inductive Constructions in
the Cog reference manual.

Environments: In our mathematical formulas, we use the symbol E (with
possible alterations and subscripts) to designate arbitrary environments.

Contexts: In a similar way as for environments, the symbol I is used to
designate arbitrary contexts.

Empty context: We use the notation “[]” to denote the context where no local
variables are declared. In particular, this is the current context when the
current point is outside any section.

Declarations: The declaration which specifies that the identifier v has type A
is written (v : A).

Declaration sequences: A context usually appears as a sequence of declara-
tions, presented as below:

[v1 : Arjua : Ao v, 1 Ay

Adding a declaration (v : A) to a context I is denoted I" :: (v : A).

Existence of a declaration: To express that a variable v is declared with type
A in a context I', we use the notation (v : A) € I'; variants are also used:
v € I' (without detailing what is its type), v € E U I" (the declaration is
either global or local), etc.

Typing judgment: The notation E,I" -t : A can be read “in the environment
E and the context I', the term ¢ has type A.”

Eq: Especially for this chapter, we denote Ej as the environment obtained
after loading the libraries Arith, ZArith, and Bool.

Definition 1 (Inhabited types). A type, A, is inhabited in an environment
E and a context I' if there exists a term t such that the E, '+t : A holds.

2.2.3 Expressions and Their Types

In the same manner that types can be built from atomic types using the arrow
construct, expressions can be built from variables and constants (denoted by
identifiers) using a few constructs.

2.2 The Rules of the Game 21
Identifiers

The simplest form of an expression is an identifier z. Such an expression is
well-formed only if = is declared in the current environment or context. If A
is the type of z in its declaration then x has type A.

This typing rule is usually presented as an inference rule: premises are
placed above a horizontal bar while the conclusion is placed below that bar:

(z,A)e EUT

Var A

This rule can be read as: “if the identifier z appears with type A in the
environment E or the context I', then x has type A in this environment and
context.” It is applied in the examples of Sect. 2.1.3 for the identifiers 0:nat,
true:bool, and false:bool.

Other examples are given below using the addition functions for natural
numbers and integers, and using negation and disjunction on boolean values.

Check plus.
plus : nat—nat—nat

Check Zplus.
Zplus : Z—Z—Z

Check negb.
negb : bool—bool

Check orb.
orb : bool— bool— bool

The following dialogue shows what happens when using an identifier that
was not previously declared or defined:

Check zero.

Error: The reference ‘“‘zero’” was not found in the current environment

Function Application

The main control structure of our language is the application of functions to
arguments.

Let us consider an environment E and a context I” and two expressions e
and es with respective types A—B and A in FUTI"; then the application of e;
to e is the term written “e; e2” and this term has type B in the environment
and context being considered.

In the expression “e; es”, ey is said to be in the function position, while
ez is the argument. The presentation as an inference rule is as follows:

22 2 Types and Expressions

E,'+e1:A—-B E,I'Fey: A
E,I'te e3: B

App

For example, in the environment Ey (see Sect. 2.2.2), we can use the identi-
fiers true and negb to construct a new well-formed expression and determine
its type; this process can be repeated to construct more and more complex
expressions:

Check negb.
negb : bool— bool

Check (negb true).
negb true : bool

Check (negb (negb true)).
negh (negh true) : bool

2.2.3.1 Syntactic Conventions

The definition of application and the typing rule only consider functions with
one argument. In fact, a function with several arguments is simply repre-
sented as a function with one argument that returns another function. We
have seen that a parenthesis-free notation was provided for the type of this
kind of function. A similar convention appears when constructing applications
of a function to several arguments. We shall write “f ¢, ... t,” instead of
“(f t1) ... t;” thus reducing drastically the number of parentheses used.
The Coq system automatically respects these conventions and suppresses ex-
traneous parentheses:

Check (((ifb (negb false)) true) false).
ifb (negb false) true false : bool

However, we should be careful to keep parentheses when they are needed to
ensure that the term constructed will be well-formed. The following example
shows that removing too many pairs of parentheses leads to a badly formed
term:

Check (negb negb true).
Error: The term ‘“negb’’ has type ‘‘bool— bool’’
while it is expected to have type ‘‘bool’

The syntactic conventions for writing arrow types and applications go hand
in hand to give the users the impression they are manipulating functions with
several arguments. This can be summarized with a derived typing rule:

EI're: Ay—»Ay—...—»A,—B EI'le:A (i=1...n)
ET'leee ... e,: B

App*

2.2 The Rules of the Game 23

With the help of syntactic notations and interpretation scopes, we can
avoid the uniform notation of function application and rely on conventions
that are closer to mathematical and programming practice. In the following,
we enumerate some of the notation.

