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1.1 What Is Artificial Intelligence?

The term artificial intelligence stirs emotions. For one thing there 1s our fascination
with intelligence, which seemingly imparts to us humans a special place among life
forms. Questions arise such as “What is intelligence?”, “How can one measure
intelligence?” or “How does the brain work?”. All these questions are meaningful
when trying to understand artificial intelligence. However, the central question for
the engineer, especially for the computer scientist, is the question of the intelligent
machine that behaves like a person, showing intelligent behavior.

The attribute artificial might awaken much different associations. It brings up
fears of intelligent cyborgs. It recalls 1images from science fiction novels. It raises
the question of whether our highest good, the soul, is something we should try to
understand, model, or even reconstruct.

With such different offthand interpretations, 1t becomes difficult to define the term
artificial intelligence or Al stimply and robustly. Nevertheless 1 would like to try,
using examples and historical definitions, to characterize the field of AL In 1955,
John McCarthy, one of the pioneers of Al, was the first to define the term artificial
intelligence, roughly as follows:

The goal of Al 1s to develop machines that behave as though they were intelligent.

To test this definition, the reader might imagine the following scenario. Fifteen
or so small robotic vehicles are moving on an enclosed four by four meter square
surface. One can observe various behavior patterns. Some vehicles form small
groups with relatively little movement. Others move peacefully through the
space and gracefully avoid any collision. Still others appear to follow a leader.
Aggressive behaviors are also observable. Is what we are seeing intelligent
behavior?

According to McCarthy’s definition the aforementioned robots can be described
as intelligent. The psychologist Valentin Braitenberg has shown that this seemingly

© Springer International Publishing AG 2017 1
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Fig. 1.1 Two very simple Braitenberg vehicles and their reactions to a light source
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complex behavior can be produced by very simple electrical circuits [Brag84].
So-called Braitenberg vehicles have two wheels, each of which 1s driven by an
independent electric motor. The speed of each motor 1s influenced by a light sensor
on the front of the vehicle as shown in Fig. 1.1. The more light that hits the sensor,
the faster the motor runs. Vehicle 1 in the left part of the figure, according to its
configuration, moves away from a point light source. Vehicle 2 on the other hand
moves toward the light source. Further small modifications can create other
behavior patterns, such that with these very simple vehicles we can realize the
impressive behavior described above.

Clearly the above definition 1s insufficient because Al has the goal of solving
difficult practical problems which are surely too demanding for the Braitenberg
vehicle. In the Encyclopedia Britannica [Bri91] one finds a Definition that goes like:

Al 1s the ability of digital computers or computer controlled robots to solve problems that
are normally associated with the higher intellectual processing capabilities of humans ..

But this definition also has weaknesses. It would admit for example that a
computer with large memory that can save a long text and retrieve it on demand
displays intelligent capabilities, for memorization of long texts can certainly be
considered a higher intellectual processing capability of humans, as can for
example the quick multiplication of two 20-digit numbers. According to this
definition, then, every computer 1s an Al system. This dilemma 1s solved elegantly
by the following definition by Elaine Rich [Ric83]:

Artificial Intelligence 1s the study of how to make computers do things at which, at the
moment, people are better.

Rich, tersely and concisely, characterizes what Al researchers have been doing for
the last 50 years. Even 1n the year 2050, this definition will be up to date.

Tasks such as the execution of many computations in a short amount of time are
the strong points of digital computers. In this regard they outperform humans by
many multiples. In many other areas, however, humans are far superior to
machines. For instance, a person entering an unfamiliar room will recognize the
surroundings within fractions of a second and, if necessary, just as swiftly make
decisions and plan actions. To date, this task is too demanding for autonomous'

' An autonomous robot works independently, without manual support, in particular without remote
control.
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robots. According to Rich’s definition, this is therefore a task for Al In fact,
research on autonomous robots 1s an important, current theme in Al. Construction
of chess computers, on the other hand, has lost relevance because they already play
at or above the level of grandmasters.

It would be dangerous, however, to conclude from Rich’s definition that Al 1s
only concerned with the pragmatic implementation of intelligent processes. Intel-
ligent systems, in the sense of Rich’s definition, cannot be built without a deep
understanding of human reasoning and intelligent action 1in general, because of
which neuroscience (see Sect. 1.1.1) i1s of great importance to Al. This also shows
that the other cited definitions reflect important aspects of Al

A particular strength of human intelligence 1s adaptivity. We are capable of
adjusting to various environmental conditions and change our behavior accordingly
through learning. Precisely because our learning ability 1s so vastly superior to that

of computers, machine learning is, according to Rich’s definition, a central subfield
of AL

1.1.1 Brain Science and Problem Solving

Through research of intelligent systems we can try to understand how the human
brain works and then model or simulate it on the computer. Many ideas and
principles in the field of neural networks (see Chap. 9) stem from brain science with
the related field of neuroscience.

A very different approach results from taking a goal-oriented line of action,
starting from a problem and trying to find the most optimal solution. How humans
solve the problem is treated as unimportant here. The method, in this approach, is
secondary. First and foremost 1s the optimal intelligent solution to the problem.
Rather than employing a fixed method (such as, for example, predicate logic) Al
has as its constant goal the creation of intelligent agents for as many different tasks
as possible. Because the tasks may be very different, 1t 1s unsurprising that the
methods currently employed in Al are often also quite different. Similar to medi-
cine, which encompasses many different, often life-saving diagnostic and therapy
procedures, Al also offers a broad palette of effective solutions for widely varying
applications. For mental inspiration, consider Fig. 1.2 on page 4. Just as in medi-
cine, there 1s no universal method for all application areas of Al, rather a great
number of possible solutions for the great number of various everyday problems,
big and small.

Cognitive science 1s devoted to research into human thinking at a somewhat
higher level. Similarly to brain science, this field furnishes practical Al with many
important ideas. On the other hand, algorithms and implementations lead to further
important conclusions about how human reasoning functions. Thus these three
helds benefit from a fruitful interdisciplinary exchange. The subject of this book,
however, 1s primarily problem-oriented Al as a subdiscipline of computer science.

There are many interesting philosophical questions surrounding intelligence and
artificial intelligence. We humans have consciousness; that 1s, we can think about
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Fig. 1.2 A small sample of the solutions offered by Al

ourselves and even ponder that we are able to think about ourselves. How does
consciousness come to be? Many philosophers and neurologists now believe that
the mind and consciousness are linked with matter, that 1s, with the brain. The

Copyrighted material



1.1 What Is Artificial Intelligence? 5

question of whether machines could one day have a mind or consciousness could
at some point 1n the future become relevant. The mind-body problem in particu-
lar concerns whether or not the mind 1s bound to the body. We will not discuss
these questions here. The interested reader may consult [Spe98, Spe97] and
1s invited, 1n the course of Al technology studies, to form a personal opinion about
these questions.

1.1.2 The Turing Test and Chatterbots

Alan Turing made a name for himself as an early pioneer of Al with his definition
of an intelligent machine, in which the machine in question must pass the following
test. The test person Alice sits 1n a locked room with two computer terminals. One
terminal 1s connected to a machine, the other with a non-malicious person Bob.
Alice can type questions into both terminals. She i1s given the task of deciding, after
five minutes, which terminal belongs to the machine. The machine passes the test if
it can trick Alice at least 30% of the time [Tur50].

While the test 1s very interesting philosophically, for practical Al, which deals
with problem solving, it 1s not a very relevant test. The reasons for this are similar to
those mentioned above related to Braitenberg vehicles (see Exercise 1.3 on
page 21).

The Al pioneer and social critic Joseph Weizenbaum developed a program
named Eliza, which 1s meant to answer a test subject’s questions like a human
psychologist [Wei166]. He was in fact able to demonstrate success in many cases.
Supposedly his secretary often had long discussions with the program. Today in the
internet there are many so-called chatterbots, some of whose 1nitial responses are
quite impressive. After a certain amount of time, however, their artificial nature
becomes apparent. Some of these programs are actually capable of learning, while
others possess extraordinary knowledge of various subjects, for example geography
or software development. There are already commercial applications for chatterbots
in online customer support and there may be others in the field of e-learning. It 1s
conceivable that the learner and the e-learning system could communicate through a
chatterbot. The reader may wish to compare several chatterbots and evaluate their
intelligence 1in Exercise 1.1 on page 20.

1.2 The History of Al

Al draws upon many past scientific achievements which are not mentioned here, for
Al as a science 1n 1ts own right has only existed since the middle of the Twentieth
Century. Table 1.1 on page 6, with the most important AI milestones, and a
graphical representation of the main movements of Al in Fig. 1.3 on page 8
complement the following text.
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Table 1.1 Milestones in the development of Al from Gddel to today

1931

1937

1943

1950

1951

1955

1956

19358

1959
1961

1963
1965
1966
1969

1972

1976

1981

1982

1986

1990

The Austrian Kurt Godel shows that in first-order predicate logic all true statements
are derivable [God31a]. In higher-order logics, on the other hand, there are true
statements that are unprovable [G6d31b]. (In [GOd31b] Godel showed that predicate
logic extended with the axioms of arithmetic 1s incomplete.)

Alan Turing points out the limits of intelligent machines with the halting
problem [Tur37/].

McCulloch and Pitts model neural networks and make the connection to propositional
logic.

Alan Turing defines machine intelligence with the Turing test and writes about
learning machines and genetic algorithms [Tur50].

Marvin Minsky develops a neural network machine. With 3000 vacuum tubes he
simulates 40 neurons.

Arthur Samuel (IBM) builds a learning checkers program that plays better than its
developer [Sam59].

McCarthy organizes a conference in Dartmouth College. Here the name Artificial
Intelligence was first introduced.

Newell and Simon of Carnegie Mellon University (CMU) present the Logic Theorist,
the first symbol-processing computer program [NSS83].

McCarthy invents at MIT (Massachusetts Institute of Technology) the high-level
language LISP. He writes programs that are capable of modifying themselves.

Gelernter (IBM) builds the Geometry Theorem Prover.

The General Problem Solver (GPS) by Newell and Simon imitates human
thought [NS61].

McCarthy founds the Al Lab at Stanford University.
Robinson invents the resolution calculus for predicate logic [Rob65] (Sect. 3.3).

Weizenbaum’s program Eliza carries out dialog with people in natural

language [Wei66] (Sect. 1.1.2).

Minsky and Papert show 1n their book Perceptrons that the perceptron, a very simple
neural network, can only represent linear functions [MP69] (Sect. 1.1.2).

French scientist Alain Colmerauer invents the logic programming language PROLOG
(Chap. J).

British physician de Dombal develops an expert system tor diagnosis of acute
abdominal pain [dDLS+72]. It goes unnoticed in the mainstream Al community of the
time (Sect. 7.3).

Shortliffe and Buchanan develop MYCIN, an expert system for diagnosis of infectious
diseases, which 1s capable of dealing with uncertainty (Chap. 7).

Japan begins, at great expense, the “Fifth Generation Project” with the goal of building
a powerful PROLOG machine.

R1, the expert system for configuring computers, saves Digital Equipment Corporation
40 million dollars per year [McD82].

Renaissance of neural networks through, among others, Rumelhart, Hinton and
Sejnowskil [RM86]. The system Nettalk learns to read texts aloud [SR86] (Chap. 9).
Pearl [Pea88], Cheeseman [Che85], Whittaker, Spiegelhalter bring probability theory
into Al with Bayesian networks (Sect. 7.4). Multi-agent systems become popular.
(continued)
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Table 1.1 (continued)

1992 Tesauros TD-gammon program demonstrates the advantages of reinforcement
learning.
1993  Worldwide RoboCup initiative to build soccer-playing autonomous robots [Robal.

1995 From statistical learning theory, Vapnik develops support vector machines, which are
very important today.

1997 IBM’s chess computer Deep Blue defeats the chess world champion Gary Kasparov.
First international RoboCup competition in Japan.

2003 The robots in RoboCup demonstrate impressively what Al and robotics are capable of
achieving.

2006  Service robotics becomes a major Al research area.

2009 | First Google self-driving car drives on the California freeway.

2010 | Autonomous robots begin to improve their behavior through learning.

2011 IBM’s “Watson™ beats two human champions on the television game show
“Jeopardy!”. Watson understands natural language and can answer difficult questions
very quickly (Sect. 1.4).

2015 Daimler premiers the first autonomous truck on the Autobahn.
Google self-driving cars have driven over one million miles and operate within cities.
Deep learning (Sect. 11.9) enables very good image classification.
Paintings in the style of the Old Masters can be automatically generated with deep
learning. Al becomes creative!

2016 | The Go program AlphaGo by Google DeepMind [SHM+16] beats the European
champion 5:0 1n January and Korean Lee Sedol, one of the world’s best Go players,
4:1 in March. Deep learning techniques applied to pattern recognition, as well as
reinforcement learning and Monte Carlo tree search lead to this success.

1.2.1 The First Beginnings

In the 1930s Kurt Godel, Alonso Church, and Alan Turing laid important foundations
for logic and theoretical computer science. Of particular interest for Al are Godel’s
theorems. The completeness theorem states that first-order predicate logic 1s com-
plete. This means that every true statement that can be formulated n predicate logic 1s
provable using the rules of a formal calculus. On this basis, automatic theorem provers
could later be constructed as implementations of formal calculi. With the incom-
pleteness theorem, Godel showed that in higher-order logics there exist true state-
ments that are 1_1n]:n'tzw':able.2 With this he uncovered painful limits of formal systems.

Alan Turing’s proof of the undecidability of the halting problem also falls into
this time period. He showed that there 1s no program that can decide whether a
given arbitrary program (and its respective input) will run in an infinite loop. With

“Higher-order logics are extensions of predicate logic, in which not only variables, but also
function symbols or predicates can appear as terms in a quantification. Indeed, Godel only
showed that any system that is based on predicate logic and can formulate Peano arithmetic is
incomplete.
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Fig. 1.3 History of the various Al areas. The width of the bars indicates prevalence of the
method’s use

this Turing also identified a limit for intelligent programs. It follows, for example,
that there will never be a universal program verification system.”

In the 1940s, based on results from neuroscience, McCulloch, Pitts and Hebb
designed the first mathematical models of neural networks. However, computers at
that time lacked sufficient power to simulate simple brains.

1.2.2 Logic Solves (Almost) All Problems

Al as a practical science of thought mechanization could of course only begin once
there were programmable computers. This was the case in the 1950s. Newell and
Simon introduced Logic Theorist, the first automatic theorem prover, and thus also
showed that with computers, which actually only work with numbers, one can also
process symbols. At the same time McCarthy introduced, with the language LLISP,
a programming language specially created for the processing of symbolic
structures. Both of these systems were introduced in 1956 at the historic Dartmouth
Conference, which 1s considered the birthday of Al

In the US, LISP developed into the most important tool for the implementation
of symbol-processing Al systems. Thereafter the logical inference rule known as
resolution developed into a complete calculus for predicate logic.

g - . : : . :
This statement applies to “total correctness”, which implies a proof of correct execution as well as
a proof of termination for every valid input.
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In the 1970s the logic programming language PROLOG was introduced as the
European counterpart to LISP. PROLOG ofters the advantage of allowing direct
programming using Horn clauses, a subset of predicate logic. Like LISP, PROLOG
has data types for convenient processing of lists.

Until well into the 1980s, a breakthrough spirit dominated Al, especially among
many logicians. The reason for this was the string of impressive achievements in
symbol processing. With the Fifth Generation Computer Systems project in Japan
and the ESPRIT program in Europe, heavy investment went into the construction of
intelligent computers.

For small problems, automatic provers and other symbol-processing systems
sometimes worked very well. The combinatorial explosion of the search space,
however, defined a very narrow window for these successes. This phase of Al was
described 1in [RN10] as the “Look, Ma, no hands!” era.

Because the economic success of Al systems fell short of expectations, funding
for logic-based Al research in the United States fell dramatically during the 1980s.

1.2.3 The New Connectionism

During this phase of disillusionment, computer scientists, physicists, and Cognitive
scientists were able to show, using computers which were now sufficiently pow-
erful, that mathematically modeled neural networks are capable of learning using
training examples, to perform tasks which previously required costly programming.
Because of the fault-tolerance of such systems and their ability to recognize pat-
terns, considerable successes became possible, especially in pattern recognition.
Facial recognition in photos and handwriting recognition are two example appli-
cations. The system Nettalk was able to learn speech from example texts [SRE6].
Under the name connectionism, a new subdiscipline of Al was born.

Connectionism boomed and the subsidies flowed. But soon even here feasibility
limits became obvious. The neural networks could acquire impressive capabilities,
but 1t was usually not possible to capture the learned concept in simple formulas or
logical rules. Attempts to combine neural nets with logical rules or the knowledge
of human experts met with great difficulties. Additionally, no satisfactory solution
to the structuring and modularization of the networks was found.

1.2.4 Reasoning Under Uncertainty

Al as a practical, goal-driven science searched for a way out of this crisis. One
wished to unite logic’s ability to explicitly represent knowledge with neural net-
works’ strength in handling uncertainty. Several alternatives were suggested.

The most promising, probabilistic reasoning, works with conditional probabil-
ities for propositional calculus formulas. Since then many diagnostic and expert
systems have been built for problems of everyday reasoning using Bayesian
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networks. The success of Bayesian networks stems from their intuitive compre-
hensibility, the clean semantics of conditional probability, and from the
centuries-old, mathematically grounded probability theory.