Natural numbers

All natural numbers are obtained by the repetitive application of a successor
function, called 8, to the number zero, represented by the capital letter O.
Thus, the number n would normally be written as follows:

S(s(s(...(s(0))..0).
N e’

n

In the scope nat_scope, this number is simply represented by its decimal
value

Open Scope nat_scope.

Check (S (8 (S 0))).
3 : nat

This scope also supports the infix operations +, -, and * to represent the
binary functions plus, minus, and mult.

Check (mult (mult 5 (minus 5 4)) 7).
5*(5-4)*7 : nat

Check (5%(5-4)*7).
5%(5-4)%7 : nat

The decimal and infix notation for natural numbers and operations is only a
notation: each number really is a term obtained by applying the function S
to another number and the operations are applications of binary functions, as
shown in the following examples:

Unset Printing Notations.
Check 4.
S(5(S(50))) : nat

Check (5%(5-4)%7).
mult (mult (S (S (S (S (5 0)))))

(minus (S (S (S (S (S 0)))) (S (S(5(50)))))
(S(S(5(S(S(S(50)))

nat

Set Printing Notations.
Check (minus (S (8 (S (S (58 0))))) (8 (8 (s (5 0)))).
5 - 4 :nat

24 2 Types and Expressions
Integers

The scope Z_scope is similar to nat_scope, with addition, multiplication,
and subtraction operations actually representing the functions Zplus, Zmult,
Zminus. There is also a prefix - sign, representing the unary Zopp function.

Open Scope Z_scope.
Check (Zopp (Zmult 3 (Zminus (-5)(-8)))).
-(3%(-5--8)) : Z

Check ((-4)*(7-7)).
4¥17) - Z

Examples

The dialogue shown in this section illustrates the rules Var and App. Note
that the Cog system chooses the most concise notation when printing terms;
also, functions with several arguments, like plus and Zplus, can be applied
to only one argument, thus yielding new functions. In the second example,
the function Zplus expects an integer and the scope Z_scope is automatically
opened to read the argument given to this function; the same occurs in a
later example with the function Zabs_nat, which expects an integer. In that
example, the decimal 5 is read twice to yield two different values: a natural
number (the first argument to natural number addition) and an integer (the
first argument to integer subtraction).

Open Scope nat_scope.

Check (plus 3).
plus 3 : nat—nat

Check (Zmult (-5)).
Zmult (-5) : Z—Z

Check Zabs_nat.
Zabs_nat : Z—nat

Check (5 + Zabs_nat (5-19)).
5 + Zabs_nat (5-19) : nat

In the following example, the term “mult 3” has type nat—nat and cannot
take as argument the value (-45)%Z that has type Z. This violation of typing
rules makes Coq emit an error message:

Check (mult 3 (-45)%Z).
Error: The term ““45%Z" has type “Z’’ while it is expected to have type ‘“nat”’

2.2 The Rules of the Game 27
Anonymous Variables

Some abstractions are used to represent constant functions. This happens
when an abstraction of the form fun v:T =+t is such that the variable v
does not occur in ¢. In such cases, it is possible to use an anonymous variable
instead of a fully-fledged identifier; the anonymous variable is always written
using the special symbol “_."

Check (fun n _:nat = n).
funn _:mat = n : nat—nat—nat

The Cog system automatically replaces formal parameters by anonymous vari-
ables when it detects that these parameters are not used in the abstraction’s
body, as can be seen in the following example:

Check (fun n p:nat = p).
fun _ pmat = p : nat—nat—nat

2.2.3.3 Local Bindings

The local binding (called let-in in Cog’s reference manual) is a construct
inherited from the languages of the Lisp and ML families. It avoids repeated
code and computation, by using local variables to store intermediate results.

A local binding is written let v:=t; in to, where v is an identifier and
t1 and to are expressions. This construct is well-typed in a given environment
E and context I" when t; is well-typed of type A in the environment E and
the context I" and when ¢; is well-typed in the same environment and the
augmented context I" :: (v : A). This is expressed by the following typing rule:

ETrt;:A Ea(vi=t:A)FHta: B

Let-i
et-n E, '+ let v:=t; in t;: B

To illustrate the use of this construct, we give a representation of the function
Anp .(n—p)?((n —p)? + n) with shared subterms:

fun n p : nat =
(let diff := n-p in
let square := diff*diff in
square * (square+n))¥%nat

Exercise 2.4 How many instances of the typing rules are needed to type this
expression ?