The weaknesses of logic, which can only work with two truth values, can be
solved by fuzzy logic, which pragmatically introduces infinitely many values
between zero and one. Though even today its theoretical foundation 1s not totally
firm, 1t 1S being successfully utilized, especially in control engineering.

A much different path led to the successful synthesis of logic and neural net-
works under the name hybrid systems. For example, neural networks were
employed to learn heuristics for reduction of the huge combinatorial search space 1n
proof discovery [SE90].

Methods of decision tree learning from data also work with probabilities.
Systems like CART, ID3 and C4.5 can quickly and automatically build very
accurate decision trees which can represent propositional logic concepts and then
be used as expert systems. Today they are a favorite among machine learning
techniques (Sect. 8.4).

Since about 1990, data mining has developed as a subdiscipline of Al in the area
of statistical data analysis for extraction of knowledge from large databases. Data
mining brings no new techniques to Al, rather it introduces the requirement of using
large databases to gain explicit knowledge. One application with great market
potential 1s steering ad campaigns of big businesses based on analysis of many
millions of purchases by their customers. Typically, machine learning techniques
such as decision tree learning come into play here.

1.2.5 Distributed, Autonomous and Learning Agents

Distributed artificial intelligence, DAL has been an active area research since about
1985. One of its goals 1s the use of parallel computers to increase the efficiency of
problem solvers. It turned out, however, that because of the high computational
complexity of most problems, the use of “intelligent” systems 1s more beneficial
than parallelization 1tself.

A very different conceptual approach results from the development of autonomous
software agents and robots that are meant to cooperate like human teams. As with the
aforementioned Braitenberg vehicles, there are many cases in which an individual
agent 18 not capable of solving a problem, even with unlimited resources. Only the
cooperation of many agents leads to the intelligent behavior or to the solution of a
problem. An ant colony or a termite colony 1s capable of erecting buildings of very
high architectural complexity, despite the fact that no single ant comprehends how the
whole thing fits together. This 1s similar to the situation of provisioning bread for a
large city like New York [RN10]. There 1s no central planning agency for bread, rather
there are hundreds of bakers that know their respective areas of the city and bake the
appropriate amount of bread at those locations.

Active skill acquisition by robots 1s an exciting area of current research. There
are robots today, for example, that independently learn to walk or to perform
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various motorskills related to soccer (Chap. 10). Cooperative learning of multiple
robots to solve problems together 1s still in its infancy.

1.2.6 Al Grows Up

The above systems offered by Al today are not a universal recipe, but a workshop
with a manageable number of tools for very different tasks. Most of these tools are
well-developed and are available as finished software libraries, often with conve-
nient user interfaces. The selection of the right tool and its sensible use in each
individual case 1s left to the Al developer or knowledge engineer. Like any other
artisanship, this requires a solid education, which this book 1s meant to promote.

More than nearly any other science, Al 1s interdisciplinary, for it draws upon
interesting discoveries from such diverse fields as logic, operations research,
statistics, control engineering, 1image processing, linguistics, philosophy, psychol-
ogy, and neurobiology. On top of that, there 1s the subject area of the particular
application. To successfully develop an Al project 1s therefore not always so
simple, but almost always extremely exciting.

1.2.7 The Al Revolution

Around the year 2010 after about 25 years of research on neural networks, scientists
could start harvesting the fruits of their research. The very powerful deep learning
networks can for example learn to classify images with very high arruracy. Since
image classification 1s of crucial importance for all types of smart robots, this initiated
the Al revolution which 1n turn leads to smart self-driving cars and service robots.

1.3 Al and Society

There have been many scientific books and science fiction novels written on all
aspects of this subject. Due to great advances in Al research, we have been on the
brink of the age of autonomous robots and the Internet of Things since roughly
2005. Thus we are increasingly confronted with Al in everyday life. The reader,
who may soon be working as an Al developer, must also deal with the social impact
of this work. As an author of a book on Al techniques, I have the crucial task of
examining this topic. I would like to deal with some particularly important aspects
of Al which are of great practical relevance for our lives.

1.3.1 Does Al Destroy Jobs?

In January 2016, the World Econonic Forum published a study [SS16], frequently
cited by the German press, predicting that “industry 4.0 ” would destroy over five
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million jobs in the next five years. This forecast 1s hardly surprising because auto-
mation in factories, offices, administration, transportation, in the home and in many
other areas has led to continually more work being done by computers, machines and
robots. Al has been one of the most important factors 1n this trend since about 2010.

Presumably, the majority of people would gladly leave physically hard, dirty and
unhealthy jobs and tasks to machines. Thus automation 1s a complete blessing for
humanity, assuming i1t does not result in negative side effects, such as harm to the
environment. Many of the aforementioned unpleasant jobs can be done faster, more
precisely, and above all cheaper by machines. This seems almost like a trend
towards paradise on Earth, where human beings do less and less unpleasant work
and have correspondingly more time for the good things 1n life. This seems almost
like a trend towards paradise on earth. We have to do less and less unpleasant work
and 1 turn have more time for the good things in life.* All the while, we would
enjoy the same (or potentially even increasing) prosperity, for the economy would
not employ these machines if they did not markedly raise productivity.

Unfortunately we are not on the road to paradise. For several decades, we have
worked more than 40 hours per week, have been stressed, complained ot burnout
and other sicknesses, and suffered a decline in real wages. How can this be, if
productivity is continually increasing? Many economists say that the reason for this
1s competitive pressure. In an effort to compete and deliver the lowest priced goods
to market, companies need to lower production costs and thus lay oft workers. This
results in the aforementioned unemployment. In order to avoid a drop in sales
volume due to reduced prices, more products need to be manufactured and sold.
The economy must grow!

[f the economy continues to grow 1n a country in which the population 1s no
longer growing (as 1s the case in most modern industrialized countries), each citizen
must necessarily consume more. For that to happen, new markets must be created,’
and marketing has the task of convincing us that we want the new products.
This is—allegedly—the only way to “sustainably” ensure prosperity. Apparently
there seems to be no escape from this growth/consumption spiral. This has two fatal
consequences. For one thing, this increase in consumption should make people
happier, but it 1s having quite the opposite effect: mental illness 1s increasing.

Even more obvious and, above all, fatal, are economic growth’s effects on our
living conditions. It i1s no secret that the earth’s growth limit has long been excee-
ded [MMZM72, Ranl2], and that we are overexploiting nature’s nonrenewable
resources. We are therefore living at the expense of our children and grandchildren,
who consequently will have poorer living conditions than we have today. It 1s also
known that every additional dollar of economic growth 1s an additional burden on
the environment—tfor example through additional CO, concentration in the atmo-

sphere and the resulting climate change [Pael6]. We are destroying our own basis of

*Those of us, such as scientists, computer scientists and engineers, who enjoy it may of course
continue our work.

5 . - . . : :
"Many EU and German Ministry of Education and Research funding programs for example require
that scientists who submit proposals show evidence that their research will open up new markets.
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existence. Thus it 1s obvious that we should abandon this path of growth for the sake
of a livable future. But how?

Let’s think back to the road to paradise that Al 1s supposedly preparing for us.
Apparently, as we practice it, it does not lead to paradise. Understanding this
problem and finding the right path is one of the central tasks of today. Because of
inherent complexities, this problem can not be fully dealt with 1n an introductory Al
textbook. However, I would like to provide the reader with a little food for thought.

Although productivity 1s growing steadily in almost all areas of the economy,
workers are required to work as hard as ever. They do not benefit from the increase
in productivity. So, we must ask, where do the profits go? Evidently not to the
people to whom they are owed, 1.e. the workers. Instead, part of the profits 1s spent
on mvestment and thus on further growth and the rest 1s taken by the capital
owners, while employees work the same hours tor declining real wages [Pik14].
This leads to ever-increasing capital concentration among a few rich individuals and
private banks, while on the other hand increasing poverty around the world 1s
creating political tensions that result in war, expulsion and flight.

What 1s missing 1s a fair and just distribution of profits. How can this be
achieved? Politicians and economists are continually trying to optimize our eco-
nomic system, but politics has not offered a sustainable solution, and too few
economists are investigating this highly exciting economic question. Obviously the
attempt to optimize the parameters of our current capitalist economic system has not
lead to a more equitable distribution of wealth, but to the opposite.

This is why economists and financial scientists must begin to question the
system and look for alternatives. We should ask ourselves how to change the rules
and laws of the economy so that all people profit from increased productivity.
A growing community of economists and sustainability scientists have offered
interesting solutions, a few of which I will briefly describe here.

Problem Number One is the creation of fiat money by the banks. New money—
which i1s needed, among other things, to keep our growing economy going—is now
being created by private banks. This is made possible by the fact that banks have to
own only a small part, namely the minimum cash reserve ratio, of the money they
give as loans. In the EU 1n 2016, the minimum cash reserve ratio 1s one percent.