2.2.4 Free and Bound Variables; a-conversion

Variable binding is a very common notion in mathematics and functional
programming; while we will not go into detail we give a few reminders.

28 2 Types and Expressions

The constructs “fun v: A =-€” and “let v:=e; in es” introduce variable
bindings; the scope of the bound variable v is e in the first case and es in the
second case; the occurrence of variable v in a term is free if it is not in the
scope of a binding for v and bound otherwise.

For example, let us consider the term ¢; below:

Definition £; :=
fun n:nat = let s := plus n (S n) in mult n (mult s s).

All occurrences of S, plus, and mult are free, the occurrences of n are bound
by the abstraction “fun n:nat =...,” and the occurrences of s are bound
by the local binding “let s:=(plus n (S n)) in ...

As in logic and mathematics, the name of a bound variable can be changed
in an abstraction, provided all occurrences of the bound variables are replaced
in the scope, thus changing from “ fun v: A =¢t"to* fun v': A =t " where
t' is obtained by replacing all free occurrences of v in ¢ by v/, provided v' does
not occur free int and t contains no term of the form “ fun v': B =t" ” such
that v appears in t” and no term of the form “ let v':=t{ in tJ ” such that
v appears in t4. This formulation is quite complex, but the user rarely needs
to be concerned with it, because the Cog system takes care of this aspect. Re-
naming bound variables is called a-conversion; such a transformation applies
similarly to local bindings. For instance, the following term is obtained from
the previous one with a-conversion:

fun i : nat =
let sum := plus i (S i) in mult i (mult sum sum).

While we did an a-conversion above renaming n to i and s to sum, it is
not possible to rename s to n (without renaming the out bound variable)
because n occurs free inside the original body of the binding of s, the term
(mult n (mult s s)). Thus, the following term is clearly not a-convertible
to the value of t;:

fun n : nat =
let n := plus n (S n) in mult n (mult n n).

The a-conversion is a congruence on the set of terms, denoted 22, . In
other words, this relation is an equivalence relation that is compatible with
the term structure, as expressed by the following formulas:

if t12,t) and t22,t'5, then t; t2 =, t) th,
if t=,¢, then fun v: A =t=,fun v: A =t

if t12.t'1 and t2 2, t'5, then let v:=t; in t;=,let v:=t, in).
1 2

In the rest of this book, we consider that two a-convertible terms are equal.

2.3 Declarations and Definitions 29
2.3 Declarations and Definitions

At any time during a Coq session, the current environment combines the con-
tents of the initial environment, the loaded libraries, and all the global defini-
tions and declarations made by the user. In this section, we study the ways to
extend the environment with new declarations and definitions. We first present
global definitions and declarations which modify the environment. We then
describe the section mechanism and local definitions and declarations which
modify the context. With these commands, we can also describe parametric
expressions, expressions that can be reused in a variety of situations.

2.3.1 Global Declarations and Definitions

A global declaration is written “Parameter v:A” and variants are also pro-
vided to declare several variables at once. The effect of this declaration is
simply to add (v : A) to the current environment. For instance, one may wish
to work on a bounded set of integers and to declare a parameter of type Z:

Parameter max_int : Z.
maz_int is assumed

No value is associated with the identifier max_int. This characteristic is per-
manent and there will be no way to choose a value for this identifier afterwards,
as opposed to what is usual in programming languages like C. The constant
max_int remains an arbitrary constant for the rest of the development.5

The definition of a global constant is written “Definition c: A:= t.” For
this definition to be accepted, it is necessary that ¢ is well-typed in the current
environment and context, that its type is A, and that ¢ does not clash with
the name of another global variable. If one wants to let the system determine
the type of the new constant, one can simply write “Definition ¢ := t.” The
effect of this definition is to add ¢ :=t: A to the current environment.

In the following definition we define the constant min_int with type Z.
This definition uses the parameter max_int declared above. We use the Print
command to see the value and type of a defined identifier:

Open Scope Z_scope.

Definition min_int := l1-max_int.
Print min_int.
min_int = I-max_int : Z

When defining functions, several syntactic forms may be used, relying
either on abstraction or on an explicit separation of the function parameters.
Here are examples of the various forms for the same definition:

5 Still, we shall see later that properties of this variables may also be added later
to the environment or the context using axioms or hypotheses. However, there is
a risk of introducing inconsistencies when adding axioms to the environment.