States then borrow this money from private banks in the form of government
bonds and thus fall into debt. This 1s how our current government debt crises have
developed. This problem can be solved easily by prohibiting creation of money by
the banks by increasing the minimum cash reserve ratio to 100%. State central banks
will then get back the monopoly on creating money, and the newly created money
can be used directly by the state for the purposes of social welfare. It should be
evident that this simple measure would significantly ease the problem of public debit.

Further interesting components of such an economic reform could be the
conversion of the current interest rate system to the so-called natural economic order
|GP58], and the introduction of the “economy for the common good™ [Fell4] and the
biophysical economy [GKO09, Kuml1]. The practical implementation of the econ-
omy for the common good would involve a tax reform, the most important elements
of which would be the abolition of the income tax and substantially increased value
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added tax on energy and resource consumption. We would thus arrive at a highly
prosperous, more sustainable human world with less environmental damage and
more local trade. The reader may study the literature and assess whether the 1deas
quoted here are interesting and, if necessary, help to make the required changes.
To conclude this section, I would like to quote the famous physicist Stephen
Hawking. In a community-driven interview on www.reddit.com he gave the following
answer to whether he had any thoughts about unemployment caused by automation:

If machines produce everything we need, the outcome will depend on how things are
distributed. Everyone can enjoy a life of luxurious leisure if the machine-produced
wealth is shared, or most people can end up miserably poor if the machine-owners
successfully lobby against wealth redistribution. So far, the trend seems to be toward the
second option, with technology driving ever-increasing inequality.

Another Hawking quotation is also fitting. During the same interview,” to an Al
professor’s question about which moral ideas he should impart to his students,
Hawking answered:

... Please encourage your students to think not only about how to create Al, but also about
how to ensure its beneficial use.

As a consequence we should question the reasonableness of Al applications such as
the export of intelligent cruise missiles to “allied” Arab states, the deployment of
humanoid combat robots, etc.

1.3.2 Al and Transportation

In the past 130 years, automotive industry engineers have made great strides. In
Germany, one out of every two people owns their own car. These cars are highly
reliable. This makes us very mobile and we use this very convenient mobility in work,
everyday life and leisure. Moreover, we are dependent on 1t. Today, we can not get by
without a motor vehicle, especially 1n rural areas with weak public transportation
infrastructure, as for instance in Upper Swabia, where the author and his students live.

The next stage of increased convenience in road transportation 1s now imminent.
In a few years, we will be able to buy electric self-driving cars, 1.e. robotic cars,
which will autonomously bring us to almost any destination. All passengers in the
robotic car would be able to read, work or sleep during the trip. This is possible on
public transit already, but passengers in a robotic car would be able to do this at any
time and on any route.

Autonomous vehicles that can operate independently could also travel without
passengers. This will lead to yet another increase in convenience: robotic taxis. Via a
smartphone app, we will be able to order the optimal taxi, in terms of size and
equipment, for any conceivable transportation purpose. We will be able to choose
whether we want to travel alone 1n the taxi or whether we are willing to share a ride with

®https://www.reddit.com/user/Prof-Stephen-Hawking.
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other passengers. We will not need our own car anymore. All associated responsibil-
ities and expenses, such as refueling, technical service, cleaning, searching for parking,
buying and selling, garage rent, etc. are void, which saves us money and effort.

Besides the immediate gains in comfort and convenience, robotic cars will offer
other significant advantages. For example, according to a McKinsey study [GHZ14],
we will need far fewer cars and, above all, far fewer parking places in the era of
self-driving cars, which will lead to an immense reduction 1n resource consumption.
According to a Lawrence Berkeley National Laboratory study [GS15], electric
self-driving cars will cause a 90% reduction in green house emissions per passenger
mile due to the vehicles’ energy efficiency and the optimized fit between the vehicle
and 1ts purpose. Due to their optimal resource utilization, robotic taxis will be much
more environmentally friendly than, for example, heavy buses, which often run at
low capacity, especially 1n rural areas. Overall, robot taxis will contribute dramati-
cally to energy savings and thus, among other things, to a significant improvement in
CO; and climate problems.

Passenger safety will be much higher than 1t 1s today. Experts currently estimate
future accident rates between zero and ten percent compared to today. Emotional
driving (“road rage”), distracted driving and driving under the influence of drugs
and alcohol will no longer exist.

Taxi drivers losing their jobs 1s often cited as a disadvantage of robotic cars. It is
almost certain that there will no longer be taxi drivers from about 2030 onwards,
but that 1s not necessarily a problem. As explained in the previous section, our
society just needs to deal with the newly gained productivity properly.

In addition to the many advantages mentioned above, robotic cars have two critical
problems. Firstly, the so-called rebound effect will nullify at least some of the gains in
resource, energy and time savings. Shorter driving times as well as more comfortable
and cheaper driving will tempt us to drive more. We can only deal with this problem
by rethinking our attitude towards consumption and quality of life. Do we have to use
the entire time saved for more activities? Here we are all invited to critical reflection.

Another problem we should take seriously is that the robotic cars will need to be
networked. In principle, this gives hackers and terrorists the ability to access and
manipulate the vehicles’ controls through security holes in their network protocols.
If a hacker manages to do this once, he could repeat the attack on a grand scale,
potentially bringing entire vehicle fleets to a halt, causing accidents, spying on
vehicle occupants, or initiating other criminal actions. Here, as in other areas such
as home automation and the Internet of Things, IT security experts will be needed
to ensure the highest possible security guarantees using tools of the trade such as
cryptographic methods. By the way, improved machine learning algorithms will be
useful 1in detecting hacking attacks.

1.3.3 Service Robotics

In a few years, shortly after selt-driving cars, the next bit of consumption bait on the
shelves of electronics stores will be service robots. Recently the Google subsidiary
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Fig. 1.4 The assistance
robot Marvin, deployed in the
AsRoBe research project

Boston Dynamics provided an impressive example in its humanoid robot Atlas.’
Like the new cars, service robots offer a large gain in comfort and convenience
which we would probably like to enjoy. One need only imagine such a robot
dutifully cleaning and scrubbing after a party from night until morning without a
grumble. Or think of the help that an assistance robot like Marvin, shown in
Fig. 1.4, could provide to the elf.:lerlyﬂ or to people with disabilities [SPR+16].

In contrast to the robotic cars, however, these benefits come with costlier
trade-offs. Completely new markets would be created, more natural resources and
more energy would be consumed, and it 1s not even certain that people’s lives
would be simplified by the use of service robots 1n all areas. One of the first
applications for robots like Atlas, developed by Boston Dynamics in contract with
Google, will probably be military combat.

It 1s therefore all the more important that, before these robots come to market,
we engage 1n social discourse on this topic. Science fiction films, such as
“Ex Machina” (2015) with its female androids, the chilling “I, Robot” (2004) or the
humorous “Robot and Frank™ (2012), which depicts the pleasant side of a service
robot as an old man’s helper, can also contribute to such a discussion.

"https://youtu.be/rVInMGQgDKY..

®In the coming demographic shift, assistance robots could become important for the elderly and
thus for our whole society.
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1.4 Agents

Although the term infelligent agents 1s not new to Al only in recent years has it
gained prominence through [RN10], among others. Agent denotes rather generally a
system that processes information and produces an output from an input. These
agents may be classified in many different ways.

In classical computer science, software agents are primarily employed
(Fig. 1.5). In this case the agent consists of a program that calculates a result from
user input.

In robotics, on the other hand, hardware agents (also called autonomous robots)
are employed, which additionally have sensors and actuators at their disposal
(Fig. 1.6). The agent can perceive its environment with the sensors. With the
actuators 1t carries out actions and changes its environment.

With respect to the intelligence of the agent, there 1s a distinction between reflex
agents, which only react to input, and agents with memory, which can also include
the past in their decisions. For example, a driving robot that through its sensors
knows 1ts exact position (and the time) has no way, as a reflex agent, of determining
its velocity. If, however, 1t saves the position, at short, discrete time steps, it can
thus easily calculate its average velocity 1n the previous time interval.

If a reflex agent 1s controlled by a deterministic program, it represents a function
of the set of all inputs to the set of all outputs. An agent with memory, on the other
hand, 1s 1n general not a function. Why? (See Exercise 1.5 on page 21.) Reflex
agents are sufficient in cases where the problem to be solved involves a Markov
decision process. This 1s a process in which only the current state 1s needed to
determine the optimal next action (see Chap. 10).