30 2 Types and Expressions

Definition cube := fun z:Z = z*zx*z,
Definition cube (z:Z) : Z := z¥z*z.
Definition cube z := z*zx*z.

After any of these three variants, the behavior of Print is the same:

Print cube.
cube = fun z:.Z = z%2%*z : 7—Z
Argument scope is [Z_scope]

This shows that the argument given to this function will automatically be
interpreted in the scope Z_scope.
Of course we can also define functionals and reuse them in other definitions:

Definition Z_thrice (f:Z—Z)(z:Z) :=f (f (f z)).
Definition plus9 := Z_thrice (Z_thrice (fun z:Z = z+1)).

Exercise 2.5 Write a function that takes five integer arguments and returns
their sum.

2.3.2 Sections and Local Variables

Sections define a block mechanism, similar to the one found in many pro-
gramming languages (C, Java, Pascal, etc.). With sections, we can declare or
define local variables and control their scope.

In the Cog system, sections have a name and the commands to start and
finish a section are respectively “Section %d” and “End <d.” Sections can
be nested and opening and closing commands must respect the same kind of
discipline as parentheses.

Here is a small sample development where the structure is given by section.
The theme of this example will revolve around polynomials of degree 1 or 2.
The function binomial is defined in a context I} where a and b are declared
of type Z.

Section binomial_def.
Variables a b:Z.
Definition binomial z:Z := a*z + b.
Section trinomial_def.
Variable c : Z.
Definition trinomial z:Z := (binomial z)*z + c.
End trinomial_def.
End binomial_def.

2.3 Declarations and Definitions 31

In this development there are two nested sections named binomial_def and
trinomial_def. The most external section is at the global level, outside every
section.

The binomial_def section starts with the declaration of two local variables
a and b of type Z. The keyword Variable indicates a local declaration, unlike
the keyword Parameter that was used for global declarations. The scope of the
declaration is limited to the rest of the binomial_def section. The current
context is extended to add the declarations of a and b; in other words, we
have a new context Iy = [a : Z;b : Z]. The same happens with the local
declaration of ¢, where the current context is extended with (¢ : Z) until the
end of trinomial_def. The new context is [=[a: Z;b: Z;c: Z].

The global definitions of binomial and trinomial are done in different
non-empty contexts. The value associated with binomial is well-typed in
context I} and the value associated with trinomial is well-typed in context
I5.

When a constant’s value uses local variables, this value may change as the
sections are closed: local variables may disappear from the current context
and the constant’s value would be badly typed if there were no alteration. The
modification consists in adding an abstraction for every local variable used in
the value and the constant’s type also needs to be changed accordingly.

To illustrate this evolution, we repeat the definitions, but use Print com-
mand to show the value of each constant inside and outside the various sec-
tions.

Reset binomial_def.

Section binomial_def.
Variables a b:Z.
Definition binomial (z:Z):= a*z + b.
Print binomial.
binomial = fun 2:Z = a*z + b
Ry AYA
Argument scope is [Z_ scope]
Section trinomial_def.
Variable ¢ : Z.
Definition trinomial (z:Z) := (binomial z)*z + c.
Print trinomial.
trinomial = fun z:Z = binomial z * z + ¢
A
Argument scope is [Z_ scopef
End trinomial_def.
Print trinomial.
trinomial = fun ¢ z2:Z = binomial 2 * z + ¢
P E—I—Z
Argument scopes are [Z_scope Z_scope|

34 2 Types and Expressions

There are four kinds of reductions used in Cog, but before presenting them,
we must describe the elementary operation known as substitution.

2.4.1 Substitution

The operation of substitution consists in replacing every occurrence of a vari-
able by a term. This operation must be done in a way that makes sure a-
conversion is still a congruence. For this reason, substitutions are often ac-
companied by many a-conversions.

If t and » are two terms and v a variable, we denote t{v/u} as the term
obtained by replacing all free occurrences of v by w in ¢, with the right amount
of a-conversions so that free occurrences of variables in u are still free in all
copies of u that occur in the result. We say that t{v/u} is an instance of t.

For instance, let us consider the terms ¢t = A—A and u = nat—nat.
The term t{A/u} is (nat—nat)—nat—nat. As a second example, consider
t = fun z:Z =z*(x+z), v = x, and v = z+1; before replacing the free
occurrence of x in £, we perform an a-conversion on the bound variable z with
a new variable name, say w. We obtain the term fun w:Z =w*((z+1)+w).
Had we not made this a-conversion the result term would have had three
occurrences of the bound variable, while there were initially two of them.

2.4.2 Reduction Rules

In this section, we present the four kinds of reduction that cover all the re-
ductions used in the type-checker to ensure that terms are well-typed.

d-reduction (pronounced delta-reduction) is used to replace an identifier with
its definition: if ¢ is a term and v an identifier with value ¢ in the current
context, then d-reducing v in ¢ will transform ¢ into t{v/t'}.

In the following examples we use J-conversion on constants Zsqr and
my_fun. The delta keyword is used, followed by a list of the identifiers
that can be reduced. This list is optional, when it is absent, all identifiers
bound to some value are reduced. The cbv keyword indicates that the
“call-by-value” strategy is used.

Definition Zsqr (z:Z) : Z := z*z.

Definition my_fun (f:Z—Z)(z:Z) : Z := £ (f z).

Eval cbv delta [my_fun Zsqr] in (my_fun Zsqr).

= (i (:2-2)(:2) = | ()(fun 2 = 5%

2.4 Computing 35

Eval cbv delta [my_fun] in (my_fun Zsqr).

= (fun (F7—2)(2:7) = 1 (F 2)) Zsar
A

B-reduction (pronounced beta-reduction) makes it possible to transform a (3-
redex, that is, a term of the form “(fun v:T =-e;) e2,” into the term
e1{v/ea}. The following example shows a series of F-reductions. In the
second term, we can observe two (-redexes. The first one is associated
with the abstraction on f and the second one with the abstraction on
z0. The term of the third line is obtained by applying a "call by value"
strategy.

1. (fun (£:2—2)(z:2) = f (f 2))(fun (z:Z) = z*z)

2. fun z:Z =
(fun z1:Z = zi1*zl1) ((fun z0:Z = z0*z0) z)

3. fun z:Z = (fun z1:Z = zl*zl) (z*z)

4. fun z:Z = zxzx(z*z).

Note that reducing the redex on the first line actually created a new redex,
associated with the abstraction on z1. In Cog, we can get the same result
by requesting simultaneous (- and d-conversions:

Eval cbv beta delta [my_fun Zsqr] in (my_fun Zsqr).
= fun 27 = z%2%(z%z) : Z—2

¢-reduction (pronounced zeta-reduction) is concerned with transforming local
bindings into equivalent forms that do not use the local binding construct.
More precisely, it replaces any formula of the form let v:=e; in e; with

e2{v/er}.

For example, let us reuse the function h defined in Sect. 2.3.2.1. This
function was defined with the help of auxiliary locally defined values that
were replaced with local bindings when exiting the section. We show how
a term using this function is evaluated with and without {-conversion:

Eval cbv beta delta [h] in (h 56 78).
= let s := 56+78 in let d := 56-78 in s*s + d*d
A
Eval cbv beta zeta delta [h] in (h 56 78).
= (56+78)*(56+78)+(56-78)*(56-78)
Z

t-reduction (pronounced iota-reduction) is related to inductive objects and
is presented in greater details in another part of the book (Sect. 6.3.3

36 2 Types and Expressions

and 6.1.4). For now, we simply need to know that ¢-reduction is responsi-
ble for computation in recursive programs. In particular most numerical
functions, like addition, multiplication, and substraction, are computed
using t-reductions. The t-reduction is a strong enough tool to “finish” our
computations with the functions h and my_fun. Note that compute is a
synonym for cbv iota beta zeta delta.

Eval compute in (h 56 78).
= 18440 : Z

Eval compute in (my_fun Zsqr 3).
=81:2

Exercise 2.7 Write the function that corresponds to the polynomial 2 x z° +
3 x x + 3 on relative integers, using A-abstraction and the functions Zplus
and Zmult provided in the ZArith library of Coq. Compute the value of this
function on integers 2, 3, and 4.

2.4.3 Reduction Sequences

Reductions interact with the typing rules of the Calculus of Inductive Con-
structions. We need notation for these conversions.

Notation

The first notation we introduce expresses the statement “in context I" and
environment F, term #' is obtained from ¢ through a sequence of 3-reductions.”
The notation is as follows:

E,.I'+t>gt.
If we want to consider an arbitrary combination of 8-, §-, (-, or t-conversions,
this is expressed with the help of the indices to the reduction symbol. For
example, combining 3-, -, and {-conversion is written as follows:

E,T'Fitbgst.