A mobile robot which should move from room 112 to room 179 in a building
takes actions different from those of a robot that should move to room 105. In other
words, the actions depend on the goal. Such agents are called goal-based.
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Fig. 1.6 A hardware agent
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Example 1.1 A spam filter is an agent that puts incoming emails into wanted or
unwanted (spam) categories, and deletes any unwanted emails. Its goal as a goal-
based agent 1s to put all emails 1n the right category. In the course of this
not-so-simple task, the agent can occasionally make mistakes. Because 1ts goal 1s to
classify all emails correctly, it will attempt to make as few errors as possible.
However, that is not always what the user has in mind. Let us compare the fol-
lowing two agents. Out of 1,000 emails, Agent 1 makes only 12 errors. Agent 2 on
the other hand makes 38 errors with the same 1,000 emails. Is it therefore worse
than Agent 1? The errors of both agents are shown in more detail in the following
table, the so-called “confusion matrix’:

Agent I: Agent 2:
correct class correct class
wanted spam wanted spam
spam filter ~wanted 189 1 spam filter 'wanted 200 @ 38
decides spam 11 799 | decides spam 0 762

Agent 1 1n fact makes fewer errors than Agent 2, but those few errors are severe
because the user loses 11 potentially important emails. Because there are in this
case two types of errors of differing severity, each error should be weighted with the
appropriate cost factor (see Sect. 7.3.5 and Exercise 1.7 on page 21).

The sum of all weighted errors gives the total cost caused by erroneous
decisions.The goal of a cost-based agent 1s to minimize the cost of erroneous
decisions in the long term, that 1s, on average. In Sect. 7.3 we will become
familiar with the medical diagnosis system LEXMED as an example of a
cost-based agent.

Analogously, the goal of a utility-based agent 1s to maximize the utility derived
from correct decisions 1n the long term, that is, on average. The sum of all decisions
weighted by their respective utility factors gives the total utility.

Of particular interest in Al are Learning agents, which are capable of changing
themselves given training examples or through positive or negative feedback, such
that the average utility of their actions grows over time (see Chap. 8).

As mentioned in Sect. 1.2.5, distributed agents are increasingly coming into use,
whose ntelligence are not localized in one agent, but rather can only be seen
through cooperation of many agents.

The design of an agent is oriented, along with its objective, strongly toward its
environment, or alternately its picture of the environment, which strongly depends
on it sensors. The environment 1s observable if the agent always knows the complete
state of the world. Otherwise the environment is only partially observable. If an
action always leads to the same result, then the environment 1S deferministic.
Otherwise it 1S nondeterministic. In a discrete environment only finitely many
states and actions occur, whereas a continuous environment boasts infinitely many
states or actions.
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1.5 Knowledge-Based Systems

An agent 1s a program that implements a mapping from perceptions to actions. For
simple agents this way of looking at the problem 1s sufficient. For complex
applications in which the agent must be able to rely on a large amount of infor-
mation and 1s meant to do a difficult task, programming the agent can be very costly
and unclear how to proceed. Here Al provides a clear path to follow that will
greatly simplify the work.

First we separate knowledge from the system or program, which uses the
knowledge to, for example, reach conclusions, answer queries, or come up with a
plan. This system 1s called the inference mechanism. The knowledge 1s stored in
a knowledge base (KB). Acquisition of knowledge in the knowledge base 1s
denoted Knowledge Engineering and 1s based on various knowledge sources such
as human experts, the knowledge engineer, and databases. Active learning
systems can also acquire knowledge through active exploration of the world (see
Chap. 10). In Fig. 1.7 the general architecture of knowledge-based systems 1s
presented.

Moving toward a separation of knowledge and inference has several crucial
advantages. The separation of knowledge and inference can allow inference
systems to be implemented 1n a largely application-independent way. For example,
application of a medical expert system to other diseases 1s much easier by replacing
the knowledge base rather than by programming a whole new system.

Through the decoupling of the knowledge base from inference, knowledge can
be stored declaratively. In the knowledge base there 1s only a description of the
knowledge, which 1s independent from the inference system in use. Without this
clear separation, knowledge and processing of inference steps would be interwoven,
and any changes to the knowledge would be very costly.

knowledge - knowledge knowledge-

] = =g data . user
sources : acquisition ; ; processing
knowledge engineer ' '
expert
pd
knowledge
engineering
knowledge base | : auety
KB f : -
answer

machine
learning

Fig. 1.7 Structure of a classic knowledge-processing system
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Formal language as a convenient interface between man and machine lends itself
to the representation of knowledge in the knowledge base. In the following chapters
we will get to know a whole series of such languages. First, in Chaps. 2 and 3 there
are propositional calculus and first-order predicate logic (PL1). But other for-
malisms such as probabilistic logic and decision trees are also presented. We start
with propositional calculus and the related inference systems. Building on that, we
will present predicate logic, a powerful language that 1s accessible by machines and
very important in Al

As an example for a large scale knowledge based system we want to refer to
the software agent “Watson”. Developed at IBM together with a number of
universities, Watson 1s a question answering program, that can be fed with clues
given 1n natural language. It works on a knowledge base comprising four terabytes
of hard disk storage, including the full text of Wikipedia [FNA+09]. Watson was
developed within IBM’s DeepQA project which 1s characterized in [Deell] as
follows:

The DeepQA project at IBM shapes a grand challenge in Computer Science that aims to
illustrate how the wide and growing accessibility of natural language content and the
integration and advancement of Natural Language Processing, Information Retrieval,
Machine Learning, Knowledge Representation and Reasoning, and massively parallel
computation can drive open-domain automatic Question Answering technology to a point
where it clearly and consistently rivals the best human performance.

In the U.S. television quiz show “Jeopardy!”, in February 2011, Watson deteated
the two human champions Brad Rutter and Ken Jennings in a two-game,
combined-point match and won the one million dollar price. One of Watson’s
particular strengths was its very fast reaction to the questions with the result that
Watson often hit the buzzer (using a solenoid) faster than its human competitors and
then was able to give the first answer to the question.

The high performance and short reaction times of Watson were due to an
implementation on 90 IBM Power 750 servers, each of which contains 32
processors, resulting in 2880 parallel processors.

1.6 EXxercises

Exercise 1.1 Test some of the chatterbots available on the internet. Start for
example with www.hs-weingarten.de/ ~ ertel/aibook 1n the collection of links under
Turingtest/Chatterbots, or at www.simonlaven.com or www.alicebot.org. Write
down a starting question and measure the time 1t takes, for each of the various
programs, until you know for certain that i1t 1s not a human.

# % Exercise 1.2 At www.pandorabots.com you will find a server on which you can
build a chatterbot with the markup language AIML quite easily. Depending on
your interest level, develop a simple or complex chatterbot, or change an
existing one.
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Exercise 1.3 Give reasons for the unsuitability of the Turing test as a definition of
“artificial intelligence” 1n practical Al.

#> Exercise 1.4 Many well-known inference processes, learning processes, etc. are
NP-complete or even undecidable. What does this mean for AI?

Exercise 1.5

(a) Why 1s a deterministic agent with memory not a function from the set of all
inputs to the set of all outputs, in the mathematical sense?

(b) How can one change the agent with memory, or model it, such that it becomes
equivalent to a function but does not lose its memory?

Exercise 1.6 Let there be an agent with memory that can move within a plane.

From its sensors, it receives at clock ticks of a regular interval Az its exact position

(x, y) 1n Cartesian coordinates.

(a) Give a formula with which the agent can calculate its velocity from the current
time ¢ and the previous measurement of r — Ar.

(b) How must the agent be changed so that 1t can also calculate 1ts acceleration?
Provide a formula here as well.

* Exercise 1.7

(a) Determine for both agents in Example 1.1 on page 18 the costs created by the
errors and compare the results. Assume here that having to manually delete a
spam email costs one cent and retrieving a deleted email, or the loss of an
email, costs one dollar.

(b) Determine for both agents the profit created by correct classifications and
compare the results. Assume that for every desired email recognized, a profit
of one dollar accrues and for every correctly deleted spam email, a profit of
one cent.



In propositional logic, as the name suggests, propositions are connected by logical
operators. The statement “the street is wet”’ 18 a proposition, as 1S “if is raining’ .
These two propositions can be connected to form the new proposition

if it is raining the street is wel.
Written more formally

it is raining = the street is wet.

This notation has the advantage that the elemental propositions appear again in
unaltered form. So that we can work with propositional logic precisely, we will
begin with a definition of the set of all propositional logic formulas.

2.1 Syntax

Definition 2.1 Let Op ={—, A, V, =.,<,(,)} be the set of logical operators
and 2 a set of symbols. The sets Op, 2 and {t, f} are pairwise disjoint. 2 is
called the signature and its elements are the proposition variables. The set of
propositional logic formulas is now recursively defined:

e 7 and f are (atomic) formulas.
e All proposition variables, that 1s all elements from 2, are (atomic)
formulas.

e If A and B are formulas, then —A, (A), AANB, AV B,A= B,A & B are
also formulas.
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This elegant recursive definition of the set of all formulas allows us to generate
infinitely many formulas. For example, given 2 = {A, B, C},

AANB, AABAC, AANAANA, CABVA, (-AAB)= (=-CVA)

are formulas. (((A)) V B) 1s also a syntactically correct formula.

Definition 2.2 We read the symbols and operators in the following way:

t: “true”
f: “false”
—A: “not A” (negation)
AANB: “Aand B” (conjunction)
AV B: “Aor B” (disjunction)
A= B: “if Athen B” (implication (also called material implication))

A & B: “Aifand only if B” (equivalence)

The formulas defined in this way are so far purely syntactic constructions
without meaning. We are still missing the semantics.

2.2 Semantics

In propositional logic there are two truth values: ¢ for “true” and f for “false”.
We begin with an example and ask ourselves whether the formula A A B 1s true.
The answer is: it depends on whether the variables A and B are true. For example, if
A stands for “It is raining today’ and B for “It is cold today” and these are both true,
then A A B 1s true. If, however, B represents “It is hot today” (and this 1s false), then
A A B 1s ftalse.

We must obviously assign truth values that reflect the state of the world to
proposition variables. Therefore we define

Definition 2.3 A mapping / : 2 — {t, f}, which assigns a truth value to
every proposition variable, 1s called an interpretation.

Because every proposition variable can take on two truth values, every propo-
sitional logic formula with n different variables has 2" different interpretations.
We define the truth values for the basic operations by showing all possible inter-
pretations in a fruth table (see Table 2.1 on page 25).
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Table 2.1 Definition of the A

B (A) A ANB AVB A=B A&B
logical operators by truth
table t ! { f { { f t
! / ! / / ! / /
f t f ! f { f f
/ / / t / / t t

The empty formula is true for all interpretations. In order to determine the truth
value for complex formulas, we must also define the order of operations for logical
operators. If expressions are parenthesized, the term in the parentheses is evaluated
first. For unparenthesized formulas, the priorities are ordered as follows, beginning
with the strongest binding: —, A, V, =, &,

To clearly differentiate between the equivalence of formulas and syntactic
equivalence, we define

Definition 2.4 Two formulas F and G are called semantically equivalent if
they take on the same truth value for all interpretations. We write F' = G.

Semantic equivalence serves above all to be able to use the meta-language, that
1s, natural language, to talk about the object language, namely logic. The statement
“A = B” conveys that the two formulas A and B are semantically equivalent. The
statement “A < B” on the other hand 1s a syntactic object of the formal language of
propositional logic.

According to the number of interpretations in which a formula 1s true, we can
divide formulas into the following classes:

Definition 2.5 A formula 1s called

e Satisfiable 1f 1t 1s true for at least one interpretation.

o [logically valid or simply valid if it is true for all interpretations. True
formulas are also called tautologies.

e Unsatisfiable 1f 1t 1s not true for any interpretation.

Every interpretation that satisfies a formula 1s called a model of the formula.

Clearly the negation of every generally valid formula i1s unsatisfiable. The
negation of a satisfiable, but not generally valid formula F 1s satisfiable.

We are now able to create truth tables for complex formulas to ascertain their
truth values. We put this into action immediately using equivalences of formulas
which are important in practice.
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with n proposition variables, for all 2" interpretations of the variables the formula
KB = Q must be evaluated. The computation time grows therefore exponentially
with the number of variables. Therefore this process is unusable for large variable
counts, at least in the worst case.

If a formula KB entails a formula Q, then by the deduction theorem KB = Q 1s a
tautology. Therefore the negation ~(KB =- Q) 1s unsatisfiable. We have

—(KB = Q) = ~(-KBV Q) = KB N 0.

Therefore, KB A —(Q is also unsatisfiable. We formulate this simple, but important
consequence of the deduction theorem as a theorem.

Theorem 2.3 (Proof by contradiction) KB = Q if and only if KB N —Q is
unsatisfiable.

To show that the query Q follows from the knowledge base KB, we can also add
the negated query —Q to the knowledge base and derive a contradiction. Because of
the equivalence A N —A & f from Theorem 2.1 on page 26 we know that a
contradiction 1s unsatisfiable. Therefore, O has been proved. This procedure, which
1s frequently used in mathematics, 1s also used 1n various automatic proof calculi
such as the resolution calculus and in the processing of PROLOG programs.

One way of avoiding having to test all interpretations with the truth table method
is the syntactic manipulation of the formulas KB and Q by application of inference
rules with the goal of greatly simplifying them, such that in the end we can instantly
see that KB = Q. We call this syntactic process derivation and write KB = Q. Such
syntactic proof systems are called calculi. To ensure that a calculus does not
generate errors, we define two fundamental properties of calculi.

Definition 2.7 A calculus is called sound if every derived proposition fol-
lows semantically. That 1s, if 1t holds for formulas KB and Q that

if KBFQ then KBFE Q.

A calculus is called complete 1f all semantic consequences can be derived.
That 1s, for formulas KB and Q the following holds:

if KB=(Q then KBHFF Q.

The soundness of a calculus ensures that all derived formulas are in fact semantic
consequences of the knowledge base. The calculus does not produce any “false
consequences”. The completeness of a calculus, on the other hand, ensures that the
calculus does not overlook anything. A complete calculus always finds a proof if
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Fig. 2.1 Syntactic derivation and semantic entailment. Mod(X) represents the set of models of a
formula X

the formula to be proved follows from the knowledge base. If a calculus i1s sound
and complete, then syntactic derivation and semantic entailment are two equivalent
relations (see Fig. 2.1).

To keep automatic proof systems as simple as possible, these are usually made to
operate on formulas in conjunctive normal form.

Definition 2.8 A formula is in conjunctive normal form (CNF) if and only if
it consists of a conjunction

KiNK A---ANK,,
of clauses. A clause K; consists of a disjunction
(Liy VLoV -V Lm{.)

of literals. Finally, a literal 1s a variable (positive literal) or a negated variable
(negative literal).

The formula (A V BV ~C) A (A V B) A (=B V —C) 1s 1n conjunctive normal
form. The conjunctive normal form does not place a restriction on the set of
formulas because:

Theorem 2.4 Every propositional logic formula can be transformed into an
equivalent conjunctive normal form.
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Example 2.1 We put AV B = C A D into conjunctive normal form by using the
equivalences from Theorem 2.1 on page 26:

AV B=CAND

=-(AVB)V (CAD) (implication)
= (-AA-B)V (CAD) (de Morgan)
=(-AV(CAD))AN(=BV (CAD)) (distributive law)

((mFAV C) A (=AV D)) A ((=BV C) A (=BV D)) (distributive law)
(FAVC)A(CAVD)A(-BV C)A(—BV D) (associative law)

1l

We are now only missing a calculus for syntactic proof of propositional logic
formulas. We start with the modus ponens, a simple, intuitive rule of inference, which,
from the validity of A and A = B, allows the derivation of B. We write this formally as

A, A=B
.

This notation means that we can derive the formula(s) below the line from the
comma-separated formulas above the line. Modus ponens as a rule by itself, while
sound, 1s not complete. If we add additional rules we can create a complete
calculus, which, however, we do not wish to consider here. Instead we will
investigate the resolution rule

AVB, -BVC
" 2.1
AV C 2.1)

as an alternative. The derived clause 1s called resolvent. Through a simple trans-
formation we obtain the equivalent form

AVB, B=~C
AV C '

If we set A to f, we see that the resolution rule i1s a generalization of the modus
ponens. The resolution rule is equally usable if C 1s missing or if A and C are
missing. In the latter case the empty clause can be derived from the contradiction
B N\ —B (Exercise 2.7 on page 38).

2.4 Resolution

We now generalize the resolution rule again by allowing clauses with an arbitrary
number of literals. With the literals Ay, ..., A,,, B, Cy, ..., C, the general resolution
rule reads
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(AyvV---VA,VB), (-BVC/ V---VC(C,)

2.2
(AfV---VAL,VCI V-V (22)

We call the literals B and —B complementary. The resolution rule deletes a pair of
complementary literals from the two clauses and combines the rest of the literals
into a new clause.

To prove that from a knowledge base KB, a query Q follows, we carry out a
proof by contradiction. Following Theorem 2.3 on page 28 we must show that a
contradiction can be derived from KB A —Q. In formulas in conjunctive normal
form, a contradiction appears in the form of two clauses (A) and (—A), which lead to
the empty clause as their resolvent. The following theorem ensures us that this
process really works as desired.

For the calculus to be complete, we need a small addition, as shown by the
following example. Let the formula (A V A) be given as our knowledge base. To
show by the resolution rule that from there we can derive (A A A), we must
show that the empty clause can be derived from (A V A) A (TA V —A). With the
resolution rule alone, this 1s impossible. With factorization, which allows deletion
of copies of literals from clauses, this problem is eliminated. In the example, a
double application of factorization leads to (A) A (—A), and a resolution step to the
empty clause.