Combinations of 3-, é-, ¢-, and (-reductions enjoy very important proper-
ties:

e Every sequence of reductions from a given term is finite. In other words,
every computation on a term in the Calculus of Inductive Constructions
terminates. This property is called strong normalization.

e If t can be transformed into ¢; and ts (using two different sequences of
reductions), then there exists a term ¢3 such that ¢; and ¢; can both be
reduced to t3. This is the confluence property,

e Ift can be reduced in t/, and t has type A, then t’ has type A.

An important consequence of the first two properties is that any term ¢ has a
unique normal form with respect to each of the reductions.

2.5 Types, Sorts, and Universes 37
2.4.4 Convertibility

An important property is convertibility: two terms are convertible if they can
be reduced to the same term, using the combination of all four reductions.
This property is decidable in the Calculus of Inductive Constructions. We will
write this as follows:

EIkFt =g5¢Ce t

For instance, the following two terms are convertible, since they can both be
reduced to “3x3*3"

1. let x:=3 in let y:=x*x in y*x
2. (fun z:Z =z*z*z) 3

That convertibility is decidable is a direct consequence of the abstract prop-
erties of reduction: to decide whether ¢ and ¢’ are convertible, it is enough to
compute their normal forms and then to compare these normal forms modulo
a-conversion.

2.5 Types, Sorts, and Universes

Up to this point, we have restricted our examples to a fixed set of atomic
types, nat, Z, bool, and combinations of these types using the arrow construct.
It is important to be able to define new type names and also to be able to
write functions working on arbitrary types, a first step towards polymorphism.
Instead of defining new mechanisms for this, Cog designers have extended the
mechanisms that were already present in typed A-calculus. It is enough to
consider that expressions and types are particular cases of terms, and that all
notions, like typing, declarations, definitions, and the like, should be applicable
to all kinds of terms, whether they are types or expressions. Thus, a new
question arises:

If a type is a term, what is its type?

2.5.1 The Set Sort

In the Calculus of Inductive Constructions, the type of a type is called a sort.
A sort is always an identifier.

The sort Set is one of the predefined sorts of Cogq. It is mainly used to
describe data types and program specifications.

Definition 2 (Specification). Every term whose type is Set is called a spec-
ification.

Definition 3 (Programs). Every term whose type is a specification is called
@ program.

38 2 Types and Expressions

All the types we have considered so far are specifications and, accordingly,
all expressions we have considered are programs. This terminology is slightly
abusive, as we consider values of type nat, for instance, as programs. Being a
total function of type nat—mnat is a specification: we already ensure that such
a function will compute without a problem, terminate, and return a result,
whenever it is given an argument of the right type. Such a specification is
still very weak, but we show ways to describe richer specifications, such as “a
prime number greater than 567347" or “a sorting function” in Chap. 4.

For example, we can use the command Check to verify that the types we
have used are specifications:

Check Z.

Z : Set

Check ((Z—Z)—nat—nat).
(Z— Z)—nat—nat : Set

Since types are terms and they have a type, there must be typing rules that
govern the assignment of a type to a type expression. For atomic types, there
are two ways: either one simply declares a new atomic type or one defines
one, for instance an inductive type as in Chap. 6. For types obtained using
the arrow construct, here is a simplified form of the typing rule:

E,I'-A:8et E, ' B:Set

Prod-Set E, ' A—B:Set

As an example, we can get the judgment Ey,[] F (Z—2Z) —nat—nat : Set by
using the declarations nat : Set and Z : Set and then applying the rule above
three times.

2.5.2 Universes

The Set sort is a term in the Calculus of Inductive Constructions and must in
turn have a type, but this type—itself a term—must have another type. The
Calculus of Inductive Constructions considers an infinite hierarchy of sorts
called universes. This family is formed with types Type (i) for every i in N
and it satisfies the following relations:

Set : Type(i) (for every 1)
Type(i) : Type(j) (if i < j)

The set of terms in the Calculus of Inductive Constructions is then orga-
nized in levels. So far, we have encountered the following categories:

Level 0: programs and basic values, like 0, S, trinomial, my_fun, and so on.

Level 1: specifications and data types, like nat, nat —nat, (Z—Z) —nat—nat,
and so on.

Level 2: the Set sort.