Theorem 2.5 The resolution calculus for the proof of unsatisfiability of
formulas in conjunctive normal form is sound and complete.

Because 1t 1s the job of the resolution calculus to derive a contradiction from
KB N —Q, 1t 1s very important that the knowledge base KB 1s consistent:

Definition 2.9 A formula KB 1s called consistent 1f 1t 1s impossible to derive
from it a contradiction, that is, a formula of the form ¢ A —¢.

Otherwise anything can be derived from KB (see Exercise 2.8 on page 38). This
18 true not only of resolution, but also tor many other calculi.

Of the calculi for automated deduction, resolution plays an exceptional role.
Thus we wish to work a bit more closely with it. In contrast to other calculi,
resolution has only two inference rules, and it works with formulas in conjunctive
normal form. This makes its implementation simpler. A further advantage com-
pared to many calculi lies in its reduction in the number of possibilities for the
application of inference rules in every step of the proof, whereby the search space is
reduced and computation time decreased.

As an example, we start with a simple logic puzzle that allows the important
steps of a resolution proof to be shown.
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Example 2.2 Logic puzzle number 7, entitled A charming English family, from the
German book [Ber89] reads (translated to English):

Despite studying English for seven long years with brilliant success, I must admit that when
[ hear English people speaking English I'm totally perplexed. Recently, moved by noble
feelings, 1 picked up three hitchhikers, a father, mother, and daughter, who I quickly
realized were English and only spoke English. At each of the sentences that follow I
wavered between two possible interpretations. They told me the following (the second
possible meaning 1s in parentheses): The father: “We are going to Spain (we are from
Newecastle).” The mother: “We are not going to Spain and are from Newcastle (we stopped
in Paris and are not going to Spain).” The daughter: “We are not from Newcastle (we
stopped in Paris).” What about this charming English family?

To solve this kind of problem we proceed in three steps: formalization, trans-
formation into normal form, and proof. In many cases formalization 1s by far the
most difficult step because it 1s easy to make mistakes or forget small details. (Thus
practical exercise 1s very important. See Exercises 2.9-2.11 on page 38.)

Here we use the variables S for “We are going to Spain”, N for “We are from
Newcastle”, and P for “We stopped in Paris” and obtain as a formalization of the
three propositions of father, mother, and daughter

(SVN)A[(-SAN)V (PAN-S)|N(-NVP).

Factoring out —§ in the middle sub-formula brings the formula into CNF in one
step. Numbering the clauses with subscripted indices yields

KB= (SVN), A(=S8), A(PVN); A(=NVP),.

Now we begin the resolution proof, at first still without a query Q. An expression of
the form “Res(m, n): {clause),” means that {clause) i1s obtained by resolution of
clause m with clause n and 1s numbered k.

Res(1,2):  (N)s
Res(3,4):  (P)g
Res(1,4):  (SV P);

We could have derived clause P also from Res(4, 5) or Res(2, 7). Every further
resolution step would lead to the derivation of clauses that are already available.
Because 1t does not allow the derivation of the empty clause, it has therefore been
shown that the knowledge base 1s non-contradictory. So far we have derived
N and P. To show that —§ holds, we add the clause (S)g to the set of clauses as a
negated query. With the resolution step

Res(2,8): ()

the proof 1s complete. Thus =S A N A P holds. The “charming English family”
evidently comes from Newecastle, stopped n Paris, but 1s not going to Spain.
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If we now want to know whether skiing holds, this can easily be derived. A slightly
generalized modus ponens suffices here as an inference rule:

AiA---AA,. A/ A---AA, = B
. |

The proof of “skiing” has the following form (MP(i,, ..., i;) represents application
of the modus ponens on clauses i; to #;:

MP(2,3): (snow )4
MP(1,5,4): (skiing),.

With modus ponens we obtain a complete calculus for formulas that consist of
propositional logic Horn clauses. In the case of large knowledge bases, however,
modus ponens can derive many unnecessary formulas 1f one begins with the
wrong clauses. Therefore, in many cases it is better to use a calculus that starts
with the query and works backward until the facts are reached. Such systems are
designated backward chaining, in contrast to forward chaining systems, which
start with facts and finally derive the query, as in the above example with the
modus ponens.

For backward chaining of Horn clauses, SLD resolution 1s used. SLD stands for
“Selection rule driven linear resolution for definite clauses™. In the above example,
augmented by the negated query (skiing = f)

nice_weather),

(

(

(Snﬂwfaff => SHOW ),

(mw weather /\ snow = skiing),
(s

we carry out SLD resolution beginning with the resolution steps that follow from
this clause

nice_weather N\ snow = f L)ﬁ
snow = f),
snowfall = f),

and derive a contradiction with the empty clause. Here we can easily see “linear
resolution”, which means that further processing i1s always done on the currently
derived clause. This leads to a great reduction of the search space. Furthermore, the
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literals of the current clause are always processed in a fixed order (for example,
from right to left) (“Selection rule driven™). The literals of the current clause are
called subgoal. The literals of the negated query are the goals. The inference rule
for one step reads

AIN---NAnw=B), BiIANBasA---AB,=Ff
AIAN--NAZABsA---AB, = f |

Before application of the inference rule, By, B», ..., B,—the current subgoals—must
be proved. After the application, B, 1s replaced by the new subgoal A; A - A A,,.
To show that B, 1s true, we must now show that A; A --- A A,,, are true. This process
continues until the list of subgoals of the current clauses (the so-called goal stack) 1s
empty. With that, a contradiction has been found. If, for a subgoal —B,;, there 1s no
clause with the complementary literal B; as its clause head, the proof terminates and
no contradiction can be found. The query is thus unprovable.

SLD resolution plays an important role in practice because programs in the logic
programming language PROLOG consist of predicate logic Horn clauses, and their
processing is achieved by means of SLD resolution (see Exercise 2.13 on page 38,
or Chap. J).

2.6 Computability and Complexity

The truth table method, as the simplest semantic proof system for propositional
logic, represents an algorithm that can determine every model of any formula in
finite time. Thus the sets of unsatishable, satisfiable, and valhid formulas are
decidable. The computation time of the truth table method for satisfiability grows in
the worst case exponentially with the number n of variables because the truth table
has 2" rows. An optimization, the method of semantic trees, avoids looking at
variables that do not occur in clauses, and thus saves computation time in many
cases, but in the worst case 1t 1s likewise exponential.

In resolution, in the worst case the number of derived clauses grows exponen-
tially with the number of 1nitial clauses. To decide between the two processes, we
can therefore use the rule of thumb that in the case of many clauses with few
variables, the truth table method 1s preferable, and in the case of few clauses with
many variables, resolution will probably finish faster.

The question remains: can proof in propositional logic go faster? Are there better
algorithms? The answer: probably not. After all, S. Cook, the founder of com-
plexity theory, has shown that the 3-SAT problem i1s NP-complete. 3-SAT is the set
of all CNF formulas whose clauses have exactly three literals. Thus 1t 1s clear that
there 1s probably (modulo the P/NP problem) no polynomial algorithm for 3-SAT,
and thus probably not a general one either. For Horn clauses, however, there 1s an
algorithm 1in which the computation time for testing satisfiability grows only lin-
early as the number of literals in the formula increases.



2.7 Applications and Limitations 37

2.7 Applications and Limitations

Theorem provers for propositional logic are part of the developer’s everyday
toolset 1n digital technology. For example, the verification of digital circuits and
the generation of test patterns for testing of microprocessors in fabrication are
some of these tasks. Special proof systems that work with binary decision dia-
erams (BDD) are also employed as a data structure for processing propositional
logic formulas.

In Al, propositional logic 1s employed in simple applications. For example,
simple expert systems can certainly work with propositional logic. However, the
variables must all be discrete, with only a few values, and there may not be any
cross-relations between variables. Complex logical connections can be expressed
much more elegantly using predicate logic.

Probabilistic logic 1s a very interesting and current combination of propositional
logic and probabilistic computation that allows modeling of uncertain knowledge.
It 1s handled thoroughly in Chap. 7.

2.8 Exercises

#> Exercise 2.1 Give a Backus—Naur form grammar for the syntax of propositional
logic.

Exercise 2.2 Show that the following formulas are tautologies:
@ (AANB) < AV B

(b) A= B & B="4A

¢c) (A= B)AB=A) < (A< B

d AVBYACCBV O = AV O

Exercise 2.3 Transtform the following formulas into conjunctive normal form:
(a) A B

(b AANB< AV B

(c) AN(A=B)=BHB

Exercise 2.4 Check the following statements for satisfiability or validity.
(a) (play_lottery A six_right) = winner

(b) (play_lottery A six_right A (six_right = win)) = win

(¢) —(—gas_in_tank A (gas_in_tank V —car_starts) = —car_starts)

#+ # Exercise 2.5 Using the programming language of your choice, program a theorem
prover for propositional logic using the truth table method for formulas in
conjunctive normal form. To avoid a costly syntax check of the formulas, you may
represent clauses as lists or sets of literals, and the formulas as lists or sets of
clauses. The program should indicate whether the formula 1s unsatisfiable, satisfi-
able, or true, and output the number of different interpretations and models.
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Exercise 2.6

(a) Show that modus ponens is a valid inference rule by showing that
AN (A= B)EB.

(b) Show that the resolution rule (2.1) 1s a valid inference rule.

* Exercise 2.7 Show by application of the resolution rule that, in conjunctive normal
form, the empty clause 1s equivalent to the false statement.

# Exercise 2.8 Show that, with resolution, one can “derive” any arbitrary clause from
a knowledge base that contains a contradiction.

Exercise 2.9 Formalize the following logical functions with the logical operators
and show that your formula 1s valid. Present the result in CNF.

(a) The XOR operation (exclusive or) between two variables.

(b) The statement at least two of the three variables A, B, C are true.

# Exercise 2.10 Solve the following case with the help of a resolution proof: “If the
criminal had an accomplice, then he came 1n a car. The criminal had no accomplice
and did not have the key, or he had the key and an accomplice. The criminal had the
key. Did the criminal come 1n a car or not?”

Exercise 2.11 Show by resolution that the formula from
(a) Exercise 2.2(d) 1s a tautology.
(b) Exercise 2.4(c) 1s unsatisfiable.

Exercise 2.12 Prove the following equivalences, which are important for working
with Horn clauses:

(@) AV --V-A,VB)=A AN---NA, =B

(b) A,V VA=A N NA, = Ff

) A=zw=A

Exercise 2.13 Show by SLD resolution that the following Horn clause set is

unsatisfiable.
(A), (D), (AAND = G);
(B), (E)4 (CAFAE = H)g
(C);4 (ANBAC = F), (H = f),

#> Exercise 2.14 In Sect. 2.6 1t says: “Thus it 1s clear that there 1s probably (modulo
the P/NP problem) no polynomial algorithm for 3-SAT, and thus probably not a
general one either.” Justify the “probably” in this sentence.



Many practical, relevant problems cannot be or can only very inconveniently be
formulated 1n the language of propositional logic, as we can easily recognize in the
following example. The statement

“Robot 7 is situated at the xy position (35, 79)”
can 1n fact be directly used as the propositional logic variable
“Robot_7_is_situated_at_xy_position_(35, 79)”

for reasoning with propositional logic, but reasoning with this kind of proposition
1s very inconvenient. Assume 100 of these robots can stop anywhere on a grid of

100 x 100 pomnts. To describe every position of every robot, we would need
100 - 100 - 100 = 1000000 = 10° different variables. The definition of relationships
between objects (here robots) becomes truly dithcult. The relation

“Robot A is to the right of robot B.”

1s semantically nothing more than a set of pairs. Of the 10000 possible pairs of
x-coordinates there are (99 - 98)/2 = 4851 ordered pairs. Together with all 10000
combinations of possible y-values for both robots, there are (100 - 99) = 9900
formulas of the type

Robot_7 _is_to_the_right _of _robot_I12 &
Robot 7 _is_situated _at_xy_position_(35, 79)

A Robot_12 _is_situated _at_xy_position_(10, 93) V ...

defining these relations, each of them with (]04)2 - 0.485 = 0.485 - 10® alternatives
on the right side. In first-order predicate logic, we can define a predicate
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Definition 3.3 An interpretation | 1s defined as

e A mapping from the set of constants and variables KUV to a set W of
names of objects in the world.

e A mapping from the set of function symbols to the set of functions in the
world. Every n-place function symbol is assigned an n-place function.

e A mapping from the set of predicate symbols to the set of relations in the
world. Every n-place predicate symbol 1s assigned an n-place relation.

Example 3.1 Let ¢y, ¢2, c3 be constants, “plus” a two-place function symbol, and
“gr” a two-place predicate symbol. The truth of the formula

F = gr(plus(cy,c3), c2)

depends on the interpretation I. We first choose the following obvious interpretation
of constants, the function, and of the predicates in the natural numbers:

Li: ecy—1, cp—2, c3—3, plus— +, gr—>.

Thus the formula 1s mapped to

1 +3>2, orafterevaluation 4 > 2.

The greater-than relation on the set {1, 2, 3, 4} 1s the set of all pairs (x, y) of
numbers with x > y, meaning the set G = {(4, 3). (4, 2), (4. 1), (3, 2), (3, 1), (2, 1)}.
Because (4, 2) € G, the formula F is true under the interpretation I,. However, if we
choose the interpretation

[: c;y—2, co—3, c3— 1, plus— —, gr—>,

we obtain

2—1>3, or 1>3.

The pair (1, 3) 1s not a member of G. The formula F 1s false under the interpretation
. Obviously, the truth of a formula in PLL1 depends on the interpretation. Now,
after this preview, we define truth.
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Definition 3.4

e An atomic formula p(t,,..., t, ) 18 true (or valid) under the interpretation I
if, after interpretation and evaluation of all terms 74, ..., f, and interpre-
tation of the predicate p through the n-place relation r, it holds that

e The truth of quantifierless formulas follows from the truth of atomic
formulas—as in propositional calculus—through the semantics of the
logical operators defined in Table 2.1 on page 25.

e A formula Vx F 1s true under the interpretation I exactly when it is true
given an arbitrary change of the interpretation for the variable x (and only
for x)

e A formula dx F'is true under the interpretation I exactly when there 1s an
interpretation for x which makes the formula true.

The definitions of semantic equivalence of formulas, for the concepts satis-

fiable, true, unsatisfiable, and model, along with semantic entailment (Defi-

nitions 2.4, 2.5, 2.6) carry over unchanged from propositional calculus to
predicate logic.

Theorem 3.1 Theorems 2.2 (deduction theorem) and 2.3 (proof by contra-
diction) hold analogously for PL1.

Example 3.2 The family tree given in Fig. 3.1 graphically represents (in the
semantic level) the relation

Karen A. Franz A.

. f__.-
""'\-\._\_\_\_\_.H ---____.--

Anne A. Oscar A. Mary B. Oscar B.

| e \ /
e

Henry A. Eve A. [sabelle A. Clyde B.

-__i_.-"'{\_\_
. e
" T
- e,
- T,

i

Fig. 3.1 A family tree. The edges going from Clyde B. upward to Mary B. and Oscar B.
represent the element (Clyde B., Mary B., Oscar B.) as a child relationship
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Child= {(Oscar A., Karen A., Frank A.), (Mary B., Karen A., Frank A.),
(Henry A., Anne A., Oscar A.), (Eve A., Anne A., Oscar A.),
(Isabelle A., Anne A., Oscar A.), (Clyde B.,Mary B.,OscarB.)}

For example, the triple (Oscar A., Karen A., Frank A.) stands for the proposition
“Oscar A. is a child of Karen A. and Frank A.”. From the names we read off the
one-place relation

Female = {Karen A., Anne A., Mary B., Eve A., Isabelle A.}

of the women. We now want to establish formulas for family relationships. First we
define a three-place predicate child(x, y, z) with the semantic

[(child(x,y,z))

w = (I(x),I(y),1(z)) € Kind.

Under the interpretation [(oscar) = Oscar A., [(eve) = Eve A., [(anne) = Anne A.,
it 1s also true that child(eve, anne, oscar). For child(eve, oscar, anne) to be true,
we require, with

Vx ¥y Vz child(x,y,z) < child(x,z,y),

symmetry of the predicate child in the last two arguments. For further definitions we
refer to Exercise 3.1 on page 63 and define the predicate descendant recursively as

Vx Vydescendant(x, y) < Az child(x, y, z) V
(Ju v child(x, u, v) N descendant(u, y)).

Now we build a small knowledge base with rules and facts. Let

KB = female(karen) N\ female(anne) N female(mary)
A female(eve) N female(isabelle)
A child(oscar, karen, franz) N child(mary, karen, franz)
A child(eve, anne, oscar) A child(henry, anne, oscar)
A child(isabelle, anne, oscar) N child(clyde, mary, oscarb)
A (Vx Yy Vzchild(x, v, z) = child(x, z, y))
A (Vx Vydescendant(x, y) < Fzchild(x, y, z)
V (dudvchild(x, u, v) A descendant(u, y))).

We can now ask, for example, whether the propositions child(eve, oscar, anne) or
descendant(eve, franz) are derivable. To that end we require a calculus.



